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1 Introduction

Instanton [1] partition function of N = 2 supersymmetric gauge theory in Ω-background

admits exact investigation by localization methods [2–6]. In the limit when the background

parameters ε1, ε2 vanish, the famous Seiberg-Witten solution [7, 8] is recovered. The

case of non-trivial Ω-background has surprisingly rich area of applications. In particular

when one of parameters is set to zero (Nekrasov-Shatashvili limit [9]), deep relations to

quantum integrable system emerge (see e.g. [10–17] to quote a few from many important

works). These are quantum versions of classical integrable systems, which played central

role already in Seiberg-Witten theory on trivial background [18, 19]. The remaining non-

zero Ω-background parameter just plays the role of Planck’s constant. Many familiar

concepts of exactly integrable models of statistical mechanics and quantum field theory such

as Bethe-ansatz or Baxter’s T −Q equations [20, 21] naturally emerge in this context [13].

In the case of generic Ω-background instanton partition function is directly related to the

conformal blocks of a 2d CFT (AGT correspondence) [22–26]. In this context the NS limit

corresponds to the semi-classical limit of the related CFT [12, 17, 27–31].

In [31] one of present authors (R.P.) has investigated the link between Deformed

Seiberg-Witten curve equation and underlying Baxter’s T−Q equation in gauge theory side

and the null-vector decoupling equation [32] of 2d CFT in quite general setting of linear

quiver gauge theories with U(n) gauge groups and 2d An−1 Toda field theory multi-point

conformal blocks in semi-classical limit (see also [30, 33–36] for earlier discussions on the

role of degenerate fields in AGT correspondence).

In this short note we’ll extend some of the results of [31] to the case of generic Ω-

background corresponding to the genuine quantum conformal blocks. For technical reasons

we’ll restrict ourselves to the case of U(2) gauge groups corresponding to the Liouville

theory leaving Toda field theory case for future work.

In section 2 we show that an appropriate choice of parameters [36] in Ar+1 linear

quiver theory with U(n) gauge groups is equivalent to insertion of the analoge of Baxters

Q-operator into the partition function of a theory with one gauge node less Ar theory

with generic parameters. In the 2d CFT side such special choice corresponds to insertion
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of a degenerate primary field in the conformal block [36]. In section 3, restricting to the

case of Liouville theory, starting from the second order differential equation satisfied by the

multi-points conformal blocks including a degenerate field V−b/2 [32] we derive the analogue

equation satisfied by the gauge theory partition function with Q operator insertion. Then

we show that this equation leads to a mixed linear difference-differential equation for Q

operators which is a direct generalization of the T −Q equation from NS limit to the case

of generic Ω-Background. Finally we summarize our results and discuss a couple of further

directions which we think are worth pursuing.

2 A special choice of parameters, leading to Q~Y insertion

Consider the instanton partition function of the linear quiver theory Ar+1 with gauge groups

U(n) with parameters specified as in figure 1a. Note that the parameters of the first gauge

factor (depicted as a dashed circle) are chosen to be a0̃,u = a0,u− ε1δ1,u, where a0,u are the

parameters of the “frozen node” corresponding to the n antifundamental hypermultiplets.

It has been shown in [36] that under such choice of parameters all n-tuples of Young

diagrams Y0̃,u corresponding to the special node 0̃ (the dashed circle) give no contribution

to the partition function unless the first diagram Y0̃,1 consists of a single column while the

remaining n− 1 diagrams are empty. Taking into account this huge simplification we’ll be

able to separate the contribution of the special node explicitly. According to the rules of

construction of the partition function for this contribution we have

n∏
u,v=1

Zbf

(
a0,u,∅|a0̃,v, Y0̃,v

)
Zbf

(
a0̃,u, Y0̃,u|a1,v, Y1,v

)
Zbf

(
a0̃,u, Y0̃,u|a0̃,v, Y0̃,v

) (2.1)

where for a pair of Young diagrams λ, µ the bifundamental contribution is given by

Zbf (a, λ|b, µ) = (2.2)∏
s∈λ

(a− b− ε1Lµ(s) + ε2(1 +Aλ(s)))
∏
s∈µ

(a− b+ ε1(1 + Lλ(s))− ε2Aµ(s)),

the arm length Aλ(s) and leg length Lλ(s) of a box s with respect to a Young diagram λ

are defined as

Aλ(s) = λi − j ; Lλ(s) = λ′j − i , (2.3)

where (i, j) are coordinates of the box s with respect to the center of the corner box and

λi (λ′j) is the i-th column length (j-th row length) of λ as shown in figure 2.

Using (2.2) It is not difficult to compute the factors Zbf present in (2.1). In particular

Zbf (a,∅|b, λ) =
∏
s∈λ

(a− b− ϕ(s)) (2.4)

where

ϕ(s) = ε1(is − 1) + ε2(js − 1) (2.5)
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Figure 1. (a) The quiver diagram for the conformal linear quiver U(n) gauge theory: r + 1

circles stand for gauge multiplets; the two boxes represent n anti-fundamental (on the left edge)

and n fundamental (the right edge) hypermultiplets; the lines connecting adjacent circles are the

bi-fundamentals. (b) The AGT dual (r + 4)-point conformal block of the An−1 Toda field theory

with (dimensionless) coupling b. The fields/intermediate states corresponding to the horizontal

(vertical) lines are specified by momentum (charge) parameters; ω1 is the highest weight of the

defining representation of An−1. In both diagrams the index u takes values from 1 to n.

s2

s1

s3

Figure 2. Arm and leg length with respect to a Young diagram λ = {4, 3, 3, 1, 1} (the gray area):

Aλ(s1) = 1, Lλ(s1) = 2, Aλ(s2) = −2, Lλ(s2) = −3, Aλ(s3) = −2, Lλ(s3) = −4.

(e.g. in figure 2 ϕ(s3) = 6ε1 + ε2). To present the final result for the contribution (2.1) it

is convenient to introduce the notation

Q(v|λ) =
(−ε2)

v
ε2

Γ(− v
ε2

)

∏
s∈λ

v − ϕ(s) + ε1
v − ϕ(s)

(2.6)

The analogue quantity was instrumental in construction of Baxter’s T-Q relation in the

context of Nekrasov-Shatashvili limit of N = 2 gauge theories [13]. Recently the impor-

tance of this quantity in the case generic Ω-background was emphasized in [37]. A careful

examination shows that the contribution (2.1) can be conveniently represented as

n∏
u=1

Q (a0,1 − a1,u + ε2k|Y1,u)

εk2

(
a0,1−a0,u+ε2

ε2

)
k
Q (a0,1 − a1,u|Y1,u)

n∏
u,v=1

Zbf

(
a0̃,u,∅|a1,v, Y1,v

)
(2.7)

where (and further on) k is the only nonzero column length of the diagram Y0̃,1 and

(x)k
def
= x(x+ 1) · · · (x+ k − 1) =

Γ(x+ k)

Γ(x)
(2.8)

is the standard Pochammer’s symbol. Using (2.4) we can see that the Young diagram

dependent part of factor Q in the denominator can be absorbed in the double product.
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The net effect is a simple replacement of parameters a0̃,u by a0,u in arguments of the

functions Zbf :

n∏
u=1

Γ
(
−a0,1−a1,u

ε2

)
Q (a0,1 − a1,u + ε2k|Y1,u)

εk2 (−ε2)
a0,1−a1,u

ε2

(
a0,1−a0,u+ε2

ε2

)
k

n∏
u,v=1

Zbf (a0,u,∅|a1,v, Y1,v) (2.9)

Thus we conclude that k-instanton sector of the dashed circle in Ar+1 linear quiver theory

can be treated as insertion of the operator

Q~Y1
(a0,1 + kε2) =

n∏
u=1

Q (a0,1 − a1,u + ε2k|Y1,u) (2.10)

in a generic Ar theory. It was already known [36], that the special choice of parameters

a0̃,u = a0,u− ε1δu,1 corresponds to the insertion of the completely degenerate field V−bω1(z)

in AGT dual Toda CFT conformal block. Thus (2.10) gives an explicit realization of this

field in terms of N = 2 gauge theory notions.

Until now we were discussing arbitrary gauge U(n) gauge factors. In what follows, we’ll

restrict ourselves with the case n = 2, corresponding to the Liouville theory in AGT dual

side. The reason is that in Liouville theory conformal blocks including this degenerate field,

satisfy second order differential equation.1 In remaining part of the paper we’ll translate

this differential equation in gauge theory terms, finding a linear difference-differential equa-

tion, satisfied by the expectation values of the operators Q(v). Since the equation is valid

for infinitely many discrete values of the spectral parameter v = a0,1 + kε2, k = 0, 1, 2, . . .,

it can be argued that it is valid for generic values of v as well. The last statement we have

checked also by explicit low order instanton computations.

3 Degenerate field decoupling equation in Liouville theory

Let us briefly remind that the Liouville theory (see e.g. [38]) is characterized by the central

charge c of Virasoro algebra parameterized as

c = 1 + 6Q2 Q = b+
1

b
(3.1)

where b is the Liouville’s dimensionless coupling constant related to the Ω-background

parameters via

b =

√
ε1
ε2

(3.2)

The conformal dimension of a primary field Vλ is given by

h(λ) = λ(Q− λ) . (3.3)

The parameter λ is usually referred to as the charge. One alternatively uses the Liouville

momenta p = Q/2− λ. In figure 1b we found it convenient to specify the fields associated

1In generic Toda theory, the analogue null vector decoupling equation has not been investigated in full

detail yet. Instead there is a recent progress in the case of quasi-classical limit [31].
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to the horizontal lines by their momenta, while those of vertical lines by charges. The

relations between this parameters and the gauge theory VEV’s are very simple2

pα =
1

√
ε1ε2

aα,1 − aα,2
2

; λβ =
1

√
ε1ε2

(
aβ,1 + aβ,2

2
−
aβ−1,1 + aβ−1,2

2

)
(3.4)

for α = 1, 2, . . . , r + 1, β = 2, 3, . . . , r + 1. With the same logic we have

p0 =
1

√
ε1ε2

a0,1 − a0,2
2

; p0̃ =
1

√
ε1ε2

a0,1 − ε1 − a0,2
2

λ0̃ = − ε1
2
√
ε1ε2

= − b
2

; λ1 =
ε1√
ε1ε2

(
a1,1 + a1,2

2
− a0,1 − ε1 + a0,2

2

)
(3.5)

Notice that the field Vλ0̃ = V−b/2 is indeed a degenerate field satisfying second order

differential equation due to the null vector decoupling condition (below Lm are the Vira-

soro generators)

(b−2L2
−1 + L−2)V−b/2 = 0 (3.6)

The differential equation satisfied by our r + 4-point conformal block

G(z|zα) = 〈p0|V−b/2(z)Vλ1(1)Vλ2(z2) · · ·Vλr+1(zr+1)|pr+1〉{p0̃,...,pr} (3.7)

reads [32](
b−2∂2z−

2z−1

z(z−1)
∂z+

δ

z(z−1)
+
r+1∑
α=2

zα (zα−1)

z(z−1) (z−zα)
∂zα+

r+2∑
α=1

h(λα)

(z−zα)2

)
G(z|zα)=0 (3.8)

where

δ = h (Q/2− p0)− h (−b/2)−
r+2∑
α=1

h(λα) and λr+2 = Q/2− pr+1 . (3.9)

According to AGT correspondence the instanton part of the partition function of the

N = 2 theory considered in previous section with U(2) gauge group factors is related to

the conformal block (3.7) as

G(z|zα) = Zinst z
h(Q/2−p0)−h(−b/2)−b

∑r+1
α=1(Q−λα)

r+1∏
α=1

(z − zα)b(Q−λα) (3.10)

×
∏

1≤α<β≤r+1

(zα − zβ)−2λα(Q−λβ)
r+1∏
α=2

z
p2α−p2α−1−h(λα)+2λα

∑r+1
β=α+1(Q−λβ)

α .

To complete the map (3.4), (3.5) between the two sides, it remains to mention that the

exponentiated gauge couplings (instanton counting parameters) are related to the insertion

points as [22]:

qα = zα+1/zα ; for α = 1, . . . , r

q0̃ = 1/z, (3.11)

with z1 = 1.

2A Liouville momentum p (charge λ) is simply identified with the u = 1 component P1 ((λω1)1 = λ/2)

of the A1 Toda theory.
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In (3.11), besides the standard AGT U(1) factors, an extra power of z facilitating a

scale transformation with scaling factor z is included. This transformation is needed to map

the insertion points shown in figure 1b to the respective insertion points of the conformal

block (3.7). Inserting (3.11) into (3.8) and replacing CFT parameters by their gauge

theory counterparts we’ll find a differential equation satisfied by the partition function.

After tedious but straightforward transformations it is possible to represent this equation

as (for more details on calculations of this kind see [31])

r+1∑
α=0

(−)αχα(−ε2 z∂z; û1, . . . , ûr+1)z
−α−a0,1/ε2Zinst = 0 (3.12)

where

û1 = −ε1ε2
r+1∑
α=2

zα∂zα ; ûα = ε1ε2zα∂zα for α = 2, . . . , r + 1 (3.13)

and χα(v;u1, . . . , ur+1) are quadratic in v and linear in u1, . . . , ur+1 polynomials (we use

notation ε = ε1 + ε2)

χα(v;u1, . . . , ur+1) =
∑

1≤k1<···<kα≤r+1

( α∏
β=1

zkβ

)(
y0(v + αε+ (α− δk1,1)ε1)

−
α∑
β=1

(
ykβ−1(v + (α− β + 1)ε+ (α− δk1,1)ε1)

− ykβ (v + (α− β)ε+ (α− δk1,1)ε1)

+ ukβ + (c0,1 − ckβ−1,1)(ckβ−1,1 − ckβ ,1)
)

+
∑

1≤β<γ≤α
(ckβ−1,1 − ckβ ,1)(ckγ−1,1 − ckγ ,1)

)
, (3.14)

where for α = 0, 1, . . . , r + 1

yα(v) = (v − aα,1)(v − aα,2)
def
= v2 − cα,1v + cα,2 . (3.15)

We set by definition

χ0(v) = y0(v) (3.16)

and for the other extreme value α = r + 1 it is easy to see that

χr+1(v) = yr+1(v)
r∏

β=1

zβ . (3.17)

Representing Zinst as a power series in 1/z ,

Zinst =
∑

v∈a0,1+ε2Z
Q(v)z−(v−a0,1)/ε2 (3.18)
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from eq. (3.12) for the coefficients Q(v) we get the relation

r+1∑
α=0

(−)αχα(v; û1, . . . , ûr+1)Q(v − αε2) = 0 , (3.19)

which is valid for infinitely many values v ∈ a0,1 + ε2Z. Since Zinst is regular at z =∞, in

fact we have nontrivial equations only for vk = a0,1 + ε2k, with k ≥ 0.

Recall now that as discussed in previous section, due to eqs. (2.9), (2.10), Zinst of

the Ar+1 theory up to a simple factor is the same as VEV of the quantity Q ~Y1
(2.10)

calculated in the framework of Ar gauge theory (i.e. in theory without the dashed circle in

figure 1a). Explicitly

Q(vk) = C
2∏

u=1

ε
(a0,1−vk)/ε2
2

Γ
(
vk−a0,u

ε2
+ 1
) 〈Q~Y1

(vk)〉Ar , (3.20)

where the constant C takes the value

C =

2∏
u=1

Γ
(
a1,u−a0,1

ε2

)
Γ
(
a0,1−a0,u

ε2
+ 1
)

(−ε2)
a0,1−a0,u

ε2

,

if one adopts conventional unit normalization for both partition function and the conformal

block. The right hand side of the eq. (3.20) can be calculated by means of gauge theory

for arbitrary v ∈ C. There are all reasons to believe that also for generic values of v the

equation (3.19) still holds. Indeed, for a given instanton order, the equation (3.19) states,

that some combination of rational functions3 of v vanish for all values v = vk, but this is

possible only if this combination vanishes identically.

A simple inspection ensures that the equation (3.19) in Nekrasov-Shatashvili limit

completely agrees with the analogous difference equation investigated in details in [31].

4 Summary

We made an explicit link between the insertion of the Q operator in N = 2 gauge theory

and insertion of simplest degenerate field in AGT dual 2d CFT.

In the special case of the gauge groups U(2) we found analog of the Baxter’s T−Q equa-

tion, previously known only in the Nekrasov-Shatashvili limit of the Ω-background [13–17].

To conclude let us mention that a “microscopic” proof of this statement e.g. along the

line presented in [39] to prove qq-character identities of [37] would be highly desirable.

Another important contribution would be generalization of our analysis to the case of

arbitrary U(n) or other choices of gauge groups.

3Evidently, by multiplying with suitable gamma and exponential functions it is easy to get rid of non-

rational prefactors of (2.6), (3.20).
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