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1 Introduction

There has been good progress in the last twenty years in formulating and computing the

quantum entropy of supersymmetric black holes. This is a notion that extends the semi-

classical Bekenstein-Hawking entropy, which is valid in the thermodynamic limit when the

black hole size is infinite, to a quantity that is defined when the curvatures and coupling

constants cannot be ignored. Starting from the work of [1], developments in this direction

have led to the formulation of the quantum black hole entropy as a functional integral over

all the fields of the gravitational theory in the Euclidean near-horizon AdS2 region of the

black hole [2]. In this formulation, the corrections to the Bekenstein-Hawking formula are

split into two types of effects. The first type consists of corrections that can be encoded

in the effective action as the inclusion of local higher-dimension operators — these can

be recovered as a saddle point approximation to the functional integral. The second type

consists of quantum corrections that arise from loop effects around the AdS2 background.
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The leading logarithmic one-loop quantum corrections to the semiclassical entropy

has been computed in a variety of situations (see [3] for a summary). In situations with

supersymmetry one can go further and try to compute the full functional integral, using the

technique of localization, to obtain the exact quantum entropy [4–6]. There are, of course,

many subtleties and difficulties in applying localization to supergravity, but the basic ideas

seem to be in good enough shape by now to be applied to various situations. In particular,

we now understand how to formulate a notion of a rigid off-shell Q which acts covariantly

on all the fields of the theory, using an adaptation of the background field method [7, 8].

One starts with a supersymmetric background to an off-shell supergravity theory — the

attractor black hole configuration in our situation — with one choice of Killing spinor, and

the problem then reduces to finding all configurations of the supergravity theory which

admit some Killing spinor that asymptote to the attractor background in a manner that the

Killing spinor asymptotes to the chosen background Killing spinor. The off-shell nature of

the supersymmetry variations allows us to consider the problem separately in the Weyl and

matter multiplets of the theory. One lists the set of all supersymmetric matter fluctuations

around each supersymmetric Weyl multiplet configuration, and the localization manifold

consists of the combined space of solutions.

Most of the progress in applying these ideas to exact quantum black hole entropy has

been in the context of supersymmetric black holes in N = 2 supergravity theories in four-

dimensional asymptotically flat space [9–13], leading up to a gravitational derivation of the

OSV conjecture [14] in its sharpened form [15]. It is natural to ask if this progress can be

extended to supersymmetric black holes in higher dimensions. In this paper we study this

problem for a class of spinning black holes in five-dimensional asymptotically flat space,

namely the BMPV black holes [16]. These 5d black holes are intimately related to the 4d

black holes mentioned above via the 4d/5d connection [17]. Indeed, embedding the BMPV

black holes in M-theory compactified on a Calabi-Yau 3-fold and placing this configuration

on the tip of a Taub-NUT space brings us to a 4d black hole solution in Type IIA string

theory on the same Calabi-Yau. The spin of the 5d black hole become angular momentum

around the Taub-NUT space which is seen as a gauge charge by the 4d black hole.

In the context of the current paper we regard the 5d supersymmetric spinning BMPV

black holes as solutions to 5d off-shell N = 2 supergravity coupled to nv + 1 vector multi-

plets [18–21]. In the near-horizon attractor region, the metric is fixed to AdS2 × S2
⋉ S1,

where the S1 is fibered over the AdS2 as well as the S2, and the vector fields are fixed to

have constant electric field strengths [22]. In this paper we perform a complete analysis

of the localization manifold in the vector multiplet sector with attractor boundary condi-

tions. We also begin an analysis of the general solution in the Weyl multiplet sector, but

we postpone an exhaustive analysis to future work.1

1We follow this strategy partly because the analysis in the Weyl multiplet sector is technically quite

intricate, and partly because a similar strategy in 4d led to rapid progress in understanding the quantum

entropy [4]. In the 4d situation, it was then shown rigorously that essentially the only BPS solution in

the Weyl multiplet sector with the attractor boundary conditions is the (fully supersymmetric) attractor

solution itself [9].
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The problem of finding the localization manifold in the vector multiplet sector has

been addressed previously in [23] making heavy use of the off-shell 4d/5d connection [24].

The off-shell 4d/5d connection spells out a precise relation between solutions of off-shell

BPS equations in 5d with their 4d counterparts. The basic statement is that of a consistent

truncation of the off-shell BPS equations: off-shell BPS configurations in 4d lift to off-shell

BPS configurations in 5d. In the black hole context, the complete set of solutions in 4d has

been solved in [4, 9], and the solution set consists of a one-parameter family in each vector

multiplet, thus yielding a (real) (nv + 1)-dimensional manifold. Integrating the action of

this manifold then leads to an OSV-type integral formula for the quantum entropy. Putting

together the 4d/5d black hole connection [17] with the off-shell 4d/5d connection, the work

of [23] showed that the above 4d solutions can be lifted to 5d solutions around the black

hole attractor. More precisely, the analysis of [23] showed that if we switched off some of

the auxiliary fields in the 5d vector multiplet, the remaining fluctuations are constrained

by a set of equations similar to the contact instanton equations arising in [25].

The obvious question that arises is whether there are any other new solutions to

the BPS equations. Firstly, there could be non-trivial smooth solutions to the contact-

instanton-like equations. Secondly, there may be more solutions to the localization equa-

tions (potentially an infinite number) if we switch on all the auxiliary fields. More solutions

to the localization equations would imply that the localization approach to quantum en-

tropy of 5d black holes is much more complicated than the corresponding 4d story. While

this conclusion is a technical possibility — after all, the equations of 5d localization are

more complicated because they involve a fifth direction in which all the fields fluctuate —

it seems a bit at odds with the fact that the near-horizon configurations of the 4d and 5d

black holes are very closely related by the 4d/5d lift. It also seems to be at odds with

the fact that the microscopic ensembles, as well as the expressions for the microscopic

degeneracies, are almost the same [26–28].

These considerations led us to revisit this problem of finding the localization manifold

in the vector multiplet sector for 5d black holes including all the 5d fluctuations of all the

auxiliary fields in the theory. The approach we take is to directly analyze the 5d off-shell

BPS equations instead of going through the 4d/5d lift. We find that the solution manifold

depends strongly on the Euclidean continuation that is used. We explore different choices

that could each be termed natural from certain points of view. We find that one choice

(that we call A1) leads to a finite-dimensional manifold which is precisely the lift of the

4d localization manifold found in [4, 9] with no extra solutions.2 This choice is precisely

the one that reduces to the analytic continuation of the 4d theory used in [4, 9]. We also

present the results for other choices of analytic continuation (called A2, B, C), including

one which preserves 5d covariance, partly because these solutions could be relevant for

some other physical problem.

While our main results concern the vector multiplet localization locus for the black hole

quantum entropy problem, we also begin a treatment of the Weyl mutliplet for arbitrary

2We emphasize that smoothness of the solutions is an essential criterion in reaching this conclusion. This

leaves open the possibility of instanton-like (or orbifold) solutions, which are known to play an important

role [6, 29, 30].
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backgrounds. We use the method of fermion bilinears [31–33] to reduce the off-shell problem

to a system of coupled PDEs among bosonic quantities, and find the most general (local)

solution. We do this both in the Weyl and vector multiplets. The next step, which is to

impose the attractor boundary conditions and perform a careful Euclidean continuation,3

can be considerably difficult in the Weyl multiplet because of the mixing of many fields

of varying spins (see e.g. [9]). We postpone the full analysis of this interesting problem to

future work.

The plan of the paper is as follows. In section 2 we review the formalism of 5d

N = 2 off-shell supergravity, the supersymmetric spinning black hole solutions, and the

off-shell 4d/5d connection. In section 3 we review the method of fermion bilinears and

present the most general local solution in the Weyl multiplet sector. In section 4 we find

the most general local solution in the vector multiplet sector. We then apply boundary

conditions and discuss different Euclidean continuations and find the most general solution

with attractor boundary conditions. In section 5 we discuss how our results fit into the

quantum entropy program in string theory as well as the future directions to be attacked.

In two appendices we summarize our conventions and present the Killing spinors used in

the main text.

2 5d N = 2 supergravity and spinning black holes

In this section we briefly review some relevant aspects of N = 2 off-shell supergravity

coupled to vector multiplets in 5 dimensions, following the construction based on the su-

perconformal formalism [18–22]. We then review the spinning supersymmetric black hole

solutions in this theory. Finally we briefly review the off-shell 4d/5d connection of [24].

2.1 Off-shell 5d N = 2 supergravity coupled to vector multiplets

In five space time dimensions the independent fields in the Weyl multiplet are

W = (eAM , ψi
M , bM , VMi

j ;TAB, χ
i, D) . (2.1)

Here the indices {A,B}, {M,N}, and {i, j} are five dimensional flat space, curved space,

and SU(2)R indices, respectively. The fields are the fünfbein eAM , the gravitini ψi
M , dilata-

tion gauge field bM , SU(2)R gauge fields VMi
j , as well as the auxiliary fields which are

the anti-symmetric tensor TAB, the spinor χi, and the scalar D. In addition the Weyl

multiplet also includes the fields ωM
AB, fM

A, φM
i, which are gauge fields corresponding

to Lorentz transformations, special conformal transformations, and special supersymme-

try transformations, respectively. These fields are determined in terms of the independent

fields of the multiplet (2.1) through conventional constraints, and are termed composite.

3A Euclidean continuation is required because our eventual goal is to compute functional integrals.

Ideally we should begin with a Euclidean formulation of our theory, but unfortunately we do not know of

a suitable Euclidean supergravity formulation. In the 4d case a similar route was followed at first in [4, 5],

and a Euclidean formalism was later developed in [34], which confirmed the solutions found by Euclidean

continuation.
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The supersymmetry variation of the gravitini is given by

δψi
M = 2DM ǫi +

i

2
TAB(3γ

ABγM − γMγAB)ǫi − iγMηi , (2.2)

where ǫi and ηi parameterize the supersymmetry (Q) and conformal supersymmetry (S)

respectively. The operator DM is the covariant derivative with respect to all supercon-

formal transformations except the special conformal transformations, and it acts on the

supersymmetry parameter as

DM ǫi =

(
∂M − 1

4
ωM

ABγAB +
1

2
bM

)
ǫi +

1

2
VMj

iǫj . (2.3)

The five-dimensional vector multiplet is

V = (σ,Ωi,WM , Y ij) . (2.4)

The components of this multiplet are the gauge field WM , the real scalar σ, the gaugini Ωi,

which is a doublet under SU(2)R, and auxiliary field Y ij which is a triplet under SU(2)R.

The supersymmetry variation of the gaugini is

δΩi = −1

2
(F̂AB − 4σTAB)γ

ABǫi − i /Dσǫi − 2εjkY
ijǫk + σηi . (2.5)

The anticommutator of supersymmetry transformations close on to the algebra gener-

ated by the general coordinate transformations, Lorentz transformation and gauge trans-

formations.

The action of the Weyl multiplet coupled to nv vector multiplets is

8π2L = 3CIJKσI

[
1

2
Dµσ

JDµσK +
1

4
Fµν

JFµνK − Yij
JY ijK − 3σJFµν

KTµν

]

− i

8
CIJKe−1εµνρστW I

µFνρ
JFστ

K − C(σ)

[
1

8
R− 4D − 39

2
T 2

]
.

(2.6)

Here CIJK is the symmetric tensor of N = 2 supergravity, and the function C(σ) are

defined as

C(σ) = CIJKσIσJσK . (2.7)

2.2 Supersymmetric black holes in 5d

The action (2.6) admits charged, rotating black hole solutions. This action is essentially

an Einstein-Maxwell theory, with an additional Chern Simons interaction for the gauge

fields W ∧ F ∧ F , which has the same dimensions as the Maxwell terms. The presence

of the Chern Simons term does not affect static solutions, but it does affect stationary

solutions.

We consider asymptotically flat black holes characterized by mass M , charge Q and

two angular momenta J1 and J2. The existence of the horizon covering the singularity

requires that the mass and charge of the black hole satisfy the following inequality, for any

value of the angular momenta [35]

M ≥
√
3

2
|Q| . (2.8)
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When this inequality is saturated one linear combination JR of J1 and J2 vanishes, and

the black hole solution admits a Killing spinor. Thus, a 5d supersymmetric black hole is

characterized by the charge Q and one angular momentu JL [16, 36].

Supersymmetry implies that the near horizon geometry of such a supersymmetric black

hole (charged and rotating) is completely fixed by the charges of the black hole, which is

the statement of the attractor mechanism. This geometry consists of the product of AdS2
and S2 of equal radii, and a circle which is non trivially fibered over AdS2× S2. This metric

can be written as follows [22],

ds2 =
1

16v2

(
− r4dt2 + 4

dr2

r2
+ dθ2 + sin2 θ dφ2

)
+ e2g(dψ +B)2 , (2.9)

where ψ is the periodic coordinate of the circle and

B = − 1

4v2
e−g(T23r

2 dt− T01 cos θ dφ) . (2.10)

Here, g and the tensor field TAB are constants which determines the size of the circle and

its fibration over the base space, respectively. The value of T23 determines the angular

momentum of the black hole. The parameter v is a constant that determines the size

of AdS2× S2. Using the dilatation symmetry of N = 2 supergravity we set v = 1
4 . The

conditions for supersymmetry then constraint Tab to obey

(T01)
2 + (T23)

2 = v2 =
1

16
. (2.11)

For later convenience we will parametrize the background value of TAB as

T01 =
1

4
cosβ , T23 =

1

4
sinβ . (2.12)

In the case T23 = 0, the metric (2.9) reduces to that of the charged static black hole with

near-horizon geometry AdS2×S3, whereas in the case of T01 = 0 the metric reduces to that

of the black string with near-horizon geometry AdS3×S2. Arbitrary values of Tab corre-

spond to spinning black holes with near-horizon geometry AdS2×S2⋉S1, and interpolates

between these two limits.

The entropy of this black hole is given by the area of the 3-dimensional compact space

at r = 0 [22],

SBH = 4πeg. (2.13)

For the vector multiplet fields the near horizon supersymmetry requires that the value of

the scalar field is constant i.e.,

σI = σI
∗ , I = 1, . . . , nv , (2.14)

with the constants σI
∗ are determined in terms of the charges using the fact that the gauge

field strength is given in terms of Tab as

F I
tr = 4σI

∗ T01 , F I
θφ = 4σI

∗ T23 sin θ . (2.15)

The near horizon field configurations given by the metric (2.9) and scalar fields (2.15)

preserves 8 real supercharges. The explicit form of the Killing spinors in the Euclidean

version of this theory is given in appendix B.
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2.3 Off-shell 4d/5d connection

It is well known that upon dimensional reduction from 5d to 4d, the equations of motions of

the 5d theory reduce to the equations of motion of the 4d theory. A slightly less known fact

is that a similar statement is also true for the off-shell dimensional reduction: off-shell BPS

equations in 5d reduce to off-shell BPS equations in 4d [24]. Therefore BPS configurations

in 4d can be lifted to BPS configurations in 5d, and conversely, 5d BPS configurations

which are independent of the fifth direction reduce to 4d BPS configurations.

In our context, the conformal 5d supergravity coupled to nv vector multiplets that was

discussed above reduces to the off-shell conformal 4d supergravity coupled to nv+1 number

of vector multiplets discussed in [37]. Upon dimension reduction the 5d Weyl multiplet

reduces to the Weyl multiplet and a Kaluza Klein vector multiplet in 4d, a 5d vector

multiplet reduces to a 4d vector multiplet. In particular, taking the standard Kaluza-Klein

ansatz for dimensional reduction along a circle, the 5d and 4d vielbeins are related as

eM
A =

(
eµ

a Bµ φ
−1

0 φ−1

)
, eA

M =

(
ea

µ −ea
νBν

0 φ

)
. (2.16)

Here {a, b, · · · } and {µ, ν, · · · } are 4 dimensional flat-space and curved-space indices, re-

spectively. In the above ansatz, Bµ represents a non trivial fibration of the circle with the

size φ−1 over the 4d base space. The auxiliary T field reduces as follows,

TAB =

(
Tab

−1
6Aa

)
. (2.17)

In the dimension reduction of a vector multiplet, the 5d vector field reduces to a 4d

vector field and a real scalar. The extra scalar combines with the scalar of the 5d vector

multiplet to yield the complex scalar of the 4d vector multiplet. More explicitly, the 4d

vector multiplet fields, (X,λi, Aµ, y
ij), in terms of 5d vector multiplet fields are given by,

with W ≡ W5,

XI = −1

2
i(σI + iφW I)e−iϕ, AI

µ = W I
µ , I = 1, . . . , nv . (2.18)

The I = 0 vector multiplet is built out of fields of the Weyl multiplet as follows,

X0 = −1

2
φ e−iϕ , A0

µ = Bµ . (2.19)

Here ϕ is a scalar field which transforms inhomogeneously under 4 dimensions chiral U(1)

gauge transformation for which the gauge field is Aµ. This field is introduced so that

the 4d fields have right chiral charges. Comparing these results with the usual on-shell

dimensional reduction we have the on-shell relation

XI =
1

2
(σI + iφW I) =⇒ ϕ = −π/2 . (2.20)

The 5d supersymmetry transformation upon dimension reduction reduces to a lin-

ear combination of 4d supersymmetry transformation, S-supersymmetry transformation,

SU(2)-R symmetry transformation, and chiral U(1) transformation. as

δQ(ǫ)|reduced5D Φ = δQ(ǫ)|4DΦ+ δS(η̃)|4DΦ+ δSU(2)(Λ̃)|4DΦ+ δU(1)(Λ̃
0)|4DΦ , (2.21)

– 7 –
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where the parameters η̃, Λ̃, Λ̃0 are non-linear combinations of the various supergravity

fields [24]. The equation (2.21) relates supersymmetric configurations in 5d to supersym-

metric configurations in 4d. In bosonic backgrounds, we see that the parameters Λ̃ and Λ̃0

vanish, and thus the δQ variation in 5d reduces to a combination of δQ and δS in 4d. Upon

demanding the left-hand side of (2.21) vanishes on the 5d gravitino field Φ, we obtain, from

the the right-hand side, precisely the condition for vanishing of the 4d gravitino, as well as

a condition on the KK vector multiplet.

In our case of interest discussed in section 2.2, the 5d spinning supersymmetric black

hole reduces precisely to the 4d supersymmetric black hole with electric and magnetic flux

in the KK multiplet. The electric flux is proportional to the angular momentum in 5d,

while the magnetic flux is the Taub-NUT charge in 5d. The 5d black hole sits at the

center of the Taub-NUT space. This is simply a restatement, in the off-shell theory, of the

4d/5d connection [17]. The advantage of the off-shell formalism is that we can also analyze

the off-shell fluctuations relevant for localization. For vector multiplet fluctuations around

the black hole background, we can check that the parameter η̃ also vanishes, and the δQ
variations in 5d map to the δQ variations in 4d. For Weyl multiplet fluctuations, this is not

the case and the 5d to 4d reduction necessarily involves the conformal Killing spinor η̃.

However, an important caveat to all these considerations is that these off-shell 5d/4d

reductions of [24] are written in Lorentzian space. For the purpose of localization calcu-

lations of the functional integral, we are interested in Euclidean configurations, for which

there may be subtleties in the choice of analytic continuation. For this reason we choose

a different route and directly analyze the 5d supersymmetry vanishing conditions and ex-

plore the choices of Euclidean continuation. As we will see in the following sections, these

subtleties indeed play an important role.

3 Off-shell Weyl multiplet analysis

In this section we analyze the off-shell BPS equations in the Weyl multiplet sector described

in section 2.1. We perform our analysis using the spinor bilinear method which yields

a set of coupled first order differential equations for bosonic quantities. We follow the

references [31–33, 38, 39]. We then present the most general solution to these equations

with some of the auxiliary fields set to zero.

The idea of the spinor bilinear method to find all supersymmetric solutions of a given

system is as follows. We obtain supersymmetric solutions by setting the supersymmetry

variations of all the fields to zero. Assuming that there are no fermionic backgrounds,

we have to set all fermion variations to zero, which leads to matrix equations in spinorial

variables. Instead of working with these matrix equations, one begins by assuming the

existence of a Killing spinor and forms various bilinears of this spinor. The original BPS

equations then lead to a set of coupled first order equations for these bosonic quantities.

These quantities are then interpreted as describing the bosonic background in which one

is interested. For example, one finds that the vector bilinear obeys the Killing vector

equation, and we interpret this to mean that the background must have a Killing vector.

– 8 –
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Carrying on in this manner one finds other constraints on the bosonic fields, which we then

put together to construct the solution space.

This method has been applied successfully to classify all supersymmetric solutions of

various systems. Two references that we follow closely in terms of conventions are the

classification of on-shell BPS solutions of 5d N = 2 supergravity [40], and the classification

of off-shell BPS solutions of 4d N = 2 supergravity [9]. From now on we will consider Eu-

clidean configurations. In appendix A we present the conventions that we use for Euclidean

spinors and gamma matrices.

3.1 Killing spinor and its bilinears

Upon setting the gravitini variations in (2.2) to zero, we obtain the BPS equations:

2DM ǫi +
i

2
TAB

(
3γABγM − γMγAB

)
ǫi − iγM ηi = 0 (3.1)

for the Killing spinor ǫi and a similar one for its conjugate ǫi. In our analysis below

we set the dilatation gauge field bM , the SU(2)R gauge field VMj
i, and the conformal

supersymmetry parameter ηi to zero. We make these assumptions in order to simplify the

problem, and they need to be revisited in order to have a complete analysis. With these

assumptions the Killing spinor equations take the following form,

∇M ǫi = − i

4
TAB

(
3γABγM − γMγAB

)
ǫi ,

∇M ǫi = +
i

4
TAB ǫi

(
3γMγAB − γABγM

)
.

(3.2)

Here ∇M is the covariant derivative DM with the above simplifications, and takes the form

∇M ǫi =

(
∂M − 1

4
ωM

ABγAB

)
ǫi . (3.3)

Now we start building the spinor bilinears. The products of spinor bilinears in 5

dimensions obey the following conditions [40]

ǫ γM1...Mn η = −η γMn...M1 ǫ . (3.4)

In particular, this implies that the product of two Killing spinors, ǫiǫj , is antisymmetric in

the symplectic indices, i, j, and therefore the only non-trivial scalar bilinear is

f :=
1

2
εij ǫ

i ǫj . (3.5)

One can check using the reality properties of the spinors that f is a real scalar.

Using the BPS equations (3.2) for the Killing spinor and its conjugate, we see that

∇Af =
i

8
εij ǫ

i TBC
(
3γAγBC − γBCγA − 3γBCγA + γAγBC

)
ǫj ,

=
i

2
εijǫ

iT bc [γa, γbc] ǫ
j ,

= 2i TBCεij ǫ
i δA[BγC]ǫ

j ,

(3.6)

– 9 –
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where, in going to the second line we have used the gamma matrix identity (A.2). Now

using the antisymmetry of T , we can rewrite this as

df = −4i ιKT. (3.7)

where KB = 1
2εijǫ

iγBǫj , and ιV is the interior derivative along V . Similarly we construct

the vector bilinears ǫiγAǫj . Like above, using equation (3.4), we see that this is anti-

symmetric in i, j, and therefore the vector K defined above is the only non-trivial vector

bilinear. Using the reality properties of the spinors described in appendix A, we see that

this is a real vector.

Using the BPS equations, we compute the covariant derivative of K,

∇AKB =
1

2
εij

(
∇Aǫ

i
)
γBǫ

j + εijǫ
iγA

(
∇Bǫ

j
)

= i ⋆ TABCK
C + 4ifTAB .

(3.8)

Since the right hand side of the above equation is antisymmetric in A,B, we see that K is

a Killing vector,

∇AKB +∇BKA = 0 , (3.9)

and that the exterior derivative of the Killing vector K is

dK = 4iιK ⋆ T + 8iTf . (3.10)

We now construct two form bilinears Aij
AB ≡ ǫiγABǫ

j . Using equation (3.4), we see

that these are symmetric in i, j. The two forms A11 and A22 are complex conjugates and

A12 is purely imaginary. We can describe these complex two forms by the three real two

forms Xi, i = 1, 2, 3, given by

A11 = X1 + iX2 , A22 = X1 − iX2 , A12 = −iX3 . (3.11)

Using the Killing spinor equation, the covariant derivative of these two forms can be ex-

pressed as

∇CAij
AB =

i

4
ǫiTDE

(
3γCγDEγAB − γDEγ

CγAB − 3γABγDEγ
C + γABγ

CγDE

)
ǫj ,

=
i

4
ǫi
(
8TCD

{
γD, γAB

}
+ 2TDE

[
γDEC , γAB

])
ǫj .

(3.12)

Denoting C = ⋆A and using gamma matrix identities, we can simplify this to

∇CAij
AB = 4iTCDCij

DAB+2iTA
eCij

ECB+2iTB
eCij

EAC+iTDE
(
Cij
DEBδAC−Cij

DEAδBC

)
.

(3.13)

One can check that ∇[CAAB] = 0 so that A is closed, i.e. dA = 0. Similarly, the covariant

derivative of C is

∇DCij
ABC = 24iTD

[AA
ij
BC] + 18iTEF δ

[ED
[ABA

ijF ]
C] . (3.14)

Noting that ∇[DC
ij
ABC] = 18iT[DAABC], we get

d ⋆ A = 18iT ∧A . (3.15)
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Type Definition Derivative

Scalar f = εijǫ
iǫj df = −4iιKT

Vector KA = εijǫ
iγAǫj ∇(AKB) = 0,

dK = 2iιK ⋆ T + 8iTf.

Two Forms Aij
AB = ǫiγABǫ

j dA = 0,

d ⋆ A = 18iT ∧A.

Table 1. Summary of the differential relations between Killing Spinor Bilinears.

To summarize, we have a real scalar f , a Killing vector K, and the closed two-forms Aij

that obey the differential relations presented in table 1. In fact these fields are not all

algebraically independent. We can use the Fierz identities for the products of spinors to

get algebraic relations between them [40].

KAKA = f2 , (3.16)

Xi ∧Xj = −2δijf ⋆ K , (3.17)

ιKXi = 0 , (3.18)

ιK ⋆ Xi = −fXi , (3.19)

XT
i Xj = δij

(
f21−K.KT

)
+ fεijkX

k , (3.20)

KAγ
Aǫi = fǫi , (3.21)

Aij
ABγ

ABǫk = 8fεk(iǫj) . (3.22)

3.2 Resulting conditions on the Weyl multiplet fields

In the previous subsection, we saw that off-shell supersymmetric metrics in five dimensions

possess at least one Killing vector K. Since f is real, equation (3.16) implies that this

Killing vector is either timelike, if f2 > 0, or null, if f = 0. In this paper we will focus on

the timelike case which contains the supersymmetric spinning black holes. The null case

also appears as an extremal spinning limit of these solutions (which is in fact AdS3 × S2)

as shown in [40], and we leave the analysis of this for future work.

Following the method outlined in [40], we define a coordinate τ byK = ∂τ , so that f
2 =

gττ . Expressing the remaining coordinates as xµ, µ = {1, 2, 3, 4}, the metric takes the

general form

ds2 = f2
(
dτ + ω

)2
+ f−1hµνdx

µdxν , (3.23)

where ω = ωµdx
µ is a one form with ωτ = 0, and f−1hµν is the projection of the full

metric perpendicular to the orbits of K. Furthermore, since K is the Killing vector, the

components of the metric are independent of the coordinate τ , i.e.

∂τf(x) = 0 , ∂τωµ(x) = 0 , ∂τhµν(x) = 0 . (3.24)

We view this as a fibration of the τ coordinate over the base-space xm. As we now explain,

the relations obtained in the previous subsection imply that the tensor T , and therefore
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the full field configuration, is determined in terms of the parameters f , ω, and hmn, and,

further, hmn is constrained to be hyper-Kähler. This is exactly as in the on-shell analysis,

with the auxiliary tensor T in the off-shell theory playing the role of the graviphoton field

strength F in the on-shell theory.

We begin by writing K = fe1, where e1 = f
(
dτ + ω

)
. Its exterior derivative obeys

dK = d
(
fe1

)
= 2df ∧ e1 + f2dω . (3.25)

We denote the self-dual and anti-self-dual components of fdω with respect to the base

metric h by G+ and G−. Comparing the two expressions for the exterior derivative of K

in equations (3.25) and (3.10), we obtain

T +
1

2
f−1ιK ⋆ T = − i

8

(
−2f−2K ∧ df +G+ +G−

)
. (3.26)

We can now solve for T . It is useful to write the above equation in component form:

TAB +
1

4
ε1ABCDT

CD =
i

8

(
2f−2K[A∇B]f −G+

AB −G−
AB

)
. (3.27)

The mixed components between the base space and fibre, i.e. A = 1, B = b of equa-

tion (3.27) is

T1b =
i

8

(
2f−1∇bf −G+

1b −G−
1b

)
. (3.28)

The fact that fdω = G++G− lives on the base space implies that its projection G+
1b+G−

1b =

0, and therefore

T1b =
i

4
f−1∇bf. (3.29)

The A = a,B = b components of equation (3.27), using Ka = 0, is

Tab +
1

4
εabcd T

cd = − i

8

(
G+

ab +G−
ab

)
, (3.30)

where εabcd is the 4d Levi Civita tensor. Multiplying the above equation with εabcd, we

obtain its 4d Hodge dual. Putting these two together we obtain

Tab = − i

12

(
G+

ab + 3G−
ab

)
. (3.31)

Thus we have obtained all the components of T , which can be summarized as

T = − i

4
de1 +

i

6
G+ . (3.32)

We now look for conditions on the two forms and the spatial metric hmn. Equa-

tion (3.18) implies

KaXi
ab = fXi

1b = 0 , (3.33)

and therefore the only non-zero components of the two forms Xi are on the base space.

Now equation (3.19) implies that the two forms are anti-self dual on the base space, i.e.,

⋆4 X
i = −Xi. (3.34)
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If we consider the two forms to live on the space with hmn rather than f−1hmn, we must

shift them by Xi → −fXi, where the negative sign is added for convenience. The algebraic

relation given by equation (3.20) simplifies to

Xi
mpX

jpn = −δijδ
n
m + εijkX

k
m

n . (3.35)

This shows that the two forms satisfy a quaternionic algebra over the base space. The

fact that the two forms Xi are closed then implies that the metric hmn is integrable and

hyper-Kähler.

To summarize, we have shown that the most general solution for the metric is

ds2 = f2
(
dτ + ω

)2
+ f−1hmndx

mdxn , (3.36)

where ω = ωmdxm is a one form in the spatial direction, and h is a hyper-Kähler four

dimensional manifold. The coordinate τ is defined by the vector K ≡ 1
2εijǫ

iγǫj = ∂τ .

The scalar f ≡ 1
2εijǫ

iǫj satisfies f2 = KµKµ. As K is a Killing vector, f, ω and h are

independent of τ . The T field is given by

T = − i

4
de1 +

i

6
G+, (3.37)

where e1 = f
(
dτ +ω

)
and G± are the self dual and anti-self dual parts of fdω with respect

to the spatial metric.

In section 2.2 we have seen that the near-horizon configuration of rotating supersym-

metric black holes in 5d N = 2 supergravity are a maximally supersymmetric solution.

Therefore, in particular, it should belong to the set of general backgrounds described

by (3.36) and (3.37). We now proceed to verify this assertion. The near-horizon limit of

our rotating black holes is the AdS2 × S2
⋉ S1 metric (2.9). We analytically continue this

metric to Euclidean space by taking β → iα with real α, as in [23]. We will sometimes

refer to the parameter α as the rotation parameter of the black hole. We also set the

constant eg = coshα, so that the Euclidean metric is

ds2 = r4dτ2 + 4r−2dr2 + dψ2 + sin2 ψdφ2 +
(
coshα

(
dρ+ cosψdφ

)
− sinhαr2dτ

)2
. (3.38)

The auxiliary tensor T , given by (2.12), is now analytically continued by taking T01 → iT12,

so that we have

T12 = − i

4
coshα , T34 =

i

4
sinhα . (3.39)

This metric can be rewritten as

ds2 = r4 cosh2 α
(
dτ − r−2 tanhα

(
dρ+ cosψdφ

))2
+

1

r2 coshα
h , (3.40)

where

h = coshα
(
4dr2 + r2

(
dψ2 + sin2 ψdφ2 +

(
dρ+ cosψdφ

)2))
. (3.41)

Thus we can identify the near-horizon rotating black hole metric with (3.36) with

f = r2 coshα , ω = −r−2 tanhα
(
dρ+ cosψdφ

)
. (3.42)
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With these identifications, the self dual part of fdω with respect to the base-space metric h

is given by G+ = 3 sinhα
(
2e2 ∧ e5 + e3 ∧ e4

)
. Equation (3.37) then yields the value of T

for the metric given by (3.40)

T = − i

4
de1 +

i

6
G+ = − i

2
e1 ∧ e2 +

i

4
sinhαe3 ∧ e4 , (3.43)

where, as before, e1 = f
(
dτ + ω

)
. From a simple change of coordinates one sees that the

base space given by (3.41) is R4, exactly as in [40], which is hyper-Kähler.

The complete localization analysis involves finding all solutions in the Weyl multiplet

sector with boundary conditions set by the above fully supersymmetric near-horizon con-

figuration. As mentioned in the introduction this is a difficult problem that we postpone

to future work.4 In the following section we will fix the Weyl multiplet to be this near-

horizon black hole configuration, and calculate the most general supersymmetric off-shell

fluctuation of the vector multiplet around this background.

4 Off-shell vector multiplet analysis

In this section we classify the complete set of off-shell BPS solutions in the vector multiplet

sector. We begin with an algebraic analysis of the vector multiplet fluctuations around

a general background, and then apply this analysis to our case of interest, namely the

supersymmetric black hole solution discussed in section 2.2. We pay close attention to the

analytic continuation of the Euclidean fields and discuss different choices.

We analyze the BPS vector multiplet fluctuations around a given Weyl multiplet BPS

background with Killing spinor ǫi. We have to analyze the vanishing of the supersymmetry

variations of the gaugini given in equation (2.5). Putting the fermionic backgrounds to

vanish, we obtain

(
FAB − 4σTAB

)
γABǫ

i + 2i∂MσγM ǫi + 4εjkY
ijǫk = 0 , (4.1)

where FAB = 2∂[AWB]. We recall that we have set the superconformal transformation

parameter ηi to zero as discussed in the section (3.1). In section 2.2 we presented the

attractor near-horizon solution for the spinning black hole. The fluctuations of the fields

of a given vector multiplet are defined as an expansion around their attractor values (2.15)

FAB = FAB
∗ + fAB , σ = σ∗ +Σ . (4.2)

The attractor value for the auxiliary Y ij is zero, and we shall continue to denote its

fluctuation by the same name. Our task now is to find all solutions to equation (4.1) for

all vector multiplet field fluctuations with vanishing asymptotic values.

4The analogous problem in the on-shell theory with asymptotically flat boundary conditions has been

solved in [41]. It would be interesting if these methods can be generalized to the off-shell case.
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4.1 Algebraic analysis

We start with equation (4.1) that our chosen Killing spinor satisfies, and multiply it by the

conjugate Killing spinor. The equations now contain the spinor bilinears that we defined

in section 3, namely the scalar f , the Killing vector K, and the two-forms Aij . Multiplying

the BPS equation (4.1) for i = 1, 2, by the conjugate spinors ǫ2, ǫ1, respectively, we obtain

four equations involving these bilinears and the fluctuations of the bosonic fields. After

some rearrangement these four equations can be expressed as follows,

KM∂MΣ = 0 ,
(
fAB − 4ΣTAB

)
A12

AB + 4Y 12f = 0 ,
(
fAB − 4ΣTAB

)
X1

AB − 2
(
Y 11 + Y 22

)
f = 0 ,

(
fAB − 4ΣTAB

)
iX2

AB + 2i
(
Y 11 − Y 22

)
f = 0 .

(4.3)

Similarly, upon multiplying the BPS equation (4.1) for i = 1, 2, by the conjugate spinors

ǫ2γC , ǫ1γC , respectively, for C = 1, . . . , 5, and after some rearrangement, we obtain the

following equations

(
fCB − 4TCBΣ

)
kB + i∂CΣf = 0 , c = 1, . . . , 5 . (4.4)

One of these five equations is actually implied by (4.3) so that we only have four inde-

pendent equations. We recall from section 3 that the bilinears f and K are real, and the

auxiliary field T is imaginary. Taking the fluctuations Σ and fCB to be real, we obtain

KBfCB = 0 (4.5)

Thus we reach the equations (4.3), (4.4), which hold for any background which admits a

Killing spinor ǫi. In addition to these eight equations we also impose the Bianchi identities

as usual. Given a Weyl multiplet background, the analysis reduces to computing the Killing

spinor bilinears defined in section 3, and finding the most general solutions to the above

eight equations and the Bianchi identities.

The analysis so far has been quite general and may be useful to analyze vector mul-

tiplet fluctuations in a wide variety of circumstances in the context of theories with eight

supercharges. Now we move to our case of interest, namely the near-horizon region of the

5d black hole, which is given in (3.38). It is convenient to use a different set of coordinates,

as in [23], in which the near-horizon region has the following form,

ds2 = sinh2 ηdθ2 + dη2 + dψ2 + sin2 ψdφ2 + cosh2 α
(
dρ+B

)2
,

B = +cosψdφ− tanhα(cosh η − 1)dθ .
(4.6)

This configuration admits eight Killing spinors which we present in appendix B. For the

localization computation we need one Killing spinor which we choose to be

ǫ1 = e
i
2
(θ+φ)




e−
η
2 cos ψ

2

(
eη sinh α

2 + cosh α
2

)

ie−
η
2 sin ψ

2

(
eη sinh α

2 − cosh α
2

)

−ie−
η
2 cos ψ

2

(
eη cosh α

2 + sinh α
2

)

e−
η
2 sin ψ

2

(
eη cosh α

2 − sinh α
2

)




. (4.7)
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Static black hole: Killing spinor Bilinears

f f = −4 cosh η

KA K1 = 4 sinh η, K4 = −4 sinψ, K5 = −4 cosψ,

A12
AB A21

12 = −2i, A21
24 = 2i sinψ sinh η, A21

25 = 2i cosψ sinh η,

A21
34 = 2i cosψ cosh η, A21

35 = −2i sinψ cosh η,

A11
13 = 2ei(θ+φ), A11

14 = 2iei(θ+φ) cosψ, A11
15 = −2iei(θ+φ) sinψ,

A11
AB A11

23 = −2iei(θ+φ) cosh η, A11
24 = 2ei(θ+φ) cosψ cosh η, A11

25 = −2ei(θ+φ) sinψ cosh η,

A11
34 = −2ei(θ+φ) sinψ sinh η, A11

35 = −2ei(θ+φ) cosψ sinh η, A11
45 = −2iei(θ+φ) sinh η,

Table 2. Independent non-zero spinor bilinears for the Killing spinor, ǫ1++ of AdS2 × S3.

We will begin with the case of the static black hole (α = 0) which is simpler, and then

move on to the case of the spinning black hole.

4.2 Vector multiplet fluctuations around AdS2 × S3 (static black hole)

The bilinears corresponding to our Killing spinor (4.7) with α = 0 are summarized in

table 2.

We now write the eight basic BPS equations (4.3), (4.4) in this context. The equa-

tions (4.3) are

(
2k3 cosh η − Σ

)
i =

1

sinh η

(
fθη − fηφ sinh

2 η
)
+

cosh η

sinψ

(
fψρ − fψφ cosψ

)
, (4.8)

k+ cosh η =
1

sinh η

(
fθψ − fψφ sinh

2 η
)
− cosh η

sinψ

(
fηρ − fηφ cosψ

)
, (4.9)

ik− cosh η = fηψ cosh η +
1

sinh η sinψ

(
fθρ − fθφ cosψ

)
+ fφρ

sinh η

sinψ
, (4.10)

and the equations (4.4) become the following five equations for M = (θ, η, ψ, φ, ρ),

− i∂M
(
Σcosh η

)
= fθM + fMφ . (4.11)

Here we have set Y 12 = k3, Y 11 = k1e
i(θ+φ), Y 22 = k2e

−i(θ+φ), and k± = 1
2(k1 ± k2).

5 This

is a choice of reality condition, which is the same choice made in [4, 9] for the corresponding

4d problem. As noted there, the condition changes as a function of the spacetime point,

and is set up so that the auxiliary fields Y 11, Y 22 have the same phase as the Killing spinor

bilinears A11 and A22 = (A11)∗ presented in table 2.

Reality conditions. Now we turn to an important topic, namely the reality conditions.

In the above analysis we already made some choices of reality conditions consistent with

the 4d analysis of [4, 9]. In our current 5d problem we also have to decide the reality

properties of the fifth component of the gauge field. As we explained in the introduction,

we will make some choices which look reasonable, and explore their consequences. For a

given choice each of the equations (4.10)–(4.11) will split into real and imaginary parts,

5We note that the fields Y 11 and Y 22 are set to zero by hand in the corresponding treatment in [23].
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and we analyze these two parts separately. As we shall see, the solution set depends on this

split quite strongly. Further the static and spinning cases seem to differ at this point —

this is not surprising given that spinning black hole metrics continued to Euclidean space

naturally introduce complex metrics.

As we briefly discussed in section 2.3, the fifth component of the gauge field Wρ = φW5

plays a special role in that it combines with the scalar σ to form the scalars X, X in 4d

upon dimensional reduction. In particular, the dictionary (2.18), (2.20) between 4d and

5d vector multiplets for the attractor configuration implies that

X =
1

2
(σ + iWρ) , X =

1

2
(σ − iWρ) . (4.12)

In the 4d problem, the fluctuations of X, X around their respective attractor values X∗,

X∗ was split, in the Euclidean theory, as

X −X∗ = H + J , X −X∗ = H − J . (4.13)

In the 4d Lorentzian theory the scalars X and X are complex conjugate and therefore the

corresponding fluctuations are H + iJ , H − iJ . The choice (4.13) was made in [4, 9] in

order to obtain sensible localization solutions, this was later justified in [34] by a more

formal treatment of 4d Euclidean supergravity.

Lifting this to 5d naturally leads us to Wρ being purely imaginary, instead of purely

real as in the 5d Lorentzian theory. We shall call this choice A1. In fact we have to

be a little more precise. In addition to equation (4.12) that relates Wρ to the scalars

in four dimensions, the dimensional reduction formula relates the rest of the gauge field

components in five and four dimensions as follows,

Wµ = Aµ +BµWρ , µ = θ, η, ψ, φ , (4.14)

In the choice of analytic continuation, we also have to specify the reality conditions for

these gauge field components. The choice A1 is completely specified by demanding that

Wρ is imaginary and that the 4d gauge fields Aµ are real.

The choice A1 is consistent with the reduction to four dimensions. Another analytic

continuation would be to chose Wρ imaginary and Wµ real. We call this A2. A third choice

would be to simply take all fields to be real, this could be called natural from a purely

five-dimensional perspective. We call this choice B. A fourth choice is to look at only

the field equations, in this case the supersymmetry equations instead of the fundamental

variables in the functional integral. This would mean prescribing reality conditions for the

field strengths of all thes gauge fields. We explore the condition fµρ imaginary which is

related to A1 in that it singles out the direction ρ. We call this choice C.

We now present the results for all the reality conditions. We have to solve for field

variables fab, k±, k
3, and Σ. In all four cases we find that Σ = C sechη, k3 = (C/2) sech2η,

and k− = 0. When reduced to 4d, these are precisely the solutions found in [4, 9]. The

other fields depend on the analytic continuation. For choices A1, A2, and C, we find that in

fact all the other field fluctuations vanish. This degeneracy among the choices is specific to
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A1 A2 B C

Wρ Im, Aµ Real Wρ Im, Wµ Real Wρ Real fµρ Im

Σ C sechη C sechη C sechη C sechη

Wρ 0 0 Solutions to (4.15) 0

f̃µν , k+ 0, 0 0, 0 Solutions to (4.15) 0, 0

k− 0 0 0 0

k3 (C/2) sech2η (C/2) sech2η (C/2) sech2η (C/2) sech2η

Table 3. The complete set of off-shell BPS solutions for vector multiplet fluctuations around the

near-horizon static black hole for different reality conditions. Here fMN is the fluctuation of the

field strength of WM , f̃µν is the fluctuation of the field strength of Aµ, Σ is the fluctuation of the

scalar σ, and k±, k
3 are the fluctuations of the auxiliary fields Y ij . For condition B, some explicit

solutions to equations (4.15) are presented in [11].

the static black hole and, as we will see in the next section, it will be lifted in the spinning

black hole. For choice B, i.e. when Wρ is real, we are left with the following constraint that

relates the field strengths to k+,

fMN − 1

2
εMNRST f

RSKT = k+f
−1Re

(
e−i(θ+φ)A11

MN

)
. (4.15)

The solution for all the fields in the vector multiplet for all our choices of analytic contin-

uations are summarised in table 3.

Now we present the details in each of the cases.

Reality condition A1. The reality condition A1 is that Wρ is purely imaginary, the

4d gauge fields Aµ are real, and the remaining fields Σ, k±, k3 are real. We recall that the

boundary conditions of our problem impose that all the field fluctuations should vanish

asympotitcally as η → ∞. We decompose the gauge fields according to (4.14) and use the

value (4.6) for the background fields, with α = 0, B = cosψ dφ, so that

Wθ = Aθ , Wη = Aη , Wψ = Aψ , Wφ = Aφ + cosψWρ . (4.16)

The imaginary parts of the second set of complex equations (4.11) now reduce to

Σ cosh η − iWρ cosψ = C , (4.17)

where C is a constant. From the imaginary part of (4.9), we get

(coth η ∂η + cotψ ∂ψ − 1)Wρ = 0 . (4.18)

This equation was analyzed in [9] in the context of 4d theories with AdS2 × S2 boundary

conditions, and it was shown that there are no smooth non-zero solutions to this equa-

tion that respect the boundary conditions, as we now briefly recall. The structure of the

differential operator on the left-hand side of (4.18) implies that any solution has the form

Wρ = f
(
v, θ, φ, ρ

)
√

cosh η

cosψ
, (4.19)
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where f is an arbitrary function and v = cosh η cosψ. Writing this as a power series in

the variable v, we see that the boundary conditions imply that we only have negative

powers of cosh η cosψ, which is then singular at the points where cosψ vanishes. Thus the

boundary conditions and smoothness conditions imply that

Wρ = 0 , (4.20)

and, by (4.17),

Σ =
C

cosh η
. (4.21)

From the imaginary parts of (4.10) and (4.8), we get k− = 0 and

k3 =
C

2 cosh2 η
. (4.22)

The condition Wρ = 0 implies that Wµ = Aµ. The real parts of the basic equa-

tions (4.8)–(4.11) lead to the following constraints on the field strengths and k+,

fθη = fφη =

(
k+ sinψ − ∂ρWη

)
sinh2 η sin 2ψ − ∂ρWψ sinh 2η sin2 ψ(

cos 2ψ − cosh 2η
)
sinψ

,

fθψ = fφψ = −
(
k+ sinψ − ∂ρWη

)
sinh 2η sin2 ψ + ∂ρWψ sinh2 η sin 2ψ(

cos 2ψ − cosh 2η
)
sinψ

,

fθφ = 0 ,

fηψ =
∂ρWθ

tanh η sinψ
,

∂ρWθ = ∂ρWφ .

(4.23)

The first thing we note about these equations is that they have a symmetry in θ ↔ φ,

which implies that the various fields are actually functions of θ + φ only. Now we make a

gauge choice. For a periodic variable such as θ it is not possible to bring a θ-independent

configuration of Wθ to zero by a gauge transformation that respects the periodicity. There-

fore we choose the gauge conditionWψ = 0 (recall that ψ ∈ [0, π] is not a periodic variable).6

Next we use the Bianchi identity

∂θ fηψ + ∂η fψθ + ∂ψ fθη = 0 . (4.24)

This equation together with the BPS equations (4.23) can be rearranged to obtain:

1

tanh η sinψ
∂θ∂ρWθ + ∂η∂ψWθ + tanh η ∂ψ

(
cotψ ∂ψWθ

)
= 0 . (4.25)

We now show that this equation has no smooth solution for Wθ. In order to do so, we

write the field Wθ in Fourier components

Wθ(θ, φ, η, ψ, ρ) =
∞∑

p,q=−∞

eip(θ+φ)eiqρW
(p,q)
θ (η, ψ) , (4.26)

where we have used the symmetry θ ↔ φ mentioned above.

6A similar analysis can be done in the gauge Wη = 0 which also leads to the same final conclusion of no

non-trivial smooth solutions to the system of equations (4.23).
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The q = 0 mode for each field, i.e. the modes independent of ρ reduce to the equivalent

equations in 4d. This 4d problem was analyzed in [9], using the method that we discussed

above (4.18), and the conclusion is that there are no non-zero smooth solutions which

respect the boundary conditions. (We review this again while discussing Condition C.)

Thus we set q 6= 0 in the following. The equation (4.26) now reads

− pq

tanh η sinψ
W

(p,q)
θ (η, ψ) + ∂η∂ψW

(p,q)
θ (η, ψ) + tanh η ∂ψ

(
cotψ ∂ψW

(p,q)
θ (η, ψ)

)
= 0 .

(4.27)

After clearing denominators we have

(
−pq sinψ + tanh η sin2 ψ∂η∂ψ + tanh2 η

(
sinψ cosψ∂2

ψ − ∂ψ
))

W
(p,q)
θ (η, ψ) = 0 . (4.28)

First we consider the p = 0 mode, for which this equation simplifies to

coth η ∂η∂ψWθ = −∂ψ(cotψ ∂ψWθ) . (4.29)

We can solve this equation by separation of variables, ∂ψWθ = f(η)g(ψ), to obtain

1

f
coth η ∂ηf = −1

g
∂ψ(g cotψ) = C , (4.30)

where C is independent of η, ψ. Solving this

f(η) = A(cosh η)C , g(ψ) = B sinψ(cosψ)C−1 , (4.31)

where A,B are independent of η, ψ. When C = 0 we see that g(ψ) (and therefore Wθ) is

singular at ψ = π/2. For C 6= 0 we can solve ∂ψWθ = f(η)g(ψ) for Wθ, in order to obtain

Wθ = −AB

C
(cosh η cosψ)C + const . (4.32)

Now, the boundary condition at η → ∞ implies that C < 0, but this leads to singularities

at ψ = π/2. Thus we find that there is no smooth solution for the p = 0 mode of Wθ.

Now we turn to the p 6= 0 modes. In this case we could not easily solve the equa-

tion (4.28) before imposing boundary conditions and smoothness. However, we can still

show that there are no smooth solutions. To see this we expand the field W
(p,q)
θ in a power

series expansion near η = 0. Imposing smoothness at η = 0,7

W
(p,q)
θ (η, ψ) = η|p|

∑

n≥0

ηn an(ψ) . (4.33)

7Near η = 0, the AdS2 part of the metric reduces to ds2AdS2
= dη2 + η2dθ2 = dz dz where z = ηeiθ. By

smoothness at η = 0, we mean that the fields should be real analytic functions of z and z so that all the

derivatives of fields exist at z = z = 0. For example, smoothness of a scalar field φ at the origin implies that

its leading behavior is φ(z, z) = zazb for some non-negative integers a, b. In the η, θ coordinates this means

that φ(η) = ηa+bei(a−b)θ = η|p|+reipθ, where p = a− b and r = 2min(a, b) ≥ 0. Similarly the smoothness at

η = 0 of the gauge field (which are differential 1-forms) requires thatWη ∼ η|p|−1 andWθ ∼ η|p| with p 6= 0.

This condition has been used in a similar context in [42].
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Using this expansion in equation (4.28), we obtain coupled differential equations for the

modes an(ψ, φ). The equation for a0 is (we use the notation ′ ≡ ∂ψ below),

a′0
a0

=
q

sinψ
, (4.34)

which can be solved easily to obtain

a0 = C0 (tan(ψ/2))
q . (4.35)

Since this function is singular in the domain ψ ∈ [0, π], we conclude that the only smooth

solution has C0 = 0. With this solution we find that the next coefficient satisfies

a′1
a1

=
pq

|p|+ 1

1

sinψ
(4.36)

with the solution, as above,

a1 = C1 (tan(ψ/2))
pq/(|p|+1) , (4.37)

which, once again, implies that the only smooth solution is a1 = 0. Continuing in this

manner we show in appendix C that if the coefficients a0 = 0, . . . , aℓ−1 = 0, the ℓth term

satisfies the equation
a′ℓ
aℓ

=
pq

|p|+ ℓ

1

sinψ
. (4.38)

As above, the only solution is aℓ = Cℓ (tan(ψ/2))
pq/(|p|+ℓ), from which we conclude that aℓ

should also vanish if it is smooth.

Now that we have Wθ = 0 as the only smooth solution, we can show that the other

fields also vanish. In order to see that we substitute Wθ = 0 into the first and fourth

equation of (4.23) to obtain

∂ψWη = 0 , k+ sinψ = ∂ρWη . (4.39)

From this equation we see that k+ = 0 is the only smooth solution, and that Wη is

independent of all the coordinates except η. This implies that that

fµν = 0 , k+ = 0 , (4.40)

and we can do a gauge transformation only depending on η in order to set Wη = 0.

Reality condition A2. We now work under reality condition A2, Wρ is purely imaginary

and the 5d gauge fieldsWµ are real. The remaining fields, Σ, k±, k3 are also taken to be real.

The imaginary part of (4.9) is ∂ηWρ = 0. As all fields must vanish as η → ∞, we have

Wρ = 0 . (4.41)

Substituting this into the imaginary part of (4.11) fixes Σ as in (4.21). The imaginary

terms in the remainder of the complex equations, (4.8) and (4.10), give k− = 0 and k3 is

determined by (4.22).

For the real parts of the field strengths, we get the same constraint equations as (4.23).

These equations do not have non-trivial smooth solutions as shown and therefore we get

fµν = k+ = 0 . (4.42)
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Reality condition B. We now consider the analytic continuation where all the fields,

WM ,Σ, k±, k3, are real.

The field strengths fµν in the four-dimensional part of the metric can now be expressed

in terms of k+ and fµρ as follows

fθη =

(
k+ sinψ + fηρ

)
sinh2 η sin 2ψ + fψρ sinh 2η sin

2 ψ(
cos 2ψ − cosh 2η

)
sinψ

,

fθψ = −
(
k+ sinψ + fηρ

)
sinh 2η sin2 ψ − fψρ sinh

2 η sin 2ψ(
cos 2ψ − cosh 2η

)
sinψ

,

fθφ = 0 ,

fηψ = − fθρ
tanh η sinψ

.

(4.43)

As all fields are real, the real part of the set of equations (4.4) give (4.5). For our Killing

vector, the only non-zero components are Kθ = Kφ = 1 and so we obtain

fMθ = fMφ . (4.44)

The equations (4.43), (4.44) can be summarised by

fMN − 1

2
εMNRST f

RSKT = e−i
(
θ+φ

)
k+f

−1X1
MN . (4.45)

These equations have non-trivial smooth solutions which were discussed in [11].

From the imaginary part of (4.11) we can see that Σ is given by (4.21). From the imag-

inary parts of (4.8) and (4.10) we get k− = 0 and Σ = 2k3 cosh η. Thus we obtain (4.22)

as the solution for k3 once again.

Reality condition C. We now work under the analytical continuation where fµρ is

purely imaginary and all other fields, fµν ,Σ, k±, k3, are real. The real terms of the complex

equations, (4.8)–(4.11), can be rearranged to yield the following equations for the real parts

of the field strengths

fθη = −fηφ =
k+ sinh2 η sin 2ψ

cos 2ψ − cosh 2η
,

fθψ = −fψφ = −k+ sinh 2η sin2 ψ

cos 2ψ − cosh 2η
,

fθφ = 0 ,

fηψ = 0 .

(4.46)

This set of equations is precisely the equations of the 4d problem, and we can use the same

method as in [9] to evaluate fθη and fθψ. We define a new variable K through

K =
k+ sinh η sinψ

cos 2ψ − cosh 2η
. (4.47)

The Bianchi identity in the θηψ directions gives

(
cotψ∂ψ + coth η∂η

)
K = 0 . (4.48)
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This implies that

K = K
(
cosh η cosψ, θ, φ, ρ

)
. (4.49)

As before we write this as a power series in the first variable we see that the boundary

conditions imply that we only have negative powers of cosh η cosψ, which is then singular at

the points where cosψ vanishes. Thus the boundary conditions and smoothness conditions

imply that K = k+ = 0. From (4.46) we see that fθη = 0 and fθψ = 0 and thus all fµν = 0.

The imaginary part of the basic equation (4.9) gives fηρ = 0. The Bianchi identies in

the µ, η, ρ directions therefore reduce to

∂ηfµρ = 0 . (4.50)

Applying the boundary conditions that fµρ → 0 as η → ∞, we get fµρ = 0 everywhere. The

remainder of the equations, (4.8), (4.10) and (4.11), again yield the solutions (4.21), (4.22),

and k− = 0.

4.3 Vector multiplet fluctuations around AdS2 × S2
⋉ S1 (spinning black hole)

The bilinears corresponding to our Killing spinor (4.7) for the generic spinning black hole

are summarized in table 4. Our first set of basic equations (4.3), in the spinning black hole

context, are the following,

∂1Σsinh η − ∂4Σsinψ − ∂5Σ
(
sinhα cosh η + coshα cosψ

)
= 0 ,

iΣcosh2 α+ i sinhα
(
Σsinhα+ if34 − 2k3 cosψ

)

= sinh η
(
f13 sinhα sinψ + f25 cosψ

)
− cosh η

(
f12 sinhα cosψ + f35 sinψ

)

− coshα
(
f12 − f24 sinh η sinψ + cosh η

(
2iΣsinhα cosψ − f34 cosψ − 2ik3

))
,

k+
(
coshα cosh η + sinhα cosψ

)
− iΣsinh 2α sinh η sinψ

= f24 sinhα− f35 sinh η cosψ + coshα
(
f13 + f24 cosh η cosψ − f34 sinh η sinψ

)

+ f12 sinhα sinh η sinψ + cosh η
(
f13 sinhα cosψ − f25 sinψ

)
,

ik−
(
coshα cosh η + sinhα cosψ

)

= f15 sinψ + f45 sinh η + coshα
(
f23 cosh η − f14 cosψ

)
+ sinhα

(
f23 cosψ − f14 cosh η

)
.

(4.51)

Our second set of basic equations (4.4), in the spinning black hole context can be summa-

rized as follows,

− i∂M
(
Σcosh η coshα+Σcosψ sinhα

)
= fθM + fMφ + tanhαfMρ . (4.52)

Now we impose the various reality conditions. The analysis is similar to the static

case, and therefore we will not present all the details and focus on the new points. The

results are summarised in table 5.

Note that for reality condition A1, we can summarise the solutions as

Σ coshα− iWρ tanhα =
C

cosh η
,

Σsinhα− iWρ = 0 ,

(4.53)

which is simply a rotation in field space of Σ and Wρ of the static black hole solution.
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Spinning black hole: Killing spinor Bilinears

f f = −2
(

coshα cosh η + sinhα cosψ
)

KA K1 = 4 sinh η, K4 = −4 sinψ, K5 = −4
(

sinhα cosh η + coshα cosψ
)

A21
12 = −2i

(

coshα+ cosψ cosh η sinhα
)

, A21
13 = 2i sinhα sinh η sinψ ,

A12
AB A21

24 = 2i coshα sinh η sinψ, A21
25 = 2i cosψ sinh η,

A21
34 = −2i

(

sinhα+ cosψ cosh η coshα
)

, A21
35 = −2i sinψ cosh η .

A11
12 = 2ei(θ+φ) sinhα sinh η sinψ , A11

13 = 2ei(θ+φ)
(

sinhα cosh η cosψ + 2 coshα
)

,

A11
14 = 2iei(θ+φ)

(

sinhα cosh η + coshα cosψ
)

, A11
15 = −2iei(θ+φ) sinψ ,

A11
AB A11

23 = −2iei(θ+φ)
(

coshα cosh η + sinhα cosψ
)

, A11
24 = 2ei(θ+φ)

(

coshα cosh η cosψ + sinhα
)

,

A11
25 = −2ei(θ+φ) sinψ cosh η, A11

34 = −2ei(θ+φ) sinψ sinh η coshα ,

A11
35 = −2ei(θ+φ) cosψ sinh η, A11

45 = −2iei(θ+φ) sinh η .

Table 4. Independent non-zero spinor bilinears for the Killing spinor ǫ1++ of AdS2 × S2 ⋉ S1.

A1 A2 B C
Wρ Im, Aµ Real Wρ Im, Wµ Real Wρ Real fµρ Im

Σ C coshα sechη 0 0 0

Wρ −iC coshα sinhα sechη 0 Solutions to (4.15) 0

f̃µν , k+ 0, 0 0, 0 Solutions to (4.15) 0, 0

k− 0 0 0 0

k3 (C/2) sech2η 0 0 0

Table 5. The complete set of off-shell BPS solutions for vector multiplet fluctuations around the

near-horizon spinning BH for different reality conditions A and B. As before, fMN is the fluctuation

of the field strength of WM , f̃µν is the fluctuation of the field strength of Aµ, Σ is the fluctuation

of the scalar σ, and k±, k
3 are the fluctuations of the auxiliary fields Y ij . For condition B, some

explicit solutions to equations (4.15) are presented in [11].

Reality condition A1. Here we have that Wρ = W5 coshα is purely imaginary, the 4d

gauge fields Aµ are real, and the remaining fields are real. We start by decomposing the

gauge fields in 5d in terms of the 4d gauge fields A as done in (4.6) for the spinning black

hole. In particular we have

B = cosψdφ− tanhα(cosh η − 1)dθ ,

Wθ = Aθ − tanhα
(
cosh η − 1

)
Wρ , Wη =Aη , Wψ =Aψ , Wφ =Aφ + cosψWρ . (4.54)

The imaginary part of M = 2, M = 3 equations in (4.52) now give

(Σ coshα− iWρ tanhα) cosh η + (Σ sinhα−Wρ) cosψ = C(θ, φ, ρ) , (4.55)

From the imaginary part of the M = 1 equation in (4.51) we obtain

2Σ sinhα cosh2 α = −i(coth η ∂η + cotψ ∂ψ − cosh 2α)Wρ . (4.56)

– 24 –



J
H
E
P
1
0
(
2
0
1
9
)
1
7
2

Combining these equations, we get

(coth η ∂η + cotψ ∂ψ − 1)J coshα = (coth η∂η + cotψ ∂ψ + 1)H sinhα , (4.57)

where

H = Σcoshα− iWρ tanhα , J = Σsinhα− iWρ . (4.58)

From (4.55), we also have

H cosh η + J cosψ = C. (4.59)

In order to solve these equations, we assume that the fields H, J , and the constant C

are smooth and admit a Taylor expansion around α = 0 for any value of the spacetime

coordinates, i.e.,

H =
∞∑

n=0

Hn α
n , J =

∞∑

n=0

Jn α
n , C =

∞∑

n=0

Cn α
n . (4.60)

At zeroth order in α this reduces to the non-spinning case for which we conclude

H0 =
C0

cosh η
, J0 = 0 . (4.61)

At first order in α equation (4.57) leads to

(coth η ∂η + cotψ ∂ψ − 1)J1 = 0 , (4.62)

which is the same equation as that obeyed by the non-spinning variable J0. Thus we can

use the same analysis to obtain J1 = 0. Substituting this into (4.59) we get the following

equation for the first-order terms,

H1 =
C1

cosh η
. (4.63)

Iteratively we can see that at the nth order,

Jn = 0 , Hn =
Cn

cosh η
. (4.64)

Thus we conclude that J = 0 and so H = C sechη. This leads to

Σ =
C coshα

cosh η
, Wρ = −i

C sinhα coshα

cosh η
. (4.65)

Substituting these into the remaining equations we obtain C to be a constant and

k− = 0 , k3 =
C

2 cosh2 η
. (4.66)

The real parts of equations (4.52) lead to

f̃µφ = −f̃θµ + ∂ρAµ tanhα , ∂ρAφ = ∂ρAθ , (4.67)
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where f̃µν = ∂µAν − ∂νAµ. Substituting these into the real part of (4.51) lead to the

following three equations,

(
f̃θη coth η + f̃θψ cotψ − ∂ρAψ

sinψ

)
coth η

+ tanhα

(
cosψ

sinh η

(
f̃θη coth η + f̃θψ cotψ − ∂ρAψ

sinψ

)
− cosh η

(
∂ρAη

cosh η + 1
+

∂ρAψ

sinh η tanψ

))

− tanh2 α cosψ

(
∂ρAη

cosh η + 1
+

∂ρAψ

sinh η tanψ

)
= 0 , (4.68)

(
k+ + f̃θη cotψ − f̃θψ coth η − ∂ρAη

sinψ

)
cosh η

+ tanhα

(
cosψ

(
k++f̃θη cotψ−f̃θψ coth η − ∂ρAη

sinψ

)
− cosh η

(
∂ρAη

tanψ
+

(1−cosh η)∂ρAψ

sinh η

))

− tanh2 α cosψ

(
∂ρAη

tanψ
− sinh η ∂ρAψ

cosh η + 1

)
= 0 , (4.69)

and

f̃ηψ =
∂ρAθ

sinψ tanh η
+ tanhα

(
∂ρAθ

tanψ sinh η

)
. (4.70)

We can solve these three equations perturbatively in α as we did above for the fields H

and J , by expanding the fields Aµ and k+ in a series around α = 0. Exactly as in

the analysis below (4.59), at each order n in this expansion, the fields satisfy the equa-

tions (4.68)–(4.70) with α = 0. These equations are simply the equations for the non-

spinning case (4.23), for which we have already seen that there are no non-trivial smooth

solutions. The final conclusion is that k+ = Aµ = 0 are the only solutions.

Reality conditions A2, B and C. For the reality condition A2, Wρ is purely imaginary,

the 5d gauge fields Wµ are real, and the remaining fields Σ, k±, k3 are real. Using a similar

analysis as above we find that Wρ = Σ = k− = k3 = 0. The remaining equations and

reality conditions are the same as in the case A1, for which we already concluded that

there are no non-trivial solutions. Therefore all fields vanish for the choice A2.

For Condition B, i.e. all fields real, the imaginary part of the third equation in (4.51)

yields

Σ sinh 2α sinψ sinh η = 0 . (4.71)

One solution is when α = 0 for which we get back the static case. The other set of solutions

is Σ = 0. By the imaginary part of the second equation and the fourth equations in (4.51),

we get k3 = k− = 0. The remainder of the equations are equivalent to the constraints (4.15)

as in the static case. We conclude that Σ = k3 = k− = 0. We also find that fMN and k+
obey the contact-instanton like equations (4.15). These equations have non-trivial smooth

solutions which were discussed in [11].

Condition C is that fµρ imaginary and all other fields, fµν ,Σ, k±, k3, are real. We

can solve the real parts of the equations to obtain the same equations as those obtained

for the analytic continuation fµρ imaginary in the static case, i.e. equations (4.46). By
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the same analysis of the real terms in the Bianchi Identity in the 4d directions, we obtain

fµν = k+ = 0. Solving the imaginary parts of the equations, we obtain f25 = f35 = 0.

The second equation in (4.51) now gives Σ = 0. Substituting these values into the other

equations leads to k+ = k3 = f15 = f45 = 0. Thus all field fluctuations vanish in this case.

5 Discussion

Our focus in this paper was spinning black holes in five-dimensional asymptotically flat

space, defined as solutions to five-dimensional N = 2 supergravity. Upon reduction to four

dimensions, one gets a supersymmetric non-spinning black hole in four-dimensional N =

2 supergravity with non-zero electromagnetic flux in the Kaluza-Klein vector multiplet.

The 4d/5d lift shows that the 4d black hole is the same as the 5d black hole at the center

of Taub-NUT space. Thus the near-horizon limit of the 4d and 5d black holes are the

same. Since the quantum entropy is defined purely in the near-horizon configuration, the

expectation is that the quantum entropies of the 4d and the 5d black holes are equal.

Our main results in this paper concern the localization manifold for the functional

integral for the quantum entropy of the 5d black hole. The paper [23] initiated this analysis

by using the off-shell 4d/5d lift [24] to lift the off-shell solutions in the near-horizon of the

4d black hole to the near-horizon region of the 5d black hole. However, in order to actually

derive the quantum entropy we need to show that there are no other solutions to the

5d off-shell equations. This is what we have done in the present paper — we show that

the complete set of off-shell 5d vector multiplets BPS solutions is precisely the lift of the

corresponding 4d set in a particular choice of analytic continuation. This conclusion is a

priori not obvious — indeed we have the same number of equations in 4d and 5d, and all

the fields could have a non-trivial dependence on the fifth direction. In a similar problem

with differing details, e.g. with different boundary conditions, one would generally expect

that there are new 5d solutions without a detailed analysis of the sort we have done here.

In solving this problem we have also developed systematic methods that we hope are useful

to attack other such problems.

The next step in the quantum entropy program for 5d spinning black holes is clear, we

need to calculate the action and one-loop determinant and assemble all the pieces in the

localization formula. This should give the quantum entropy of the 5d BH at all orders in

perturbation theory — a 5d analog of the OSV formula — perhaps along the lines of [43].

These investigations are being pursued, and we hope to report on this soon.
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A Conventions and useful identities for spinor algebra

Our five-dimensional Euclidean gamma matrices are as follows.

γ1 =




1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


 , γ2 =




0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


 ,

γ3 =




0 0 0 i

0 0 i 0

0 −i 0 0

−i 0 0 0


 , γ4 =




0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0


 , (A.1)

γ5 =




0 0 i 0

0 0 0 −i

−i 0 0 0

0 i 0 0


 .

These matrices are Hermitian and satisfy the following properties

γMNPQR = 1εMNPQR .

[γa, γbc] = 4δa[bγc] .
(A.2)

The charge conjugation matrix is

C =




0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0


 , (A.3)

and obeys the following properties,

CT = −C , C† = C−1 , γTµ = CγµC
−1 . (A.4)

We define symplectic Majorana spinors, ǫiα, i = 1, 2, by

ǫi = εijǫ
j , (A.5)

where εij is antisymmetric with ε12 = 1. The conjugate of a spinor is defined by ǫi = ǫi†,

so that

ǫ1 = ǫ2 = ǫ1† ,

ǫ2 = −ǫ1 = ǫ2† .
(A.6)

The symplectic Majorana condition is

C−1ǫTi = εijǫ
j . (A.7)

Explicitly, the spinors and their conjugates are related by

ǫ1∗ = ǫ2C−1, ǫ2∗ = −ǫ1C−1, ǫ1∗ = Cǫ2, ǫ2∗ = −Cǫ1. (A.8)
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B Killing spinors

The Killing spinor equation can be rewritten as

∇M ǫ = − i

4
TPN

(
3γPNγM − γMγPN

)
ǫ ,

= 2iTMNγN ǫ− i

2
TPNγMPN ǫ.

(B.1)

In the spinning case, the near-horizon configuration is given by the metric

ds2 = sinh2 ηdθ2 + dη2 + dψ2 + sin2 ψdφ2 +cosh2 α
(
dρ+cosψdφ− tanhα(cosh η− 1)dθ

)2
,

(B.2)

and the only non-zero components of auxiliary field T

Tθη = − i

4
sinh η coshα , Tψφ =

i

4
sinψ sinhα . (B.3)

Solving the Killing spinor equation (B.1), with these values of gMN and T , we get that the

Killing spinors must be

ǫ = exp

(
α

2

)
exp

(
− η

2
γ1

)
exp

(
θ

2
γ21

)
exp

(
ψ

2
γ45

)
exp

(
φ

2
γ34

)
ǫ0 , (B.4)

where ǫ0 is a constant spinor. We label the components of the constant spinor as below,

ǫ0 ≡
(
a1 , a2 , a3 , a4

)T
.

Choosing the constants to be
(
a1, a2, a3, a4

)
=

(
1, 0, I, 0

)
,

(
a1, a2, a3, a4

)
=

(
0, 1, 0, I

)
,

(
a1, a2, a3, a4

)
=

(
0, 1, 0,−I

)
,

(
a1, a2, a3, a4

)
=

(
1, 0,−I, 0

)
,

respectively, we find four linearly independent Killing spinors

ǫ1−+ = e−
i
2

(
θ−φ

)



c cos ψ
2

(
cosh

(α−η
2

)
− sinh

(α+η
2

))

i sin ψ
2

(
cosh

(α+η
2

)
+ sinh

(α−η
2

))

i cos ψ
2

(
cosh

(α+η
2

)
− sinh

(α−η
2

))

− sin ψ
2

(
cosh

(α−η
2

)
+ sinh

(α+η
2

))


 ,

ǫ1+− = e+
i
2

(
θ−φ

)



ci sin ψ
2

(
cosh

(α−η
2

)
− sinh

(α+η
2

))

cos ψ
2

(
cosh

(α+η
2

)
+ sinh

(α−η
2

))

− sin ψ
2

(
cosh

(α+η
2

)
− sinh

(α−η
2

))

i cos ψ
2

(
cosh

(α−η
2

)
+ sinh

(α+η
2

))


 ,

ǫ1−− = e−
i
2

(
θ+φ

)



ci sin ψ
2

(
cosh

(α+η
2

)
+ sinh

(α−η
2

))

cos ψ
2

(
cosh

(α−η
2

)
− sinh

(α+η
2

))

sin ψ
2

(
cosh

(α−η
2

)
+ sinh

(α+η
2

))

−i cos ψ
2

(
cosh

(α+η
2

)
− sinh

(α−η
2

))


 ,

ǫ1++ = e+
i
2

(
θ+φ

)



c cos ψ
2

(
cosh

(α+η
2

)
+ sinh

(α−η
2

))

i sin ψ
2

(
cosh

(α−η
2

)
− sinh

(α+η
2

))

−i cos ψ
2

(
cosh

(α−η
2

)
+ sinh

(α+η
2

))

sin ψ
2

(
cosh

(α+η
2

)
− sinh

(α−η
2

))


 .

(B.5)
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C Proof of equation (4.38)

We would like to prove that when we expand Wθ as in (4.33) then the ℓth term satisfies

the equation (4.38) if a0 = 0, . . . , aℓ−1 = 0.

We begin by substituting (4.33) into (4.28) and multiply across by cosh2 η to obtain

∞∑

n=0

((
−pq sinψ an

)
η|p|+n +

1

2

(
(|p|+ n) sin2 ψ a′n

)
η|p|+n−1 sinh 2η

+
(
sinψ cosψ a′′n − pq sinψ an − a′n

)
η|p|+n sinh2 η

)
= 0 .

(C.1)

Using the following series expansions,

sinh2 x =
∞∑

k=1

22k−1

(2k)!
x2k , sinh 2x =

∞∑

k=0

22k+1

(2k + 1)!
x2k+1 , (C.2)

and multiplying across by η−|p|, we obtain

∞∑

n=0

((
−pq sinψ an

)
ηn +

(
(|p|+ n) sin2 ψ a′n

) ∞∑

k=0

22k

(2k + 1)!
η2k+n

+
(
sinψ cosψa′′n − pq sinψ an − a′n

) ∞∑

k=1

22k−1

(2k)!
η2k+n

)
= 0 .

(C.3)

At order ℓ in η, we have

−pq sinψ aℓ +
∞∑

k=0

22k

(2k + 1)!

(
(|p|+ ℓ− 2k) sin2 ψ

)
a′ℓ−2k

+

∞∑

k=1

22k−1

(2k)!

(
sinψ cosψ a′′ℓ−2k − pq sinψ aℓ−2k − a′ℓ−2k

)
= 0 .

(C.4)

Using the fact that all coefficients up to aℓ vanish, we see that the third term in (C.4)

vanishes and the second term is zero except for k = 0 and so aℓ satisfies

a′ℓ
aℓ

=
pq

(|p|+ ℓ) sinψ
, (C.5)

which is precisely equation (4.38).
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