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sponds to emergence of spacetime. We consider the case of pure Einstein’s gravity with a

negative cosmological constant in the dual hydrodynamic regime. The holographic RG flow

is a system of first order differential equations for radial evolution of the energy-momentum

tensor and the variables which parametrize it’s phenomenological form on hypersurfaces

in a foliation. The RG flow can be constructed without explicit knowledge of the bulk

metric provided the hypersurface foliation is of a special kind. The bulk metric can be

reconstructed once the RG flow equations are solved. We show that the full spacetime can

be determined from the RG flow by requiring that the horizon fluid is a fixed point in a

certain scaling limit leading to the non-relativistic incompressible Navier-Stokes dynamics.

This restricts the near-horizon forms of all transport coefficients, which are thus determined

independently of their asymptotic values and the RG flow can be solved uniquely. We are

therefore able to recover the known boundary values of almost all transport coefficients at

the first and second orders in the derivative expansion. We conjecture that the complete

characterisation of the general holographic RG flow, including the choice of counterterms,

might be determined from the hydrodynamic regime.
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1 Introduction

One of the least understood features of the holographic correspondence [1–4] is the construc-

tion of the field-theoretic renormalization group flow from the classical theory of gravity.

Indeed the radial coordinate of the one higher dimensional spacetime, in which the theory

of classical gravity lives, has been readily identified as the scale of defining the dual effective

field theory, since early days of holography. This identification of the radial direction with

the scale of the dual field theory has been used to define holographic renormalization [5–9],
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which has been instrumental in making the holographic correspondence precise. Neverthe-

less, it is not clear, what is the precise nature of the coarse graining at a given scale in the

field theory that the radial direction corresponds to. It is certainly possible that a lot of

notions of coarse graining or integrating out degrees of freedom can be defined in the field

theory, each of which has a holographic dual.

In recent literature, there has been various suggestions of replicating Wilsonian renor-

malization group in holography (see for instance [10–21]).1 It is not entirely clear if the

coarse graining of the dual field theory is being done in momentum space or in real space,

or with unitary operations like minimising entanglement amongst directly interacting parts

added to the repertoire before the coarse graining is done. It is also not clear how to de-

fine the rules for constructing counterterms generally, and also what is the precise role of

multi-trace operators in the holographic renormalization group (RG) flow.

In this paper we will take a different approach. We will adopt the point of view

that before interpreting holographic renormalization group flow in field-theoretic terms,

we will need to understand first how Einstein equations can be equivalent to the first

order evolution of physical data with the scale of averaging. This physical data lives on

the hypersurfaces of a spacetime foliation and is typically constructed out of the explicit

metric of the bulk spacetime. The question is if we reverse this procedure. Firstly, can we

define a radial flow of the physical data along a hypersurface foliation without knowing the

bulk spacetime explicitly? Secondly, can we reconstruct the bulk spacetime metric which

will be a solution of classical gravity from this holographic RG flow? This also necessitates

that we should determine the properties of the solutions of classical gravity, like absence

of naked singularities, from the holographic RG flow itself, as without knowing the explicit

bulk spacetime metric, we have no other way of analysing regularity.

Our approach is built on the usual notion that the holographic RG flow should be

equivalent to emergence of spacetime, in particular the emergence of the radial direction.

The non-trivial part apparently is that the equations of gravity are second order in radial

derivatives and involve the explicit metric of spacetime. On the other hand, the RG flow

equations are first order and involve couplings and physically measurable quantities like

transport coefficients built out of the couplings. Our aim will be to establish that solutions

of Einstein’s equations of pure gravity with negative cosmological constant are equivalent to

first order radial flow of only physically measurable data. The latter should be constructed

without any explicit knowledge of the bulk spacetime metric. In other words, we will

show that we can construct the holographic RG flow without requiring to solve Einstein’s

equations first. Furthermore, we will show that the solutions of Einstein’s equations of a

given class can be reconstructed from the holographic RG flow.

We will also demonstrate that this holographic RG flow can be constructed in a unique

way up to trivial scale reparametrizations. We will require that:

• the holographic RG flow can be constructed without knowing the bulk spacetime

metric explicitly, and

• the physical data in the infrared is sensible.

1An instance of an earlier work is [22].
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Based on these requirements, we will give evidence that:

• only a certain kind of hypersurface foliation works, and also

• the counter-terms can be determined uniquely.

It is known that in the holographic correspondence, there is a special limit of long wave-

length solutions on the gravity side, which corresponds to hydrodynamics in the dual sys-

tems [23–29]. We will call this limit of the holographic correspondence as the fluid/gravity

limit. In this paper we will be mainly concerned with what we can learn about the general

repertoire of holographic RG flow on the gravity side from this limit. This limit poses a

major challenge for showing emergence of spacetime from holographic RG flow. In this

limit, we expect the full spacetime to be determined by horizon dynamics, i.e. the nature

of the horizon fluid alone. This horizon fluid should be close to the membrane paradigm

fluid [30–36], and the relativistic boundary fluid with corrections to Navier-Stokes equa-

tions to all orders in the derivative expansion should also be reconstructed from the horizon

fluid via RG flow.

We will show that in the fluid/gravity limit the horizon emerges as a natural endpoint

of the holographic RG flow - it is the hypersurface where the temperature, pressure and

speed of sound blow up at late time, thus the notion of a thermodynamic equation of

state does not exist beyond the thermal scale corresponding to the radial location of the

horizon.2 It is important to remark that by the horizon we strictly mean the late-time

horizon. We will elaborate on this issue later.

Under a certain rescaling of the radial coordinate (corresponding to the renormalization

scale), time and the hydrodynamic variables, the horizon fluid turns out to be a fixed point

of the RG flow at the leading order in the derivative expansion. This fixed point is precisely

described by the non-relativistic incompressible Navier-Stokes equations, if the shear and

bulk viscosities are finite at the horizon. Demanding that this fixed point is not altered

by higher derivative corrections is what allows us to restrict near-horizon behaviour of the

higher order transport coefficients. We find sufficient evidence by explicit calculations that

these restrictions lead us to solve the RG flow uniquely, thus allowing us to determine the

boundary values of the shear viscosity and higher order transport coefficients.

Our RG flow indeed reproduces the known values of first and second order transport

coefficients at the boundary. The latter have been derived earlier in the literature by con-

structing solutions of Einstein’s equations corresponding to long wavelength perturbations

of black branes and then requiring existence of smooth late time (future) horizons in these

solutions (the most complete method is as in [28]).

Our procedure typically simplifies the calculations involved in determining these

boundary transport coefficients. However in some cases, our procedure is slightly more

complex than the usual procedure, as we need to go to higher orders in derivative expan-

sion to fix values of a few lower order transport coefficients, like in the case of the shear

2At the horizon, the speed of sound diverges giving rise to incompressibility. We will see later this

makes the equation of state ill defined, because the pressure instead of becoming determined by the local

temperature, becomes a non-local functional of the velocity fields.

– 3 –



J
H
E
P
1
1
(
2
0
1
3
)
0
8
6

viscosity η. We will see this complexity is unavoidable in the RG flow approach. Neverthe-

less we believe that our results give us sufficient evidence that the RG flow determines the

values of all transport coefficients at the boundary to all orders in derivative expansion,

which can equivalently be determined from regularity of the late time (future) horizon of

the explicit bulk spacetime metric.

The fact that the horizon originally appears as an end point rather than a fixed point

of the RG flow is quite reminiscent of the situation in multi-scale entanglement renormal-

ization Ansatz (MERA) [37, 38]. In the latter case, the RG flow ends at the thermal scale

or the scale of mass gap simply because the operations involved cannot be defined any

more. In fact, similarities between MERA and holographic RG have also been pointed out

in the literature from the Euclidean point of view [10, 17]. In our case, we additionally

learn the virtue of Lorentzian holographic RG flow is immense - we can determine all the

information at the boundary from the dynamics at the infra-red scale in which the RG

flow terminates. The end point of the RG flow is also a fixed point in disguise. Demand-

ing that the dynamics at the fixed point is of a special kind allows us to fix the data in

the ultraviolet.

We will find out that constructing holographic RG flow without a priori knowledge

of the bulk spacetime metric implies the choice of Fefferman-Graham foliation. In the

fluid/gravity limit, this foliation has a natural end-point where the Fefferman-Graham co-

ordinates have a coordinate singularity, which coincides with the horizon at late time in the

fluid/gravity limit. It is precisely here where we expect the fluid to follow incompressible

Navier-Stokes equations. The Fefferman-Graham foliation can be defined for any asymp-

totically anti de-Sitter spacetime. Therefore, even generally beyond the fluid/gravity limit,

we should impose good behaviour of the physical data on the infrared screen. This should

determine the RG flow uniquely. We will have more to say on this in the Discussion section.

Our results and discussion here will indicate that the fluid/gravity limit itself will be

good enough to define a unique holographic RG flow (up to trivial scale re-parametrisation)

which will satisfy the requirements mentioned earlier. Though we need to generalize our

methods beyond the hydrodynamic limit, we will argue that the choice of foliation and the

counter-terms will be generally valid. We will also comment later that our considerations

can be extended beyond pure gravity as well.

In this paper, we will not attempt to interpret the holographic RG flow in field-theoretic

terms. Nevertheless, let us point out here that the holographic RG flow achieves some-

thing remarkable. The couplings of a field theory, and also the transport coefficients (as

functions of thermodynamic variables and coupling constants) are defined independently of

the background metric in which the field theory lives. The averaging procedure described

by the holographic RG flow defines scale dependent transport coefficients in a background

independent manner. In particular, there is no assumption about the boundary metric

other than it is weakly curved. The behaviour of the fluid variables at any scale will de-

pend on the choice of boundary metric. Still the radial flow of transport coefficients will

be independent of this choice.

Let us see a bit closely what happens if we coarse grain the velocity field uµ over a scale.

It is clear that the coarse grained velocity field 〈uµ〉 will not satisfy 〈uµ〉〈uν〉gµν = −1, with
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gµν being the fixed background metric unless the background metric gµν is also defined in

a coarse grained manner. Our holographic RG procedure also averages gµν in a simple and

consistent manner - by identifying it with the physical hypersurface metric at any scale.

In a way, in the fluid/gravity limit, the holographic RG flow is close to the RG flow of

partial differential equations with singular perturbations as defined by Barenblatt, Chen,

Goldenfeld and Oono [39–41].3 In their method, a specific construction of RG flow is

used to derive generic long term behaviour of solutions and this is applicable to forced

non-relativistic incompressible Navier-Stokes equation. The goal is to define a consistent

averaging of a generic solution, such that the end point of this averaging is the so-called

unique scaling solution which determines the long-term behaviour. This procedure has

successfully reproduced the drag coefficient on a body moving in the fluid at low values of

Reynold’s number, though it has been difficult to implement it for large values of Reynold’s

number which is the realm of turbulence [42].

The holographic RG flow seems to be the natural choice of RG for relativistic fluids

as it can average both uµ and the metric gµν in a consistent way maintaining the norm

of uµ. Morally it is similar to Barenblatt, Chen, Goldenfeld and Oono approach as the

endpoint of the holographic RG is the horizon fluid, and the horizon is indeed expected to

control the dynamics at large time scales. In the future, we will like to explore whether

our construction of holographic RG flow leads to a better understanding of turbulence. We

will have more to say about this in the Discussion section.

The explicit metric has a coordinate singularity at the horizon in the Fefferman-

Graham coordinates, but this does not affect the RG flow procedure. This is because

the transport coefficients on hypersurfaces of the foliation depend only on choice of the

foliation up to trivial redefinitions of the radial coordinate as a function of itself, and are

independent of the choice of the bulk coordinate system. The reason is that the hyper-

surface energy-momentum tensor is after all uniquely determined by the embedding of the

hypersurface. The Landau-Lifshitz definition uniquely determine the fluid variables uµ and

T at each hypersurface and hence the transport coefficients. Thus the hypersurface trans-

port coefficients can be evaluated in any bulk coordinate system if the explicit spacetime

metric is known. Since the foliation we choose naturally involves the Fefferman-Graham

radial coordinate for reasons described before, we will stick to this coordinate system for

our convenience.

The hydrodynamic derivative expansion parameter is the ratio of the typical scale

of variation of fluid variables to the mean-free path. It flows radially with the RG flow

because the hydrodynamic variables and also their covariant derivatives are defined at each

hypersurface individually. The derivative expansion, when defined in this scale dependent

manner, is expected to become better as we flow to the horizon. The fluid approximation

should work better in the infra-red. Unfortunately we cannot make this more precise

because we cannot determine the scale dependent mean free path from hydrodynamic

considerations alone. At a given scale, this should be a function of the effective temperature

and the scale as well. It will be interesting to determine the scale dependent mean-free

path precisely in the future. Regardless, such considerations do not affect our results here.

3For a similar perspective see [20].
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Comparison with other approaches. The Wilsonian approach to fluid/gravity corre-

spondence was initiated by Bredberg, Keeler, Lysov and Strominger [43] (see also [44–50]).

They adopted the procedure of cutting off the geometries along hypersurface foliation of

Eddington-Finkelstein coordinates and solved for the metric in the region bounding the

horizon and the cut-off hypersurface. The interpretation was that the ultraviolet part

of the geometry is removed. Then Dirichlet boundary conditions were imposed on the

cut-off hypersurface such that the induced metric there remained flat to all orders in the

derivative expansion. The bulk metric was found in the long-wavelength approximation.

This generated a hydrodynamic energy-momentum tensor on the cut-off hypersurface with

cut-off dependent equation of state and transport coefficients. Clearly this gave a method

to investigate fluid/gravity correspondence with many possible asymptotic conditions in a

cut-off dependent way.

In our previous work [48], we showed that one can obtain the velocity and temperature

fields on the cut-off hypersurface by cut-off dependent field redefinitions of the boundary ve-

locity and temperature fields. We assumed asymptotically AdS boundary conditions. The

cut-off dependent bulk solutions are related by field redefinitions of the fluid velocity and

temperature fields. These field redefinitions are uniquely fixed by the Landau-Lifshitz defi-

nitions of the velocity and temperature fields applied to the hypersurface energy-momentum

tensor which is covariant with respect to the induced metric. This directly leads to the

cut-off dependent transport coefficients. We implemented this in the Fefferman-Graham

coordinates and a similar approach was later developed in Eddington-Finkelstein coordi-

nates [49].

We also noticed that having a flat induced metric at the cut-off was not necessary for

fixing the cut-off dependent transport coefficients. The regularity at the horizon determined

the RG flow uniquely. This result actually forms the basis of our present work. If transport

coefficients at the cut-off depend only on the regularity of the horizon but not on the precise

nature of the cut-off metric, then somehow we should be able to obtain the flow of transport

coefficients from first order equations.

In a way, our work here makes the Wilsonian RG program for holographic fluids precise.

We construct a first order system of equations for evolution of all physical variables in

asymptotically AdS spaces.

It should be also possible to generalize to other asymptotic spacetimes provided we

find the right choice of hypersurface foliation which is crucial to our construction. For

asymptotically Ricci-flat spaces one can also try to use methods of [51] which map asymp-

totically AdS solutions to Ricci-flat solutions. If the equations can also be mapped, then

we can map the RG flow as well. We leave this investigation for the future.

The other related approach is due to Iqbal and Liu [52] which defines an RG flow of

response functions. One can show by this approach that the ratio of shear viscosity η to

the entropy density s, i.e. η/s does not flow and is determined by the regularity of the

horizon only. Crucially the RG flow equation for the response function is non-linear but

first order in r-derivative. The drawback of this approach is that we can only define the RG

flow in the equilibrium black brane geometry - thus we can only probe limited transport

coefficients. Knowing the RG flow of the response functions of non-equilibrium geometries,
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or of multi-point correlators in equilibrium geometries, we can define the RG flow of all

transport coefficients. In our approach we reproduce the basic result that η/s does not

run radially. In the future, we would like to explore the RG flow of response functions in

non-equilibrium geometries.

Finally we would like to mention that the black-fold approach of generating approxi-

mate solutions of Einstein’s equation [53–55] has a similar spirit to our RG flow approach.

Just like we construct the spacetime from the horizon fluid, the black-fold approach gen-

erates the (approximate) solution from long wavelength perturbations of membrane like

sources. These long wavelength perturbations have fluid interpretation in the extended

direction but also elastic shear interpretation in the compact directions. In the future we

would like to investigate if we would be able to reconstruct the spacetime from horizon

dynamics via RG flow in the hydro-elastic approximation by adding compact directions to

the hypersurfaces. Once we understand how to choose hypersurface foliation for various

asymptotic conditions, it will be possible to make the black-fold approach more rigorous

via construction of the RG flow.4

Organization of the paper. The organization of the paper is as follows. In section 2,

we review fluid mechanics briefly and introduce the systematics of the holographic RG flow

Ansatz. In section 3, we formulate our basic Ansatz for the RG flow of the holographic fluid.

In section 4, we show why we require to choose Fefferman-Graham foliation and also deter-

mine the method for renormalization of energy-momentum tensor from general principles.

In section 5, we give the general algorithm for construction of holographic RG flow order by

order in the derivative expansion. In section 6, we discuss how should transport coefficients

behave near the horizon for the horizon fluid to be governed by non-relativistic incompress-

ible Navier-Stokes equations. In section 7, we present the results up to second order in the

derivative expansion explicitly, demonstrating how the RG flow recovers known values of

boundary transport coefficients. Finally, in section 8 we discuss the broader lessons we can

learn from our results and possible future developments. The appendices contain details

of our calculations corroborating with the main line of development of the paper.

2 A brief review of fluid mechanics

In this section we will first briefly review fluid mechanics in an arbitrary weakly curved

background metric. Our presentation will mostly follow [57], though we will emphasize

some points which may not be completely familiar.

The basic data of uncharged fluid mechanics are:

gµν , uµ and T , (2.1)

namely the background space-time metric gµν , the velocity field uµ which is of norm −1

with respect to the background metric (i.e. uµuνgµν = −1) and the temperature T . The

velocity and temperature fields are directly measurable.

4For a recent work connecting the holographic RG flow with the blackfold approach see [56].
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We also require the background metric gµν to be weakly curved, i.e. the typical curva-

ture radius to be larger than the mean free path. In such a background, the hydrodynamic

approximation is valid near equilibrium. The fluid energy-momentum tensor takes a co-

variant form with respect to the background metric. This form is a functional of gµν , u
µ, T ,

covariant derivatives of uµ and T , and the Riemann curvature Rµ
νρσ constructed out of gµν

and it’s covariant derivatives. This functional form can be expanded phenomenologically

in the derivative expansion, where the expansion parameter is the typical length scale of

variation of the curvature, uµ and T with respect to the mean free path.

The equations of fluid mechanics are simply given by the conservation of this hydro-

dynamic energy-momentum tensor, i.e. ∇µtµν = 0. These determine the d independent

variables in T and uµ.

Thermodynamics is an important input in construction of fluid mechanics. The

equation of state is used locally to define pressure P (T ) and the energy density ǫ(T )

as functions of temperature. Conversely, we can also use thermodynamics to define

the temperature T and the entropy density s from P and ǫ locally using the following

thermodynamic identities:
dǫ

ds
= T, ǫ+ P = Ts . (2.2)

The speed of sound is given by:

c2s =
dP

dǫ
=

d lnT

d ln s
, (2.3)

where in the second equality we used the thermodynamic identities (2.2).

The equilibrium energy-momentum tensor teqµν takes the form:

teqµν = ǫuµuν + P∆µν , with ∆µν = uµuν + gµν (2.4)

being the projection tensor on the spatial plane orthogonal to uµ. Here uµ plays the rôle

of an arbitrary relativistic boost. Obviously this is the most general form of the stress

tensor that does not involve space-ime derivatives of uµ and T . The conservation of the

equilibrium energy-momentum tensor ∇µteqµν = 0 gives the covariant Euler equations which

can be written as:

D lnT = −c2s∇ · u, Duµ = −∇µ
⊥ lnT (2.5)

or equivalently,

D ln s = −∇ · u, Duµ = −c2s∇µ
⊥ ln s , (2.6)

where

D ≡ u · ∇, ∇⊥µ = ∆ ν
µ ∇ν (2.7)

are the covariant derivatives along the vector uµ and orthogonal to it.

In the full hydrodynamic energy-momentum tensor, T and uµ are space-time depen-

dent and the equilibrium form is corrected by non-equilibrium contribution tnon-eqµν . The

full energy-momentum tensor is then teqµν + tnon-eqµν . At a given n order in the derivative

expansion each term in tnon-eqµν will have exactly n space-time derivatives acting on uµ, T

and the metric.

– 8 –
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In any phenomenological description it is useful to eliminate quantities which are equiv-

alent on shell. In hydrodynamics one may use Euler equations of motion (2.5) in order

to reduce the number of possible scalars, vectors and tensors terms in tnon-eqµν at the same

order in the derivative expansion. The non-equilibrium corrections to the equilibrium Euler

equations are relevant to relate quantities at different orders.

We should, however, emphasize that neither fluid mechanics, nor the fluid/gravity

correspondence, nor our holographic RG flow construction depends on the removal of the

phenomenological redundancy. In fact the full construction of the energy-momentum ten-

sor, the explicit space-time metric and the holographic RG flow can all be constructed

completely off-shell. The removal of redundancy using Euler equations order by order in

derivative expansion merely reduces our labour.

We will denote independent scalars (i.e. those unrelated by Euler equations) as S(n)
i ,

where superscript (n) will denote the order in the derivative expansion and the subscript

i will be a counting index. Note we can readily construct a vector out of a scalar at the

same order in the form of S(n)
i uµ. We will therefore consider only transverse vectors V(n)

iµ ,

which are orthogonal to uµ, namely those satisfying V(n)
iµ uµ = 0, with the same meaning for

the superscript (n). Furthermore, we can built a symmetric tensor of the form S(n)
i uµuν ,

S(n)
i ∆µν or uµV(n)

iν + uνV(n)
iµ out of the same order scalars and vectors. Therefore we are

left only with traceless and transverse symmetric tensors T (n)
iµν that satisfy Tµνgµν = 0

and uµTµν = 0.

Before presenting independent scalars, vectors and tensors at the first and the second

orders we would like to make the following remarks:

• It is useful to eliminate local time-derivatives (denoted by D) in favour of local spatial

derivatives (given by ∇⊥µ). It can always be achieved using Euler equations.

• Despite the fact that we treat the temperature, and not the entropy density, as

the “fundamental” thermodynamic variable, we will prefer ∇µ ln s over ∇µ lnT as

a building block for the scalars, vectors and tensors. This choice will make many

expressions in the paper significantly shorter. One can always go the ∇µ lnT basis

using the thermodynamical relation ∇µ ln s = c2s∇µ lnT .

• Throughout this paper we will consider only parity even contributions to the energy

momentum tensor. One example of such an odd parity contribution in d = 3 is

(εαβγuα∇βuγ)∆µν .

We will denote the number of independent scalars, transverse vectors, and symmetric,

traceless and transverse tensors at n-th order in derivative expansion asm
(n)
s , m

(n)
v andm

(n)
t

respectively. At the first order in the derivative expansion we find that
(
m

(1)
s ,m

(1)
v ,m

(1)
t

)
=

(1, 1, 1). In other words, there is only one independent scalar, one independent vector and

one independent tensor. They are:5

∇ · u, ∇⊥µ ln s, and σµν = 〈∇⊥µuν〉 (2.8)

5Notice that the definition of σµν varies in the literature by a factor of two.
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respectively. We will use 〈Aµν〉 to denote the symmetric, traceless and transverse (orthog-

onal to uµ) part of Aµν which can be obtained by using:

〈Aµν〉 =
1

2
∆ ρ

µ ∆ σ
ν

(
Aρσ +Aσρ

)
− 1

d− 1
∆µν∆

ρσAρσ. (2.9)

We note that we can also construct a transverse anti-symmetric tensor at the first order in

derivative expansion, which is the vorticity tensor ωµν which is given by

ωµν =
1

2

(
∇⊥µuν −∇⊥νuµ

)
. (2.10)

At second order in derivative expansion, there are seven independent scalars S(2)
i :

S(2)
1 = R , S(2)

2 = uµR
µ
νu

ν , S(2)
3 = (∇ · u)2 , (2.11)

S(2)
4 = ∇⊥

µ∇⊥µ ln s , S(2)
5 = ∇⊥

µ ln s∇⊥µ ln s , S(2)
6 = σµ

νσ
ν
µ , S(2)

7 = ωµ
νω

ν
µ .

Notice that our definition of S7 = ω2 is different from conventions adopted in some papers,

where ω2 is defined as ωµνωµν . Since ωµν is antisymmetric, one picks up a minus sign

compared to our definition.

As an illustration of the use of Euler equations to eliminate redundant quantities, we

may consider the scalar D(∇·u). In appendix A we list various off-shell identities involving

covariant derivatives of uµ. Starting from (2.12) and using equations of motion to eliminate

Duµ we get:

D(∇ · u) = −S(2)
2 − 1

d− 1
S(2)
3 − c2sS

(2)
4 +

(
c4s −

∂c2s
∂ ln s

)
S(2)
5 − S(2)

6 − S(2)
7 . (2.12)

There are six independent transverse vectors V(2)µ
i at the second order in derivative

expansion, namely:

∇⊥ασ
αµ − uµσ2, ∇⊥αω

αµ − uµω2, σµν∇⊥ν ln s,

ωµν∇⊥ν ln s, (∇ · u)∇µ
⊥ ln s, ∆µαuβRαβ . (2.13)

Finally there are eight independent symmetric, traceless and transverse tensors T (n)
iµν

at second order, namely

T1µν =
〈
Rµ

ν

〉
, T2µν =

〈
uαR µ β

α ν uβ

〉
,

T3µν = (∇ · u)σµ
ν , T4µν =

〈
∇µ

⊥∇⊥ν ln s
〉
, (2.14)

T5µν = 〈∇⊥
µ ln s∇⊥ν ln s〉 , T6µν = 〈σµ

τσ
τ
ν〉 ,

T7µν = 〈ωµ
τω

τ
ν〉 , T8µν = 〈σµ

τω
τ
ν〉 .

Similarly to the scalars, it is necessary to use Euler equations and the tensor identities

from appendix A to express terms like, for instance, 〈Dσµ
ν〉 in terms of Tiµν ’s.

To summarize, we see that at the second order we have (m
(2)
s ,m

(2)
v ,m

(2)
t ) = (7, 6, 8).

Our goal now is to express the non-equilibrium correction to the energy-momentum

tensor, tnon-eqµν , in terms of scalars S(n)
i , vectors V(n)

i and tensors T (n)
i . Before doing so we
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have to adopt a new definition of uµ since away from the equilibrium, it is not anymore a

relativistic boost. It is customary to use the Landau-Lifshitz field definitions of uµ and T .

In these field definitions, uµ is the local velocity of energy transport, and the local energy

density ǫ(T ) is then given by:

tµνu
ν = −ǫ(T )uµ . (2.15)

The temperature T is then defined locally via the equation of state. Since (2.15) trivially

holds for the equilibrium tensor (2.4), the non-equilibrium part of the hydrodynamic tensor

satisfies tnon-eqµν uµ = 0. This means that the V(n)
i ’s don’t appear in the full hydrodynamic

energy-momentum tensor, which can be written now in the following form:

tµν = ǫuµuν + P∆µν +
∞∑

n=1




m
(n)
t∑

i=1

γ
(n)
i T (n)

iµν +




m
(n)
s∑

i=1

δ
(n)
i S(n)

i


 ·∆µν


 . (2.16)

Above the phenomenological coefficients δ(n)i are the scalar transport coefficients. At the

first order there is only one such coefficient (m
(1)
s = 1), the bulk viscosity ζ which is given

by δ
(1)
1 ≡ −ζ. The phenomenological coefficients γ(n)i are the tensor transport coefficients.

At the first order, there is one such coefficient (m
(1)
t = 1), namely the shear viscosity

η given by γ
(1)
1 ≡ −2η. All scalar and tensor transport coefficients are functions of the

entropy density s or alternatively the temperature T , which like the equation of state can

be obtained from the underlying quantum field theory.

In this paper we will not go beyond the second order in the derivative expansion.

We will, therefore, omit in the rest of the paper the (2) superscript used in (2.11), (2.13)

and (2.14).

In a conformal fluid, most of the scalar transport coefficients vanish, except those

required for satisfying the conformal anomaly. Furthermore, the energy-momentum tensor

except for the anomalous part should be Weyl covariant. At each order in derivative

expansion, only a certain combination of symmetric, traceless and transverse tensors are

Weyl covariant. At the first order σµν is Weyl covariant, therefore the shear viscosity η will

be non-vanishing in a conformal field theory. At second order, only five linear combinations

of the eight independent symmetric, traceless and transverse tensors are Weyl covariant.

These are:

T2µν −
1

d− 2
T1µν , T2µν −

T3µν
d− 1

− T4µν
d− 1

+
T5µν

(d− 1)2
, T6µν , T7µν , and T8µν . (2.17)

Thus, a conformal fluid has only five second order transport coefficients, one corresponding

to each of these Weyl covariant tensors.

Also in a conformal fluid, the temperature is the only scale for hydrodynamics. There-

fore all the non-vanishing tensor coefficients at n-th order will be of the form k(n)iT
d−n or

k(n)is
d−n
d−1 , where k(n)i are numerical constants.
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The conformal fluid relevant for our discussion is the one dual to Einstein gravity with

a negative cosmological constant. It has the following stress tensor [27, 28]:

tµν = ǫbu
µuν + Pb∆

µ
ν − 2ηbσ

µ
ν − 2ηbb ·

[
T2µν −

1

d− 2
T1µν

]
(2.18)

+2ηb (b− τω)

[
T2µν −

T3µν
d− 1

− T4µν
d− 1

+
T5µν

(d− 1)2

]

+2ηbτωT6µν + 2ηb (τω − b) ηbτωT7µν + 4ηbτωT8µν .

Here we intentionally added the b subscript in order to distinguish the boundary conformal

fluid and a cut-off fluid we will introduce further in the paper. The constants in (2.18)

are [58]:

ǫb = (d− 1)Pb , Pb = κAdS

(
d

4πTb

)−d

, ηb = κAdS

(
d

4πTb

)1−d

,

τω = b

∫ ∞

1

yd−2 − 1

y(yd − 1)
dy , b =

d

4πTb
, κAdS =

16πGN

ld−1
AdS

, (2.19)

where lAdS is the AdS radius and Tb is the Hawking temperature.

3 A general formulation of the Ansatz

We will now formulate our holographic RG flow Ansatz in the fluid/gravity limit. This

Ansatz will make an assumption about how uµ and T flow radially along the hypersurface

foliation, along with our basic assumption that the energy-momentum tensor tµν is purely

hydrodynamic on each hypersurface of the foliation. We will impose no restrictions on the

induced metric on each hypersurface other than that it is weakly curved.

As we will explain in the next section, gravity equations of motion provide a first

order differential equation for the radial evolution of the hydrodynamical stress tensor tµν .

At the moment we will need neither the general form of these equations nor even the

definition of the radial foliation. For the aim of this section it is sufficient to realize that uµ

and T both necessarily have non-trivial radial evolution, for otherwise we cannot preserve

the Landau-Lifshitz gauge of tµν and the norm of uµ with respect to the induced metric

(uµgµνu
ν = −1). In other words, uµ and T have to be properly redefined at each radial

slice. Moreover, for given boundary values of uµ and T we should be able to reproduce

their values at any cut-off surface.

The main observation that drastically facilitates our calculations is that instead of

focusing on the explicit solution for uµ = uµ(r) and T = T (r) in terms of their boundary

values, it suffices to determine the first order differential equations for their radial evolution.

Furthermore, these two equations should express uµ′(r) and T ′(r) in terms of uµ(r) and

T (r) (and their space-time derivatives) on the same hypersurface.
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Our Ansatz, therefore, will be similar in spirit to the form of the hydrodynamical stress

tensor in (2.16):

uµ′ = α0u
µ +

∞∑

n=1




m
(n)
s∑

i=1

α
(n)
i S(n)

i uµ +

m
(n)
v∑

i=1

β
(n)
i V(n)µ

i


 ,

T ′

T
= λ0 +

∞∑

n=1

m
(n)
s∑

i=1

λ
(n)
i S(n)

i . (3.1)

Clearly this is the most general way to express uµ′ and T ′ in terms of the induced metric,

uµ and T and their derivatives (the overall T factor on the right hand side of the second

equation is introduced to make λ
(n)
i ’s dimensionless). In general it is not immediately clear

that the differential equations for uµ(r) and T (r) are of the first order and so a priori our

minimalistic Ansatz may not be sufficient. We will see that this is not the case.

The coefficients in (3.1) are not the only unknown parameters in the problem. We

also have transport coefficients γi and δi in (2.16), which is just the general form of the

Landau-Lifshitz hydrodynamic energy-momentum tensor presented in the previous section.

Overall we see that at a given order there are 3m
(n)
s +m

(n)
v +m

(n)
t parameters, namely:

• m
(n)
s of α

(n)
i ’s and λ

(n)
i ’s each, needed for defining uµ′ and T ′ respectively;

• m
(n)
v of β

(n)
i ’s, also needed for defining uµ′;

• m
(n)
s of scalar transport coefficients δ

(n)
i ;

• m
(n)
t of tensor transport coefficients γ

(n)
i .

Of these α
(n)
i , β

(n)
i and λ

(n)
i are auxiliary variables which are required for scale dependent

field definitions. These are analogues of redundant couplings in field theory. Therefore

they should be determined by algebraic equations.

The physical parameters are the scalar and the tensor transport coefficients, δ
(n)
i and

γ
(n)
i , which are directly measurable. They should follow first order ordinary differential

equations, exactly like physical couplings in field-theoretic RG flow follow corresponding

β-function equations.

We will see that if we substitute the Ansatz (3.1) in Einstein’s equations we will have

exactly 2m
(n)
s + m

(n)
v + m

(n)
t equations for these variables at the n-th order in derivative

expansion, of which m
(n)
s + m

(n)
v will be algebraic and m

(n)
s + m

(n)
t will be first order.

There will be additionally a set of m
(n)
s algebraic equations which will be equivalent to

satisfying uµuνgµν = −1, but without using the metric explicitly. Thus we will have

3m
(n)
s +m

(n)
v +m

(n)
t equations determining 3m

(n)
s +m

(n)
v +m

(n)
t variables in (3.1) and (2.16) at

each order in the derivative expansion. Moreover, we will see that the equations determining

the redundant variables α
(n)
i , β

(n)
i and λ

(n)
i will be indeed by algebraic.
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✻ r

0

rH

Boundary

Horizon

uµ(r), T (r), gµν(r)

Figure 1. The induced metric and the hydrodynamic tensor on a fixed hypersurface change as we

move from the conformal boundary to the horizon. Similarly the vector uµ and the temperature T

have to be properly redefined on each cut-off surface. Their radial evolutions are governed by (3.1),

while the hydrodynamical stress tensor tµν takes the form (2.16).

4 Preliminary issues

In this section, we begin with the details considerations for defining holographic RG flow.

Let us outline the main issue we will address:

• The proper hypersurface foliation: We will show that the choice of the Fefferman-

Graham foliation is necessary to construct the holographic RG flow without needing

to solve for the bulk spacetime metric explicitly. Later in the paper we will see how

to find this metric out of the flow. The radial coordinate in this foliation directly

corresponds to the energy scale in the problem. We will also address the coordinate

singularity at the horizon.

• The stress tensor counterterms: We will argue that the nature of the counter-

terms can be determined from very general considerations without specifying bound-

ary condition on the metric at the hypersurface where the transport coefficients

are evaluated.

• Einstein’s equations of motion: We will write these equations of in terms of useful

variables which will help us to eliminate the metric.

4.1 Which hypersurface foliation to choose?

In order to develop a holographic RG scheme, we need to choose a hypersurface foliation

of spacetime first. We also demand that we should be able to obtain the evolution of

data along the hypersurface foliation, i.e. construct the holographic RG flow, directly from
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Einstein’s equations, without knowing the spacetime metric explicitly. We will show that

this requires a specific choice of foliation.

A choice of foliation is equivalent to a choice of coordinate system. Once a coordinate

system is chosen, we can separate the coordinates into those coordinates which span the

boundary (which we collectively denote as x) and the radial coordinate (which we denote

as r). Any hypersurface foliation is given by r = rc.

As Einstein’s equation has general covariance, we need an appropriate gauge to choose

a coordinate system. The most obvious choice for our purpose is to choose a gauge of the

following kind:6

Grr = f(r/lAdS) and Grµ = 0 (4.1)

with a definite function f(r/lAdS). With such a choice of gauge, Grr and Grµ do not

involve any hydrodynamic variables. This will allow us to write G′
µν , (with

′ denoting the

radial derivative) in terms of tµν and subsequently derive an equation for tµν directly from

Einstein’s equations without using the metric Gµν explicitly. In due course of the paper,

this procedure will be laid bare.

The most well known choice in this class of gauges is the Fefferman-Graham gauge

f(r/lAdS) = l2AdS/r
2, where l denotes the AdS radius. Any other gauge choice in this

class is related to the Fefferman-Graham gauge by a trivial reparametrization of the radial

coordinate as a function of itself.

Let us illustrate the difficulty in implementing the above procedure in other choices of

gauge fixing with the example of the ingoing Eddington-Finkelstein gauge. The latter is

fixed by requiring:

Grr = 0 , Grµ = −ubµ(x), (4.2)

where ubµ(x) is the velocity field of the boundary fluid. If we are solving for the metric

explicitly, this is the canonical choice for doing perturbation theory in the derivative expan-

sion []. One can readily see the manifest regularity at the late time (future) horizon order

by order in the perturbation expansion. Nevertheless, for direct construction of holographic

renormalization group flow, this is not an appropriate choice. This is because when the

energy-momentum tensor tµν is constructed on hypersurfaces r = rc from the full space-

time metric GMN , one can readily see that it involves ubµ(x). On the other hand, the phys-

ical velocity field uµ(x, r) out of which the hypersurface hydrodynamic energy-momentum

tensor is constructed, in a manner which is covariant with respect to the induced metric

on the hypersurface, is different from ubµ(x). Therefore, in order to eliminate G′
µν in favour

of tµν , one should eliminate ubµ(x) in favour of uµ(x, r).

Let us argue that the latter cannot be achieved without knowing the metric explicitly.

Indeed, in order to write uµ(x, r) in terms of ubµ(x), we need to directly integrate the right

hand side of the uµ′ equation in (3.1). However, it cannot can accomplished without know-

ing the explicit metric because the covariant derivatives and raising/lowering operations,

etc. are defined using the explicit induced hypersurface metric. As for illustration:
∫

dr′(∇ · u) 6= ∇µ

∫
uµdr′ . (4.3)

6Throughout the paper GMN stands for the d+ 1 dimensional metric.
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To summarize, we cannot construct the RG flow without determining the metric explic-

itly first.

In order to remove this difficulty one may attempt an alternative gauge choice:

Grr = 0, Grµ = −uµ(x, r) , (4.4)

where uµ(x, r) is the hypersurface velocity field. This will require computation of u′′µ(x, r)

as this will appear in Einstein’s equations explicitly through the Ricci tensor. As a result

the auxiliary variables α
(n)
i , β

(n)
i and λ

(n)
i will not follow algebraic equations, but rather first

order ordinary differential equations in r-derivative. Eventually in order to fix integration

constants for these auxiliary variables, we will need to know the relation between ubµ(x)

and u′µ(x, r) at r = 0. This in turn will require us to also solve for the metric at least near

the boundary.

Also, this gauge choice is not good even to solve the explicit metric perturbatively. We

will see that uµ(x, r) is singular at the horizon due to the red shift, as a result the metric

is not invertible at the horizon. This is unlike the situation in the ingoing Eddington-

Finkelstein coordinates.

As far as we have checked there are similar problems with any other gauge choice,

other than that given by (4.1).

There is also a pragmatic argument in favour of the Fefferman-Graham gauge. If one

solves for the metric explicitly in the derivative expansion in Eddington-Finkelstein coordi-

nates, up to say the n-th order, the regularity at horizon is preserved at higher orders also,

in the sense that all higher curvature invariants (of the d+1 dimensional metric GMN ) are

finite at the horizon. However, the anti-de Sitter (boundary) asymptotics of the n-th order

solution will be violated from the (n+1)-th order, as can be deduced from the fact that it

can be translated to Fefferman-Graham coordinates only up to n-th order [59]. Conversely,

if the metric is solved explicitly in the Fefferman-Graham coordinates perturbatively to

the n-th order, the solution this time could be made regular at the horizon only up to

this order in the expansion and already some of the order n + 1 curvature invariants will

diverge there even if the transport coefficients are chosen correctly [59]. Nevertheless, the

metric is manifestly asymptotically anti-de Sitter to all orders in the expansion, because

any asymptotically anti-de Sitter space must match the Fefferman Graham expansion at

the boundary. Thus, solving up to n-th order in one of the two gauges renders the metric

either smooth to all orders at the horizon or asymptotically AdS to all orders but not both.

This is directly related to the general fact that n-th order solution in one gauge can be

translated into the other only up to the n-th order itself.

In our construction of the holographic RG flow we want to ensure that we end up

with the same UV fixed point at all orders of the perturbation theory. Even though we

have solved up to a given order in perturbation theory we want the asymptotic behaviour

to be maintained even at higher orders. More specifically the conformal structure of the

boundary fluid is better to be established to all orders.

Before concluding this subsection let us emphasize that one should not be concerned

about the Fefferman-Graham coordinate singularity at the horizon, simply because our

prime goal is to find only the transport coefficients of the energy momentum tensor.
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Though the metric is singular at the horizon and the velocity vector uµ and the tem-

perature are both infinitely red-shifted there, the transport coefficients are uniquely fixed

by the Landau gauge and so should be the same for a given hypersurface independently of

the coordinate choice.

4.2 Einstein’s equations of motion

In the Fefferman-Graham coordinates, any asymptotically anti de-Sitter metric in d + 1

dimensions takes the form:

ds2 =
l2AdS

r2

(
dr2 + gµν(x, r)dx

µdxν
)
. (4.5)

As we discussed in the previous subsection, these coordinates are always valid in a finite

patch away from the boundary, r = 0, for any asymptotically anti-de Sitter spacetime. For

the metrics of fluid/gravity correspondence, these are good till the location of the horizon

in the far future at each order in perturbation theory.

In this subsection, we will not specialize to fluid/gravity correspondence - our results

will be valid for any asymptotically anti-de Sitter spacetime. For the rest of this paper, if

not specified otherwise, gµν will denote the d dimensional metric appearing in (4.5).

Einstein’s equations with a negative cosmological constant Λ = −d(d − 1)/2l2AdS in

d+ 1 dimensions are:

RMN = − d

l2AdS

GMN , (4.6)

whereM and N run over r and the d dimensional index. Let us now introduce a new tensor:

zµν = gµρg′ρν , (4.7)

where ′ denotes derivative with respect to the radial coordinate r. In terms of zµν Einstein’s

equations (4.6) takes the following form in Fefferman-Graham coordinates:

zµ′ν −
d− 1

r
zµν +Tr z

(
zµν
2

− δµν
r

)
= 2Rµ

ν ,

∇µTr z −∇νzµν = 0 , (4.8)

Tr z′ − 1

r
Tr z +

1

2
Tr
(
z2
)
= 0 .

Above both the covariant derivative ∇µ and the Ricci tensor Rµ
ν are constructed out of the

d dimensional gµν , and all traces are taken by contractions with δµν . Also, all indices are

lowered (or raised) with gµν (or it’s inverse gµν). In particular, it implies that zµν = −gµν ′

and zµν = gµν
′.

The three equations in (4.8) come from the (µ, ν), (r, µ) and the (r, r) components

of Einstein’s equations (4.6). For reasons that will be immediately clear, we will refer to

the first equation above as the dynamical equation, and the second and third equations as

the vector and scalar constraints respectively. Note that all three equations are of second

order, since there is already one r-derivative in the definition of zµν .
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The dynamical equation of motion determines the metric in the bulk with given data

at r = 0 boundary. This data is the boundary metric:

gbµν(x) = gµν(r = 0, x) (4.9)

and the boundary energy-momentum tensor which we will define precisely later in the

section. Importantly there is a residual class of diffeomorphisms which keep the form of

the metric (4.5) invariant. These diffeomorphisms are in one-to-one correspondence with

conformal transformations of the boundary metric, and so (4.9) can be defined only up to

conformal transformation.

The vector and scalar equations merely constrain this boundary data. Once they are

satisfied at r = 0, the dynamical equation ensures they are satisfied at all radial slices [59].

The vector constraint amounts to conservation of the energy-momentum tensor, for any

hypersurface r = rc and thus gives the equations of fluid mechanics, ∇µtµν = 0. The scalar

constraint amounts to imposing a trace condition on the energy-momentum tensor at the

boundary. For a flat metric the trace of the energy-momentum tensor should vanish at the

boundary. If, on the other hand, the boundary metric is curved, the trace of the boundary

stress tensor is also completely fixed by conformal anomaly.

4.3 The renormalized energy-momentum tensor on hypersurfaces

Traditionally, we define the hypersurface energy-momentum tensor as a functional deriva-

tive of the on-shell gravitational action with respect to the induced metric. The renormal-

ized hypersurface energy-momentum tensor is the functional derivative of the renormalized

on-shell gravitational action, where counterterms have been added to regulate infra-red

divergences - divergences arising from infinite volume of space-time as the cut-off hyper-

surface is taken to asymptotic infinity.

In order to have a well-defined action principle, we need to specify a boundary con-

dition on the cut-off hypersurface, as well as add a variational counterterms, if necessary.

The traditional choice is the Dirichlet boundary condition, which necessitates addition of

Gibbons-Hawking counterterms.

The above procedure has been implemented in asymptotically anti-de Sitter space-

times. Let us choose a coordinate system in the bulk which gives a hypersurface foliation

of spacetime with ρ denoting the radial coordinate. The renormalized energy-momentum

tensor on each hypersurface ρ = ρc in the foliation (for d > 2) is [5, 6]:

tµν = − ld−2
AdS

8πGNh(ρc)

(
Kµν −Kγµν +

d− 1

lAdS
γµν −

lAdS

d− 2

(
γRµν −

1

2
γRγµν

)
− . . .

)
, (4.10)

where γµν is the induced metric on the hypersurface, Kµν is the extrinsic curvature of the

hypersurface, while γRµν and γR is constructed from the intrinsic (Riemann) curvature of

the hypersurface. The . . . denotes other counterterms which may be necessary to correct

infra-red divergences.

Despite the appearance of the ρc factor this form of the cut-off stress tensor is co-

ordinate independent. The explicit form of the function h(ρc) is uniquely fixed from the
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overall regularization of the energy-momentum tensor at the boundary. Notice also that

the Brown-York term and the Einstein tensor counter-term are separately conserved.

In the Fefferman-Graham foliation ρ = r with r given by (4.5) and we also have:

h(r) = rd−2 , γµν =

(
lAdS

r

)2

gµν , Kµν =
lAdS

r

(
gµν
r

−
g′µν
2

)
. (4.11)

The renormalized energy-momentum on each hypersurface then takes the following form

(from now on we omit the c subscript in rc):

tµν =
1

κAdSrd−2

(
zµν
r

− Tr z

r
δµν +

2

d− 2

(
Rµ

ν −
1

2
Rδµν

)
+ . . .

)
. (4.12)

Here zµν is defined in (4.7), the Ricci tensor and Ricci scalar are constructed out of the

physical hypersurface metric gµν . Again, all raising and lowering is done with the inverse

of gµν . We call gµν the physical metric because it is finite in the limit r → 0, i.e. in the

limit the hypersurface is taken to the boundary. We have raised the first index of tµν for

later convenience and κAdS is defined in (2.19).

The boundary energy-momentum tensor, which is the expectation value of the energy-

momentum in the field-theoretic state dual to the specific bulk geometry, is:

t b
µν(x) = lim

r→0
tµν(r, x). (4.13)

This limit is indeed finite due to the rd−2 factor in (4.12). One of the consistency checks

can be done by using bulk diffeomorphisms which are in one-to-one correspondence with

conformal transformations of the boundary metric. Under such bulk diffeomorphisms,

which can be defined as those which preserve Fefferman-Graham form of the metric, the

energy-momentum tensor also transforms Weyl covariantly up to conformal anomaly [5, 6,

8]. The conformal anomaly is uniquely determined by central charges, which turn out to

be fixed by the d+ 1 dimensional Newton’s gravitational constant.

We have the following issue in light of the discussion above. We want to reformulate

fluid/gravity correspondence as first order renormalization group flow equations, so that

finiteness of transport coefficients at the horizon alone determines the flow uniquely. How-

ever, the hypersurface energy-momentum tensor implicitly uses a boundary condition for

the induced metric - the Dirichlet boundary condition. The implicit use of the boundary

condition on the metric is in conflict with the idea of an emergent spacetime (where the

radial direction should be emergent).

This issue can be addressed as follows. The hypersurface energy-momentum ten-

sor (4.10) is defined by a variation of the gravitational action and according to the vari-

ational principle the induced metric is kept fixed [5, 8]. Nevertheless no specific form of

the induced metric is assumed. Thus the energy-momentum tensor (4.10) does not as-

sume any specific boundary condition from the point of view of the bulk equations of

motion, i.e. Einstein’s equation. This is in contrary to the previous approach [43], where

it was assumed that the induced metric on the cut-off surface remains flat to all orders in

perturbation theory.
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Assuming that there are no constraints on the induced metric other than it is weakly

curved, the most general perturbation at the first order is δγµν = (c1/r
2)πTσµν , with an

arbitrary r-independent c1. In our previous work [48] we have taken this issue into account

and showed that for any choice of c1 we get the same RG flow for the shear viscosity.

Therefore, at the first order in the derivative expansion the RG flow indeed is independent

of the specific choice of boundary conditions.

We can also ask if we can give up the variational principle to construct the cut-off

energy momentum tensor (4.10) and thus getting rid of even implicit boundary conditions

at the cut-off. We will demonstrate now that, indeed, the form of the energy-momentum

tensor (4.10) can be obtained without relying on the variational principle.

With no variational principle at hand what are the other possible limitations on the

form of the energy momentum tensor? We will propose the following four conditions

that will set the form of the energy-momentum tensor up to some numerical constants

multiplying the counter-terms:

• The “bare” energy momentum tensor should satisfy the junction condition. In other

words, tbareµν is the physical source localized on the hypersurface one should add to

the right hand side of Einstein’s equation - choosing it appropriately allows for two

arbitrarily different solutions of vacuum Einstein’s equation on the two sides of this

hypersurface to be glued together.

• The form of the energy-momentum tensor should be universal meaning it is conserved

for any solution of Einstein’s equations.

• The dependence of the full energy-momentum tensor on the anti-de Sitter radius l

comes via an overall dimensionless factor κ−1
AdS = ld−1

AdS/(16πGN ). This is because we

don’t consider here l−1 corrections which translate to α′ or 1/
√
λ corrections in string

theory or dual field theory respectively.

• The UV stress tensor is finite.

The “bare” hypersurface energy-momentum tensor tbareµν in (4.10) is the Brown-York

stress tensor, and we will argue first why this should be so. We note that it is the only

functional of the extrinsic curvature Kµν which is covariantly conserved on-shell, i.e. which

satisfies ∇µtbareµν = 0 in an arbitrary solution of Einstein’s equation. Thus the “bare”

hypersurface stress-tensor should be proportional to the Brown-York energy-momentum

tensor, with the proportionality factor exactly as in (4.10) for the reasons explained above.

The universality principle makes the counter-terms be functionals only of the induced

metric, the intrinsic and the extrinsic curvature, since other variables, like uµ and T , can

be ingredients in a conserved current only for specific non-generic solutions. Next, we

observe that the extrinsic curvature can contribute only to the Brown-York tensor. Higher

extrinsic curvature invariants will contain more than one r-derivative of the induced metric.

They will over-constrain the hypersurface data and hence will not be conserved in a generic

solution of the two-derivative Einstein’s equations.

– 20 –



J
H
E
P
1
1
(
2
0
1
3
)
0
8
6

We are left only with terms built out of the induced metric and its intrinsic curvature.

Therefore no r-derivatives appear except in the “bare” Brown-York term. Constructing

conserved tensors out of the metric, the Riemann curvature and its covariant derivatives

is a standard well-known problem. There is a finite number of them at any order in the

derivatives. For example, at the second order, the Einstein tensor is the only candidate.

It then follows from the penultimate requirement that the r-dependence of the counter-

term coefficients is necessarily of the form r−d+k, where k is the mass dimension of the

counter-term.7 For example, the counter-term in (4.10) (the Einstein tensor) has two space-

time derivatives (dimension two) and so its coefficient goes like r−d+2. Thus the coefficients

of all these counter-terms are determined up to numerical constants.

The on-shell gravitational action has finite number of ultra-violet divergences as the

cut-off moves to the boundary. Hence it can fix the numerical coefficients of a few leading

counter-terms only. For instance, the counter-term proportional to the induced metric

in (4.10) cancels the volume divergence which goes like r−d and so its coefficient is fixed

uniquely. The coefficient of the Einstein tensor in (4.10) is also set exactly this way, since

it cancels r2−d divergence in the Brown-York tensor. The last UV divergence cancelling

counter-term in even dimensions will have d derivatives. It will be related to the conformal

anomaly and will cancel the log(r) divergence. In odd d the last counter-term will have

d− 1 derivatives cancelling r−1 divergence.

To summarize, even giving up the variational principle we can uniquely fix the stress

tensor up to numerical constants that multiply counter-terms that do not cancel UV di-

vergences. Later we will conjecture that all these numerical constants can be fixed by

imposing constrains on the horizon fluid.

5 Construction of the holographic RG flow

In this section, we will construct the explicit algorithm for solving the holographic fluid

RG flow order by order in the derivative expansion. We will first sketch the basic proce-

dure, highlighting why it does not require explicit knowledge of the bulk spacetime metric.

We will then construct the RG flow for equilibrium variables and see how we can define

thermodynamics in a consistent way at each hypersurface in the foliation. We will then

demonstrate the iterative procedure of solving the RG flow of the transport coefficients

order by order in the derivative expansion. Finally, we will show that once the RG flow

is solved, we can also explicitly reconstruct the bulk spacetime metric from the scale de-

pendent physical quantities only. Therefore, we will establish that our construction of the

holographic RG flow is equivalent to emergence of spacetime.

5.1 How to eliminate the metric?

In order to show that holographic RG flow leads to emergence of spacetime, we should be

able to construct it without requiring explicit knowledge of the spacetime metric. Here we

7Multiplying the counter-terms by function f(r, T (x)) will not only spoil universality but also the con-

servation of the energy-momentum tensor.
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will outline how this can be achieved in the Fefferman-Graham hypersurface foliation. In

subsequent subsections, we will give the full systematics of the algorithm.

Firstly to simplify expressions, it is convenient to redefine the renormalized hypersur-

face energy-momentum tensor tµν as follows:

tµν → κAdS · tµν , (5.1)

where κAdS was defined in (2.19). In the AdS/CFT correspondence, the above redefinition

simply strips off an N2 factor, so now tµν has a finite large N limit.

With the above re-definition, we can now invert the relation (4.12) between tµν and

zµν as follows:

zµν = rd−1

(
tµν −

Tr t

d− 1
δµν

)
− 2r

d− 2

(
Rµ

ν −
R

2(d− 1)
δµν

)
+ . . . . (5.2)

Above the . . . denotes corrections relevant only at higher order in derivatives and which

originate from the counterterms used to define the renormalized energy-momentum tensor.

We also see from above that

Tr z = − rd−1

d− 1
Tr t− r

d− 1
R+ . . . . (5.3)

The strategy is simple. We substitute (5.2) and (5.3) in Einstein’s equations of motion

as given in the form (4.8). This gives the equation for evolution of tµν which is first order

in radial derivative. We actually only need to use the first equation in (4.8) as the other

two are merely non-dynamical constrains. Once they satisfied at the initial hypersurface,

they are preserved along the flow. The dynamical equation of motion for tµν is explicitly

as below:

tµν
′ − 2r2−d

d− 2
Rµ

ν
′ − rd−1

2(d− 1)

(
Trt+ r2−dR

)(
tµν −

2r2−d

d− 2
Rµ

ν

)
(5.4)

+
1

d− 1

(
−Trt′ +

r2−d

d− 2
R′ +

Trt

r
+

rd−1

2(d− 1)

(
Trt+ r2−dR

)(
Trt− r2−d

d− 2
R

))
δµν

+ . . . = 0 .

Above . . . again represents terms which are relevant only onwards from third order in

derivative expansion.

Here we encounter a conceptual difficulty. Notice that Rµ
ν and R appear in the

dynamical equation for radial evolution of tµν - this is not yet the problem, because this

does not involve any radial derivative of the metric. In fact, both Rµ
ν and R can be readily

represented in terms of the scalar and tensor transport terms we introduced in (2.11)

and (2.14). However, their radial derivatives, i.e. Rµ
ν
′
and R′ also appear in (5.4). Since

we want to proceed without solving for the metric, we have to express these quantities in

terms of zµν , as the latter can be written in terms of tµν using (5.2), and therefore the

equation of motion (5.4) will eventually involve only tµν , its r-derivative, R
µ
ν and R.
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Let us show that the radial derivative of the Riemann curvature and other covariant

quantities constructed out of gµν can be indeed written in terms of covariant derivatives of

zµν only. Firstly, the Levi-Civita connection constructed out of gµν identically satisfies:

Γµ′
νρ =

1

2

(
∇νz

µ
ρ +∇ρz

µ
ν −∇µzνρ

)
. (5.5)

We note though the Levi-Civita connection is not covariant with respect to gµν , it’s radial

derivative is. We recall that ∇ denotes the covariant derivative constructed from gµν , and

this will be so for the rest of paper. Using the above, one can readily prove the following

useful identity:

Rµ
νρσ

′ =
1

2

(
∇ρ∇νz

µ
σ −∇σ∇νz

µ
ρ −∇ρ∇µzνσ +∇σ∇µzνρ

)
+

1

2

(
Rµ

κρσz
κ
ν −Rκ

νρσz
µ
κ

)
.

(5.6)

Tracing over (5.6) and using the vector constraint in (4.8) it follows that:

R′
µν =

1

2

(
∇ρ∇µz

ρ
ν +∇ρ∇νz

ρ
µ −∇α∇αzµν −∇µ∇νTr z

)
. (5.7)

Furthermore, contracting the above with gµν and using the vector constraint in (4.8) again

it also follows that:

R′ = −Rµνz
µν . (5.8)

The derivation of the four above formulae is completely general and does not rely on any

specific property of gµν . One can also derive similar expressions for covariant derivatives

of Riemann curvature tensor; however, we will not need these in this paper.

To recap, we can use the identities (5.7) and (5.8) to eliminate Rµ
ν
′
and R′ from

Einstein’s equation of motion (5.4). Then we use (5.2) to rewrite (5.4) solely in terms of

tµν
′
, tµν , R

µ
ν and R. Schematically we obtain that:

t′µν = t′µν (tµν , Rµνρσ) . (5.9)

In our discussion so far, we have not used any specific form of the energy-momentum

tensor. In the hydrodynamic limit, the derivative expansion is the systematics on which

we can construct an iterative algorithm. In each step of the iteration, we bring in more

covariant derivatives of tµν and Rµ
ν , and higher order polynomials of Rµ

ν as well. To

see this explicitly, we now assume that tµν is hydrodynamic on each hypersurface of the

foliation, namely takes the form (2.16).

In what follows it will be useful to have the leading order term in the explicit hy-

drodynamical form of zµν and Trz. Substituting (2.16) into (5.2) and (5.3) we obtain

that:

zµν = rd−1

((
d− 2

d− 1
ǫ+ P

)
uµuν +

ǫ

d− 1
∆µ

ν

)
+ . . . ,

Tr z = rd−1

(
ǫ

d− 1
− P

)
+ . . . . (5.10)

Above . . . denotes the first and higher order derivative corrections.
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Once we have eliminated Rµ
ν
′
and R′ in favour of tµν and its covariant derivatives, we

can substitute the hydrodynamical Ansatz (2.16) into Einstein’s equation of motion (5.4).

Any time the radial derivative hits uµ and T we have to further use our Ansatz for uµ′ and

T ′ as given in (3.1). On the other hand, r-derivatives of ∇µ need be treated with (5.5).

This way the only r-derivatives in the equation will be those of the transport coefficients

γi and δi. This will give ordinary differential equations for all the coefficients in (2.16).

We will later show that indeed there will be as many equations (both algebraic and differ-

ential) as there are parameters, and these can be solved iteratively order by order in the

derivative expansion.

Before we give the details of the algorithm, it is worth to illustrate our approach

with a simple example. The hydrodynamic stress tensor (2.16) has a bulk viscosity term

−ζ (∇ · u). Plugging it into (5.4) produces a term (∇ · u)′. Let us show how this term can

be rewritten:

(∇ · u)′ = ∇µu
µ′ + Γµ

νµ
′uν = α0(∇ · u) + dα0

d ln s
D ln s+

1

2
DTr z + . . .

=

(
α0 −

dα0

d ln s
− 1

2

(
c2s −

1

d− 1

)
(ǫ+ P )

)
(∇ · u) + . . . . (5.11)

In the first equality we have simply substituted the definition of the covariant derivative.

In the second we have used the Anstaz (3.1) (keeping only the leading term in the deriva-

tive expansion), (5.5)8 and the definition of D = uµ∇µ. Finally, in the second line we

have substituted (5.10) and have used the thermodynamic identities (2.2) and the Euler

equations in the form (2.6).

Here we have truncated up to first order in derivatives. As ∇·u is the only independent

scalar at the first order, it’s radial derivative can only be proportional to itself at the leading

order. It is clear from the above example we can systematically go to higher orders in the

derivative expansion.

We note that just like in the example above, if we consider any scalar S(n)
i , or a

transverse vector V(n)µ
i or a symmetric, traceless transverse tensor T (n)

iµν at the n-th order

in derivatives, it’s radial derivative will involve n-th but also higher order scalars, transverse

vectors or symmetric, traceless and transverse tensors at higher orders.

This is in exact analogy with RG flow in quantum field theory. Operators of lower

dimension mixes with operators of lower dimensions in the RG flow. If we think of S(n)
i ,

V(n)µ
i and T (n)

iµν as operators, then indeed their mixing with operators at higher order in

derivative expansion along the radial evolution is analogous to an operator mixing with

other operators of same dimension and also higher dimensional operators in RG flow in

field theory.

On the other hand, the parameters α
(n)
i , β

(n)
i , λ

(n)
i , γ

(n)
i and δ

(n)
i in (2.16) and (3.1)

are analogous to couplings in field theory. Due to the nature of operator mixing, the RG

flow of couplings of a given degree of relevance, namely of a given mass dimension can

be calculated without involving couplings of lesser relevance, i.e. lesser mass dimension.

8Notice that Γµ
νµ

′ =
1

2
∇νTrz.
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Similarly, we will find that the RG flow of the transport coefficients γ
(n)
i and δ

(n)
i , and the

field redefinition parameters α
(n)
i , β

(n)
i and λ

(n)
i relevant at the n-th order in derivatives can

be calculated without involving those relevant at higher order in derivatives. We also recall

that the parameters of field redefinitions α
(n)
i , β

(n)
i and λ

(n)
i satisfy algebraic equations, and

are analogous to redundant couplings in field theory which can be algebraically eliminated

as well by field redefinitions.

5.2 RG flow of thermodynamic data

In any iterative construction, we should understand the zeroth order first. Therefore,

we should begin by understanding how the holographic RG flow works for the thermal

equilibrium geometry, corresponding to the unperturbed black brane. Solving for the

black brane geometry should be equivalent to the thermodynamic data RG flow. We will

need to address the conceptual issue of how to define thermodynamic quantities at each

hypersurface of the foliation without knowing the bulk metric explicitly. Also the RG

flow should determine the radial location of the horizon without requiring to know the

metric explicitly.

The RG flow Ansatz of the black brane geometry is given by (3.1) together with (2.16).

We first show how α0 which gives the cut-off dependent field definition of uµ can be solved

without knowing the explicit form of the metric.

Differentiating uµuνgµν = −1 with respect to r we obtain:

uµuνzµν + 2uµ′uν = 0. (5.12)

We recall that in equilibrium we can ignore higher order terms in zµν leaving only the

zeroth order term as in (5.10). Substituting (5.10) into (5.12) we find a linear algebraic

equation for α0. Solving it yields:

α0 =
rd−1

2

(
P +

d− 2

d− 1
ǫ

)
. (5.13)

It is worth mentioning here again that raising/lowering indices does not commute with the

r-derivative, because the metric is itself r-dependent. For example we note that:

u′µ = uµ′gµν + uµzµν = −α0uµ. (5.14)

Substituting teqµν = ǫuµuν + P∆µ
ν into the radial evolution equation of tµν given

by (5.4), truncating to zeroth order in derivatives and using (5.13) we obtain radial evolu-

tion of the energy density ǫ and the pressure P . Essentially we get two coupled ordinary

differential equations that can be conveniently written as follows:

Tr t′ =

(
rd−1

2(d− 1)
Tr t+

d

r

)
Tr t ,

ǫ′ =

(
rd−1

2(d− 1)
ǫ− 1

r

)
Tr t , (5.15)
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where Tr t = (d− 1)P − ǫ. The general solution of the first equation is:

Tr t = 4d(d− 1)
rd

r2dH − r2d
, (5.16)

where rH is a constant of integration. Notice that one can reproduce a traceless thermal

stress tensor asymptotically at r = 0 as expected. On the other hand, Tr t blows up at

r = rH. We will see immediately that rH is the radial location of the horizon.

The ǫ-equation then yields:

ǫ = 4(d− 1)
const− rd

r2dH − r2d
. (5.17)

In order to get a finite ǫ at the horizon r = rH we have to put const = rdH.

Finally we get:

ǫ =
4(d− 1)

rdH + rd
and P = 4

rdH + (d− 1)rd

r2dH − r2d
. (5.18)

We see above that ǫ is regular at the horizon and it’s horizon value is half of the boundary

value. The pressure P blows up at the horizon. We will see later this corresponds to

the fact that the fluid at the horizon is non-relativistic and incompressible. We will also

see that consequently the effective temperature and the speed of sound also blows up at

the horizon.

We now address the question how to define thermodynamics consistently at each hy-

persurface in the foliation. We note that the parameter rH which gives the location of the

horizon actually parametrizes the curve P = P (ǫ, r) which gives the equation of state at

a fixed value of r, i.e. on a given hypersurface. Using the thermodynamic identities (2.2),

we get: ∫
drH

(
∂ǫ

∂rH

)
1

ǫ+ P
=

∫
d ln s. (5.19)

The above allows us to determine s up to an overall constant, as given by

s = C
rd−1
H

(rdH + rd)2(1−1/d)
. (5.20)

We note that thermodynamic identities alone do not determine the x-independent con-

stant C.

We can now determine T from T = (ǫ+ P )/s. We get

T =
4d

C
· rH

(
rdH + rd

)1− 2
d

rdH − rd
. (5.21)

From the above we can determine λ0 in our equilibrium Anstaz (3.1) by calculating T ′/T .

We will, however, see later that for actual computations, the explicit form of λ0 will not

be necessary.
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✻

✲

P

ǫ

rH or T

Figure 2. Solving (5.18) we find that ǫ and P lie on a curve parametrized by rH at a fixed r. This

allows us to find the temperature T using the thermodynamic identities (2.2). Eliminating rH in

favour of T we arrive at ǫ = ǫ(T, r) and P = P (T, r).

It will also not be necessary to determine the constant C appearing in s and T . This

constant is related to the scaling symmetry (T, s) →
(
C−1 · T,C · s

)
that does not affect

the thermodynamic relations.

Nevertheless, we would like to fix C, merely because it will be useful later for the

comparison of our results with those in the literature. We can so by identifying Tb, the value

of T at the boundary r = 0, with the Hawking temperature THawking of the unperturbed

black brane. The relation is:

THawking =
22/d−2d

πrH
and so C = 24−2/dπ . (5.22)

Again, this value of C can be set only knowing the black brane geometry, but we only need

this identification for thee future reference to the previous works on the subject. With this

relation we now have:

s(r) = 2−2/d+4π · rd−1
H

(rdH + rd)2(1−1/d)
and T (r) =

2−2+2/dd

π
· rH

(
rdH + rd

)1−2/d

rdH − rd
.

(5.23)

We can also derive the speed of sound cs:

c2s =
∂p/∂rH
∂ǫ/∂rH

=
r2dH + 2(d− 1)rdHr

d + r2d

(d− 1)(rdH − rd)2
. (5.24)

In the above equations rH is a constant. In such a case, the fluid is in static equilibrium

at all hypersurfaces in the foliation with an equation of state that depends on the radial

location of the hypersurface. This is an exact solution of the RG flow. To go to non-

equilibrium, we need to promote rH to a function of the hypersurface coordinates x. Then ǫ,

P and uµ will also depend on the spacetime coordinates through rH = rH(x). In such a case,
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when we substitute the spacetime dependent tµν in it’s equation for radial evolution (5.4),

there will be higher derivative corrections. Thus we need to go to higher orders to find the

full solution of the RG flow. The systematic iterative algorithm for solving the RG flow

will be presented in the next subsection.

At zeroth order, rH or T are interchangeable variables. At higher orders, T will be a

fundamental thermodynamic variable, and we will eliminate rH in favor of T . Nevertheless,

the equation of state given by ǫ(T, r) and P (T, r) will remain unchanged to all orders. We

illustrate our approach in figure 2.

There is no reason to believe that the rH = r hypersurface is the event horizon of the

full non-equilibrium geometry, but it does coincide with the event horizon at late time,

when the geometry settles down to the static brane with constant uµ and T .

Before going to higher orders, it is useful to check the consistency of our construction

of thermodynamic variables at each hypersurface of the foliation. We note that once ǫ, P

and uµ become functions of the hypersurface coordinates, at the leading order they follow

Euler equations given by (2.5), or equivalently by (2.6). If we take the radial derivatives

of the Euler equations in the form of (2.6), we readily get:

s′ = −rd−1

2
ǫ s,

(
c2s
)′

=
rd−1

2
(ǫ+ P )

(
2c2s +

d− 2

d− 1

)
. (5.25)

We can check that s and c2s as given by (5.20) and (5.24) indeed satisfy the above identities.

As we have mentioned earlier, since the equations of fluid mechanics follow from the

constraints of Einstein’s equations, they are automatically satisfied for all hypersurfaces

provided they hold at the initial hypersurface. The radial data evolution given by the

dynamical equation (5.4) preserves these constraints. Thus it is not necessary to check

that the radial evolution of the equations of fluid mechanics is consistent with the RG flow

obtained from (5.4). Nevertheless, the above check of the consistency of the radial flow

of Euler equations with the thermodynamics at each hypersurface shows that there is a

unique way of constructing the hypersurface thermodynamic variables, namely s, T and c2s.

We also note that the total equilibrium entropy does not change along our RG flow.

From (5.25), we find (ln s)′ = −rd−1ǫ/2. It is easy to see that the spatial volume flows

radially as (ln
√
g⊥)

′ = (1/2)zµν∆ν
µ. From (5.10), we find that (ln

√
g⊥)

′ = rd−1ǫ/2. Thus

the rate of change of entropy density is compensated by the rate of change of the spatial

volume in static equilibrium, making total entropy invariant along the RG flow. A similar

feature was also found in [43].

5.3 The iterative algorithm and some simplifications

We now present a systematic algorithm for solving for the 3m
(n)
s +m

(n)
v +m

(n)
t parameters

in our holographic fluid RG flow Ansatz given by (3.1) order by order in the derivative

expansion. We will also see that determining these variables will completely exhaust the

norm condition uµgµνu
ν = −1 and Einstein’s equations, or equivalently the equation for

radial evolution of tµν , which up to second order in derivatives is given explicitly by (5.4).
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Let us assume we have solved the RG flow up to (n − 1)-th order, meaning that

we have found all the transport coefficients γ
(m)
i and δ

(m)
i from (2.16), as well as the

reparametrization parameters α
(m)
i , β

(m)
i and λ

(m)
i from (3.1) for all m < n. In the previous

subsection we have solved the system at the zeroth order, so with an iterative algorithm

at hand one will be able to compute these coefficients for any n.

In subsection 5.1 we demonstrated how one can eliminate zµν , and therefore the metric,

from the calculations. As an example we have calculated (∇ · u)′ up to the first order in the

derivative expansion. It is worth emphasizing again that the r-derivative does not commute

with the d-dimensional covariant derivative, since the latter is built form an r-dependent

induced metric.

Notice that in our Ansatz (3.1) as the r-derivatives of the zeroth order functions

uµ(r, x) and T (r, x) have infinite expansion in terms of the space-time derivatives. In order

to calculate the first order term in (∇ · u)′, we needed only the zeroth order coefficients,

ǫ, P and α0. From our derivation it is clear that the second order contribution will be

spanned by S(2)
i ’s from (2.11) and this time it will require also the first order coefficients

γ
(1)
i = −η, δ

(1)
i = −ζ from (2.16) together with α

(1)
i , β

(1)
i , λ

(1)
i . More generally, solving the

RG flow up to the m-th order provides enough information for expanding S(k)
i up to the

order (k +m) in the derivative expansion.

The same observation holds also for the r-derivatives of the vectors V(k)
i

µ
, although

this time the higher term expansion might include scalar terms of the form S(l)uµ with

l > k. Similarly, acting with ∂/∂r on the tensors T (k)
i µν we can a priori get terms of the

form uµV(l)
i ν + uνV(l)

i µ, S(l)uµuν and S(l)∆µν .

Note, however, that at the leading order (V(k)
i

µ
)′ is still orthogonal to uµ, because at

the zeroth order uµ is parallel to itself, uµ
′ = −α0uµ + . . ..9 This implies that:

(
V(k)
i

µ)′
=

m
(k)
v∑

ij

B
(k)
ij V(k)

i

µ
+O

(
∇k+1

)
. (5.26)

Remarkably, we can achieve a similar simplification for the tensors T (n)
i

µ

ν just by keeping

one of the their indices lowered and another raised. If we take a radial derivative of such a

tensor, it will remain traceless to all orders in the derivative expansion, T (n)µ
ν
′
δνµ = 0. This

can be easily seen from the fact that as δνµ is a constant, contraction with δνµ commutes

with the radial derivative operation, which is definitely not true for gµν and gµν . Precisely

as V(k)
i

µ′
the tensor T (k)

i

µ

ν

′
is also orthogonal to uµ at the leading kth order. Therefore:

(
T (k)
i

µ

ν

)′
=

m
(k)
t∑

j=1

L
(k)
ij T (k)

j

µ

ν
+O

(
∇k+1

)
. (5.27)

Again, the higher order terms are still traceless, but not necessarily orthogonal to uµ. They

will be of the form uµV(l)
i ν + uνV(l)

i

µ
or S(l) ((d− 1)uµuν +∆µ

ν).

9Indeed
(

V
(k)
i

µ
)

′

uµ =
(

V
(k)
i

µ
uµ

)

′

− V
(k)
i

µ
u′

µ and both terms on the right hand side are zero.
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There is yet another issue we need to draw our attention to. Despite the fact that

ǫ and P are zero order quantities their radial derivatives contribute to the RG flow at

higher orders via the radial derivative of T . Indeed, by construction ǫ and P depend on

two variables, the radial coordinate r and the temperature T , and this dependence is fixed

by the equation of state we have derived in the previous subsection. More explicitly, we

can use (5.18) and (5.21), eliminate rH and construct ǫ(T, r) and P (T, r). Note that these

relations are fixed by thermodynamics once and for all, and do not change at higher orders

by the method of phenomenological construction of the hydrodynamic equations. Therefore:

dǫ

dr
=

∂ǫ

∂r
+

∂ǫ

∂T
T ′ and

dP

dr
=

∂P

∂r
+ c2s(T, r)

∂ǫ

∂T
T ′ , (5.28)

where in the second identity we used the thermodynamics definition of c2s that also holds

at any order in the derivative expansion and can be obtained from (5.21) and (5.24) after

eliminating rH. The partial r-derivatives in (5.28) are zero order quantities, therefore higher

order contributions come only through T ′ via our Ansatz (3.1). Therefore, for n > 1:

(ǫ′)(n) =
∂ǫ

∂T
(T ′)(n) , (P ′)(n) = c2s

∂ǫ

∂T
(T ′)(n). (5.29)

There is a similar issue with the transport coefficients γ
(m)
i and δ

(m)
i . At each value of

r they are definite functions of temperature. To be more precise, solving their ODEs for

radial evolution, we would obtain them as functions of rH and r. Eliminating rH in favour

of T , we arrive at γ
(m)
i = γ

(m)
i (T, r) and δ

(m)
i = δ

(m)
i (T, r). These dependences will not

alter at higher order, exactly as in the case of the equation of state. Therefore, analogously

to ǫ(T, r) and P (T, r), for k > m:

(
γ
(m)
i

′)(k)
=

∂γ
(m)
i

∂T
(T ′)(k)

(
δ
(m)
i

′)(k)
=

∂δ
(m)
i

∂T
(T ′)(k) (5.30)

Let us now show in details how starting from the norm condition and Einstein’s equa-

tion one can derive the first order ODEs for γ
(n)
i and δ

(n)
i and algebraic equations for α

(n)
i ,

β
(n)
i and λ

(n)
i assuming that we have already determined the lower order coefficients.

We will start with the tensor transport coefficients. For this goal we consider the

spatial traceless component of the radial evolution equation of tµν . The corresponding

projection is defined by the 〈〉 operator (2.9). Projecting Einstein’s equation Eµ
ν (5.4) we

find that up to the second order in derivatives:

〈tµν ′〉 −
2r2−d

d− 2
〈Rµ

ν
′〉 − rd−1

2(d− 1)
Trt

(
〈tµν〉 −

2r2−d

d− 2
〈Rµ

ν〉
)

= 0. (5.31)

Here we dropped third and higher order curvature terms, since we will not consider them

in this paper. Our iterative algorithm, though, still goes through with these terms.

Next, for a fixed i = 1, . . . ,m
(n)
t , we consider the coefficients of T (n)µ

i ν coming from

various terms in (5.31). At the k-th order:

〈tµν〉(k) =
m

(k)
t∑

i=1

γ
(k)
i T (k)

i

µ

ν . (5.32)

Let us study separately the contributions of each of the four terms in (5.31).
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• From our discussion it follows that 〈tµν ′〉 has two different contributions to the T (n)
i

µ

ν

term. The first one is γ
(m)
i

′
and the second comes from the derivative expansion of

(T (m)
i

µ

ν)
′ for m 6 n. For example, the r-derivative of the shear viscosity term −ησµ

ν

will contribute to the ODEs of the second order transport coefficients. It is important

to remember that both contributions depend on δ
(k)
i , α

(k)
i , β

(k)
i or λ

(k)
i only for k < n.

• The 〈Rµ
ν
′〉 terms contributes only at the second and higher orders. This contribution

will involve only k 6 n− 2 order RG parameters.

• The third term in (5.31) gives a γ
(n)
i contribution for any i.

• The last term in (5.31) provides a source term only for the γ
(2)
1 equation.

To summarize, at the nth order we obtain overall m
(n)
t first order differential equations for

each γ
(n)
i with i = 1, . . . ,m

(n)
t . Again, these equations will explicitly depend on the lower

order coefficients, but nevertheless will completely decouple from the nth order coefficients

δ
(n)
i , α

(n)
i , β

(n)
i and λ

(n)
i .

We now proceed to the field reparametrization variables of uµ multiplying transverse

vector like terms in (3.1), namely β
(n)
i ’s. We can determine these paramedters by taking

the vector projection of the equation of motion Eµ
ν in (4.12), i.e. by considering ∆µβuαE

α
β ,

and extracting n-th order terms. Up to the second order the relevant equation is:

∆µβuα

(
tαβ

′ − 2r2−d

d− 2
Rα

β
′ +

r

(d− 1)(d− 2)
TrtRα

β

)
= 0 . (5.33)

Similar to the tensor analysis above we are interested here in the overall coefficient of V(n)
i

µ

for fixed n and i = 1, . . . ,m
(n)
v . We will show that this projection leads to an algebraic

equation for β
(n)
i . First, the contraction of ∆µβuα with the two curvature terms in (5.33)

produces only terms depending on γ
(m)
i , δ

(m)
i , α

(m)
i , β

(m)
i and λ

(m)
i with m 6 n − 2.

Secondly, the contraction with the first term involves relevant β
(n)
i terms:

(
∆µβuαt

α
β
′
)(n)

= −(ǫ+ P )

m
(n)
v∑

i=1

β
(n)
i V(n)µ

i (5.34)

+terms with α
(m)
i , β

(m)
i , λ

(m)
i , γ

(m)
i and δ

(m)
i for all m < n .

Here we used the Landau-Lifshitz form of the energy-momentum tensor (2.16) and (5.27).

The β
(n)
i term comes solely from the equilibrium part of the energy momentum tensor (2.4),

while all the other contributions follow from the O
(
∇k+1

)
terms in (5.27).

We see that (5.33) naturally leads to m
(n)
v algebraic equations expressing β

(n)
i with

i = 1, . . . ,m
(n)
v in terms of α

(l)
i ’s, β

(l)
i ’s, λ

(l)
i ’s, γ

(l)
i ’s and δ

(l)
i ’s with l < n.

In the final step of the algorithm, we will determine the scalar transport coefficients

δ
(n)
i ’s and the auxiliary reparametrization variables α

(n)
i ’s and λ

(n)
i ’s multiplying scalar

like terms.
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For our convenience, let us define the non-equilibrium trace part of tµν as S, so that

S =
∞∑

n=1

ns∑

i=1

δ
(n)
i S(n)i. (5.35)

Then

Trt = −ǫ+ (d− 1) (P + S) . (5.36)

We also note that the Landau-Lifshitz form of the energy-momentum tensor gives:

tµν
′uµu

ν = (tµνu
µuν)

′ − tµν
(
u′µu

ν + uµu
ν ′
)
= ǫ′ + ǫ

(
u′µu

µ + uµu
µ′
)
= ǫ′ , (5.37)

where in the last identity we used the norm condition.

We can now take the projection of Eµ
ν , the equation for radial evolution of tµν with

uµu
ν and δνµ to obtain two independent scalar equations. Nest we need to calculate the

coefficients of S(n)
i in these two scalar equations.

Due to (5.36) and (5.37), among the (leading) n-th order RG flow parameters, only

λ
(n)
i ’s and δ

(n)
i ’s appear in these scalar equations which thus decouple from α

(n)
i ’s, β

(n)
i ’s

and γ
(n)
i ’s. To see that, notice the only possible place of appearance is (Trt)′ and tµν

′
uµu

ν .

Again, one needs to determine all these RG flow parameters at lower orders to define the

scalar equations at the n-th order. Also it is easy to see that λ′
(n)i’s never appear in the

equations simply because T ′′ never appears.

These scalar equations involve λ
(n)
i ’s only through T ′ (which, in turn, come from ǫ′

and P ′) and δ
(n)
i ’s through S. We can eliminate T ′ from the two scalar equations to obtain

the equation for S only which will determine the first order differential equations for δ
(n)
i ’s.

This way we decouple the δ
(n)
i ’s from the λ

(n)
i ’s. The suitable linear combination of the

scalar equations which determine the scalar transport coefficients δ(n)i’s up to the second

order is:

S ′ +

(
c2s(d− 1) + (d− 3)

)

(d− 1)(d− 2)
r2−dR′ +

2r2−d

(d− 1)(d− 2)

(
c2s(d− 1)− 1

)
(uµR

µ
νu

ν)′

=

(
d− 1

r
(c2s + 1) + rd−1

(
P − 1

2

(
c2s +

1

d− 1

)
ǫ

))
S (5.38)

+
1

2(d− 2)

((
c2s +

2d− 5

d− 1

)
P −

(
c2s +

d− 3

(d− 1)2

)
ǫ

)
rR

+
(c2s(d− 1)− 1)

(d− 1)(d− 2)

(
P − ǫ

(d− 1)

)
(uµR

µ
νu

ν) .

Once the δ
(n)
i ’s are determined, we can use the second scalar equation obtained by

contraction with δνµ below (showing terms relevant only up to second order) to derive the

algebraic equation which determines λ
(n)
i ’s:

(Tr t)′ + r2−dR′ − d

r
Tr t− rd−1

2(d− 1)

(
(Tr t)2 + 2r2−d(Tr t)R

)
= 0 . (5.39)

We thus have exactly 2m
(n)
s equations to determine the 2m

(n)
s variables λ(n)i’s and δ(n)i’s.
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The α(n)i’s can now be determined algebraically from the norm condition obtained by

radially differentiating uµuνgµν = −1, which yields 2uµ′uµ + uµuνzµν = 0. We also need

to substitute the form of zµν in terms of tµν , polynomials of Riemann curvature and their

covariant derivatives. Up to the second order in the derivative expansion, the relevant

equation is:

2uµ′uµ = −rd−1

(
ǫ+

Tr t

d− 1

)
+

2r

d− 2

(
Rµ

νuµu
ν +

R

2(d− 1)

)
. (5.40)

Clearly α
(n)
i ’s appear only via uµ′uµ and we thus get exactly mn

s equations to determine the

mn
s number of α

(n)
i ’s. We can readily see that in order to determine them, we need to solve

for the scalar transport coefficients δ
(n)
i ’s which appear via Tr t. Again, α

(n)
i ’s decouple

from all other RG flow parameters at n-th order.

Thus we can determine all the parameters in the RG flow Ansatz given by (3.1) at the

n-th order. To summarize:

• The equations giving radial evolution of the tensor transport coefficients γ
(n)
i ’s and

scalar transport coefficients δ
(n)
i ’s decouple from each other and also from the other

parameters of the RG flow, namely the auxiliary variables α
(n)
i ’s, β

(n)
i ’s and λ

(n)
i ’s.

• The algebraic equations determining the auxiliary variables β
(n)
i ’s multiplying vector

like terms in uµ′ decouple from the auxiliary variables α
(n)
i ’s and λ

(n)
i ’s multiplying

scalar like terms. The algebraic equations for β
(n)
i ’s decouple from all other n-th

order RG flow parameters.

• The algebraic equations determining the auxiliary variables α
(n)
i ’s and λ

(n)
i ’s mul-

tiplying scalar like terms in uµ′ and T ′ respectively decouple from each other and

involve only the scalar transport coefficients δ
(n)
i ’s.

• To solve the RG flow for radial evolution of the n-th order RG flow parameters, one

needs to solve it completely at lower orders.

• At each order, we have exactly as many equations as there are parameters in the

RG flow which need to be solved. Thus determining the RG flow exhaust the norm

condition and the full dynamical content of Einstein’s equations.

5.4 Reconstruction of the metric

So far, we have presented the algorithm for construction of the holographic RG flow in the

fluid/gravity limit which requires no explicit knowledge of the bulk spacetime metric. We

have also seen that solving for the RG flow exhausts the full dynamical content of Einstein’s

equations. Therefore, it is intuitively clear, that solving the RG flow should also be equiva-

lent to solving for the explicit spacetime metric order by order in the derivative expansion.

Nevertheless, the RG flow equations are first order in radial derivatives, while Einstein’s

equations are second order in radial derivatives. Therefore, to determine the metric we need

additional integration constants - these are nothing but the boundary metric gbµν and the
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boundary velocity and temperature fields, namely uµb and Tb, amounting to a specific choice

of solutions of the equations of fluid mechanics at the boundary.

We recall that though the metric in Eddington-Finkelstein metric and Fefferman-

Graham coordinates are gauge equivalent at each order in derivative expansion, they differ

at orders higher than the order to which the bulk spacetime metric is explicitly solved. In

the former coordinate system, the metric is manifestly regular even at higher orders, but

is not asymptotically AdS. In the latter coordinate system, the metric is not regular at

higher orders even if the transport coefficients are chosen correctly up to the given order,

but is asymptotically AdS even at higher orders.

In the following sections, we will show that RG flow equations are sufficient to ensure

regularity of the solution at the late time (future) horizon. It is therefore useful to obtain the

bulk spacetime metric in a form which preserves the asymptotic AdS boundary condition.

Therefore, to demonstrate that the bulk spacetime metric can be reconstructed from the RG

flow, we will reconstruct the bulk metric in Fefferman-Graham coordinates which preserve

the asymptotic AdS boundary condition to all orders manifestly.

The explicit method is as follows. First, we have to make an Ansatz for the expressions

of uµ(x, r), T (x, r) and gµν(r, x), which appears in the bulk Fefferman-Graham metric as

given in (4.5), in terms the boundary metric gbµν(x) and the boundary fluid variables,

ub
µ(x) and Tb(x). For the induced metric we have:

gµν(r, x) = A · gbµν +B · ubµubν +
∞∑

n=1

(Tb)
n

( m
(n)
t∑

i=1

C
(n)
i Tb(n)µν (5.41)

+

m
(n)
v∑

i=1

E
(n)
i

(
ubµVb

(n)
i ν + ubνVb

(n)
i µ

)

+

m
(n)
s∑

i=1

(
D

(n)
i ∆bµν + D̃

(n)
i ubµubν

)
Sb

(n)

)
.

Let us explain the notations in this formula. The traceless transverse n-th order tensors

Tb(n)µν , the transverse vectors Vb
(n)
µ and the scalars Sb

(n) are all built from the boundary

variables gbµν(x), u
µ
b(x) and Tb(x). Accordingly ∆bµν = gbµν + ubµubν . The temperature

factor (Tb)
n is introduced in order to keep the parameters C

(n)
i , E

(n)
i , D

(n)
i and D̃

(n)
i

dimensionless. It also follows from the dimensional analysis that all of them depend on the

dimensionless combination rTb(x):

A = A (rTb(x)) , B = B (rTb(x)) , (5.42)

C
(n)
i = C

(n)
i (rTb(x)) , E

(n)
i = E

(n)
i (rTb(x)) ,

D
(n)
i = D

(n)
i (rTb(x)) , D̃

(n)
i = D̃

(n)
i (rTb(x)) .

This metric (5.41) is the most general 2-tensor one can construct out of gbµν(x), u
µ
b(x) and

Tb(x) (see our discussion shortly after (2.6)). The C
(n)
i and D

(n)
i terms are analogous to

the γ
(n)
i and δ

(n)
i terms in the hydrodynamic energy-momentum tensor (2.16), while the

E
(n)
i and D̃

(n)
i terms do not appear in (2.16) due to the Landau-Lifshitz gauge.
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It is straightforward to write the Ansatz for ub
µ(x) and Tb(x):

uµ(x, r) = a0ub
µ +

∞∑

n=1

Tn
b




m
(n)
s∑

i=1

a
(n)
i Sb

(n)
i ub

µ +

m
(n)
v∑

i=1

b
(n)
i Vb

(n)
i

µ


 ,

T (x, r) = l0Tb +

∞∑

n=1

Tn
b

m
(n)
s∑

i=1

l
(n)
i Sb

(n)
i . (5.43)

Again, all the parameters are dimensionless and depend on the combination rTb only.

At the next step, using (5.41) and (5.43) one has to express S(n)
i , V(n)

i µ and T (n)
i µν

in terms of their boundary counterparts Sb
(n)
i , Vbi

(n)
µ and Tbi(n)µν . This should be done

systematically in the derivative expansion parameter at the boundary. Obviously, the final

expression will be covariant with respect to the boundary metric gbµν . These algebraic

manipulations are straightforward and (up to the first order in derivatives) are exactly as

those in our previous work [48]. For example, one finds that:

σµν =
A

(A−B)1/2
σbµν +O

(
∇2
)
. (5.44)

Once the above step is completed, we can substitute (5.41) and (5.43) in (3.1) and the

expression for zµν = gµαg′αν as given by (5.2). Knowing the reparametrization parameters

in (3.1) and the transport coefficients in (2.16) we may obtain a full set of first order

differential equations for all the parameters in (5.41) and (5.43). It is straightforward to

check that we have the same number of equations as the number of the functions. Contrary

to the α, β and λ-parameters in the Ansatz (3.1), now the equations for a
(n)
i , b

(n)
i and l

(n)
i

will be differential and not algebraic.

Solving these differential equations, we also need to satisfy the boundary conditions at

r = 0. By construction we need:

A(0) = 1 , a0(0) = 1 , l0(0) = 1 (5.45)

with all other parameters vanishing for at the boundary. Notice that the norm condition

of uµb, namely uµbgbµνu
ν
b = −1 then guaranteed by the norm condition we have already

imposed on uµ while solving the RG flow.

One can wonder whether these UV boundary conditions will determine the functions

uniquely, as the corresponding differential equations may appear singular at r = 0. Let

us argue that this cannot be the case. We note that the first order RG flow equations

already determine the transport coefficients at the boundary from the constraints on their

near horizon forms which will be discussed in the following section. Having the transport

coefficients together with uµb and Tb completely determines tbµν , the energy-momentum

tensor at the boundary. For fixed tbµν and gbµν there is a unique solution of Einstein’s

equations in the bulk. This was shown explicitly in the power expansion near the bound-

ary [5]. Furthermore, as fixing the transport coefficients ensures regularity, the metric thus

reconstructed from the RG flow will indeed have a regular future horizon up to the given
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order. This can be readily checked by translating to Eddington-Finkelstein coordinates

order by order in the derivative expansion following the method of [59].

We will not further elaborate on these straightforward calculations as the explicit

metric does not contain additional physical information which will be relevant for us.

Nevertheless, the metric up to first order in Fefferman-Graham coordinates is explicitly

known, and is as in [59].10 The reader can check via explicit computations that it will

follow from our results for the solution of the RG flow which will be discussed in section

7, that the first order vector and scalar perturbations of the metric will vanish. This was

also the case in the explicit solution in [59].

There is an alternative algorithm for reconstructing the bulk metric from the RG flow,

which we would like to present in a future work. Inspite of this alternative algorithm being

simpler, we omit it here because it is not as illustraitive as the one presented above.

6 The nature of the horizon fluid

The parameters of the RG flow are the transport coefficients and the auxiliary variables

determining scale dependent reparametrization of the fluid variables. The latter satisfy

algebraic equations and do not require any boundary condition for their determination.

The physical variables, namely the scalar and tensor transport coefficients, satisfy first

order differential equations, whose boundary conditions should be determined from phys-

ical principles. We will show that these boundary conditions are simply provided by the

requirement that the fluid at the horizon is a well defined non-relativistic fluid.

It is quite clear from our construction that at each hypersurface, the fluid is relativis-

tic. Nevertheless, as we move towards the horizon, the energy density stays finite, while

the pressure and the speed of sound blow up. The horizon thus is an end point of the

RG flow because the notion of thermodynamics breaks down at the horizon. For proper

physical interpretation of the nature of the RG flow near the horizon, we need to define an

appropriate scaling of coordinates and variables such that the near-horizon fluid behaves

non-relativistically. After this rescaling, the horizon fluid will turn out to be a fixed point

of the RG flow. We may anticipate that the dynamics at the fixed point will be governed

by non-relativistic incompressible Navier-Stokes equations.

Our strategy will be as follows:

• We will define a near-horizon non-relativistic scaling that regularizes the otherwise

ill-defined equations of motion.

• We will show that at the leading order in the scaling and up to first order in the

derivative expansion, the horizon fluid is a fixed point of the RG flow, provided

the shear and the bulk viscosities do not blow up on the horizon. The dynamics

at the fixed point will indeed be given by non-relativistic incompressible Navier-

Stokes equations.

10Here it was assumed that the boundary metric is flat, however one can readily check that the solution

is valid up to first order replacing ηµν by the boundary metric in the solution.
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• We will demand that higher derivative corrections will not destroy this horizon fixed

point, thus we will derive constraints on the near-horizon behaviour of all higher

order transport coefficients.

• We will later claim that these constraints on the near-horizon behavior of transport

coefficients lead to a unique solution of the RG flow.

In the limit of linearised perturbations about equilibrium, a near-horizon scaling limit

was proposed in [43]. It was shown that if the radial and time coordinates are scaled as

follows:

rH − r = ξ · r̃, t =
τ

ξ
, (6.1)

with ξ as the scaling parameter, then in the limit ξ → 0, one gets the non-relativistic

incompressible Navier-Stokes at the horizon as a fixed point up to first order in derivative

expansion. The spatial coordinates are not re-scaled. We will do something similar but also

consider the full non-linear fluctuations about equilibrium and go beyond the first order in

the derivative expansion.

There is a crucial point here that should not be overlooked. We have already seen that

in order to consider non-equilibrium non-linear corrections to the RG flow we need rH to

be dependent on x and t. Replacing t by τ/ξ and setting ξ to zero means that we take

the long time limit where the fluid approaches equilibrium. Therefore, in this limit the

temperature becomes independent of hypersurface coordinates implying that rH becomes

constant as can be seen from (5.23).

As in our construction of the RG flow, we did not need to know the spacetime metric

explicitly, we should also not need the explicit form of the metric to define the near-horizon

scaling of the RG flow. We will introduce, therefore, the scaling limit of the RG flow in the

local inertial frame of a radially infalling observer in the near equilibrium geometry. This

infalling observer should also start with zero velocity at infinity with respect to the final

static equilibrium configuration before starting to infall. As this observer will be infalling

in the near-equilibrium geometry, the derivative expansion should also make sense for this

observer throughout the infall, provided she redefines the fluid variables as we have done

in the RG flow. Note this observer is fictional - she is not doing any real experiment on the

hypothetical holographic fluid at each hypersurface. We are merely using her local frame

to define a scaling limit of the RG flow.

We note in order to reproduce non-relativistic limit of a relativistic system, we indeed

need to choose a specific frame. In the case of fluid dynamics, the natural choice is the

inertial frame co-moving with final static equilibrium configuration. This is why when we

consider the scaling of the relativistic RG flow, we also choose the frame of an inertial (or

in other words infalling) bulk observer in the near-equilibrium geometry who is co-moving

with the final static equilibrium configuration.

We will use the re-scaled radial and time coordinates as in (6.1) in the frame of the

radially infalling observer as described above. We will not re-scale the spatial coordinates.

As this observer is infalling, the metric in her frame should be ηµν along her trajectory.

Also the first derivatives of the metric should vanish along her trajectory.
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The fluid velocity field along the trajectory of the observer should be close uµ =

(1, 0, . . . , 0) as she is co-moving with the final static equilibrium configuration. We note

this velocity vector has norm −1 with respect to the metric ηµν . Nevertheless, the geometry

will not be in exact equilibrium, so there will be small deviations characterized by a spatial

velocity vector vi. This spatial vector vi should be O(ξ) as we have scaled the time-

coordinate like 1/ξ, while not scaling the spatial coordinates. Thus the fluid velocity field

in this frame will take the form:

uµ(r,x, t) =
(
1, ξvi (rH + ξr̃,x, τ/ξ)

)
+O

(
ξ2
)
. (6.2)

Essentially this forces non-relativistic dynamics as the above amounts to taking the ve-

locity fields small compared to the speed of light. Furthermore, this also signals that the

deviations from static equilibrium are small. To be consistent, we should also scale the

fluctuations of the temperature about a static equilibrium.

As the temperature blows up at the horizon along the RG flow as (rH − r)−1, in order

to get a finite limit at the horizon we should re-scale the temperature at static equilibrium

as ξ−1. We therefore scale the temperature field as follows:

T (r,x, t) =
T eq(r̃)

ξ
+ T̃ (rH + ξr̃,x, τ/ξ) . (6.3)

We also note that T eq will be 1/(2πr̃) as one can see directly from (5.23). As the energy

density is a function of T and r̃, the scaling of T implies that the energy density should

scale as follows:

ǫ(r̃,x, t) = ǫ0 + ξ · ǫ̃(r̃,x, τ/ξ). (6.4)

Above ǫ0 is a constant, namely 2(d− 1)/rdH, as can be seen from (5.18).

The fluctuation of pressure about equilibrium in the incompressible non-relativistic

limit should not depend on the temperature but rather only on the velocity field. We

will show later that this is rightfully so. Thus the scaling of only the equilibrium part of

pressure will be consistent with it’s temperature dependence, the consistent scaling of the

fluctuation will be O(ξ) instead of O(1). Since both the equilibrium temperature and the

equilibrium pressure will blow up at the horizon like (rH − r)−1, the equilibrium pressure

will be proportional to the equilibrium temperature at the horizon and it should also scale

like 1/ξ. Overall the pressure should behave near the horizon like:

P (r,x, t) =
ρ0(r̃)

ξ
+ ξ · P non-rel(rH + ξr̃,x, τ/ξ). (6.5)

Above ρ0 = 2r1−d
H /r̃ (see (5.18)) has no hypersurface coordinate dependence. In fact, ρ0

will become the constant mass density of the fluid at the horizon. This ties up with the fact

that the fluid will be incompressible at the horizon, so that mass density cannot depend

on hypersurface coordinates. Also, P non-rel will be the pressure of the fluid.11

11It might seem bizarre that the mass density of the fluid comes from the relativistic pressure, but this
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We also recall that the transport coefficients are functions of T and r - therefore if

a tensor transport coefficient γ
(n)
i and a scalar transport coefficient δ

(m)
j blow up at the

horizon like (rH − r)−k and (rH − r)−l with k, l > 0 respectively, then their near-horion

scaling should be:

γ
(n)
i (r,x, t) =

γ
(n)
iH (r̃)

ξk
+O(ξk+1) ,

δ
(m)
j (r,x, t) =

δ
(m)
jH (r̃)

ξl
+O(ξl+1) . (6.6)

We note that γ
(n)
iH and δ

(m)
jH will be parameters of the fluid and have no dependence on

hypersurface coordinates. Also they will constant times 1/r̃k and 1/r̃l respectively, the

constants of proportionality being functions of rH.

We can now readily work out the near-horizon scaling limit of the RG flow up to the

first order in the derivative expansion. If the shear and bulk viscosities are constant on

the horizon, then, indeed, at the leading order we find that the horizon fluid obeys non-

relativistic incompressible Navier-Stokes equations. The near horizon scaling limit of the

equations ∇µtµν = 0 projected along uν and ∆µ
ν gives us the following equations:

ρ0 (∂ivi) +O(ξ) = 0 , (6.7)

ξ

(
ρ0(∂τ + vj∂j)vi + ∂iP

non-rel − ηH∂j(∂ivj + ∂jvi)

−
(
ζH − ηH

d− 1

)
∂i(∂jvj)

)
+O(ξ2) = 0 .

One should be cautious while performing the scaling of the RG flow. The incompressibility

condition ∂ivi = 0 should be used only after obtaining the fixed point and not before. This

is precisely why we can conclude that the bulk viscosity at the horizon ζH should be finite

in order to have the Navier-Stokes limit.

It is also easy to see that under the transformations τ → τ/ξ (implying vi → ξvi)

and r̃ → ξr̃ (implying ρ0 → ρ0/ξ) and P non−rel → ξP non−rel, the non-relativistic incom-

pressible Navier-Stokes equations scales homogeneously. This is precisely how we scale the

coordinates and variables in the RG flow. Thus after rescaling the coordinates and the

variables, the horizon fluid is indeed a fixed point of the RG flow at leading order in the

derivative expansion.

We note that one can do a non-relativistic scaling to obtain incompressible non-

relativistic Navier-Stokes from any relativistic fluid [60, 61] (see also [62]). This non-

relativistic scaling is also a symmetry of the incompressible Navier-Stokes equations. How-

ever, this is different from our near-horizon scaling and it is not the scaling of any RG flow.

is related to the fact that the near-horizon geometry is Rindler space and it is known that the holographic

fluid dual to the Rindler space has the bizarre equation of state ǫ = 0 with P non-zero [44]. We note

that the non-relativistic mass density is nothing but the ǫ + P of the relativistic fluid. Therefore, owing

to the peculiar thermodynamics of Rindler space, the mass density of the non-relativistic fluid receives

contribution from P only.
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Additionally this scaling assumes finite values of transport coefficients at finite tempera-

ture. On the other hand our near horizon scaling will be able to constrain the near-horizon

forms of all transport coefficients. At the first order in derivatives, this non-relativistic scal-

ing is equivalent to the near-horizon scaling up to some forcing terms in the Navier-Stokes

equations [43, 44].

Before moving to higher order in derivative expansion, we note a peculiar feature of

incompressible non-relativistic Navier-Stokes equations. The pressure P non-rel is the only

additional variable (because ρ0, ηH and ζH are constant parameters), but actually it is not

an independent variable in the equation. This is expected as the time derivative of P non-rel

does not appear in the equations, while we have an additional constraint on the velocity

fields only - namely the incompressibility condition - ∂ivi = 0. This incompressibility

condition can be used to eliminate P non-rel from the equations of motion. It is easy to

see that after taking the partial derivative ∂i of the Navier-Stokes equations and using the

incompressibility condition we get:

∂j∂jP
non-rel = −ρ0∂i∂j(vivj) + ηH∂i∂j(∂ivj + ∂jvi) (6.8)

at the leading order. We can use the above equation to eliminate P non-rel from the Navier-

Stokes’ equations at the cost of getting an integro-differential equation for the velocity

fields. Thus the only dynamical variable in non-relativistic incompressible Navier-Stokes

equation is the velocity field vi.

We will demand the fixed point of the RG flow after the scaling limit given by the

incompressible Navier-Stokes at the horizon will be unaltered even after considering higher

derivative corrections. Let us consider for example the case of the γ6 transport coefficient

- the corresponding tensor is 〈σ ρ
µ σρν〉. We can readily see that,

〈σ ρ
µ σρν〉 = ξ2δiµδ

j
νσikσkj +O(ξ3), (6.9)

where σij = (1/2)(∂ivj + ∂jvi)− (1/(d− 1))δij(∂kvk). If γ6 blows up like (rH − r)−k at the

horizon, then it’s contribution to Navier-Stokes equation will be

ξ2−kγ6H∂j(σikσkj) (6.10)

and it’s contribution to the incompressibility condition is

ξ3−kγ6H(σikσkj)∂ivj . (6.11)

In order to retain the same fixed point at the horizon, the correction to Navier-Stokes

equation should be subleading compared to O(ξ) and the correction to the incompressibility

condition should be subleading compared to O(1). Thus we need γ6 to behave weaker than

(rH − r)−1 near the horizon.

We can similarly constrain the behaviour of other second order transport coefficients

near the horizon, except for γ1 and γ2 which involve the curvatures. The near horizon

scaling of∇⊥µ ln s is obtained as follows. We use the leading order equations of motion (2.6)

to relate it to c2sDuµ. Thus, we obtain that at leading order, it scales like ξ4. The final
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Transport coefficient Corresponding tensor Near-horizon behaviour will be weaker than

γ3 (∇ · u)σµ
ν (rH − r)−1

γ4 〈∇⊥
µ∇⊥ν ln s〉 (rH − r)−3

γ5 〈∇⊥
µ ln s∇⊥ν ln s〉 (rH − r)−7

γ6 〈σµ
τσ

τ
ν〉 (rH − r)−1

γ7 〈ωµ
τω

τ
ν〉 (rH − r)−1

γ8 〈σµ
τω

τ
ν〉 (rH − r)−1

Table 1. Constraints on near-horizon behaviour of γ3, γ4, γ5, γ6, γ7 and γ8 from the non-

relativistic incompressible Navier-Stokes scaling limit.

result for the constraints on the near-horizon behavior of the second order tensor transport

coefficients γ3, γ4, γ5, γ7 and γ8 are as in the table 1. Remarkably, it will turn out that these

restrictions will also be sufficient to determine the near-horizon forms of γ1 and γ2, as those

will appear as source terms in the equations for the radial flow of the other second order

tensor transport coefficients. We will soon provide an additional argument to constrain

the near-horizon behaviour of these transport coefficients independently by studying the

scaling of the hypersurface curvature.

We now turn to the possible behaviour of second order scalar transport coefficients

near the horizon. For this, we note that the rescaled pressure P non-rel at the horizon is

not defined by the equation of state, but via incompressible Navier-Stokes equations as a

function of the velocity fields only as in (6.8). We therefore have an additional freedom

which involves reabsorbing some (not all) higher derivative corrections to the Navier-Stokes

equations via redefinition of P non-rel.

For definiteness, let us consider the relativistic term δ6σαβσ
αβ . If δ6 blows up like

(rH − r)−k at the horizon, then it’s contribution to Navier-Stokes equation will be

ξ2−kδ6H∂i(σjkσjk) (6.12)

and it’s contribution to the incompressibility condition is

ξ3−kδ6H(σijσij)∂kvk. (6.13)

In order to have a leading order contribution which should be the same as Navier-Stokes,

we require k = 1. It might seem that by doing so we are changing the Navier-Stokes

equation at the horizon, which we have said earlier to be disallowed. Nevertheless, we can

readily see that if we redefine the pressure as below:

P̃ non-rel = P non-rel + δ6H(σjkσjk), (6.14)

we can again use the incompressibility condition and the Navier-Stokes equations to

show that:

∂j∂jP̃
non-rel = −ρ0∂i∂j(vivj) + ηH∂i∂j(∂ivj + ∂jvi), (6.15)

i.e. P̃ non-rel satisfies the same condition like P non-rel as in (6.8). We thus have the same

equations for the velocity fields as in non-relativistic incompressible Navier-Stokes after
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Transport coefficient Corresponding scalar Allowed leading order near-horizon behaviour

δ3 (∇ · u)2 (rH − r)−1

δ4 ∇⊥
µ∇⊥µ ln s (rH − r)−3

δ5 ∇⊥
µ ln s∇⊥µ ln s (rH − r)−7

δ6 σµ
νσ

ν
µ (rH − r)−1

δ7 ωµ
νω

ν
µ (rH − r)−1

Table 2. Allowed leading order near-horizon behavior of δ3, δ4, δ4, δ5 and δ7 by the non-relativistic

incompressible Navier-Stokes scaling limit.

eliminating P̃ non-rel. Thus, even if δ6 blows up like (rH − r)−1 at the horizon, the horizon

fluid still follows non-relativistic incompressible Navier-Stokes equations.

We can similarly constrain the behaviour of all second order scalar transport coefficients

except δ1 and δ2 which involve the curvatures. The result is as in the table 2. Once

again these restrictions on the near-horizon forms of other second order scalar transport

coefficients will be sufficient to determine the near-horizon forms of δ1 and δ2, as these will

be sourcing the radial flow of the above transport coefficients.

Let us now ask what could be the consistent scaling of the curvature of the metric

in the frame of the infalling observer. Clearly these curvatures need to be small as some

power of ξ in order for a static equilibrium (about which we are expanding in ξ expansion)

to exist. In order to obtain the scaling of the Riemann curvature, we need to understand

how the fluctuations of the metric scale with ξ. We can adopt Riemann normal coordinates

for the infalling observer who is at say x = 0 and τ = 0 and at a definite value of r̃. The

hypersurface metric in the vicinity of this observer takes the form:

gµν = ηµν −
1

3
Rµρνσx

ρxσ +O(∇3). (6.16)

Let us call gµν − ηµν as δgµν . Our results will require

δgττ = O(ξ3), δgiτ = O(ξ2), δgij = O(ξ3) (6.17)

which will imply that

Rijkl = O(ξ3) and Riτjτ = O(ξ3). (6.18)

It is easy to see that with the above scaling the norm condition of uµ is preserved, as up

to O(ξ2), the form of uµ given by (1, ξvi)/
√
1− ξ2vjvj satisfies the norm with respect to

the flat metric itself. It turns out that if the scaling of both Riτjτ and Rijkl are O(ξ3),

the near-horizon behaviour of γ1, γ2, δ1 and δ2 that we will find in the next section do not

change the fixed point given by non-relativistic incompressible Navier-Stokes equations at

the horizon. In this case, the constraints on the near-horizon behavior of these transport

coefficients is as in table 3. It would be interesting to understand what determines the

scaling of the curvature independently of our results for near horizon behavior of γ1, γ2, δ1
and δ2. We leave this for the future.

Clearly, we can adopt our procedure to constrain the near-horizon behaviour of the

higher order transport coefficients at any order in the derivative expansion. Our near-

horizon scaling will fix unambiguously the allowed leading order behaviour of the transport
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Transport coefficient Corresponding tensor Near-horizon behavior should be weaker than

γ1 〈Rµ
ν〉 (rH − r)−1

γ2

〈

uαR
µ β

α ν uβ

〉

(rH − r)−1

Transport coefficient Corresponding scalar Allowed leading order near-horizon behaviour

δ1 R (rH − r)−2

δ2 Rµνu
µuν (rH − r)−2

Table 3. Constraints on near-horizon behaviour of γ1, γ2, δ1 and δ2 from the non-relativistic

incompressible Navier-Stokes scaling limit.

coefficients even at higher orders in the derivative expansion. In the next section, we will

provide evidence that these constraints will be sufficient to determine the near-horizon

forms of all the transport coefficients independently of their boundary values, and thus we

can solve the RG flow uniquely. Furthermore, the value of the transport coefficients at the

boundary would be exactly those required for absence of naked singularities at the future

horizon. Therefore these boundary values should coincide with the results which can be

obtained from the traditional method of determining them from explicit construction of

the bulk metric.

We end this section with some comments comparing our near horizon limit with that

of [44]. Indeed our near-horizon limit is qualitatively similar to the latter, though we

have applied the scaling of the radial and time coordinates and the fluid variables as

in (6.1), (6.2), (6.3) to the RG flow while in the latter the same was applied to the bulk

metric. The horizon fluid was also incompressible non-relativistic Navier-Stokes fluid with

vanishing bulk viscosity and shear-viscosity equaling the membrane paradigm value [44].

In our case, the value of the horizon shear-viscosity will turn out to be different, though

η/s will be same at all scales and equal to the universal value 1/4π (see the next section

for details). The quantitative difference in the horizon shear viscosity will be because

in [44] there was a rescaling of spatial coordinates involved to make the induced metric ηµν
everywhere on the cut-off hypersurface where the Dirichlet boundary condition was imposed

on the metric fluctuations. We recover our quantitative result if we undo this rescaling of

spatial coordinates in [44].12 This rescaling of spatial coordinates is non-singular at the

horizon and hence do not change our results qualitatively.

Our approach is however essential to define the incompressible non-relativistic Navier-

Stokes fluid as a fixed point of the rescaled RG flow in a rigorous manner. As already shown

in the previous sections, we can define a unique first order RG flow without requiring to

know the explicit metric up to trivial scale reparametrizations and numerical prefactors in

the counter-terms. We will have sufficient evidence in the following section to show that

even these numerical prefactors will be fixed uniquely by requiring that the fixed point

of the rescaled RG flow will be the incompressible non-relativistic Navier-Stokes fluid at

the horizon.

12Note the Fefferman-Graham and Eddington-Finkelstein slices r = constant are the same far in the future

(in the static final equilibrium geometry) up to trivial radial reparametrizations. So it is no surprise that

the shear viscosity at the horizon turn out to be the same in both cases provided the units of measurement

are the same.
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7 Results for RG flow of transport coefficients

In this section, we will solve the RG flow of the transport coefficients at the first and second

orders in derivative expansion. We will follow the general algorithm of section 5.3, and then

determine the transport coefficients uniquely using the physical principle of section 6 that

the fluid on the infra-red screen will follow the incompressible Navier-Stokes equation in

well defined scaling limit. It will be clear that in our procedure we will need to go to higher

orders to completely determine some lower order transport coefficients. In particular, we

will see that the shear viscosity η gets determined completely at second order.

Solving the RG flow explicitly up to second order will allow us to determine four of

the five second order transport coefficients of the conformal fluid at the boundary. Our

computations will reproduce the boundary values of these transport coefficients already

known in the literature. We believe that the remaining second order transport coefficient

will be determined by a higher order calculation.

7.1 First order

At the first order, we have only one tensor coefficient (see (2.8)), namely the shear viscosity

η, which multiplies −2σµ
ν in the energy-momentum tensor13 tµν . As shown in section 5.3,

in order to obtain the equation for η, we should first compute σµ′
ν . At the leading order, i.e.

first order, it should be proportional to σµ
ν itself as there is no other transverse traceless

tensor at this order. We also recall from section 5.1 this can be calculated readily from the

zeroth order form of zµν , as given by (5.10) without knowing the metric explicitly. The

result is as given in (the first order term of) (C.2). The equation for the shear viscosity

follows from the traceless transverse part of the equation of radial evolution of tµν as given

by (5.31), of which we retain the first order terms only. We obtain:

η′ = −rd−1

2
ǫ · η . (7.1)

The general solution of this first order ODE is:

η(r) =
r
2(d−1)
H(

rdH + rd
)2(1−1/d)

ηb . (7.2)

The integration constant ηb, is actually the value of η on the boundary.

As we have discussed in section 6, in order to have a sensible horizon fluid, we need η

to be finite at the horizon, and this indeed so for any value of ηb. Thus from the first order

RG flow equations we cannot determine the exact value of η neither at the horizon nor at

the boundary. Nevertheless, we will be able to so at the second order. We will see that

unless ηH is adjusted properly, the source term for one of the second order tensor transport

coefficients will blow up at the horizon.

13We recall again that the definition of σµ
ν varies in the literature, and so the 2-factor in the shear

viscosity term.
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Comparing with the result for s′ as given by (5.25), we readily see that:

(
η

s

)′

= 0. (7.3)

This is the very well known result, first obtained in [52], that η/s does not flow radially.

We now consider the vector projection of the equation for radial evolution of tµν as

given by (5.33). Again, at the first order there is only one vector, and so there is a single

β
(1)
i parameter. We find that14 β(1) = 0. Thus the transverse contribution to uµ′ vanishes

at the first order.

We are now in a position to determine the only scalar transport coefficient at the first

order, namely the bulk viscosity ζ from . We use (5.38) of which we retain first order terms

only. This gives the following equation for the bulk viscosity:

ζ ′ −
(
d− 1

r
(c2s + 1) + rd−1

(
P − 1

2
c2sǫ

))
· ζ = 0 . (7.4)

In deriving this identity we used (5.11) together with (5.13). This homogeneous equation

for ζ(r) can be solved analytically:

ζ(r) ∼ rd
(
rdH + rd

) 2
d
−1

(
rdH − rd

)3 . (7.5)

We recall from section 6 that we need ζ to be constant at the horizon. Obviously, the only

solution which is of this form is the trivial solution ζ(r) = 0. Therefore, the bulk viscosity

vanishes for all hypersurfaces in the foliation.

We can now determine the auxiliary variables λ(1) and α(1) from the first order terms

in (5.39) and (5.40) respectively. We obtain λ(1) = α(1) = 0. Putting together these with

β(1) = 0, we conclude that at the first order there both uµ′ and T ′ receive no contributions:

(uµ′)(1) = 0, (T ′)(1) = 0 . (7.6)

The above leads to some simplifications for the second order calculations.

7.2 Second order

We will now compute the radial flow of second order transport coefficients. We have seen

from the general algorithm presented in section 5.3, which can be used at any order, that

to find the n-th order transport coefficients, we need not solve for (uµ′)
(n)

or (T ′)(n) at the

same n-th order. However, we do need to find (uµ′)(m) and (T ′)(m) for all m < n, i.e. we

have to solve the RG flow equations completely at lower orders. As we will be interested

in the second order transport coefficients only, which contains all the relevant physical

information up to thus order, we will not solve for (uµ′)(2) or (T ′)(2), i.e. the auxiliary

variables at second order. These will be relevant, however, if one is about to calculate the

third order transport coefficients.

14For obvious reasons, we do not put an extra counting label
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7.2.1 Tensor transport coefficients

In order to obtain the second order transport coefficients, we should first calculate the

radial derivatives of all the second order transverse traceless tensors and write them as

a linear combination of the second order transverse traceless tensors. In other words, we

should solve (5.27) at second order. This can be done as the explicit equilibrium form of

zµν (given by (5.10)) is known. The explicit solution of this “tensor mixing problem” is

given in (C.1).

Additionally we have to know the contributions coming from lower orders, as the

second order terms in the expansion of (−2ησµ
ν)

′
. There are some simplifications coming

from the result (7.6). First, following the arguments of subsection 5.3, (uµ′)(1) = 0 implies

that σµ′
ν is transverse and traceless at second order, i.e. it’s second order contributions can

be written as a linear sum of second order transverse traceless tensors. The result of the

calculation is in (C.2). In deriving this result it is sufficient to use uµ′ = α0u
µ + . . . with

α0 given by (5.13) and the first order expansion of zµν as given by (5.2).15 Second, the

solution for η as given in (7.2) can be expressed as η(T, r) by eliminating rH in favour of

T using (5.21). We, therefore, readily see that (η′)(1) = (∂η/∂T )(T ′)(1) may contribute to

the second order of (−2ησµ
ν)

′
. It, however, does not since (T ′)(1) = 0.

Combining the projected equation for radial evolution of tµν as given by (5.31)

with (C.1) and (C.2), and retaining the second order terms only, we arrive at the ra-

dial equations of motion for the second order tensor transport coefficients γi(r)’s (from

now on we drop the (2) superscript):

γ′1 +
rd−1

2

(
−P +

2

d− 1
ǫ

)
γ1 =

r

d− 2

(
−P +

2

d− 1
ǫ

)

γ′2 +
rd−1

2

(
P +

2d− 3

d− 1
ǫ

)
γ2 = −rd−1

(
2η2 + (P + ǫ)

(
γ1 −

2r2−d

d− 2

))

γ′3 +
d− 2

2(d− 1)
rd−1ǫγ3

= 2
d+ 1

d− 1
rd−1η2 +

rd−1

2
(P + ǫ)

((
c2s+

3

d− 1

)(
γ1−

2r2−d

d− 2

)
+

(
c2s +

d

d− 1

)
γ2

)

γ′4 − rd−1

(
P +

d

2(d− 1)
ǫ

)
γ4

= 2rd−1c2sη
2 +

rd−1

2
(P+ǫ)

((
c2s −

1

d− 1

)(
γ1 −

2r2−d

d− 2

)
+

(
c2s −

d− 2

d− 1

)
γ2

)

γ′5 −
rd−1

2

(
3P +

2d− 1

d− 1
ǫ

)
γ5

= 2rd−1

(
∂c2s
∂ ln s

− c4s

)
η2 −

+
rd−1

2
(P + ǫ)

(
γ1 −

2r2−d

d− 2
+ γ2

)(
−2c4s +

∂c2s
∂ ln s

+ (c2s + 1)

(
c2s −

1

d− 1

))

+rd−1(P + ǫ)

(
− d− 3

2(d− 1)
(c2s + 1)γ2 +

1

2

(
c2s +

d+ 1

d− 1

)
γ4

)

15Notice that tµν is already known at the first order.
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γ′6 +
rd−1

2

(
P +

2d− 3

d− 1
ǫ

)
γ6 = rd−1

(
2η2 + (P + ǫ)

(
γ1 −

2r2−d

d− 2

))

γ′7 −
rd−1

2

(
3P +

2d− 1

d− 1
ǫ

)
γ7 = rd−1

(
2η2 − (P + ǫ)

(
γ1 −

2r2−d

d− 2
− 2γ2

))

γ′8 −
rd−1

2

(
P +

ǫ

d− 1

)
γ8 = 2rd−1

(
2η2 + (P + ǫ)

(
γ1 −

2r2−d

d− 2
+ γ2

))
(7.7)

In deriving these equations we have also used (C.3).

Let us clarify our strategy for solving the γi’s equations. All eight equations are first

order ODEs with non-vanishing sources. Dropping the sources on the right hand side,

one receives homogeneous equations. Imposing the horizon criteria of the previous section,

we may fix the integration constants, but, contrary to the bulk viscosity (7.5), this will

not necessarily set the corresponding functions to zero. This will only work provided the

solutions of the underlying homogeneous equations violate the bound at the horizon that

we summarized at tables 1 and 3.

In what follows we will refer to the near horizon behaviour presented in these tables

as regular even if the function in question satisfies the bound while blowing up at r = rH.

As we will see momentarily, for γ2 the related homogeneous solution goes to zero at

the horizon, and so it seems that (at least) for this function there is no way to fix the

integration constant, which in turn means that the boundary value of γ2 could not be

determined from this procedure.

This argument, however, is only partially correct. The integration constant of γ2,

indeed, cannot be eliminated based only on the “regularity” of γ2 itself. Nevertheless,

since this function appears also as a source in the γ3 equation, the restriction on γ3 in

table 2 may impose an additional stronger constraint on the horizon behaviour of γ2.

Remarkably, this is precisely what happens. Even more surprisingly, the regularity of γ3
fixes also the boundary value of η that we left unfixed in (7.2).

Let us start with γ1. Substituting (5.18) we observe that the solution of the corre-

sponding homogeneous equation diverges as (rH − r)−1 near the horizon. According to

table 3 the Navier-Stokes limit does not allow us to exclude this mode. Notice, though,

that γ1 appears as a source in the RG flow equations of all the other γ-functions in (7.7).

A quick look at these equations reveals that this diverging mode necessarily leads to the

near-horizon divergences that explicitly violate the bounds in table 1. The easiest way to

see this is from the γ6 equation. Since P ∼ (rH − r)−1 near the horizon, γ6 behaves there

exactly as γ1 does. To conclude, unless γ1 is set to a constant at r = rH, we cannot satisfy

the conditions of the previous section. Moreover, as we will see immediately, eliminating

the “singular” (rH − r)−1 mode is sufficient for maintaining the “regular” near-horizon

solutions for all other γ’s.

Excluding the homogeneous (rH − r)−1 solution we arrive at the following

unique solution:

γ1(r) =
4

(d− 2)(rdH − rd)

(
rd−2
H

(
rdH + rd

2

)4/d−1

− r2
)
. (7.8)
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For a reason unclear to us, this expression significantly simplifies if d = 4. Furthermore,

for any d the function γ1(r) is monotonically decreasing as one moves towards the horizon,

and its value there is:

γ1(r = rH) =
2

(d− 2)
r2−d
H . (7.9)

Substituting (7.8) into the γ2 equation results in a very long expression, and so we will focus

mostly only the d = 4 case. Independently of the integration constant, C2, the solution

of the γ2 equation goes to zero as (rH − r) near the horizon. Thus, at this stage we still

cannot fix γ2 completely, and consequently the boundary value of γ2 at r = 0 also remains

undetermined. Overall γ2 depends now on two free constants: C2 and ηb.

Let us now consider the γ3 ODE. Because ǫ takes a non-zero constant value at the

horizon, while P and c2s blow up their as (rH − r)−1 and (rH − r)−2 respectively, γ3 has

to diverge as (rH − r)−2. The only way to avoid this, is to require that the combination

which multiplies c2s:

γ1 −
2r2−d

d− 2
+ γ2 (7.10)

behaves like (rH − r)3. This looks like a strong condition, since this expression has both

(rH− r), (rH− r)2 and also two logarithmic terms, while we can modify only two constants

C2 and ηb. Amazingly, though, setting to zero only the (rH− r) and the (rH− r) ln(rH− r)

terms renders (7.10) exactly the right (rH − r)3 behaviour near r = rH! The value of ηb
that does the job for d = 4 is:

ηb =
2
√
2

r3H
(7.11)

and the final solution for γ2(r) is:

γ2(r) = 2r2H
r4H − r4

(r4H + r4)2

(
2r2Hr

2

(r2H + r2)2
+ ln

(
(r2H + r2)2

2(r4H + r4)

))
. (7.12)

Though it is possible to write down the result for d 6= 4, for general d this (and all

the other) expression(s) become extremely complicated, so we will restrict ourself in this

subsection to the d = 4 case, while presenting explicit solutions for the γ’s. At the same

time, all the conclusions about the regular/singular behaviour of these functions will be

completely general.

With (7.11) and (7.12), the source on the right hand side of the γ3 equation now

approaches a constant non-zero value at r = rH. However, the homogeneous solution of

the γ3 equation is regular (non-zero constant) at r = rH. So, though we can guarantee that

γ3 does not blow up at the horizon by properly adjusting the values of η and γ2 there, we

cannot still fix the integration constant in the γ3 equation itself.

The situation almost repeats itself for γ4, γ5 and γ6, as these functions also cannot

be completely fixed just from the “regularity” condition. The solution of the related ho-

mogeneous equation of γ4 behaves like (rH − r)−2, while the source is finite similar to the

source of the γ3 equation. According to table 1 any γ4 solution will, then be consistent with

the non-relativistic limit of the previous section. Moreover, if γ4 behaves like (rH − r)−2,

then the source in the γ5 equation diverges only as (rH − r)−5. Since the homogeneous γ5
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solution goes like (rH − r)−3 at r = rH, we see that γ5 also respects the bound of table 1

for an arbitrary value of the integration constant.

Before reconsidering the functions γ3, γ4, γ5 and γ6, let us address the γ7 and γ8
equations. The homogeneous solutions for the corresponding equations behave near the

horizon as (rH − r)−3 and (rH − r)−1 respectively. Requiring that γ7 and γ8 gain finite

values at r = rH one can uniquely fix these two functions. The final solutions are:

γ7(r) = −2r2H
r4H − r4

(r4H + r4)2

(
2

(
r8H + r6Hr

2 + 4r4Hr
4 + r2Hr

6 + r8
)

(r2H + r2)4
+ ln

(
(r2H + r2)2

2(r4H + r4)

))

γ8(r) = −4r2H
r4H − r4

(r4H + r4)2

(
2

r2Hr
2

(r2H + r2)2
+ ln

(
(r2H + r2)2

2(r4H + r4)

))
.

To summarize, using the finiteness of the second order tensor transport coefficients

on the horizon, we were able to determine completely η (left unfixed at the first order),

γ1, γ2, γ7 and γ8. We strongly believe that the integration constant in the remaining

four functions, γ3, . . . , γ6, will be determined at the higher orders. Our expectations are

firmly supported by the results of this subsection. At the first order we managed to set the

integration constant in the bulk viscosity expression, but in order to determine the shear

viscosity we had to go to the next (second) order, where, again, requiring regularity we

could determine exactly half of transport coefficients appearing at this order.

Since, the third order calculation is not available for the moment, we can try to find the

remaining four integration constants by imposing conformality constraint on the bound-

ary fluid.

Indeed, we know that out eight transversal tensors only five are conformal, and we have

already presented them in (2.17). Notice that three tensors T3µν
, T4µν

and T5µν
appear

only in one conformal combination together with T2µν
. Therefore, knowing the boundary

value of γ2 and requiring conformality, we can determine the boundary (and so the horizon)

values of γ3, γ4 and γ5.
16 The results are:

γ3(r) = −2

3

r2H
(r4H + r4)2

(
2(r4H + 5r2Hr

2 + r4)
r2H − r2

r2H + r2

+
(r8H − 10r4Hr

4 + r8)

r4H − r4
ln

(
(r2H + r2)2

2(r4H + r4)

))
(7.13)

and

γ4(r) = −2

3

r2H
(r4H − r4)(r4H + r4)2

×

×
(
2
(
r8H − r6Hr

2 + 4r4Hr
4 − r2Hr

6 + r8
)

+
(
r8H + 6r4Hr

4 + r8
)
ln

(
(r2H + r2)2

2(r4H + r4)

))
, (7.14)

16Notice that the boundary values of γ1 and γ2 in our calculation have automatically appeared in a

correct combination to reproduce the first conformal coefficient in (2.17).
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Transport coefficient
Corresponding Behaviour/Value Value at

tensor near the horizon the boundary

η(r) −2σµ
ν (πTb)

3 /2
√
2 (πTb)

3

γ1(r) 〈Rµ
ν〉

1

2
(πTb)

2 (πTb)
2

γ2(r)
〈
uαR µ β

α ν uβ

〉
O ((rH − r)) − ln 2 (πTb)

2

γ3(r) (∇ · u)σµ
ν O ((rH − r)) −1

3
(2− ln 2) (πTb)

2

γ4(r) 〈∇⊥
µ∇⊥ν ln s〉 O

(
(rH − r)−1

)
−1

3
(2− ln 2) (πTb)

2

γ5(r) 〈∇⊥
µ ln s∇⊥ν ln s〉 O

(
(rH − r)−3

) 1

9
(2− ln 2) (πTb)

2

γ6(r) 〈σµ
τστ

ν〉 O ((rH − r)) (C6 + ln 2) (πTb)
2

γ7(r) 〈ωµ
τωτ

ν〉 O ((rH − r)) −(2− ln 2) (πTb)
2

γ8(r) 〈σµ
τωτ

ν〉 O ((rH − r)) 2 ln 2 (πTb)
2

Table 4. To compare the boundary values (2.19) we have to multiply them by κAdS, because we

have rescaled the stress tensor in (5.1). Here we present our results for the boundary values of

the tensor transport coefficients. The boundary temperature, Tb, is identified with the Hawking

temperature, given by (5.22). For d = 4 it means that Tb =
√
2/πrH. Our method allows to fix

the boundary values of the shear viscosity and of four out of eight second order tensor transport

coefficients, γ1, γ2, γ7 and γ8. The remaining four will be determined at higher orders. However,

three of these four, γ3, γ4 and γ5 can alternatively be fixed requiring the boundary fluid to be

conformal. Our findings agree with [27, 28] with the exception of γ6 that has to be determined at

higher orders.

γ5(r) = −2

9

r2H
(r4H − r4)3(r4H + r4)2

×

×
(
4(r4H + r4)4 − 2(r4H − r4)2

(
r4H + r2Hr

2 + r4
) (

3r4H − 2r2Hr
2 + 3r4

)

+
(
16r4Hr

4(r4H + r4)2 − (r4H − r4)4
)
ln

(
(r2H + r2)2

2(r4H + r4)

))
.

Remarkably, imposing conformality at the boundary reduces the horizon divergence of the

functions γ4 and γ5 by exactly one power of (rH − r). They behave now as (rH − r)−1 and

(rH − r)−3 respectively respeecting the conditions of table 1. Analogously, γ3, vanishes at

the horizon instead of approaching a constant non-zero value there. We have not found any
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deep physical explanation for this fact. Most likely it becomes obvious from the coupling

of these functions to higher order tensor/scalar transport coefficients.

Finally, the integration constant in γ6 cannot be determined by imposing the boundary

fluid conformality, since the corresponding transverse tensor T2µν
is conformal by its own

right and does not mix up with other tensor in (2.17). We may, of course, fix the integration

constant by comparing the boundary value of γ6 to the previously known results, but we

prefer to leave the constant explicitly in the final expression for γ6:
17

γ6(r) = 2r2H
r4H − r4

(r4H + r4)2

(
C6 −

2r2Hr
2

(r4H + r4)2
− ln

(
(r2H + r2)2

2(r4H + r4)

))
. (7.15)

Again, in order to find C6 one has to go the third (or higher) order in the

derivative expansion.

Our results for the boundary values of the tensor transport coefficients perfectly match

the known results of [27, 28] that we have presented already in (2.18) and (2.19). To make

comparison clear we have to use the relation between Tb = THawking and rH shown in (5.22).

We also have to reintroduce κAdS, because we have rescaled tµν as in (5.1). The results are

presented in table 4.

7.2.2 Scalar transport coefficients

To obtain the equations for the RG flow of the second order scalar transport coefficients,

we should first solve the “scalar mixing problem”, namely to find the scalar analogue of

the expansions (5.27) and (5.26). Unlike in the tensor expansion, though, our task now is

a bit simpler, since we don’t have to keep in mind possible contributions coming from the

first order viscosity term. Our results for
(
S(2)
i

)′
are summarized in (B.1). Using these

and retaining only second order terms in (5.38), we obtain the following RG flow equations

for the second order scalar transport coefficients:

δ′1 +

(
−d− 1

r
(c2s + 1) + rd−1

(
−P +

1

2

(
c2s −

1

d− 1

)
ǫ

))
δ1 (7.16)

=
r

2(d− 2)

((
c2s +

2d− 5

d− 1

)
P +

(
c2s +

d− 3

(d− 1)2

)
ǫ

)

δ′2 +

(
−d− 1

r
(c2s + 1) +

rd−1

2

(
−P +

(
c2s +

d− 2

d− 1

)
ǫ

))
δ2

=
r

(d− 1)(d− 2)

((
c2s(d− 1) + (d− 4)

)
P +

(
c2s + (d− 2)

)
ǫ
)
+ rd−1(P + ǫ)δ1

δ′3 +

(
−d− 1

r
(c2s + 1) + rd−1

(
−P +

1

2

(
c2s − 1

)
ǫ

))
δ3 = 0

δ′4 +

(
−d− 1

r
(c2s + 1) +

rd−1

2

(
−3P +

(
c2s −

2

d− 1

)
ǫ

))
δ4

=
d− 2

2(d− 1)
rd−1(P + ǫ)

(
δ2 +

2r2−d

d− 2

(
c2s −

1

d− 1

))

17Contrary to the γ3 example setting the “right” boundary value of γ6, see (2.19), does not result in an

extra (rH − r) power in the near horizon behaviour of γ6.

– 51 –



J
H
E
P
1
1
(
2
0
1
3
)
0
8
6

δ′5 +

(
−d− 1

r
(c2s + 1) + rd−1

(
−2P +

1

2

(
c2s −

2d− 1

d− 1

)
ǫ

))
δ5

= rd−1(P + ǫ)

(
d− 2

2(d− 1)
(1 + c2s)

(
δ2 +

2r2−d

d− 2

(
c2s −

1

d− 1

))

+

(
c2s
2

+
1

d− 1

)
δ4

)

δ′6 +

(
−d− 1

r
(c2s + 1) +

rd−1

2

(
c2s +

2d− 3

d− 1

)
ǫ

)
δ6

=
rd−1

2
(P + ǫ)

(
δ2 +

2r2−d

d− 2

(
c2s −

1

d− 1

))

δ′7 +

(
−d− 1

r
(c2s + 1) + rd−1

(
−P +

1

2

(
c2s −

2d− 1

d− 1

)
ǫ

))
δ7

= −3

2
rd−1(P + ǫ)

(
δ2 +

2r2−d

d− 2

(
c2s −

1

d− 1

))

Similar to the tensor transport coefficients we will refer to δ’s as “regular” and “singular”

if they satisfy the incompressible Navier-Stokes criteria of tables 2 and 3.

Before analysing the full non-homogeneous equations let us solve first the corresponding

homogeneous ODEs. Those are obtained by dropping the right hand side of the equations.

The calculation is straightforward even for d 6= 4. We summarize the results in the third

column of table 5. We can learn from this table that for δ1, δ3, δ4 and δ7 we have to

eliminate the homogeneous solution in order to follow the rules of tables 3 and 2. This will

not yet be sufficient to guarantee the correct behaviour of these functions as we have also

consider the sources of the related equations. To provide a complete answer we will have

to address the near horizon behaviour of δ2. The only exception here is δ3 which has no

source and so:

δ3 = 0 (7.17)

is the only possible solution. As for the remaining two functions, δ5 and δ6, we cannot fully

fix these functions using the criteria of the previous section, because they do not contribute

to the sources of the other ODEs and the solutions of their homogeneous equations are not

“singular” near the horizon.

We are now in a position to study the δ1. Eliminating the (rH − r)−3 mode we may

fix this function completely. For d = 418 the result is:

δ1(r) = −4

9
r2

[
3r2H + r2

(r2H + r2)3
+ 12

r6Hr
2

(
r4H − r4

)3
(
π

4
− arctan

(
r2

r2H

))]
. (7.18)

The solution goes like (rH − r)−2 near r = rH and we respect the bound of table 3.

Next we consider δ2. At the first glance, it looks that we cannot fix the integration

constant in its ODE solution as the homogeneous mode goes like (rH− r)−2 and therefore,

according to table 3, there is no constrain on it. Notice, though, that δ2 appears as a

18One can solve this equation straightforwardly for a general d, but exactly as for the tensor transport

coefficients γ’s the final expression will look very lengthy.
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source in most of the equations in (7.16). Moreover, its contribution always comes in the

following form:

(P + ǫ)

(
δ2 +

2r2−d

d− 2

(
c2s −

1

d− 1

))
. (7.19)

If we want to satisfy the bounds of table 2, this expression has to go as (rH − r)−2 near

r = rH.
19 Recalling that c2s = 2r2H/(d(d−1)) ·(rH−r)−2+ . . ., we see that the δ2 integration

constant has to be fixed by requiring that the leading (rH − r)−2 term in the expansion of

δ2 cancels the same order term coming from c2s. This is the only way to assure that (7.19)

goes like (rH − r)−1, which subsequently guarantees that all the δi’s for i = 4, . . . , 7 are

“regular” at the horizon, namely that they behave there like (rH−r)−1 in conjunction with

table 2. For d = 4 we find:

δ2(r) = −4

9

r2
(
r4H − r4

)3 (
r4H + r4

)
[ (

r2H − r2
)2 (

6r8H − 22r6Hr
2 − 11r4Hr

4 + 2r2Hr
6 + r8

)

+24r6Hr
2
(
r4H + r4

)(π

4
− arctan

(
r2

r2H

))]
. (7.20)

To conclude, the differential equations for δ1 and δ3 can be solved unambiguously

by eliminating the “singular” (rH − r)−3 modes. The horizon behaviour of δ4, δ5, δ6,

δ7 determines δ2 completely. Next, the “regularity” fixes uniquely δ4 and δ7, since their

homogeneous modes violate the bounds of the previous section. As for the remaining two

functions, δ5 and δ6, we cannot eliminate the homogeneous modes as they respect the

criteria of table 2. In order to fix the integration constants of these functions one has

to go to the next order in the derivative expansion, exactly like in the γ6 case discussed

above. Importantly, contrary to the tensor transport coefficients, here we cannot fix the

integration constants by imposing conformality on the boundary, because all the δ’s vanish

there independently of the horizon behaviour. This, of course, is of no surprise since the

boundary conformal fluid has no (first and higher orders) scalars in its energy momentum

tensor. To see that all the δ’s do indeed vanish at r = 0, notice that for small r one finds

from (7.16) that δ′i − d · δi = O
(
rd+1

)
for i = 3, . . . , 7 and so δi ∼ rd near r = 0.20

We summarize the results of this subsection in table 5. We will not report the explicit

solutions for δ4(r), δ5(r), δ6(r) and δ7(r), since the final expressions are very lengthy, while

the prime goal of our discussion was only to demonstrate that one can fix the integration

constants in all δ’s, except δ5 and δ6, already at the second order.

8 Discussion

In the context of fluid/gravity correspondence, we have shown here that we can construct

a holographic RG flow such that spacetime emerges from the flow of physical data, namely

19For example, the left hand side of the δ7 equation looks like:

δ
′

7 −
3

rH − r
δ7 ,

near r = rH. Therefore, the right hand side should go at most as (rH − r)−2.
20δ1(r) and δ2(r) vanish instead as r2.
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The transport The The homogeneous The full solution Boundary Solution fixed

coefficient scalar solution behaviour value uniquely

δ1(r) R rd
(rdH + rd)−1+4/d

(rdH − rd)3
O((rH − r)−2) 0 Yes

δ2(r) uµR
µ
νu

ν rd
(rdH + rd)−2+4/d

(rdH − rd)2
O((rH − r)−1) 0 Yes

δ3(r) (∇ · u)2 rd
(rdH + rd)

(rdH − rd)3
0 0 Yes

δ4(r) ∇⊥
µ∇⊥µ ln s rd

(rdH + rd)−2+8/d

(rdH − rd)4
O((rH − r)−1) 0 Yes

δ5(r) ∇⊥
µ ln s∇⊥µ ln s rd

(rdH + rd)1+4/d

(rdH − rd)5
O((rH − r)−5) 0 No

δ6(r) σµ
νσ

ν
µ rd

(rdH + rd)−3+4/d

(rdH − rd)
O((rH − r)−1) 0 No

δ7(r) ωµ
νω

ν
µ rd

(rdH + rd)3

(rdH − rd)3
O((rH − r)−1) 0 Yes

Table 5. Here we sum up the results for the second order scalar transport coefficients. The

homogeneous solutions of δ1, δ3, δ4 and δ7 do not satisfy the bound of tables 2 and 3. We have to set

to zero these modes in order to get incompressible non-relativistic Navier-Stokes fluid on the horizon.

This uniquely determines these transport coefficients. Furthermore, to guarantee that the final

solutions for δ4 and δ7 still satisfy the bound one has to adjust properly the integration constant in

δ2(r). The same form of δ2(r) leads to δ5 and δ6 that also satisfy the bound of table 2, but we cannot

determine these functions unambiguously. This might be done at higher orders. Finally, all δ’s

automatically vanish on the boundary in accordance with the boundary fluid conformal symmetry.

transport coefficients and auxiliary variables that parametrize the flow of the hydrody-

namic variables. The RG flow is genuinely a system of first order differential equations,

meaning we do not require to impose any boundary condition even implicitly at the cut-off

hypersurface, which represents the scale where all physical variables are evaluated. The

RG flow is uniquely determined by requiring that the fluid on the infra-red holographic

screen, which coincides with the late-time horizon, follows incompressible Navier-Stokes

equations with precise forcing terms. The bulk metric, which can be reconstructed from

the explicit solution of the RG flow, should have a regular future horizon, order by order

in the derivative expansion.

The main lesson we can learn from our results is that the fluid/gravity limit probably

gives a unique definition of holographic RG flow which corresponds to an explicit emergence

of space-time. Interpreting this holographic RG flow in terms of field theory is beyond

the scope of the present work, however the RG flow, from the point of view of gravity,

is defined uniquely up to trivial scale reparametrizations, i.e. redefinition of the radial

coordinate as a function of itself. We have seen explicitly that we need to choose Fefferman-

Graham foliation of spacetime to be able to construct the RG flow without knowing the

bulk metric explicitly, indeed our arguments presented here can be readily generalized.

We have also argued that the form of the renormalized energy-momentum tensor which
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do not require any implicit boundary condition at the cut-off hypersurface, is fixed up

to numerical constants in the counter-terms. We will soon say more about this. It can

also be expected that quite generally the physical matter on the infra-red screen, where the

Fefferman-Graham foliation terminates, should follow forced incompressible Navier-Stokes’

equations, and this should determine the RG flow uniquely.

We conjecture that holographic RG in the fluid/gravity limit should be sufficient to

determine all numerical constants in the counter-terms which renormalise the hypersurface

energy-momentum tensor. Clearly, if this is true, the fluid/gravity limit indeed deter-

mines holographic RG completely, because the renormalization by our arguments should

be valid universally, i.e. for all states in the universal sector of the conformal field theory

holographically described by Einstein’s equations.

Our conjecture is based on the simple observation that adjusting properly only two

integration constants (coming from η and γ2) we were able to set to zero four divergent

terms in the source of the γ3 differential equation (see the discussion following (7.10)).

Similarly, the correct choice of δ2 insured that the other δ’s satisfied the bound imposed

by the non-relativistic incompressible Navier-Stokes limit as given in table 2. With a

different numerical coefficient of the second order counter-term (i.e. the Einstein tensor)

these cancellations would not have happened. This coefficient was also necessary to cancel

ultraviolet divergence, hence at the second order we could not have chosen the numerical

coefficient in any other way. At higher orders in derivatives, however, most of the counter-

term coefficients will not be fixed by the UV finiteness (see section 4.3). We believe that

in this situation the horizon limit itself should be sufficient to determine these coefficients.

We would like to test our conjecture by studying holographic RG flow of the per-

fect fluid energy-momentum tensor which describes a wide class of stationary black

holes [63, 64]. It turns out that the boundary fluid which describes these exact black

hole solutions has a non-trivial vorticity, therefore there will be corrections to infinite or-

ders in the derivative expansion. However, for these special solutions it is possible to re-sum

these infinite corrections. We would like to do a RG flow analysis of these solutions using

the methodology of this paper. This would allow us to explicitly see if (i) we indeed have

a perfect fluid at the horizon in the scaling limit even after considering the corrections to

all orders in derivatives,21 and (ii) whether all the counterterm coefficients also get deter-

mined from restrictions on the near-horizon forms of the transport coefficients imposed by

the horizon limit.

In another line of development, we should extend our construction of holographic RG

flow in hydrodynamic limit by including bulk vector fields, scalars and fermions. Holo-

graphic duals of charged superfluid hydrodynamics can be reproduces by coupling gravity

to charged scalars and gauge fields [65, 66]. Similarly holographic duals of supersymmetric

versions of hydrodynamics have also been considered in the literature by coupling fermions

to gravity [67–69]. We should consider the holographic RG flow of superfluid charged hy-

drodynamics in such cases, including the role of goldstinos. We should thus investigate

21note that in absence of dissipation the shear is zero, therefore Navier-Stokes equations become just

Euler equations.
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whether the fluid/gravity limit uniquely determines the construction of holographic RG

flow for general classical theories of gravity.

Furthermore, we can also investigate the holographic RG flow along similar lines away

from the hydrodynamic limit. We can expect that holographic RG flow will lead us to

new understanding of quasi-normal modes and their non-linear dynamics. In order to

do this, we need phenomenological parametrization of the energy-momentum tensor away

from the hydrodynamic limit and also generalization of phenomenological equations which

include dynamics of non-hydrodynamic variables. The holographic RG flow of the general-

ized phenomenological coefficients and all physical variables, including non-hydrodynamic

ones, should lead to reconstruction of spacetime. It has been shown earlier that such phe-

nomenological equations can indeed be constructed and in certain situations can even be

derived from Einstein’s gravity systematically [70–72]. However the calculation of non-

hydrodynamic phenomenological coefficients and in fact the phenomenological equations

themselves are very complicated.22 It could be expected that as infra-red dynamics is

simple, in fact purely hydrodynamic, the holographic RG flow should lead us to extrapo-

late a simpler structure of the generalized phenomenological equations. This will require

us to generalize our Ansatz for the RG flow as given in section 3 incorporating the non-

hydrodynamic degrees of freedom.

It will also be interesting to consider the holographic RG flow of fluids in non-relativistic

versions of holography. In the non-relativistic limit, sometimes there is an enlarged sym-

metry group [73–75] which can be realized covariantly [74], meaning that the equations

of fluid mechanics transform covariantly under such transformations. It may be expected

that holographic RG will give us new insights about role of symmetries in the dynamics

particularly at long times, as these should be related to possible nature of the horizons in

the related classical gravity theories. In particular, as the holographic RG flow reconstructs

the metric from RG flow of the fluid, if we can understand how the RG flow preserves the

symmetries of the fluid, we would be able to understand the properties of the dual bulk

spacetimes in the non-relativistic limit better.

Finally, we should extend our methods to construct the holographic RG flow of cor-

relation functions, i.e. the holographic analogue of Callan-Symanzik equations of quantum

field theory. Since our method applies in very general geometries, we should be able to

construct the RG flow of correlation functions not only in equilibrium but also in non-

equilibrium situations. Recently, holographic prescriptions have been developed for calcu-

lating non-equilibrium two-point Schwinger-Keldysh propagators [76, 77]. In the context

of holographic RG flow, understanding of the right behaviour of the correlation functions

at the horizon should be enough to reproduce the results for the boundary correlators ob-

tained via these prescriptions. Furthermore, we should be able to independently verify our

results for holographic RG flow of transport coefficients which could also be obtained from

thermal multi-point correlation functions of the energy-momentum tensor.

22The complexity comes from the fact that we need to re-sum all local time derivatives in the amplitude

expansion (where the expansion parameter is the ratio of non-hydrodynamic shear stress to the local

pressure), because the non-hydrodynamic variables vary slowly in space but decay fast in time close to

thermal equilibrium.
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The above realization may open a door to new understanding of fully developed tur-

bulence via holographic RG flow.23 In particular, the structure functions of turbulence

are limits of multi-point non-equilibrium correlation functions of the velocity fields. The

late-time behaviour of these structure functions should be governed by horizon dynamics

in the holographic set-up. Furthermore, as the infra-red dynamics in the holographic RG

flow is forced incompressible Navier-Stokes equations, we can expect that the structure

functions in the holographic infra-red screen, should be the same as in realistic turbulence

at very late times. Thus it might be possible to derive the anomalous scaling of structure

functions of fully developed turbulence using holographic RG flow. At a more modest level,

holographic RG flow can give insights into the mechanism of energy cascade in turbulence.
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A Various identities

The following identities do not rely on the zero order equations of motion and are valid at

any number of dimensions:

∇µuν = σµ
ν + ωµ

ν +
∇ · u
d− 1

∆µ
ν − uµDuν .

Contracting the free indices we get (here σ2 = σµ
νσν

µ and ω2 = ωµ
νων

µ):
24

∇µuν∇νuµ = σ2 + ω2 +
(∇ · u)2
d− 1

(A.1)

∇µuν∇µu
ν = σ2 − ω2 +

(∇ · u)2
d− 1

−DuµDuµ .

Using

[∇α,∇β ]uγ = uδRδγβα (A.2)

we find (2.12).

Let us also write down tensor equations that follow from (A.1) and (A.2):

〈∇µuτ∇τuν〉 =
〈
σµ

τσ
τ
ν

〉
+
〈
ωµ

τω
τ
ν

〉
+

2

d− 1
(∇ · u)σµ

ν

〈∇µuτ∇νuτ 〉 =
〈
σµ

τσ
τ
ν

〉
−
〈
ωµ

τω
τ
ν

〉
− 2

〈
σµ

τω
τ
ν

〉
+

2

d− 1
(∇ · u)σµ

ν (A.3)

23For similar views see [78].
24See the remark following (2.11).
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〈∇τuµ∇τuν〉 =
〈
σµ

τσ
τ
ν

〉
−
〈
ωµ

τω
τ
ν

〉
+ 2

〈
σµ

τω
τ
ν

〉
+

2

d− 1
(∇ · u)σµ

ν − 〈DuµDuν〉

D 〈∇µuν〉 = uαR
〈µ β

α ν〉 uβ −
〈
σµ

τσ
τ
ν

〉
−
〈
ωµ

τω
τ
ν

〉
− 2

d− 1
(∇ · u)σµ

ν + 〈∇⊥
µDuν〉 .

The last equation can be used to find 〈Dσµ
ν〉:25

〈
Dσµ

ν

〉
=
〈
uαR µ β

α ν uβ

〉
−
〈
σµ

τσ
τ
ν

〉
−
〈
ωµ

τω
τ
ν

〉

− 2

d− 1
(∇ · u)σµ

ν + 〈∇⊥
µDuν〉+ 〈DuµDuν〉 . (A.4)

B Hydrodynamic scalar mixing

At the second order in space-time derivatives we have seven scalars listed in (2.11). The r-

derivatives of these scalars satisfy the following identities (dropping the third order terms):

r1−dS ′
1 = − ǫ

d− 1
S1 − (P + ǫ)S2

r1−dS ′
2 =

1

2

(
P +

d− 3

d− 1
ǫ

)
S2 −

1

2
(P + ǫ)

(
d− 2

d− 1

(
S4 +

(
c2s + 1

)
S5

)
+ S6 − 3S7

)

r1−dS ′
3 = − ǫ

d− 1
S3

r1−dS ′
4 = −1

2

(
P +

d+ 1

d− 1
ǫ

)
S4 − (P + ǫ)

(
c2s
2

+
1

d− 1

)
S5

r1−dS ′
5 = −

(
P +

d

d+ 1
ǫ

)
S5

r1−dS ′
6 =

(
P +

d− 2

d− 1
ǫ

)
S6

r1−dS ′
7 = −

(
P +

d

d− 1
ǫ

)
S7 (B.1)

To derive these equations we followed the steps outlined in the main text together with

various identities from appendix A.

C Hydrodynamic tensor mixing

We also have eight tensors listed in (2.14). Following the rules described above and the

identities of appendix A we obtain the following r-derivatives of the transport coefficients

(for convenience we omit here the tensor indices in Tiµν):

r1−d

P + ǫ
T ′
1 = − ǫ

P + ǫ
· T1
d− 1

+ T2 −
1

2

(
c2s +

3

d− 1

)
T3 −

1

2

(
c2s −

1

d− 1

)
T4

+
1

2

(
2c4s −

∂c2s
∂ ln s

− (c2s + 1)

(
c2s −

1

d− 1

))
T5 − T6 + T7 − 2T8

25Notice that by definition σµ
ν =

〈

σµ
ν

〉

but Dσµ
ν 6=

〈

Dσµ
ν

〉

.
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r1−d

P + ǫ
T ′
2 =

P + d−2
d−1ǫ

P + ǫ
· T2 −

1

2

(
c2s +

d

d− 1

)
T3 −

1

2

(
c2s −

d− 2

d− 1

)
T4

+
1

2

(
2c4s −

∂c2s
∂ ln s

− (c2s + 1)

(
c2s −

d− 2

d− 1

))
T5 − 2T7 − 2T8

r1−dT ′
3 =

1

2

(
P +

d− 3

d− 1
ǫ

)
T3

r1−dT ′
4 = −1

2

(
P +

d+ 1

d− 1
ǫ

)
T4 −

1

2

(
c2s +

d+ 1

d− 1

)
(P + ǫ) T5

r1−dT ′
5 = −

(
P +

d− 2

d− 1
ǫ

)
T5

r1−dT ′
6 =

(
P +

d− 2

d− 1
ǫ

)
T6

r1−dT ′
7 = −

(
P +

d

d− 1
ǫ

)
T7

r1−dT ′
8 = − ǫ

d− 1
· T8 (C.1)

Apart from the derivative of the second order tensor transport coefficients we have to

consider the contribution of the shear viscosity term. We must calculate σµ
ν
′
including

second order terms:

r1−d

η
σµ

ν
′ =

1

2

(
P +

d− 2

d− 1
ǫ

)
σµ

ν

η
− T2µν +

(
2

d− 1
+

1

η

∂η

∂ ln s

)
T3µν + c2sT4µν (C.2)

+

(
−c4s +

∂c2s
∂ ln s

)
T5µν + T6µν + T7µν + 2T8µν .

The term ∂η/∂ ln s can be computed using:

∂η

∂ ln s
=

∂η

∂rH

(
∂ ln s

∂rH

)−1

= η , (C.3)

where the last identity follows from (7.2) and (5.23). It is consistent with the fact that η/s

is constant along the RG flow as in (7.3).
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