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In addition, in the context of heterotic/F-theory duality, we investigate the role played

by multiple K3- and elliptic fibrations in known and novel string dualities in 8-, 6- and

4-dimensional theories. Here we systematically summarize nested fibration structures

and comment on the roles they play in T-duality, mirror symmetry, and 4-dimensional

compactifications of F-theory with G-flux. This investigation of duality structures is made

possible by geometric tools developed in a companion paper [1].
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1 Introduction: multiple fibrations and string dualities

F-theory has proven to be a flexible and extensive framework for studying the possible

effective field theories arising from string compactifications in various dimensions. Because

F-theory itself is defined via “geometrizing” the axio-dilaton of Type IIB string theory [2],

any systematic study of F-theory vacua must necessarily be linked to a study of the geometry

of elliptically (or more generally genus one) fibered Calabi-Yau (CY) manifolds. Significantly,

the set of all genus one fibered CY 3-folds is known to be finite [3] and recent progress [4] has

given evidence of finiteness for genus one fibered CY 4- and 5-folds. A central motivation of

the classification of fibered CY 3-folds in [3, 5] was that these results may be an important

step towards establishing the finiteness of the set of all CY 3-folds.

Within this framework, the forms that elliptically fibered CY manifolds can take have

been of interest in both mathematics and physics. A key result due to Nakayama [6]

guarantees that any elliptically fibered manifold is birational to a so-called Weierstrass

model. As a result, Weierstrass models have played a significant role not only in classifying

CY geometries, but also in defining the physics associated to F-theory in various dimensions.

From the point of view of F-theory, Weierstrass models correspond to a minimal, irreducible

form of the torus fiber that can be directly linked to the axio-dilaton. In addition, in the

study of F-theory effective field theories, Weierstrass models are useful in that they can

correspond to generically singular geometries (“non-Higgsable” effective theories [7, 8]) and

as their moduli are tuned, give rise to many different singularity types and hence, CY

resolutions. Taking this point of view, a Weierstrass model at a suitable singular point

in its moduli space can often be resolved to produce a smooth CY n-fold. This provides

a method of constructing elliptically fibered CY manifolds with distinct Hodge numbers,

Chern classes, etc. which must be counted in the current “zoo” of known CY manifolds.

With these observations in mind, here we will take the reverse viewpoint and begin

with F-theory on a given elliptically/genus one fibered CY manifold of a more general form.

We will work towards Weierstrass models and F-theory EFTs by starting from resolved

geometries and more generally with the known datasets of CY manifolds. The goal will be

to observe whether or not there are global features of the CY total space that are “hidden”

from the Weierstrass description?

We will note that there is at least one significant feature which is difficult to observe

from the Weierstrass-focused approach described above. This is the possibility of multiple

fibrations within a single CY total space. We will refer to a CY n-fold as multiply elliptically

fibered (or genus one fibered in the case without section) when it admits multiple descriptions

of the form πi : Xn −→ B
(i)
n−1 with elliptic fiber E(i)b = π−1(b ∈ B(i)

n−1) (denoted succinctly

by πi : Xn

E(i)−→ B
(i)
n−1). That is,

Xn

E(1)

zz
E(2)
��

E(i)

$$
B

(1)
n−1 B

(2)
n−1 . . . B

(i)
n−1

(1.1)
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Figure 1. An illustration of multiple genus-one fibrations in a single Calabi-Yau n-fold: π : X → B

and π′ : X → B′.

For each fibration, the structure of the singular fibers, discriminant locus, fibral divisors

and Mordell-Weil group can be different, as can the topology of the base manifolds B
(i)
n−1.

This is illustrated in figure 1. According to Nakayama’s theorem [6], a Weierstrass model

can be formed for each of the fibrations above1 and the resulting F-theory vacua explicitly

determined.

The goal of this work is to study such multiple fibrations in explicit CY geometries and

to enumerate the F-theory vacua they lead to, as well their relationship to string dualities.

In this work we focus primarily on correspondences between F-theory and M-theory vacua

in 5- and 6-dimensions and heterotic/F-theory duality in 8-, 6- and 4-dimensions. Related

questions about multiple fibrations and weakly coupled Type IIB orientifold limits [10–14]

or more general weakly coupled limits [15, 16], we leave to future work.

In order to have explicit examples of multiply fibered geometries, the tools developed

here and in a companion paper [1] are illustrated using the dataset of CY manifolds

constructed as complete intersections in products of projective spaces (CICYs) [17–21].

However many of the tools and observations could equally well be applied to complete

intersections in toric varieties [22–24] or the recently constructed gCICY manifolds [25–27].

A complete survey of multiple fibrations in the context of CICY 3- and 4-folds is currently

underway [28]. Here we will focus on highlighting the types of multiple fibrations that can

arise and relate these geometric results to known and novel string dualites.

Central results of the present work include the following:

• We relate distinct F-theory vacua associated to different fibers in (1.1) via their shared

M-theory limits. Because they all arise from a single CY n-fold (and its associated

complex structure moduli space), we find networks of distinct theories that all inherit

their infinitesimal deformations from the same manifold. They are all limits of one

moduli space of theories.

1More specifically, a Weierstrass model can be found for each fibration which admits a section and in the

case of genus one fibrations without section, the Jacobian can be found [9].
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• The possible collection of linked fibrations in (1.1) can frequently include non-flat

fibers [29–31] and hence the effective physics includes superconformal theories (SCFTs)

coupled to the usual N = 1 supergravity + gauge theory in 6-dimensions.

• In the case of non-flat fibers, we find Weierstrass models and verify the presence of

superconformal loci in the associated discriminant locus arising at higher co-dimension

in the base geometry. Systematic studies of such superconformal loci in the literature

to date have focused on blowing up the base geometry to obtain smooth CY resolutions.

The geometries with non-flat fibrations studied here provide alternate CY resolutions

and thus may have interesting consequences for systematic constructions of fibered

CY geometries (see e.g. [32]).

• In the context of heterotic/F-theory duality (and heterotic/Type IIA duality) we

observe the important role played by nested fibrations. To study F-theory, we require

the existence of an elliptic fibration and in order to have a heterotic dual one must

further demand a K3 fibration (usually also with section). The compatibility of such

fibrations — i.e. the K3 fiber itself admitting an elliptic fibration — plays a key role

in the duality map [33]. In the presence of multiple K3 fibrations the role of nested

fibrations becomes important. We explore the consequences in heterotic/F-theory

duality for multiple K3 fibrations (of a single CY geometry Yn+1) and study three

important classes of fibration:

1. Case 1 : Yn+1 contains multiple K3 fibrations — all sharing an elliptic fibra-

tion. In this case there is a single F-theory vacuum dual to multiple heterotic

backgrounds.

2. Case 2 : Yn+1 contains multiple K3 fibrations with distinct elliptic fibrations. In

this case we find distinct F-theory vacua, each with a heterotic dual all leading

to the same effective theory upon dimensional reduction on S1.

3. Case 3 : Yn+1 contains a single K3 fibration with multiple elliptic fibrations.

In this case there are multiple F-theory/heterotic backgrounds possible, all

associated to the same heterotic manifold Xn.

• Most of the heterotic/F-theory dualities we study involve multiple fibrations appearing

in the F-theory geometry (as above). However, we also find novel dualities by consid-

ering the role of multiple elliptic fibrations in 4-dimensional, N = 1 compactifications

of the heterotic string. In this case the heterotic effective theory is independent of

the choice of an elliptic fibration — leading to a collection of possibly distinct dual

F-theory geometries, Y4 and G-flux, all of which share the same EFT.

The structure of this paper is as follows. In section 2 we lay out a brief geometric

survey of elliptic and K3-fibrations in known datasets of CY 3-folds and 4-folds and observe

that the presence of multiple fibrations appears to be ubiquitous in all known systematic

constructions of CY n-folds. In section 3 we begin our study of multiple fibrations by

exploring the consequences of such geometries for M-/F-theory correspondences in 5/6-

dimensions. F-theory vacua associated to distinct elliptic fibrations of a single CY 3-fold

– 4 –
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are systematically analyzed. As expected, dimensionally reducing these theories on S1 and

moving to the Coulomb branch leads to the same 5-dimensional theory in all cases. We find

networks of theories linking F-theory vacua with Abelian, non-Abelian gauge symmetries

and even theories coupled to SCFTs. Examples of CY 3-folds with higher rank Mordell-Weil

group (i.e. rk(MW ) = 4) are presented. In section 4 we turn to heterotic/F-theory duality

(and heterotic/type IIA duality in 4-dimensions) and study possible structures for multiple

K3 fibrations. We review how many known string dualities — including E8 ×E8/SO(32)

heterotic duality [34] in 8-dimensions and the well-known 6-dimensional duality of Duff,

Minasian and Witten [35] can be realized geometrically via multiple fibrations. Moreover,

we find examples of new dualities in 6- and 4-dimensions by considering the structure of

nested elliptic and K3 fibrations in geometries serving as backgrounds for both the heterotic

theory and F-theory. In section 5 we summarize our results and outline a host of other

areas in which multiple fibrations in CY manifolds may play a role in new physics. The

appendices provide a collection of useful results on genus-one fibered CY manifolds and

their discriminant loci.

We turn now to explicit studies of multiple elliptic and K3-fibrations in known datasets

of smooth CY geometries.

2 The geometry of multiple fibrations

It appears that the vast majority of all known Calabi-Yau manifolds are genus-one

fibered [20, 23, 32, 36, 37]. It is also suspected that they are multiply fibered, that is

that they can be written in more than one way as a genus-one fibration. Indeed this has

been shown to be true in the case of CICY three and four-folds [20, 28].

As an example consider the following configuration matrix.

X =


P1 1 1

P2 1 2

P1 1 1

P1 1 1

 (2.1)

This matrix defines a family of Calabi-Yau manifolds in the ambient space P1×P2×P1×P1.

Each column of integers specifies a defining relation of the manifold by giving its polynomial

multi-degree in the homogeneous coordinates of the ambient projective spaces. One can see

the multiple fibrations in the configuration matrix (2.1) as follows. Consider splitting the

configuration matrix up into two pieces, one describing the base and the other the fiber. In

this example we can achieve this in two ways.
P1 1 1

P2 1 2

P1 1 1

P1 1 1

 ,

P1 1 1

P1 1 1

P1 1 1

P2 1 2

 . (2.2)
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matrix [28].
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Figure 3. The abundance of CICY fourfold

configuration matrices, in the standard list, ex-

hibiting a given number of genus one fibrations

which are visible directly in the configuration

matrix [20].

In the above the first rewriting of the configuration matrix (2.1) is as a genus one fibration

over the base P1 × P1. To see this, consider picking any point on the direct product of the

last two P1’s in the ambient space. Substituting the coordinates of this point into the two

defining relations we would obtain a specific complex structure for two defining relations

depending only upon the coordinates in the first two projective space factors. The degrees

of the equations in the remaining variables are described by[
P1 1 1

P2 1 2

]
. (2.3)

This is the configuration matrix of a Calabi-Yau one-fold — a torus. As we change the

point we choose in P1 × P1 the complex structure describing the associated torus fiber will

change, and so we have a non-trivial fibration of a genus-one curve over that base.

Similarly, the second configuration matrix in (2.2) describes the configuration as a

genus-one fibration over P2. Clearly these two fibrations are inequivalent (they do not even

have the same base) and thus even this very simple configuration matrix admits multiple

genus-one fibrations.

Fibrations of the type we are describing here are referred to as Obvious Genus-One

Fibrations (OGFs) as they are manifest in the configuration matrix. As was briefly

mentioned above, almost all CICYs admit multiple fibrations of this kind. Of the 7,890

CICY three-fold configuration matrices 7,837 admit at least one such fibration, with the

average number of inequivalent fibrations per manifold being 9.85. For the CICY four-folds

921,420 out of 921,497 cases admit such a fibration with the average manifold being OGF’d

in 54.6 different ways [20]. Extreme cases also exist — there is one CICY four-fold that

admits 354 different OGFs [20]. This rich structure of multiple fibrations in CICYs is

illustrated in figures 2 and 3.

Fibrations in CICYs are not restricted to genus-one curves. The vast majority of known

CICYs of dimension n are fibered by CICYs of dimension n − 1, which are themselves

– 6 –
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fibered by CICYs of dimension n− 2, and so forth [28]. For example, 7,768 out of 7,890

CICY three-folds have obvious K3 fibrations, with an average of 3.1 different K3 fibrations

per configuration. Almost all of these K3 fibers are also genus-one fibered and there are

103,513 different pairs of nested genus-one fibrations within K3 fibrations in the CICY

data set [28]. Note that this number is larger than the total number of elliptic fibrations

of the CICY three-folds since a given elliptic fiber may appear in multiple different K3

fibrations of a given manifold. For more details, classifications and complex examples of

such structure see [1, 20, 28].

Clearly, the above kind of fibration analysis generalizes to complete intersections in

other types of ambient spaces, and indeed some completely general statements can be made.

The existence of a genus-one fibration in a Calabi-Yau n-fold has been conjectured by

Kollar [38] to be determined by the following criteria:

Conjecture [38]: Let X be a Calabi-Yau n-fold. Then X is genus-one fibered iff there

exists a (1, 1)-class D in H2(X,Q) such that D · C ≥ 0 for every algebraic curve C ⊂ X,

Ddim(X) = 0 and Ddim(X)−1 6= 0.

In the case that X is a Calabi-Yau threefold this conjecture has been proven subject to the

additional constraints that D is effective or D · c2(X) 6= 0 [39, 40]. Phrased simply these

criteria are characterizing the existence of a fibration by characterizing the existence of

the base manifold of that fibration. In particular, the role of the divisor D above is that

of one pulled back from the base, B, where the fibration of X is written π : X → B. The

existence of D = π∗(Dbase) makes it possible to define the form dual to points on the base

(i.e. Ddim(X)−1) which in turn determines the class of the genus-one fiber itself. This allows

us to cleanly explain in general cases what we mean both by “choosing a fibration” of X

and “exchanging a given pair of fibrations” within X.2

As a simple example, consider the second of the two genus-one fibrations in (2.2). This

manifold has Hodge numbers h1,1 = 4, h2,1 = 50. By inspection of the Kähler cone of X

(spanned by the restriction of the hyperplanes, D1, D2, D3, D4, from each factor of the

ambient space P1 × P1 × P1 × P2) and from the triple intersection numbers, drst, of X, it

can be readily verified that one divisor, D in X satisfying the criteria given above is given

simply by D4. For the first fibration in (2.2) a relevant divisor is D3 +D4 (where in this

fibration the two divisors, D3 and D4, are associated to the base P1 × P1 factors).

In the above we have started with a description of the total space of the Calabi-Yau

manifold being considered, being agnostic about what should be chosen as fiber and base.

We have then identified the multiple genus-one fibrations explicitly given this starting

point. Such an approach is somewhat different to that pursued in much of the F-theory

literature. There, it is often the case that one simply picks a base manifold and writes down

a Weierstrass model over that choice. Such a construction has the disadvantage that the

multiple fibration structure might not be as easy to see as in the examples above. However,

the physics of the associated F-theory model is easier to obtain in such an approach as much

2It should be noted that the existence of a fibration structure within a smooth Calabi-Yau n-fold with

n > 2 is a deformation invariant quantity (i.e., given a fibered manifold, every small deformation is also

fibered) [38, 40, 41]. Indeed this must clearly be the case if the above conjecture is to make sense.

– 7 –
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of the technology that has been developed in this regard revolves around a Weierstrass

description. It is important, therefore, if we are studying fibrations such as those in (2.2),

that we know how to put them in Weierstrass form.

In order to put an elliptically fibered Calabi-Yau manifold in Weierstrass form, one

must first obtain an explicit section to that fibration. Given a section one can then use a

procedure due to Nakayama [6, 42] to blow down those components of the fibers which do

not generically intersect the zero section and obtain a Weierstrass description. Importantly

for the program being pursued here, the technology to perform such computations explicitly

has been developed in a companion paper to this one [1] (see also [43]). We refer the reader

to that discussion for the details of how such analysis is performed, along with a review of

how the Jacobian of a fibration is obtained and other details.

In the following sections, we will explore many examples of geometries with multiple

fibration structures and examine ways that the choice of a fibration (i.e., an “orientation” of

the total space into fiber/base) can yield insights into effective theories and string dualities

in various dimensions.

3 Multiple fibrations and the M-theory/F-theory correspondence

In this section we will consider the consequences of multiple elliptic fibrations in a single

smooth Calabi-Yau manifold for the correspondence between F-theory and M-theory com-

pactifications (for recent work on this correspondence see [44]). More precisely, we will

consider F-theory compactified on a multiply elliptically fibered, Calabi-Yau threefold X3.

For each choice of elliptic fibration, we can obtain a Weierstrass model associated to the orig-

inal geometry by the procedures discussed in [1]. The associated F-theory compactification

then gives rise to a particular N = (1, 0) effective theory in 6-dimensions. While the details

of the effective theory obtained in this manner depends upon the choice of elliptic fibration

and thus the F-theory torus, these 6-dimensional theories all share the same M-theory limit.

That is, if we compactify further on an S1 and go to the Coulomb branch of the resulting

5-dimensional N = 2 theory,3 then all of the seemingly disparate theories corresponding to

different fibrations result in the same physics. The resulting 5-dimensional gauge theory is,

in fact, the same as that obtained by compactifying M-theory on the original Calabi-Yau

threefold X3. This relationship between different F-theory and M-theory compactifications

is depicted schematically in figure 4.

In studying examples of this phenomenon, we will need to extract the physics of the

various effective theories from the associated geometries. We will begin by briefly reviewing

how this is achieved, before proceeding to give explicit examples of families of theories

descending from multiply elliptically fibered CICY three-folds.

3.1 Matter in 6-dimensional F-theory compactifications

We will begin by computing and comparing the massless spectrum of the lower dimensional

theories that we consider. For a review of the the well-studied effective physics of F-/M-

theory in 6/5-dimensions see [44, 45]. Briefly, there are a variety of multiplets that arise in

3With 8 real supercharges.
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Figure 4. Correspondences between different compactifications of M-theory and F-theory associated

to geometries with the same total space.

the effective theories obtained in six dimensions by compactifying F-theory on an elliptic

fibration described by a Weierstrass model. These include

• A single gravitational multiplet.

• Tensor multiplets. In the simple cases that we will consider, the multiplicity of tensor

multiplets are determined by the topology of the base of the Weierstrass model.

nT = h1,1(B)− 1 (3.1)

• The number of vectors is determined by the gauge group associated to the low energy

effective theory. This can be decomposed into two components.

G =
∏
A

GA ×U(1)r (3.2)

Here
∏
AGA is the non-Abelian factors in the gauge group which can be found

by an analysis of the codimension one behavior of the discriminant locus of the

elliptically fibered threefold [46–48]. Each such factor GA is associated to an irreducible

component of the discriminant, which we denote by SA. The Abelian factors, U(1)r,

are associated with the Mordell-Weil group of rational sections of the fibration being

considered. Indeed r = rk(MW (X)) is the rank of this group. We will defer a more

detailed computation of these geometrical quantities to the examples sections and

will content ourselves here by noting that the number of vectors is given by

nV = r +
∑
A

dim(adj GA) . (3.3)

• Finally the number of hypermultiplets, nH , in the 6-dimensional theory is given by

(see e.g. [49])

nH = n
(codim 2)
H +

∑
A

gA(dim(adj GA)− rk(GA)) + h2,1(X3) + 1 (3.4)

– 9 –
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Here, gA is the genus of the divisor SA in the base, which can be determined by the

following formula,

gA = 1 +
1

2
SA · (SA +KB2), (3.5)

where KB2 is the canonical divisor of the base.

The contribution n
(codim 2)
H in (3.4) arises from fibers over codimension two points

in the base. For example, at specific codimension-two loci in the base, where self-

intersections of the discriminant locus occur, the rank of the non-Abelian singularity

of the fiber will enhance. Such enhancements generically lead to matter states and

their representations can be obtained from the branching rules from the adjoint

representation of the enhanced gauge algebra into the low energy gauge group of the

theory [50]. Counting U(1) charged matter that is neutral under the non-Abelian gauge

group factors is somewhat more involved. Such degrees of freedom are associated

with I2 fibers appearing over nodes of the self-intersection of the I1 locus of the

discriminant [51]. The computation of this U(1)-charged matter is discussed in detail

in appendix A.

3.1.1 Anomaly cancelation

The spectrum that is found from a consistent F-theory compactification is always anomaly

free. Given this, freedom from anomalies is an excellent check of the calculations we will

present. In this paper we will concentrate on anomalies involving only gravitational and

non-Abelian degrees of freedom. The relevant constraints on the spectrum are then as

follows. Firstly, in terms of pure gravitational anomalies we have [29, 30]

nH − nV + 29nT = 273 , (3.6)

9− nT = a · a . (3.7)

Here the vector aα is defined in terms of an expansion of the canonical divisor of the base

KB2 with respect to a fixed basis of divisors in that space, ∆b
α where α = 1, . . . , h1,1(B2).

KB2 = aαDb
α (3.8)

Cancellation of the mixed non-Abelian/gravitational anomalies leads to the following

constraints [52–54],
1
6

(
AadjA −

∑
R xRAR

)
= a ·

(
bA
λA

)
, (3.9)

and cancelation of the pure non-Abelian anomalies leads to,

BadjA −
∑
R

xRBR = 0

1
3

(∑
R xRCR − CadjA

)
=

(
bA
λA

)2

.

(3.10)

In both (3.9) and (3.10), xR represents the number of matter fields in the R representation

of gauge group GA. The factors λA are, for the cases we will need in this paper, λSU(N) = 1.
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The vector bA is defined by expanding the divisor associated to the gauge group factor GA
in terms of a basis of divisors:

Sb
A = bαAD

b
α . (3.11)

Finally, the coefficients AR, BR and CR are group-theoretic in nature, being defined by the

following formulae,

trR F
2 = AR trF 2, trR F

4 = BR trF 4 + CR (trF 2)2, (3.12)

for any representation R, where the unlabeled trace is with respect to the fundamental

representation. For SU(N) with N > 3, these coefficients take the following values:

Representation Dimension AR BR CR
Fundamental N 1 1 0

Adjoint N2 − 1 2N 2N 6

Antisymmetric N(N − 1)/2 N − 2 N − 8 3

(3.13)

For SU(2) and SU(3), the AR coefficients in the above table are still correct, while the BR
vanish. The coefficient CR, for SU(2) and SU(3), can be computed as the combination

CR + 1
2BR using the values for BR and CR in the above table.

3.2 Matter of 5-dimensional M-theory compactifications and 6D → 5D reduc-

tions

The matter content of the 5-dimensional theory obtained when M-theory is compactified on

a smooth Calabi-Yau threefold X3 is rather straightforward in comparison to the structure

seen in the previous subsection. We have the following (see e.g. [55]):

• A single gravitational multiplet.

• Vector multiplets with multiplicity given by

n
(5D)
V = h1,1(X3)− 1 . (3.14)

• Hypermultiplets with multiplicity given by

n
(5D)
H = h2,1(X3) + 1 . (3.15)

If we start with one of the 6-dimensional theories described in the previous subsection,

compactify further on an additional S1, and go to the Coulomb branch, we obtain an N = 2,

5-dimensional supergravity theory. The resulting multiplet content is determined in terms

of the spectrum seen in 6-dimensions. In particular, we will find a theory with

n
(5D)
V = nV + nT + 1 (3.16)

n
(5D)
H = nneutral

H (3.17)
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where in a slight abuse of notation we use the same notation for the vector and hyper

multiplets in this theory as we did in that obtained by dimensional reduction of M-theory.

In fact, given what we have learned about the spectra of the 6- and 5-dimensional

theories, it is easy to see that the F-theory/M-theory correspondence always works at the

level of multiplet content, independently of which fibration we pick to be the F-theory torus.

For the hypermultiplets, in going to the Coulomb branch it is clear that all of the complex

structure of X3 will become neutral. These, in addition to the universal hypermultiplet,

then give nneutral
H = h2,1(X3) + 1. Comparing this to (3.17) and (3.15) then makes it obvious

that we obtain the correct number of 5-dimensional hypermultiplets to agree with the

associated M-theory compactification.

In going to the Coulomb branch the gauge group in the 6-dimensional theory is broken

down to its maximal Abelian subgroup. After undergoing such a process we are left with

nV =
∑

A rk(GA) + r vector multiplets. According to (3.16), we should then see

n
(5D)
V =

∑
A

rk(GA) + r + nT + 1 =
∑
A

rk(GA) + r + h1,1(B) (3.18)

vector multiplets in the 5-dimensional compactification of this theory on a circle. According

to the formula of Shioda-Tate-Wazir [56–58], applied to this example we have

h1,1(X3) = h1,1(B) +
∑
A

rk(GA) + r + 1 . (3.19)

Finally then, we arrive at the expression,

n
(5D)
V = h1,1(X3)− 1 , (3.20)

which agrees precisely with the result of the M-theory reduction as given in (3.14).

Having described the basics of the M-theory/F-theory correspondence in generality,

we now move on to construct some explicit examples of this structure in multiply fibered

Calabi-Yau three-folds.

3.3 Example of a (non-)Abelian/Abelian correspondence

As our first example of the M-theory/F-theory correspondence let us consider the family of

Calabi-Yau three-folds described by the following configuration matrix.

X3 =


P1 1 1 0 0

P2 1 0 2 0

P2 0 1 1 1

P2 1 0 1 1

 (3.21)

As we shall see, this configuration admits 4 different OGFs which we will consider in turn

in what follows. The Hodge numbers of (3.21) are h1,1(X3) = 4 and h2,1(X3) = 47. Given

this, and (3.14) and (3.15), we see that M-theory compactified on such a manifold leads

to a 5-dimensional theory containing n
(5D)
V = 3 vector multiplets and n

(5D)
H = 48 hyper

multiplets.
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3.3.1 A fibration E1 with G = SU(2)×U(1)

The first OGF we will consider of the configuration (3.21) is as follows.

XE1
3 =


P1 1 1 0 0

P2 1 0 2 0

P2 0 1 1 1

P2 1 0 1 1

 (3.22)

Here the base of the fibration is P2 and thus h1,1(B) = 1. We wish to obtain the Weierstrass

form associated to this fibration, and from this obtain the gauge group and matter content

of the associated F-theory model. To achieve this, we will make use of the techniques

developed in the companion paper to this one [1].

Obtaining Weierstrass form and the gauge group. To put (3.22) in Weierstrass

form, we first need to isolate a section of the fibration. Following section 2.2 of [1], the

first step in doing so is to obtain a set of possible (or “putative”) sections. These are

divisor classes that intersect a generic fiber once and which satisfy an additional topological

constraint that follows from the requirement that the divisor be birational to the base (in

this case P2). We then follow the discussion of section 2.3 of that same paper in order to

isolate a divisor S0 such that h∗(O(S0)) = (1, 0, 0, 0) before obtaining an explicit description

of that divisor class which is proven by direct computation to describe a section to the

fibration.

In the case at hand, all of this analysis leads us to conclude that

O(S0) = O
X

E1
3

(−1, 1, 0, 1) (3.23)

is a line bundle corresponding to a suitable divisor which describes the image of a rational

section of the fibration (3.22). Since h1,1(X3) = 4 and the manifold is “favorable” [59] in

that a basis of divisors restricts from the ambient space, the degree of the line bundle is

expanded in a basis of restricted hyperplanes from the ambient Pn factors.

Once a section of the fibration S0 has been isolated, the next step is to follow the

Deligne procedure [6, 42] to put (3.22) in Weierstrass form. This procedure is described

for such examples in detail in section 3.1 of [1]. In the case at hand we obtain a specific

Weierstrass from,

y2 = x3 + fx2z4 + gz6, (3.24)

the details of which are lengthy and dependent upon the initial choice of complex structure

made for the defining relations of (3.21). In particular, the functions of the base coordinates

f ∈ H0(B,K−4
B ) and g ∈ H0(B,K−6

B ) are rather complex and obtained numerically in our

analysis. Due to their length, we refrain from including them explicitly here.

Given a Weierstrass form such as (3.24), the discriminant locus of the fibration can be

determined simply as

∆W = 27g2 + 4f3 (3.25)
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Computing ∆W in our case, we find that this discriminant locus factorizes as follows.

∆W = (∆I2)(∆I1) (3.26)

That is the discriminant is made up of an I2 and an I1 locus according to Kodaira’s

classification [46, 47]. We thus see that the F-theory compactification associated to this

Weierstrass model will have an SU(2) factor.

Finally, we can use the theorem by Shioda-Tate-Wazir [56–58], together with the above

analysis and the fact that the fibration (3.22) is flat, in order to determine the Abelian

component of the gauge group in this example. From Shioda-Tate-Wazir, applied to this

example we know that

h1,1(X3) = h1,1(B) +
∑
A

rk(GA) + r + 1 (3.27)

⇒ r = h1,1(X3)− h1,1(B)−
∑
A

rk(GA)− 1 = 4− 1− 1− 1 = 1 . (3.28)

Thus we see that we have a MW group of rank one and thus a single abelian factor in the

gauge group. We conclude that the gauge group of the theory obtained by compactifying

F-theory on this Weierstrass model is SU(2) ×U(1).

It should be noted that the loci in (3.26) are obtained numerically in the above

analysis and so it is useful to confirm this result using another technique for calculating the

discriminant locus, to which we now turn.

The discriminant of the Jacobian of the fibration (3.22) is identical as a locus in the

base P2 to that obtained from the Weierstrass model described above. Indeed, as described

in section 3.2 of [1], the process of “contractions” of the CICY fiber [17] in (3.22), followed

by taking the Jacobian (J(X)), also turns out to give rise to the same discriminant locus

and also benefits from being easier to compute. We follow such a procedure below in several

different ways, in order to get codimension 1 or 2 fiber whose Jacobian may be taken

easily using results in the literature [60]. We will consider two different contractions of the

configuration matrix (3.22). The first of these involves contracting the P2 in the third row

of the configuration matrix. The second will involve contracting the first P1 and then the

P2 in the third row.

We first consider contracting the P2 in the third row of the fiber. Under such a blow

down, the configuration matrix becomes:

X ′3
E1 =

P1 1 1

P2 1 2

P2 1 2

 (3.29)

This codimension two fiber is labeled by PALP ID (4, 0) [61] and we can directly obtain the

associated Jacobian by using the results of [60]. One can check explicitly that that the two

discriminant loci ∆W and ∆bl1 associated to the Jacobian of (3.29) agree exactly. Moreover,

it can be explicitly verified that ∆bl1 factorizes as an I2 locus times an I1 locus.

∆bl1 ∼ p2
1 p34 = (∆I2)(∆I1). (3.30)
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Here, p1 and p34 are polynomials of degree 1 and 34 respectively in the homogeneous

coordinates of the base P2. We also find that f and g vanish linearly on the locus where

p1 = 0 and thus we do indeed obtain an I2 locus.

As a second method for blowing down the configuration (3.22) we can contract the first

P1 and the P2 in the third row. This leads to a configuration matrix,

X ′′3
E1 =

[
P2 3

P2 3

]
. (3.31)

We follow the procedure described in [9, 60] to get the discriminant ∆bl2 of the associated

Jacobian. Once again, we find it factorized as:

∆bl2 ∼ p2
1 p34 = (∆I2)(∆I1). (3.32)

Once again ∆W of the original manifold exactly matches ∆bl2 , and vice versa and we

conclude that all three of the discriminants we have obtained are identical as expected [1].

∆W ∼ ∆bl1 ∼ ∆bl2 (3.33)

In short, via numerous complementary analyses we have been able to show that the gauge

group of this compactification is SU(2)×U(1) and we have obtained an explicit expression

for the discriminant locus of the Weierstrass model. We now turn to an identification of the

matter spectrum seen in 6-dimensions.

Matter content and anomaly cancelation in 6-dimensions. From (3.4) we see that

there are several contributions to the number of hypermultiplets in a compactification such

as the one we are considering here. In the case at hand, it can be seen from the analysis

of the previous section that the genus of the I2 locus g1 = 0. This is a straightforward

consequence of the fact that this locus is described as a linear constraint p1 = 0 inside

P2 and is thus simply a P1. As a result, the second term in (3.4) does not contribute to

the number of hypermultiplets. We also know that h2,1(X3) = 47 in our case and the

Weierstrass model is birational to the original configuration (3.22). Thus we need only

compute the remaining contribution n
(codim 2)
H which is associated with points (co-dimension

two loci) in the base P2.

One contribution to the number of hypermultiplets comes from charged matter arising at

the intersections of the I2 and I1 loci of the discriminant. In total these two loci intersect 34

times at 28 distinct points, 22 with intersection multiplicity 1 and 6 points with intersection

multiplicity 2. The 22 points associated with single intersection multiplicities are associated

with I3 degenerations of the fiber while the 6 points of double intersections correspond to

type III singularities of the fiber.

The 22 type I3 fibers correspond to transverse intersections of the I1 and I2 loci.

Examining the decomposition of the adjoint of SU(3) to SU(2), given by the branching

rule 8 = 1 + 2 + 2̄ + 3, we see that we expect each such intersection to contribute a

hypermultiplet associated to the 2 representation of SU(2). Thus, in total, we expect such

charge matter to contribute 22 × 2 = 44 hypermultiplets to the low energy spectrum. The
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type III fibers are located at intersection points where the I2 and I1 loci are tangent, and

we do not expect such points to contribute further charged matter.

Next, we must count the matter that is uncharged under SU(2) but which is charged

with respect to the abelian factor in the gauge group. These are counted by the number

of nodes of the I1 locus. In this example, using the techniques described in appendix A,

we find that there are 185 such nodes, each of which corresponds to a single U(1) charge

hypermultiplet. The important question of determining the U(1) charges of this matter, we

leave to future investigation.

Now that we have determined the matter content of the 6-dimensional theory associated

to the Weierstrass model of the fibration (3.22), it can be verified that the result is consistent

with anomaly cancelation. We begin by considering the gravitational anomaly cancelation

condition (3.6).

In the case at hand the base manifold is P2 and thus h1,1(B) = 1, which indicates that

nT = 0 in the 6-dimensional N = (1, 0) effective theory. Given that the gauge group is

SU(2)×U(1) we have nV = 4. Finally, combining all of the contributions listed above to the

total number of hypermultiplets, we have from (3.4) that nH = 44 + 185 + 0 + 47 + 1 = 277.

Combining these three values we find that nH − nV + 29nT = 277− 4 + 0 = 273 as desired.

The cancelation of the non-Abelian gauge anomalies and mixed non-Abelian/gravi-

tational anomalies can also be seen to hold correctly. When the base is P2 we have that

a = −3 and (3.7) is satisfied. Furthermore, b = 1 given that the I2 locus is a hyperplane in

P2. The anomaly cancelation conditions (3.9) and (3.10) then simplify to the following.

18 =
∑
i

ARi −Aadj , 0 =
∑
i

BRi −Badj , 3 =
∑
i

CRi − Cadj (3.34)

Recall that in our case, in terms of SU(2) charged matter, we have 22 multiplets in the

doublet representation. The relevant coefficients appearing in the above equations are then:

A2 = 1, Aadj = 4, B2 = 0, Badj = 0, C2 =
1

2
, Cadj = 8. (3.35)

These numbers satisfy the anomaly cancelation condition (3.34). Thus we see that the

matter content we have obtained is consistent with 6-dimensional anomaly cancelation,

providing a highly non-trivial check of the tools we have used to analyze the complete

intersection manifold above.

The final comment that we should make in this subsection is that the 6-dimensional

SU(2)×U(1) theory that we have obtained consistently reduces to the expected 5-dimensional

supergravity, derived from the compactification of M-theory on (3.21) if we go to the Coulomb

branch and dimensionally reduce on a circle. We have h2,1(X3) + 1 neutral hypermultiplets

in 6-dimensions which give rise to the same number of hypermultiplets in the 5-dimensional

supergravity. In addition, the 4 vector multiplets that we have in 6-dimensions reduce

to just two massless degrees of freedom in going to the Coulomb branch of the theory.

Dimensionally reducing to 5-dimensions, and remembering that we have no tensor multiplets

in 6-dimensions, (3.16) tells us that this will lead to 3 vector multiplets in that theory. This

is indeed h1,1(X3)− 1 and thus agrees with the M-theory compactification.
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3.3.2 Other fibrations with purely Abelian gauge groups

A fibration E2 with G = U(1). The configuration matrix (3.21) admits another OGF

with h1,1(B) = 2.

XE2
3 =


P2 0 1 2 0

P2 0 1 1 1

P1 1 1 0 0

P2 1 0 1 1

 , B =

[
P1 1

P2 1

]
= F1 (3.36)

Following the same procedure described in previous subsection, for this fibration it is

possible to identify a rational section as

O(S0) = O
X

E2
3

(1,−1, 1, 1) (3.37)

with h•(X,O(S0)) = (1, 0, 0, 0). Starting with such a section, we can compute the Weier-

strass Model as before and study its discriminant locus. In this case, the discriminant is

simply comprised of a I1 locus: ∆W = ∆I1 .

Our result for the discriminant of the Weierstrass model can once again be checked by

computing the discriminant of Jacobians of contractions of the original configuration (3.36).

We can blow down one P2 to obtain:

X ′3
E2 =

P2 0 3

P1 1 1

P2 1 2

 . (3.38)

Using the results of [9, 60] we again find that the discriminant ∆bl only contains an I1 locus.

Given the above results, and the theorem of Shioda-Tate-Wazir (3.19), we see that we

must have a single U(1) gauge group factor associated to this compactification. That is,

the Mordell-Weil group is of rank one (see [1] for details on constructing the Mordell-Weil

lattice explicitly in configurations such as this). Since the base has h1,1(B) = 2 we then

have that nV = 1 and nT = 1. Finally, we need to count the number of U(1) charged

hypermultiplets. Counting the number of nodes in the I1 locus as before we find that there

are 197 such charged matter fields. Combining this result with (3.4) we see that we have

nH = 197 + h2,1(X3) + 1 = 245 in this example.

The results we have obtained here can once again be checked to be consistent with

anomaly cancelation. In particular, we see that

nH − nV + 29nT = 245− 1 + 29 = 273 , (3.39)

as required by the cancelation of the gravitational anomaly. It is also trivial to check

from (3.16) and (3.17) that the theory has the correct M-theory limit.

A fibration E3 with G = U(1)2. A third OGF admitted by the configuration ma-

trix (3.21), once more with a P2 base, is as follows.

XE3
3 =


P1 1 1 0 0

P2 0 1 1 1

P2 1 0 1 1

P2 1 0 2 0

 , B = P2 (3.40)
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We identify rational sections as before and find that one appropriate choice for a zero section

is given by

O(S0) = O
X

E3
3

(−1, 0, 1, 1) (3.41)

with h•(X,O(S0)) = (1, 0, 0, 0). The Weierstrass Model constructed using this section

results in a discriminant which is not factorizable. In other words, ∆W = ∆I1 and there are

no non-Abelian factors in the gauge group.

As in previous cases, the structure of the discriminant can be checked by comparison

to that of the Jacobian of a contraction of the original configuration matrix. Contracting

one of the P2’s we arrive at:

X ′3
E3 =

P1 1 1

P2 2 1

P2 3 0

 . (3.42)

This fiber is of the same form as that obtained in (3.29) and its Jacobian can be obtained

in the same way. The resulting discriminant ∆bl agrees with that of the Weierstrass model

discussed above.

Given that the gauge group has no non-Abelian component, we find from (3.19) that

the rank of the Mordell-Weil group must be two in this example. Thus we have a U(1)2

symmetry in 6-dimensions. This tells us that nV = 2, and given that the base is P2 we

know that nT = 0. All that is left for us to compute is the U(1) charged matter.

Analyzing the I1 locus, we find that it contains 227 nodes, thus giving rise to the same

number of charged hypermultiplets. The formula (3.4) then tells us that nH = 227+47+1 =

275. As in previous examples these results are consistent with anomaly cancelation,

nH − nV + 29nT = 275− 2 + 0 = 273 , (3.43)

and reduce to the correct result in the M-theory limit described in section 3.2.

A non-flat fibration E4. The geometry admits a fourth OGF with h1,1(B) = 1.

XE4
3 =


P1 1 1 0 0

P2 1 0 2 0

P2 1 0 1 1

P2 0 1 1 1

 , B = P2 (3.44)

This fibration, however, is not flat and as such we do not analyze it further here. Studying

the physics associated to such fibrations [29–31, 62, 63] is beyond the scope of this paper,

although we will make a few comments in this direction at the end of this section. As has

been noted in other contexts [62], many geometries in the CICY list exhibit at least one

such non-flat OGF and that such structures seem to be fairly common.

At the end of this lengthy analysis, we have identified four different 6-dimensional

compactifications of F-theory E1,E2,E3 and E4 which share an M-theory limit. The four

theories which are linked in this way are illustrated in figure 5. For three out of four of the

6-dimensional theories involved in this correspondence, we have been able to describe the

multiplet structure that arises in detail and check our computations explicitly by considering
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Figure 5. 6D F-theory compactifications that share the same 5D M-theory limit with n
(5D)
V =

3, n
(5D)
H = 48. The double dashed line denotes a link between two Abelian theories while the thick

line denotes a correspondence between non-Abelian and Abelian theories.

both anomaly cancelation and the M-theory limit. It is interesting that such a wide variety

of different theories, including non-Abelian models, purely Abelian theories, and even the

more exotic physics associated to non-flat fibrations, can be related in this way by a common

dimensional reduction of their Coulomb branch. The advantage of the construction we

have described here is that because all of these theories were derived from the same initial

configuration matrix (3.21), it was guaranteed from the start that they would share an

M-theory limit in this manner.

3.4 Example of a non-Abelian/non-Abelian correspondence

By starting with different initial configuration matrices we can generate a huge variety

of families of F-theory compactifications with the same M-theory limit. To give another

example, let us consider a geometry which gives rise to a correspondence between different

non-Abelian 6-dimensional theories. The three-fold we will consider

X3 =


P1 1 1 0 0 0

P1 1 0 1 0 0

P2 0 1 0 2 0

P2 0 0 1 1 1

P2 1 0 0 0 2

 (3.45)

has Hodge numbers h1,1(X3) = 5, h2,1(X3) = 25 and exhibits six different OGF structures.

Here we will focus on three of those OGF’s which admit rational sections.

A fibration E1 with G = SU(2) × SU(2)′ × U(1). The first OGF of (3.45) that we

will consider is as follows:

XE1
3 =


P1 1 1 0 0 0

P1 1 0 1 0 0

P2 0 1 0 2 0

P2 0 0 1 1 1

P2 1 0 0 0 2

 , B = P2. (3.46)
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Using the same techniques as in previous subsections we identify O(S0) = O
X

E1
3

(−1, 0, 1, 0, 0)

as a rational section. We can then obtain the associated Weierstrass model and compute its

discriminant locus ∆W . The same locus in the base can be obtained by following contracting

the two P1’s and the second P2 in (3.46) to obtain a fiber described as a a simple cubic in

P2, and then taking the Jacobian. This Jacobian has a discriminant ∆bl = ∆W and both

computations agree to give the following result.

∆bl = (∆I2)(∆I′2
)(∆I1) (3.47)

We see that in this example we obtain a 6-dimensional theory with two SU(2) factors in

the low energy gauge group. Use of the Shioda-Tate-Wazir formula (3.19) then tells us

that rk(MW ) = 1 in this example. Thus we conclude that the resulting 6-dimensional

compactification of F-theory exhibits a gauge group SU(2) × SU(2)′ ×U(1).

Next we must compute the number of charged hypermultiplets in the effective 6-

dimensional theory. The genus of each of the two I2 components in this example is zero,

and as such the second term in (3.4) vanishes. We need then only consider the intersection

between the I2, I ′2 and I1 loci and the nodes of the I1 locus itself:

• ∆I2 ∩∆I1 : 32 points in the base corresponding to I3 singular fibers and 12 points

corresponding to type III singular fibers. These contribute 32 doublets under SU(2):

32× (2,1).

• ∆I′2
∩∆I1 : 32 points in the base corresponding to I3 singular fibers and 12 points

corresponding to type III singular fibres. These contribute 32 doublets under SU(2)′:

32× (1,2).

• ∆I2 ∩∆I′2
: 4 points in the base corresponding to I4 singular fibers. These contribute

4 bi-doublets under SU(2) × SU(2)′: 4× (2,2′).

• ∆I1 self-intersection: the I1 locus exhibits 110 nodes which contribute 110 SU(2)×
SU(2)′ singlets charged under the U(1) gauge group factor.

Combining all of these results together, and including the h2,1(X3) + 1 neutral hyper-

multiplets that arise in this configuration, we find that we have nH = 32× 2 + 32× 2 + 4×
4 + 110 + 25 + 1 = 280. Using this information, together with the fact that nV = 7 and

nT = 0 we can now proceed to consider anomaly cancelation. The gravitational anomaly

cancelation condition is clearly satisfied with nH − nV + 29nT = 280 − 7 + 0 = 273 as

desired. A slightly lengthier computation also shows that the anomalies associated with the

two non-Abelian factors in the gauge group also cancel.

A fibration E2 with G = SU(2) × U(1). The second OGF of (3.45) that we consider

has h1,1(B) = 2 and is described as follows:

XE2
3 =


P1 0 1 1 0 0

P2 0 0 1 1 1

P2 0 1 0 0 2

P2 1 0 0 2 0

P1 1 1 0 0 0

 , B =

[
P2 1

P1 1

]
= F1. (3.48)
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For this elliptic fibration, we identify O(S0) = O
X

E2
3

(−1, 0, 1, 0, 1) as a rational section.

Following either the procedure for obtaining the associated Weierstrass model or the

procedure involving contracting the configuration matrix and then taking the Jacobian we

obtain the same description of the discriminant locus in the base F1. In particular, we find

that ∆W = ∆bl = (∆I2)(∆I1) and thus we have a single SU(2) non-Abelian factor in the

gauge group. Using the Shioda-Tate-Wazir theorem as in previous examples we can then

show that the Mordell-Weil group is of rank one leading to a total low energy gauge group

of SU(2)×U(1).

The charged matter in this fibration comes from both the intersection of the I2 and

I1 loci and the self-intersection of the I1 locus. Using the techniques we have described,

one can show that the I2 locus intersects the I1 locus at 52 points. Of these points, 40

are associated with I3 fibers, and 12 with type III fibers. In total, then, this leads to 40

hypermultiplets which are doublets of SU(2). To compute the charged U(1) matter we

examine the I1 locus and show that it exhibits 142 nodes. In total then, using (3.4) and

the fact that the genus of the I2 component of the discriminant is zero, we see that we have

nH = 40× 2 + 142 + 25 + 1 = 248 hypermultiplets in the 6-dimensional theory associated

to the fibration (3.48).

Combining the information we have obtained about the 6-dimensional theory associated

to the fibration (3.48), we can easily see that gravitational anomaly cancelation holds.

Indeed we have that nH − nV + 29nT = 248 − 4 + 29 = 273. A slightly more involved

calculation, following along exactly the same lines as those described in earlier subsections,

also shows that the non-Abelian anomalies cancel too.

A non-flat fibration E3. As was the case for the configuration (3.21), the geometry (3.45)

also admits a non-flat fibration with a section:

XE3
3 =


P1 1 1 0 0 0

P1 1 0 1 0 0

P2 0 0 1 1 1

P2 1 0 0 0 2

P2 0 1 0 2 0

 , B = P2. (3.49)

Once again, we will save a discussion of non-flat fibers for the end of this section.

After completing our analysis of the configuration matrix (3.45) we conclude that it

exhibits 6 OGFs. Of these three admit a section and one of those is a non-flat fibrations. We

have computed the spectrum associated to the Weierstrass model of the two flat fibrations

with section and have shown that we achieve a consistent anomaly free theory in both cases.

Both 6-dimensional theories are non-Abelian, with different gauge groups, and have the

same 5-dimensional M-theory limit with n
(5D)
V = 4 and n

(5D)
H = 26. The structure we have

elucidated here is depicted in figure 6.

3.5 Higher rank Mordell-Weil group

There is currently no known bound on the rank of the Mordell-Weil group that can be

achieved in an elliptically fibered Calabi-Yau three-fold, and as a result, it is interesting to
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Figure 6. 6D compactifications of F-theory that share a M-theory limit. In this example the 6D

theories have different non-Abelian gauge groups but nevertheless give rise to the same theory in

5D with n
(5D)
V = 4 and n

(5D)
H = 26.

consider whether the novel fiber types explored here can naturally give rise to examples

with high rank? For recent systematic studies of fiber-types with non-trivial Mordell-Weil

group see [64–72] (and for genus one fibrations [51, 73, 74]). Here we note that the favorable

CICYs exhibit a rich structure of cases with higher rank Mordell-Weil groups that can

easily be studied with the techniques we have been discussing. As an example, we present

an example of a geometry which exhibits nine different fibration structures and where the

total space has h1,1(X3) = 7, h2,1(X3) = 26. Among the nine fibrations, two of them, E1

and E8, are of Mordell-Weil rank r = 4.

Let us begin our discussion with the fibration,

XE1
3 =



P1 0 0 1 1 0 0 0 0 0

P2 0 0 1 0 1 1 0 0 0

P2 0 0 0 1 0 0 0 1 1

P2 0 1 0 0 1 0 0 1 0

P2 0 0 0 0 0 1 1 0 1

P1 1 1 0 0 0 0 0 0 0

P2 1 0 0 1 0 0 1 0 0


. (3.50)

In this case, we can identify O(S0) = O
X

E1
3

(1,−1, 0, 0, 1, 0, 0) as a good choice of zero

section. Computing the discriminant locus of the fibration in the same manner as for

previous examples, we find that it only contains an I1 locus. Since h1,1(B) = 2, the

Shioda-Tate-Wazir decomposition of the Picard lattice tells us that the Mordell-Weil group

is of rank 4. Thus the gauge group of the associated 6-dimensional compactification of

F-theory is simply U(1)4.

It is possible to study this rank 4 Mordell-Weil group of sections explicitly. Following

the discussion in [1], we can find “putative sections” that obey certain necessary topological

constraints that must hold for any true section. Parameterizing a general line bundle

associated to a putative section as O(S) = O
X

E1
3

(b1, b2, b3, b4, b5, b6, b7), the relevant objects
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form a four-parameter family of possibilities:

b1 = −1− 3k2 − k3 − k4 ,

b2 = k1 ,

b3 = 1− k1 + 2k2 ,

b4 = k3 ,

b5 = k4 ,

b6 = −k1 + k2
1 + 3k2 − 2k1k2 + 4k2

2 + 2k2k3 + k2
3 + k4 + 3k2k4 + k3k4 + k2

4 ,

b7 = 1− 3k1 + 2k2
1 + 11k2 − 7k1k2 + 14k2

2 + 3k3 − k1k3 + 8k2k3 + 2k2
3 + 2k4

− k1k4 + 7k2k4 + 2k3k4 + 2k2
4 ,

(3.51)

where k1, · · · , k4 ∈ Z. If we further require that the zeroth cohomology of the line bundle

associated to the putative sections should be equal to one, we can narrow down our search

for rational sections and, in fact, find explicit generators for the Mordell-Weil lattice. For the

case at hand, a suitable set of generators is O
X

E1
3

(1,−1, 0, 1, 0, 0, 0), O
X

E1
3

(1, 0,−1, 0, 1, 0, 1),

O
X

E1
3

(0, 0, 1,−1, 0, 1, 0) and O
X

E1
3

(−1, 0, 1, 0, 0, 0, 1). More details of how such computations

are performed, as well as a detailed discussion of the addition law and Shioda map in

geometries like this can be found in [1].

We can again calculate the matter content of the F-theory compactification associated

to the fibration E1 and check that gravitational and non-Abelian gauge anomaly cancellation

holds. The case at hand has nT = 1, nV = 4 and nH = 248 and indeed all such consistency

checks are passed.

Let us analyze the other eight OGFs associated to the configuration matrix (3.50).

XE2
3 =



P1 0 1 1 0 0 0 0 0 0

P2 0 1 0 1 0 0 1 0 0

P2 0 0 0 1 0 0 0 1 1

P2 0 0 1 0 1 0 0 1 0

P2 0 0 0 0 0 1 1 0 1

P1 1 0 0 1 0 0 0 0 0

P2 1 0 0 0 1 1 0 0 0


; XE3

3 =



P1 0 0 1 1 0 0 0 0 0

P2 0 0 1 0 1 1 0 0 0

P2 0 1 0 1 0 0 1 0 0

P2 0 0 0 1 0 0 0 1 1

P2 0 0 0 0 0 1 1 0 1

P1 1 1 0 0 0 0 0 0 0

P2 1 0 0 0 1 0 0 1 0


;

XE4
3 =



P1 1 1 0 0 0 0 0 0 0

P1 0 0 1 1 0 0 0 0 0

P2 0 0 1 0 1 1 0 0 0

P2 0 0 0 1 0 0 0 1 1

P2 0 1 0 0 1 0 0 1 0

P2 0 0 0 0 0 1 1 0 1

P2 1 0 0 1 0 0 1 0 0


; XE5

3 =



P2 0 0 1 0 1 1 0 0 0

P2 1 0 0 1 0 0 1 0 0

P2 0 0 0 1 0 0 0 1 1

P2 0 1 0 0 1 0 0 1 0

P2 0 0 0 0 0 1 1 0 1

P1 1 1 0 0 0 0 0 0 0

P1 0 0 1 1 0 0 0 0 0


;
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XE6
3 =



P1 1 1 0 0 0 0 0 0 0

P1 0 0 1 1 0 0 0 0 0

P2 0 0 1 0 1 1 0 0 0

P2 1 0 0 1 0 0 1 0 0

P2 0 0 0 1 0 0 0 1 1

P2 0 1 0 0 1 0 0 1 0

P2 0 0 0 0 0 1 1 0 1


; XE7

3 =



P1 1 1 0 0 0 0 0 0 0

P1 0 0 1 1 0 0 0 0 0

P2 0 0 1 0 1 1 0 0 0

P2 1 0 0 1 0 0 1 0 0

P2 0 0 0 1 0 0 0 1 1

P2 0 0 0 0 0 1 1 0 1

P2 0 1 0 0 1 0 0 1 0


;

XE8
3 =



P1 1 1 0 0 0 0 0 0 0

P1 0 0 1 1 0 0 0 0 0

P2 0 0 1 0 1 1 0 0 0

P2 1 0 0 1 0 0 1 0 0

P2 0 1 0 0 1 0 0 1 0

P2 0 0 0 0 0 1 1 0 1

P2 0 0 0 1 0 0 0 1 1


; XE9

3 =



P1 1 1 0 0 0 0 0 0 0

P1 0 0 1 1 0 0 0 0 0

P2 1 0 0 1 0 0 1 0 0

P2 0 0 0 1 0 0 0 1 1

P2 0 1 0 0 1 0 0 1 0

P2 0 0 0 0 0 1 1 0 1

P2 0 0 1 0 1 1 0 0 0


.

Direct computation shows that the genus of the components of the discriminant

associated to non-Abelian gauge group factors are all zero in these examples.

• E2: we can identify O(S0) = O
X

E2
3

(1,−1, 0, 0, 1, 0, 0) as a good choice of zero section.

The gauge group is G = SU(2)×U(1)3, containing nT = 1 tensor multiplets, nV = 6

vector multiplets and nH = 250 hyper multiplets. Among these hyper multiplets,

there are 22 SU(2) doublets and 179 SU(2) singlets charged under the U(1)s. The

generators of the rank 3 Mordell-Weil group can be taken to be O
X

E2
3

(0, 0,−1, 1, 1, 0, 0),

O
X

E2
3

(−1, 1, 0, 0, 0, 0, 0) and O
X

E2
3

(0, 1, 0, 0− 1, 0, 1).

• E3: we can identify O(S0) = O
X

E3
3

(0,−1, 0, 0, 1, 0, 1) as a good choice of zero section.

The gauge and matter content is the same as E2. The generators of the Mordell-

Weil group can be taken to be O
X

E3
3

(0, 0,−1, 0, 1, 1, 0), O
X

E3
3

(0, 0, 0,−1, 1, 0, 1) and

O
X

E3
3

(0, 1, 1, 0,−1, 0, 0).

• E4: is a non-flat fibration.

• E5: we can identify O(S0) = O
X

E5
3

(0,−1, 0, 0, 1, 1, 0) as a good choice of zero section.

The gauge group is G = SU(2)×U(1)3, containing nT = 1 tensor multiplets, nV = 6

vector multiplets and nH = 250 hyper multiplets. Among these hyper multiplets,

there are 28 SU(2) doublets and 167 SU(2) singlets charged under the U(1)s. The

generators of the Mordell-Weil group can be taken to be O
X

E5
3

(−1, 0, 0, 0, 1, 0, 1),

O
X

E5
3

(0, 0, 1,−1, 0, 1, 0) and O
X

E5
3

(1, 1, 0, 0,−1, 0, 0).

• E6: we can identify O(S0) = O
X

E6
3

(−1, 0, 0, 0, 0, 1, 0) as a good choice of zero section.

The gauge group is G = SU(2)2 ×U(1)3, containing nT = 0 tensor multiplets, nV = 9

vector multiplets and nH = 282 hyper multiplets. Among these hyper multiplets,

there is 1 bi-doublets, 40 doublets and 171 SU(2) singlets that are charged under
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Figure 7. F-theory models in 6D with the same 5D M-theory limit where n
(5D)
V = 6 and n

(5D)
H = 27.

the U(1) factors. The generators of the Mordell-Weil group can be taken to be

O
X

E6
3

(0, 0,−1, 0, 0, 1, 1), O
X

E6
3

(0, 0, 0, 0,−1, 1, 1) and O
X

E6
3

(1, 0, 0, 0, 1,−1, 0).

• E7: is a non-flat fibration.

• E8: we can identify O(S0) = O
X

E8
3

(0,−1, 0, 1, 0, 0, 1) as a good choice of zero sec-

tion. The gauge group is G = SU(2) × U(1)4, containing nT = 0 tensor multiplets,

nV = 7 vector multiplets and nH = 280 hyper multiplets. Among these hyper mul-

tiplets, there are 22 SU(2) doublets and 209 SU(2) singlets that are charged under

the U(1) factors. The generators of the rank 4 Mordell-Weil group can be taken

to be O
X

E8
3

(0,−1, 1, 0, 0, 0, 0), O
X

E8
3

(−1, 0, 0, 1, 0, 0, 0), O
X

E8
3

(1, 0, 0,−1, 0, 1, 0) and

O
X

E8
3

(0, 0, 1, 0,−1, 0, 1).

• E9: is a non-flat fibration.

The gravitational and non-Abelian anomaly cancellation conditions hold for all the six

effective theories (arising from flat fibrations). The nine 6-dimensional F-theory models

we have described in this subsection share the same M-theory limit in 5-dimensions with

n
(5D)
V = 6, n

(5D)
H = 27. These results are summarized in figure 7.

In the discussions so far, we have not gone into details in the cases of fibrations which

are not flat. For the rest of this section we will give several comments on the geometry of
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non-flat fibrations, based on one of the explicit examples above:

XE4
3 =



P1 1 1 0 0 0 0 0 0 0

P1 0 0 1 1 0 0 0 0 0

P2 0 0 1 0 1 1 0 0 0

P2 0 0 0 1 0 0 0 1 1

P2 0 1 0 0 1 0 0 1 0

P2 0 0 0 0 0 1 1 0 1

P2 1 0 0 1 0 0 1 0 0


. (3.52)

To begin with, from the first column of the configuration matrix, one can immediately see

that there exists a point in the P2 base, the fiber over which is two-dimensional. Explicitly,

defining the polynomial associated to the first column as P1 = x1,0p1(x7) + x1,1p2(x7), the

fiber is non-flat above the unique point given by the intersection of the two linear functions

p1 = p2 = 0 in the base P2.

Such a non-flat fiber is, in particular, itself a divisor, and is defined by vanishing of the

global holomorphic section of O
X

E4
3

(−1, 0, 0, 0, 0, 0, 1) (see appendix A of [1] for a detailed

analysis). Even in the presence of a non-flat fiber, however, one may still proceed to find

sections to the genus-one fibration and can confirm that the following line bundles,

O
X

E4
3

(S0) = O
X

E4
3

(1, 0, 1, 0,−1, 0, 0) ,

O
X

E4
3

(S1) = O
X

E4
3

(0,−1, 1, 0, 0, 0, 0) ,

O
X

E4
3

(S2) = O
X

E4
3

(0,−1, 0, 1, 0, 0, 1) ,

O
X

E4
3

(S3) = O
X

E4
3

(0, 1,−1, 0, 1, 0, 0) ,

O
X

E4
3

(S4) = O
X

E4
3

(0, 1,−1, 0, 0, 1, 0) ,

O
X

E4
3

(S5) = O
X

E4
3

(0, 0, 0,−1, 1, 1, 0) ,

(3.53)

correspond to smooth, rational sections, which we denote as σ0, σ1, · · · , σ5, respectively.

When naively applied with respect to the zero section σ0, the usual section arithmetic [65, 75]

leads to a general integer combination of the form,

Div(
5∑

a=1

laσa) ∼
7∑
i=1

βiJi , (3.54)

where the coefficients βi are given in terms of the la as

β1 = 1− l1 − l2 − l3 − l4 − l5 ,
β2 = −l1 − l2 + l3 + l4 ,

β3 = 1− l2 − 2l3 − 2l4 − l5 ,
β4 = l2 − l5 ,
β5 = −1 + l1 + l2 + 2l3 + l4 + 2l5 ,

β6 = l4 + l5 ,

β7 = −3l1 + 3l21 − 6l2 + 7l1l2 + 7l22 − 8l3 + 4l1l3 + 9l2l3 + 8l23 − 5l4 + l1l4

+ 6l2l4 + 10l3l4 + 5l24 − 6l5 + 6l1l5 + 6l2l5 + 9l3l5 + 6l4l5 + 6l25 .

(3.55)
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The following two observations teach us that the section arithmetic must be modified in

the presence of a non-flat fiber. Firstly, non-effective putative sections can be generated

by (3.55): for instance, with (la)
5
a=1 = (0, 0, 1,−1, 0), one obtains the associated line bundle,

O
X

E4
3

(1, 0, 1, 0, 0,−1, 0), whose bundle valued cohomology is computed as

h•(X3,OXE4
3

(1, 0, 1, 0, 0,−1, 0)) = (0, 0, 0, 0) . (3.56)

Secondly, via (3.55) one can generate putative sections that are a true sections with a

vertical-divisor piece attached. For instance, with (la)
5
a=1 = (2,−1, 0, 1,−1), one obtains the

putative section class, O
X

E4
3

(0, 0, 1, 0,−1, 0, 1), which proves, using the techniques developed

in [1], to be the zero section (∼ O
X

E4
3

(1, 0, 1, 0,−1, 0, 0)) attached to the non-flat divisor

(∼ O
X

E4
3

(−1, 0, 0, 0, 0, 0, 1)).

With these observations, one must first recall that the arithmetic being used here was

proven in [75] under the assumption that the blow-up divisors do not contribute. Such

an assumption was motivated by the consistency of F-theory effective theories. In the

presence of a non-flat fiber, on the other hand, we have just learnt that a modification to

this arithmetic is necessary. In particular, it is interesting to note that in the second case

above the naive application of the usual rules has lead to a true section, up to a shift by

the non-flat fiber class.

Independently of discussions on section arithmetic, it is worth mentioning that in all of

the non-flat examples we have analyzed, a naive application of the Picard lattice decom-

position of Shioda-Tate-Wazir gives rise to a six-dimensional spectrum that is completely

free of (non-Abelian) gauge and gravitational anomalies. To be specific, we note that

the anomalies are apparently satisfied when the number of Abelian vector multiplets is

identified as the (potential) rank of the Mordell-Weil group obtained by naively applying

the Tate-Shioda-Wazir theorem to the non-flat fibration. It should also be emphasized that

the n
(codim2)
H in (3.4) appears to require contributions not only from nodes but also from

“tacnodes” of the I1 locus (see appendix A for the description of tacnodes).

Section arithmetic, as well as the Shioda-Tate-Wazir decomposition structure, in the

presence of a non-flat fiber provides an interesting topic for further investigation. We leave

a careful study of the geometry and the physics of such non-flat fibrations to future work.

4 Multiple fibrations and heterotic/F-theory duality

In the following sections we will briefly outline some of the dualities and relationships

between theories that can be understood through heterotic/F-theory duality in the presence

of multiple fibrations. To begin, compactifications of the heterotic string and F-theory are

believed to be dual whenever the underlying geometries of the two theories take the form

Heterotic on πh : Xn
E−→ Bn−1 ⇔ F-theory on τf : Yn+1

K3−→ Bn−1 (4.1)

where Xn is an elliptically fibered (with section) CY n-fold and Yn+1 is a compatibly

K3 and elliptically fibered (both with section) CY n+ 1-fold. This correspondence is an

adiabatic extension of an 8-dimensional duality [2] (i.e. heterotic theory compactified on T 2
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related to F-theory on a K3 surface), fibered over a shared base manifold Bn−1 to obtain

lower-dimensional dualities.

As has been recently noted [76], heterotic/F-theory duality is one form of a weakly

coupled limit of F-theory (similar to so-called Sen limits [11–15] which connect F-theory

to weakly coupled Type IIB orientifold theories and even more general weakly coupled

limits of the theory [16, 76]). The universal framework for discussing such a duality is the

notion of a semi-stable degeneration [76, 77], in which the CY manifold degenerates from a

smooth manifold into a fiber product of two log Calabi-Yau varieties, M1,M2, glued along

a common effective divisor, D ⊂Mi, i = 1, 2:

Yn+1 →M1 ∪D M2 . (4.2)

A log Calabi-Yau variety is defined to be a pair (M,D) where M is a variety and D ⊂M
an effective divisor with K(M,D) ≡ KM +D trivial (i.e. vanishing log canonical class). Such

a variety admits a unique (n+ 1, 0)-form which is holomorphic on M\D and has at most

logarithmic poles along D, whose residue is the holomorphic n-form on D. In general the

fiber product in (4.2) is a singular variety which can be deformed back into a CY manifold

by the smoothing theorem of [78].

The canonical example of such a degeneration is the well-known stable degeneration

limit [29, 30, 33] of heterotic/F-theory duality in which the F-theory geometry Yn+1 in (4.1)

degenerates as in (4.2). In this limit the log-CY “halves” of Yn+1 take the form of fibered

(n + 1)-folds, πi : Mi → Bn−1 with fibers given by rationally elliptically fibered surfaces

(commonly referred to as a dP9 surface in the physics literature). Here the (n+ 1)-folds

Mi are not themselves Calabi-Yau manifolds, but the divisor upon which they are glued

(as in (4.2)) is Calabi-Yau. In fact, here D is simply the CY n-fold, Xn — the heterotic

compactification geometry in (4.1). Moreover, in the stable degeneration limit, the geometric

moduli of M1,M2 correspond to the moduli of the pair of slope-stable, holomorphic bundles

(with structure group embedded into E8 × E8) appearing in the heterotic compactification

(see [33, 79, 80] for reviews). To understand the results of the following sections, it will be

useful to briefly review here some of aspects of this standard correspondence to remind the

reader of several key geometric features of this duality.

First, the fibration structures in (4.1) can be written even more explicitly. The paired

heterotic/F-theory geometries given in (4.1) involves both elliptic and K3 fibered manifolds.

In particular, the F-theory geometry, Yn+1 must be compatibly K3 and elliptically fibered.

The requirement of these two fibration structures implies further that Yn+1 be elliptically

fibered over a complex n-dimensional base, Bn which is in turn rationally fibered:

Yn+1
E−−−→ Bn

K3
y y P1

Bn−1
=←−−→ Bn−1

(4.3)

The existence of a section in any two of the non-trivial fibrations above is enough to guarantee

the existence of a section in the third fibration (i.e. if Bn
P1

−→ Bn−1 and Yn+1
E−→ Bn both

admit sections then so does the fibration Yn+1
K3−→ Bn−1).
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For heterotic/F-theory duality then, there are three possibilities that are immediately

relevant in the context of multiple fibrations in the F-theory CY geometry, Yn+1:

1. Case 1 : Yn+1 admits multiple K3 fibrations which share an elliptic fibration. In order

for this to occur the nested fibration structure in (4.3) implies that Bn, must admit

multiple rational (i.e. P1) fibrations:

Bn

ρ
P1

||

P1

ρ′ ""
Bn−1 B′n−1

(4.4)

with ρ : Bn → Bn−1 and ρ′ : Bn → B′n−1. Since the effective physics of F-theory

depends only on the structure of the elliptic fibration πf : Yn+1 → Bn it is clear that the

theory does not change depending on “which way up” the base Bn is oriented in (4.4).

However, clearly the construction of the dual heterotic theory is markedly different

(i.e., different base manifolds Bn−1 in (4.1) and different semi-stable degenerations as

in (4.2)). In this case we see that in order for heterotic/F-theory duality to hold there

must exist a further heterotic/heterotic correspondence between compactifications on

two different CY geometries (with vector bundles over them),

πh : Xn → Bn−1 and π′h : X ′n → B′n−1 , (4.5)

which yield the same effective theory. In this case we see that the multiple fibration

structure of Yn+1 yields a true string duality in the usual sense.

2. Case 2 : Yn+1 admits multiple K3 fibrations with distinct elliptic fibrations. In this

case we are once again led to multiple heterotic geometries as in (4.5), but if the

condition of a shared elliptic fiber to the two K3 surfaces is dropped, the effective

physics for each choice of fibration can be different. This is similar to the examples

encountered in F-/M-theory correspondence in section 3. As in those examples, the

expectation is that the related heterotic geometries (as in (4.5)) and the F-theory

vacua (corresponding to the two choices of elliptic fibration) will all lead to the same

effective physics upon a circle reduction and Higgsing in one dimension lower. In

this case, we see not a duality of theories, but a correspondence leading to a shared

Coulomb branch in a lower dimensional theory. This correspondence includes a shared

region of moduli space and the structure of the common lower dimensional theory can

yield important insights into the distinct higher dimensional theories. See [44, 81–83]

for useful tools in such uplifts of M-/F-theory in 5(6)- and 3(4)-dimensions.

At the level of the effective theory, the dimensional reduction and shared Coulomb

branch of these theories is the same as that analyzed in section 3. As a result, we will

not further explore such correspondences in this section.
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Case K3 Fibration Elliptic Fibration

1 distinct shared

2 distinct distinct

3 shared distinct

Table 1. Three different Cases for the multiple nested-fibration structures of the K3 and elliptic

fibrations that can be found within a Calabi-Yau manifold. Such multiple fibrations lead to

novel links between various effective theories via either heterotic/F-theory duality or F-/M-theory

correspondence.

3. Case 3 : Yn+1 admits only one K3 fibration with multiple elliptic fibrations. In this

case the geometry takes the form

Yn+1

π
E

||

E
π′

""
Bn

P1

ρ
""

B′n

ρ′
P1

||
Bn−1

(4.6)

The dual heterotic geometry must be a Calabi-Yau n-fold which is elliptically fibered

over Bn−1 but in general the two “orientations” of the elliptic fibration (and hence

the two different P1 bases to that elliptic fibration) correspond to distinct weakly

coupled limits of the F-theory geometry. As a result, the dual heterotic theories

will be different, but clearly connected in a broader moduli space. In addition, it is

important to note that these different heterotic theories will be defined over the same

compactification CY geometry, πh : X → Bn−1.

See table 1 for a summary of the fibration structures in the above three cases.

In the following subsections we will explore each of the possibilities above in various

dimensions. In each it is important to realize that in determining the heterotic/F-theory

dual theories, the notion of a weak coupling limit implicit in a semi-stable degeneration is

characterized by two limits in the dual geometries. In the heterotic theory, we require the

limit of large volume of Xn and weak coupling and in the F-theory geometry this corresponds

to a limit in which semi-stable degeneration occurs as in (4.2) and the volume of the P1

fiber in ρ : Bn → Bn−1 (which is related to the heterotic dilaton under the duality [29, 30])

is also taken to the appropriate limit. In the situation where the CY geometry admits

multiple fibrations as described above it is clear that the semi-stable degenerations and the

role of the heterotic dilaton will, in general, differ for distinct choices of fibration. Thus,

it should be expected that these correspondences should generically involve relationships

between perturbative and non-perturbative degrees of freedom in the theory and different

values of the heterotic coupling. These possibilities will be concretely illustrated in the

following subsections.

As a final observation, it should be noted in the context of this work that heterotic/F-

theory duality has proven to be a rich framework in which to explore the possible vacua of
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heterotic and F-theory compactifications. Far from being a rare occurrence within known

constructions of CY manifolds, the fibration structures in (4.1) seem in fact to be generic (see

section 2 and [1] for a discussion). Moreover, since it is known (in 8-, 6- and 4-dimensions)

that the number of distinct classes of heterotic compactifications over elliptically fibered

manifolds is finite [80], heterotic/F-theory duality presents a well-constrained framework

with which to explore the effective theories. This has been employed in [80, 84, 85] to

characterize and bound degrees of freedom in both heterotic and F-theory compactifications.

We will further explore such constraints in section 4.3.3. In addition, heterotic/F-theory

duality has recently shed further light on U(1)’s and discrete symmetries in F-theory [86–88].

To explore the effects of multiple fibrations in heterotic/F-theory duality we will consider

8-, 6- and 4-dimensional compactifications in turn and see that multiple fibrations can play

a role in a number of correspondences — some well-known string dualities and some novel

relationships.

4.1 Heterotic/F-theory duality in 8-dimensions and T-duality

The duality between the E8 × E8 heterotic string and F-theory in 8-dimensions played a

fundamental role in initially defining F-theory itself [2]. As we will see below, the dual

8-dimensional theories provide one of the simplest contexts in which the role of multiple

fibrations and string dualities can be completely described.

In the 8-dimensional theory we consider the heterotic string (either E8 ×E8 or SO(32))

compactified on a two torus, T 2, and F-theory as defined by an elliptically fibered K3

manifold:

Heterotic on T 2 ⇔ F-theory on πf : K3
E−→ P1 (4.7)

Phrased in the language of log-semi-stable degenerations given above, the possible dualities

available to F-theory in 8-dimensions are remarkably constrained. As shown in [89], a K3

surface admits only two classes of the log semi-stable degenerations. The first is the usual

“stable degeneration limit” [33] to the weakly coupled E8 × E8 heterotic theory. This takes

the form of the limit described above in which the K3 surface degenerates as a fiber product

of two rationally elliptically fibered surfaces

K3→ dP9 ∪T 2 dP9 (4.8)

glued along a torus (the heterotic compactification geometry). In 8-dimensions, the only

other log semi-stable degeneration limit is of the form

K3→M1 ∪T 2 M2 (4.9)

where M1,M2 are rationally fibered surfaces (the generic fiber to the degenerate geometry

in (4.9) is two smooth rational curves meeting in two points [89]). As shown in [89] this

limit corresponds to the SO(32) heterotic string and is essentially the only other distinct

log semi-stable degeneration of a K3 surface (see [76] for a discussion).

In the context of this work, an important observation was made by Candelas and Skarke

in [34] where it was noted that these two limits can be thought of as two elliptic fibrations

of the same K3 surface. Note that this is an example of “Case 3” fibration structure in
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table 1, as depicted by (4.6), where in this simple geometry the base Bn−1 is a point. A

simple toric realization was provided in [34].

In terms of the toric data,4 the dual polyhedron ∆∗ for the geometry in question is

determined by the convex hull of the following lattice points in N ' Z3,

(1, 0, 0) , (0, 1, 0) , (−2,−3, 6) , (−2,−3,−6) . (4.10)

The corresponding K3 surface has a Picard lattice of rank 18, with two moduli appearing

as embedding (i.e., complex structure) moduli for the given toric realization. The fiber

associated to the E8 ×E8 theory is the standard “Weierstrass” P1,2,3[6] fiber, realized by

the convex hull of the points,

(1, 0, 0) , (0, 1, 0) , (−2,−3, 0) . (4.11)

In this case the two (dP9) “halves” of the K3 and the appropriate stable degeneration limit

of (4.8) can be identified from the halves of the polyhedron divided by the triangle in (4.11).

Each half is an E8 “top” in the notation of [34, 37, 91] and corresponds to an extended

Dynkin Diagram of E8 (i.e., the resolution of an E8 × E8 singularity).

The second elliptic fibration is described by the convex hull of the points,

(0, 1, 0) , (0,−1,−2) , (0,−1, 2) . (4.12)

This triangle is dual to the Newton polyhedron of P1,1,2[4]. This fiber type is compatible with

the existence of two sections to this elliptic fibration as required for the SO(32) theory [92]

(note that in addition to the zero section, the second section in this case is a torsion element

of the Mordell-Weil group). Here the decomposition in (4.9) is asymmetric and this can be

seen by the way that the triangle in (4.12) divides the divisors: one side consists of a single

point, while the other side contains 17 divisors filling out the extended Dynkin diagram of

SO(32) (see [34] for further details). The polyhedron with the two elliptic fiber “triangles”

highlighted is shown in figure 8.

In this simple case the fact the two fibers are respresentative of E8 × E8 and SO(32)

heterotic theories provides a simple link between interchanging two elliptic fibrations and

string dualities. It is well known that the E8 × E8 and SO(32) heterotic theories can be

related to each other by T-duality whenever the compactification geometry includes a circle

factor. Thus, by dimensionally reducing both sides of these heterotic/F-theory dual pairs

on S1 (and choosing appropriate Wilson lines), it is clear in this case that fiber orientation

and T-duality must correspond.

Indeed, one can go further and note that in this case since the heterotic geometry of

T 2 is topologically S1 × S1, it should be possible to understand the two limits of the theory

even in 8-dimensions. It is helpful to recall the steps leading to a correspondence between

the two heterotic theories in the case of compactification on S1: 1) First, beginning at a

general point in the moduli space of the SO(32) theory, Wilson lines can be chosen to break

the symmetry group to SO(16)× SO(16). 2) Considering SO(32) theory with large radius

4Readers are kindly referred to [90] for an introduction to toric geometry.
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Figure 8. A toric polyhedron from [34] that can be used to define a K3 manifold with rk(Pic(X)) =

18 as a toric hypersurface. As noted in [34] this polyhedron admits two distinct elliptic fibrations.

The two fibrations of the manifold can be viewed as the resolutions of singular varieties with gauge

group E8 ×E8 and SO(32), respectively. The highlighted triangles represent the two elliptic fibers.

for the S1, one can let r → 1/r. This leads in the T-dual description to an E8 × E8 theory

with SO(16)× SO(16) symmetry. 3) In the E8 × E8 theory, one can continuously deform

the Wilson lines to return to a generic point in the moduli space of the E8 × E8 theory. It

is really the second step which is crucial to understand the duality and this argument can

be applied to the heterotic theory on an n-torus, Tn [93].

In the context of the concrete geometry given above, these two, T-dual limits can be

understood using the criteria of Kollar [38] discussed in section 2. An application of the

criteria, as outlined in Conjecture 1 in section 2, shows that there are two fibrations and

hence, two divisors D1, D2 capable of describing the P1 bases of the two elliptic fibration.5

In the F-theory geometry then, the T-duality of the heterotic theory can be manifested as

an interchange of these base P1s and and hence, the elliptic fibrations. That is,

Heterotic: SO(32)
r↔1/r←→ E8 × E8 ⇔ F-theory: D1

E1↔E2←→ D2 (4.13)

The fact that there are manifestly two elliptic fibrations in this K3 surface is a confirmation

of the known/simple structure of the 8-dimensional effective theories theory (and the log-

semi-stable degenerations mentioned in the previous subsection). In general, it is possible for

CY n-folds to admit many more than two fibrations and the corresponding string dualities

in consideration must necessarily be more complex. We turn now to these lower dimensional

theories.

5Note that for K3 surfaces with high rank Picard lattices, there can be many fibrations. See for

example, [94] for tools to systematically find all such fibrations and [95] for more general (U-duality)

correspondences possible in 8- (and lower) dimensions.
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4.2 Multiple fibrations and 6-dimensional theories

In 6-dimensions multiple fibrations can begin to play an even more non-trivial role. Unlike

K3 surfaces, for CY 3-folds, the existence of a fibration structure (i.e., E- or K3-fibration)

is a topological invariant [38] and cannot change under infinitesimal deformations of the

geometry. We will briefly review here a few of the canonical 6-dimensional dualities and

their relationship to fibration structures. It should be noted that many of the observations

about heterotic/F-theory duality can be extended/linked to heterotic/Type IIA duality in

4-dimensions. For the sake of brevity we focus only on the F-theory description here and

leave the logical extensions of these results to Type IIA dualities implicit.

4.2.1 Heterotic E8 × E8 and SO(32) duality

To begin simply, it is clear that having established the 8-dimensional duality described in

the previous subsection, this can be fibered over a shared base manifold P1 to provide a

6-dimensional example of the “Case 3” correspondence of fibrations in table 1. It is well

known that an elliptically fibered CY 3-fold in Weierstrass form over the base F4:

πf : Y3 → F4 (4.14)

is generically singular with a non-Higgsable SO(8) symmetry [30]. This geometry can be

dual to either the SO(32) (with instanton number 24) or the E8×E8 theory (with instanton

embedding (8, 16)). The Weierstrass model in (4.14) can be tuned to become still more

singular, ranging over possible subgroups of each theory. In the case of resolution of such a

geometry (including the generic SO(8) singularity) we expect that the K3 fiber of Y3 will

admit more than one elliptic fibration as described above. With this expected adiabatic

realization of the familiar dual theories in hand, we turn next to a correspondence that

cannot be realized in the 8-dimensional theory.

4.2.2 Heterotic/heterotic duality and the dual F-theory geometry

One of the most well established and understood examples of a 6-dimensional duality is the

detailed heterotic/heterotic correspondence discovered by Duff, Minasian, and Witten in [35].

There it was observed that the E8 × E8 heterotic theory compactified on a K3 surface

with Gi-bundles, Vi → K3 (i = 1, 2) chosen such that Gi ⊂ E8 and c2(V1) = c2(V2) = 12

(the so-called “symmetric embedding”) admits a self-duality. This duality not only inverts

the gauge coupling and dualizes the antisymmetric tensor, but also acts non-trivially on

hypermultiplets and relates perturbative and non-perturbative gauge sectors of the heterotic

theory [35].

The relationship of this remarkable duality to F-theory was realized immediately [29]

and in particular, it was observed in [29, 96] that the existence of the two dual heterotic

theories on K3 implied that each heterotic theory must give rise to an F-theory dual — and

that, in fact, this could be understood as a single dual CY 3-fold geometry with multiple

fibrations. The requirement of a symmetric embedding of equal instantons into each E8 factor

indicated that (under the usual heterotic/F-theory dictionary in 6-dimensions [29, 30, 97])
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the F-theory dual geometry should be

πf : Y3 → F0 = P1 × P1 , (4.15)

and the heterotic/heterotic duality of [35] could clearly be realized as two K3 fibrations of

the same CY 3-fold simply by choosing which P1 in F0 to consider as part of the K3 fiber.

These two K3 fibrations clearly share an elliptic fibration and are a simple example of the

“Case 1” fibration structure in table 1.

To study multiple fibrations more generally, it will be useful to review several ob-

servations about the duality given above, first made in [29]. The dual theories must

involve an interchange of perturbative/non-perturbative origins for gauge fields in the dual

heterotic/F-theory geometries. This can be realized readily even in the simplest form of the

doubly-fibered theory. Consider a Weierstrass model

y2 = x3 + f(8,8)(u,v)x+ g(12,12)(u,v) (4.16)

where u = (u0 : u1) and v = (v0 : v1) are homogeneous coordinates on P1
u × P1

v, f ∈
H0(P1 × P1,K−4

B2
) and g ∈ H0(P1 × P1,K−6

B2
) and KB2 = O(−2,−2). For general choices

of the complex structure moduli this Weierstrass model is smooth — corresponding to a

completely broken E8 × E8 symmetry in the dual heterotic theory. By tuning the complex

structure it is possible to consider larger unbroken symmetry groups in 6-dimensions. Let

us consider here the effect of such a tuning on both K3-fibrations: ρu : Y3 → P1
u and

ρv : Y3 → P1
v, where the two P1 bases are defined by choosing a rational fiber/base in (4.15)

and (4.16).

To choose a heterotic dual, a base P1 to the K3-fibration is selected and the coefficients

of f8 and g12 expanded with respect to such a basis. Let u0, u1 be coordinates on the

fiber P1
f and v0, v1 be coordinates on the base P1

b of B2 = F0. Following the notation

of [29, 30, 97] consider the patch in F0 where u0 = v0 = 1 and expand f, g in (4.16) as

f ∼
8∑
i=0

ui1f
(i)
8 (v1) (4.17)

g ∼
12∑
j=0

uj1g
(j)
12 (v1) (4.18)

For this orientation of the P1 fiber of B2, it is possible to tune a non-abelian singularity

while keeping the dual heterotic K3 surface smooth. The argument that will follow can be

done for any symmetry G ⊂ E8, but here we will illustrate it for the simple example of E7

symmetry. An E7 singularity in the fiber of Y3 requires (f, g) vanish to degrees (3, 5) on a

divsior within B2 [46, 47]. This means that f, g take the form

f ∼ u3
1f

(3)
8 (v1) + u4

1f
(4)
8 (v1) + . . . (4.19)

g ∼ u5
1g

(5)
12 (v1) + u6

1g
(6)
12 (v1) + . . .

(i.e., all coefficients f
(i)
8 and g

(j)
12 with i < 3 and j < 5 are set to zero). For this choice, an

E7 singularity is associated to a stack of 7-branes wrapping the P1
b divisor, located at the

point u1 = 0 in the P1
f .
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To read off the heterotic dual theory, a semi-stable degeneration limit must be identified

as in (4.2). In this case, the heterotic dual K3 surface (D in (4.2)) is determined by the

order 4, 6 coefficients in f, g respectively [29, 30, 33]. The K3 Weierstrass model takes

the form,

Y 2 = X3 + f
(4)
8 (v1)X + g

(6)
12 (v1) , (4.20)

with f
(4)
8 and g

(6)
12 general polynomials over the base P1 of the elliptically fibered K3 surface

πh : K3 → P1. In this case, the heterotic dual theory would consist of a smooth K3

surface with a perturbatively realized E7 symmetry obtained from an SU(2) bundle on a

smooth K3.

The tuning above is standard in heterotic/F-theory duality in 6-dimensions. However,

as noted in [29] a more interesting observation is possible if the roles of fiber and base P1

in B2 are switched above while holding the complex structure fixed. Under this exchange,

the elliptic fibration of Y3 is unchanged, and thus, the 6-dimensional F-theory effective

theory is still manifestly the same (i.e., non-Abelian E7 symmetry). However, exchanging

the two P1s in (4.19) clearly changes which divisor D serves as the dual K3 surface in the

stable degeneration limit of (4.2). Upon interchanging of the roles of the P1s, we have a

new expansion (again, without changing the complex structure in (4.16)):

f ∼
8∑
i=0

vi1f̃
(i)
8 (u1) , (4.21)

g ∼
12∑
j=0

vj1g̃
(j)
12 (u1) . (4.22)

With the tuning given above, it is possible to once again read off the coefficients, f̃
(4)
8

and g̃
(6)
12 , which will form the coefficients of the new dual K3 surface. With the complex

structure fixed as described, the heterotic geometry takes the form,

Y 2 = X3 + (a3u
3
1 + a4u

4
1 + . . .)X + (b5u

5
1 + b6u

6
1 + . . .) , (4.23)

with ai, bj constants. Rather than the general K3 Weierstrass model of (4.20), here we

see that choice of the tuned complex structure for Y3 in (4.19) has forced the dual K3

to be singular for this choice of fibration in Y3. Moreover, the form of the singularity

is exactly an E7 type singularity, as expected. Thus, the interchanging of fibrations in

Y3 results in changing the gauge symmetry from one with a perturbative origin to a non-

perturbative origin in the dual heterotic theory. This was illustrated above for E7 symmetry

but an analagous calculation can be obtained for any tuning of a G-type singularity in

the Weierstrass model (4.17) over P1 × P1. As a final note, it was demonstrated in [93]

that the heterotic/heterotic duality of [35] was once more related to T-duality and that

the non-perturbative physics described by the singular K3 surface described above could

be understood in the context of SO(32) small instantons on the singular K3. Unlike the

example of the previous subsection, in this case the bundle with structure group in SO(32)

satisfies c2(V ) = 12 (and the symmetric, (12, 12) embedding in the E8 × E8 theory).

– 36 –



J
H
E
P
1
0
(
2
0
1
6
)
1
0
5

Another confirmation [29] that the duality of [35] is realized by interchanging the K3

fibrations in Y3 can be seen by inspection of the heterotic coupling and its image under

heterotic/F-theory duality. As explained in [29, 30], given F-theory on πf : Y3 → Fn, the

heterotic string coupling in the 6-dimensional theory is mapped to the following ratio of

the volumes of the P1 base and fiber of Fn:

e−2φ =
kb
kf

(4.24)

where kb and kf denote the volumes of the two P1’s. Thus, it is clear that the interchange

of the two K3 fibrations in πf : Y3 → P1 × P1 (i.e. kb ↔ kf ) corresponds to an inversion of

the heterotic coupling, exactly as expected. In summary, the heterotic/heterotic duality in

6-dimensions of [35] is manifested in the simple case of B2 = F0 as the interchange of K3

fibrations in the F-theory dual.

With this review in hand, there are several important generalizations of this idea

in 6-dimensions that can be studied. First, it can be readily seen by considering more

general CY 3-folds, Y3, that forms of the heterotic/heterotic duality of [35] can be realized

for geometries much more general than the Weierstrass form illustrated above in (4.16).

For example, geometries with multiple sections to the elliptic fibration will still obey the

principles described above. For example this complete intersection:

Y3 =


P1 1 1

P2 1 2

P1 1 1

P1 1 1

 (4.25)

is a smooth manifold πf : Y3 → F0 with h1,1(Y3) = 4, h2,1(Y3) = 50. In this case there are

two rational sections to the fibration (i.e. rkMW = 1, see [1] for details), leading to a

dual heterotic K3 surface with an elliptic fibration that also admits two sections. Once

again, the interchange of the two K3 fibers leads to the same perturbative/non-perturbative

correspondence described above for non-Abelian gauge fields. However, the Abelian (i.e.

U(1)) gauge fields share an origin from reducible bundles in both the smooth and the

singular cases. This generalization can also involve the presence of Green-Schwarz massive

U(1) symmetries in the 6-dimensional theory [98, 99] and has been the subject of several

recent explorations in the context of heterotic/F-theory duality [86–88].

4.2.3 Example of non-perturbative heterotic/heterotic duality and its F-

theory dual

In view of the above results, it is natural to go further and ask whether or not there

are more general forms of multiple K3 fibrations in F-theory (with different bases to the

elliptic fibration, other than F0) and whether they can lead to any generalizations of the

heterotic/heterotic duality. Beginning with K3 fibrations which share an elliptic fibration

(Case 1 in table 1) it is clear that we require a base B2 which admits more than one P1

fibration (as in (4.4)). For 6-dimensional heterotic/F-theory dual pairs that are purely
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perturbative in the heterotic theory6 the only possible bases, B2, are the Hirzebruch surfaces,

Fn [29]. Considering these first then, the only Hirzebruch surface that admits more than

one rational fibration is F0 = P1 × P1, which we have already studied.

However, for more general rationally fibered surfaces, B2, it is easy to see that there can

be more possibilities — corresponding to non-perturbative 6-dimensional theories [63, 100].

In terms of F-theory geometry, the difference between perturbative/non-perturbative het-

erotic dual theories is visible in the structure of the base B2. The Hirzebruch surfaces are

P1-bundles over P1 (i.e., with nowhere degenerate fiber). More general rationally fibered

surfaces fall under the category of P1 fibrations rather than bundles (see for example, “conic

bundles” [101]), in which the P1 fiber can degenerate over points in the base. Unlike elliptic

fibrations, the possible degenerations of P1-fibrations are quite simple and generally consist

only of a single P1 becoming multiple P1s over points in the base. One simple example of this

is the del Pezzo surfaces [101] which are rationally fibered for n > 0 (as are the “generalized

del Pezzo surfaces” [102]). For example, in addition to viewing dP2 as P2 blown-up at two

points, the surface can also be viewed as a single blow-up of dP1 = F1.

The heterotic duals to F-theory on a blown-up Hirzebruch surface are well-understood

to include additional tensor multiplets in the 6-dimensional theory [30, 100, 103]. That is,

the effective theories include non-perturbative effects such as NS5 branes in the heterotic

theory (i.e., M5-branes along the S1/Z2 interval direction in the language of heterotic

M-theory [104]). Anomaly cancellation in the heterotic theory is generalized in this case to

c2(V1) + c2(V2) + nT = 25 (4.26)

where nT is the number of tensor multiplets. It is clear that as additional tensors are

included in the theory, the net instanton number of the two vector bundles over K3 must

decrease. The extremal situation (for a smooth K3) consists of 24 instantons (either

point-like [105, 106] or in the interval).

Let us consider such non-perturbative vacua in the context of heterotic/F-theory duality.

It is clear that F-theory on rationally fibered bases can generically involve more than one

choice of P1 fibration. As an illustration, consider the following complete intersection

threefold with h1,1(Y3) = 5 and h2,1(Y3) = 43, described by:

Y3 =


P1 0 0 1 1

P2 0 0 1 2

P2 1 1 0 1

P1 1 0 1 0

P1 0 1 1 0

 , B2 = dP2 =

P2 1 1

P1 1 0

P1 0 1

 . (4.27)

This manifold is a smooth fibration, πf : Y3 → dP2. The elliptic fiber, described as a

degree-(1, 1) hypersurface in dP1 =

[
P1 1

P2 2

]
, admits two rational sections (a zero section

given by the unique global section O(−1, 1, 0, 1, 1) and a second rational section associated

6I.e., a large volume, smooth K3 surface and only one tensor multiplet in the 6-dimensional effective

theory.
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to O(2,−1, 1, 3, 3)) [1]. The divisors in Y3 are divided according to those pulled back from

the base and sections (in this case there are no other additional vertical divisors). Since

h1,1(B2) = 3, and there are two rational sections: h1,1(Y3) = 5 = h1,1(B2) + 1 + rkMW as

expected from the Shioda-Tate-Wazir theorem [56–58].

For this complete intersection description of dP2, there are clearly two manifest ways

to view dP2 as a P1-fibration over P1. The first is

B2 = dP2 =

P2 1 1

P1 1 0

P1 0 1

 , (4.28)

where the P1 fiber is described as

P1 =

[
P2 1 1

P1 1 0

]
'

[
P1 1

P1 1

]
, (4.29)

and the second is given by the equivalent configuration matrix with the last two P1 rows

interchanged in (4.28). As a result the CY threefold in (4.27) once again inherits two

distinct K3-fibrations.

In this case, the heterotic/heterotic duality will exhibit a structure in some ways similar

to that explored in the previous subsection. In general, once again the “weakly coupled”

heterotic limits of the K3-fibration will be different and can involve a shift between a

perturbative and non-perturbative origin of gauge fields. However, some features will differ.

For instance, the instanton numbers of the two bundles on the K3 surface need no longer

be equal (i.e., an asymmetric instanton embedding into E8 ×E8). In addition, the presence

of a 5-branes in the interval direction indicates that the number of tensor multiplets will be

nT > 1. The duality will act non-trivially not only on the hypermultiplets, but also on the

two tensor multiplets in the example above.

The link between the heterotic coupling and the possible tensor multiplets in F-theory

can be more complicated than the map (4.24), derived in the case of nT = 1. However, a

logical conjecture is that as in the perturbative theory, the heterotic coupling is fixed by

the F-theory geometry to be

e−2φ ∼
vol(P1

b)

vol(P1
f )

. (4.30)

Applying this to the concrete geometry given in (4.27), for the first K3-fibration we have

e−2φ1 ∼ t3

t1 + t2
, (4.31)

where t1, t2, t3 are the Kähler parameters of each Pni-hyperplane in the CICY base description

of B2 = dP2 given above. Similarly, for the second fibration we find

e−2φ2 ∼ t2

t1 + t3
. (4.32)

Thus, the action of “interchanging” the two K3-fibrations takes t2 ↔ t3 and is not simply an

inversion of the coupling in this case (though it will clearly generically involve a strong/weak
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coupling correspondence). The validity of the formulae above can be tested by considering

the blown-down limit in which dP2 → F1. In this case, this is realized by

dP2 =

P2 1 1

P1 1 0

P1 0 1

 −→ F1 =

[
P2 1

P1 1

]
, (4.33)

which can be obtained by sending the volume of either the first or second ambient P1 to

zero. In the case of the first K3 fiber then, we see that the limit back to the perturbative

heterotic theory can be taken by considering t2 → 0 which leads to exactly the form expected

by (4.24). Explicitly this sends (4.30) to

t3

t1
=
S + E

E
=
vol(P1

b)

vol(P1
f )

(4.34)

in the usual notation of F1 with S2 = −1, S · E = 1 and E2 = 0 (with S and S + E both

corresponding to sections and E to the fiber class of F1). Likewise the second K3 fibration,

(obtained by interchanging t2 and t3) also limits correctly to the case of F1 realized by

sending t3 → 0.

From the above it can be seen that for some geometries with nT � 1, the F-theory

compactification can correspond to a Calabi-Yau threefold with dozens of K3-fibrations,

corresponding to various non-perturbative dualities of the form described above. It would

be intriguing to characterize these more systematically in the future.

4.2.4 Mirror symmetry and heterotic/F-theory duality

It is worth observing briefly that the dualities described above — including the interchange

of perturbative/non-perturbative sectors under heterotic/heterotic duality — share many

similarities with features of mirror symmetry [107] as it appears in 6-dimensional heterotic/F-

theory dual pairs (or equivalently 4-dimensional heterotic/Type IIA pairs). It has been

conjectured (see e.g. [106, 108, 109]) that if a CY 3-fold is K3-fibered, its mirror must also

admit a K3-fibration (see [106] for some evidence of this fact in heterotic/TypeIIA duality)

and one can construct the following links:

Heterotic F-theory

K3 ⇔ Y3xy xy mirror

K3′ ⇔ Y ′3

(4.35)

This has lead to interesting observations regarding the expectation for the heterotic

theories connected by mirror symmetry of a CY 3-fold [108]: the dual heterotic theories

to the mirror pair of threefolds are expected to exchange a gauge background consisting

of a smooth vector bundle and K3 surface with one on a singular K3 surface involving

non-perturbative gauge fields. This is reminiscent of the correspondences seen in the

previous sections.
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Moreover, mirror symmetry and T-duality once again appear in the context of N = 2

Type IIA compactifications where it has been observed that given a mirror pair of CY 3-folds

(M3,W3) will lead to the same effective theory upon reducing on an S1 to three-dimensions

— the same type of relationship seen in the previous sections.

If it is true that the mirror of a K3-fibered CY 3-fold is also K3-fibered this raises an

interesting possibility concerning multiple fibrations and mirror symmetry (see also [110]).

If a generic CY 3-fold admits multiple K3 fibrations (see [23, 28] for explorations of

K3-fibrations in known datasets of CY n-folds) we propose the following conjecture:

Conjecture: Calabi-Yau three-folds in a mirror pair admit the same number of K3 fibrations.

Such a geometric conjecture would lead to an important topic of future exploration and

could yield further insight into the dataset of Calabi-Yau three-folds as well as string

dualities.

4.3 Multiple fibrations and 4-dimensional theories

In what follows, we turn to heterotic/F-theory duality in 4-dimensions and highlight ways

that multiple fibrations can provide new windows into the structure of the N = 1 effective

theories in 4-dimensions.

Heterotic/F-theory duality in 4-dimensions is best understood in the case that both the

CY 3- and CY 4-fold geometries are in minimal (Weierstrass) form with a single holomorphic

section. We will restrict ourselves to the case of a heterotic theory without 5-branes and in

which the holomorphic vector bundles are irreducible, and will briefly review the geometric

correspondences below. By the required fibration structure of the CY 4-fold (4.3), the

base B3 must be P1-fibered. As in the case of the Hirzebruch surfaces in the 6-dimensional

theory, the simplest class of geometries will correspond to bases that are P1 bundles over

B2. As in [33], such a bundle can be defined as the projectivization of two line bundles,

B3 = P(O ⊕ L) , (4.36)

where O is the trivial bundle and L is a general line bundle on B2. In this case the topology

of B3 is completely fixed by the choice of line bundle L. More precisely, it is fixed by the

so-called “twist”of the rational fibration which is determined by a (1, 1)-form, T , on B2 —

corresponding to c1(L). It is the twist which allows for a geometric matching of the degrees

of freedom in the 4-dimensional heterotic/F-theory dual pairs.

In the E8 × E8 heterotic theory, the topology of the bundles Vi (i = 1, 2) can be

decomposed as

c2(Vi) = ηi ∧ ω0̂ + ζi , (4.37)

where ηi and ζi are respectively (1, 1)- and (2, 2)-forms pulled back from B2, and ω0̂ is the

(1, 1)-form dual to the zero section of π : X3
E−→ B2. For any CY 3-fold in Weierstrass

form as described above, c2(TX3) = 12c1(B2) ∧ ω0̂ + (c2(B2) + 11c1(B2)2) [33]. Anomaly

cancellation then requires

η1,2 = 6c1(B2)± T (4.38)
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where T is a (1, 1)-form on B2. This choice of labels is not an accident and is indeed exactly

the “twist” introduced in the geometry of the F-theory base, B3. The correspondence

between ηi and T was explicitly made in the stable degeneration limit in [33] and generalized

in [45]. Note that the form of the geometry assumed — exactly one (holomorphic) section

and Weierstrass form for both X3 and Y4 — is restrictive and natural extensions of this

geometric correspondence (including higher rank Mordell-Weil groups, multisections, etc.)

would be interesting to explore in future work. For now, we stay with the standard

correspondence and explore the consequences of multiple fibrations.

4.3.1 Adiabatic 4-dimensional realizations of higher dimensional dualities

To begin, we should note that all the dualities given above will have 4-dimensional realizations

obtained by fibering the higher-dimensional correspondences over a shared base manifold.

Briefly, this structure includes the following possibilities:

• As seen in previous sections the “Case 2” correspondence — Calabi-Yau 4-folds with

multiple K3 fibrations and distinct elliptic fibrations — will lead to a collection

of 4-dimensional heterotic F-theory dual pairs with very different effective theories.

However, as in section 3 this network of 4-dimensional theories will all lead to identical

3-dimensional theories upon reduction on a circle (and going to the Coulomb branch).

This is more than a shared branch to the paired theories. Since they are all described by

the complex structure moduli of a single CY 3-fold, these very distinct 4-dimensional

theories have a shared (infinitesimal) moduli space.

• The “Case 3” correspondence of a single K3 fibration with multiple elliptic fibrations

can once again play a role in SO(32) and E8 × E8 dual theories in 4-dimensions. In

4-dimesnsions it has been established [45] that the twist

T = 2c1(B2) (4.39)

gives rise to the paired heterotic theories (the analog of the F4 base in F-theory in

6-dimensions). Once again, the generic symmetry of this CY 4-fold is SO(8).

• Lastly, the “Case 1” geometries — multiple K3 fibrations with a shared elliptic

fibration — are once again a rich playground for 4-dimensional heterotic/heterotic

correspondence.

Within the standard set-up of heterotic/F-theory duality described above, we will

consider first the case that each of the K3 and elliptic fibrations of Y4 admits a section

and that the two fibrations are compatible (i.e., the K3 fiber is itself elliptically

fibered with section, etc.). This structure is summarized by the following diagram in

4-dimensions:

Y4
E−−−→ B3

K3
y y P1

B2
=←−−→ B2

(4.40)
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with the requirement of compatibility of the K3/elliptic fibrations and sections for

each. In the case of multiple fibrations in “Case 1”, the base, B3, must admit more

than one rational (i.e. P1) fibration.

B3

ρ
P1

~~

P1

ρ′   
B2 B′2

(4.41)

Examples of such bases are easy to observe in all known constructions of CY 4-folds.

As in the previous subsection, it is useful to begin with the heterotic theory in the

absence of 5-branes. This class of bases will correspond to the Hirzebruch surfaces in

6-dimensions and the multiple fibration structure in this case will be the analog of

the heterotic/heterotic duality of Duff, Minasian and Witten [35].

A class of 3-(complex) dimensional bases that are of this form are the “generalized

Hirzebruch” manifolds, sometimes denoted Fnmk in the literature (see [108]). These

are P1 bundles of the form described in (4.36) where the subscript denotes a twist of

T = nS +mE over the Hirzebruch surface Fk (with S2 = −k, S · E = 1 and E2 = 0).

In this case, the analog of [35] and the base F0 = P1 × P1 explored in section 4.2.2 is

the threefold defined by the (m, 0) twist over F0 or equivalently, the zero-twist over

Fm. This 3-fold can be denoted:

F0,0,m ' F0,m,0 ' Fm,0,0 (4.42)

An inspection of the toric description of such a manifold yields immediately that

B3

ρ
P1

~~

P1

ρ′ !!
F0 Fm

(4.43)

both with section. As pointed out in [108], it is clear that as in the 6-dimensional corre-

spondence, these pairs will generically correspond to a perturbative/non-perturbative

interchange of gauge fields in a 4-dimensional heterotic/heterotic duality. The het-

erotic CY 3-fold Weierstrass models over F0 are generically smooth, while those over

Fm for m > 2 are generically singular [30]. Thus, a symmetry group realized by

a smooth bundle V → X3 and CY 3-fold, πh : X3 → F0 for one heterotic theory

(i.e., one K3-fibration) will correspond to gauge fields associated to singularities in

X ′3 → Fm in the other (i.e., the second K3-fibration). As in section 4.2.3, the inclusion

of 5-branes in the heterotic theory will vastly extend the possible geometry of the

threefold bases B3 in (4.40) (see for example [111]).

4.3.2 Multiple elliptic fibrations in 4-dimensional heterotic compactifications

In N = 1 compactifications to 4-dimensions, not only can we adiabatically fiber the

Heteterotic/F-theory dualities from previous sections over shared base manifolds, we also
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have a quantitatively new set of string dualities at our disposal. Perhaps the most interesting

of these involves the study of multiply-fibered Calabi-Yau threefolds as the base manifolds

of 4-dimensional heterotic compactifications. In particular, suppose that X is a CY 3-fold

with the following form

X3

π
E

~~

E
π′   

B2 B′2

(4.44)

That is, it is genus-one fibered over two different base manifolds, π : X3 → B2 and

π′ : X3 → B′2. Several important observations must be made about the heterotic theory

in this case. First, the structure of the heterotic theory is completely independent of the

‘orientation’ of the heterotic fibration. That is, the massless states of the theory, the gauge

symmetry and couplings, a priori do not depend on the fibration structure of X3!

However, it is clear that under the heterotic/F-theory dictionary [33] described above,

the F-theory duals of the two possibillites in (4.44) can look very different. That is, in the

case that both fibrations in (4.44) admit a section, we have in principle two well-understood

F-theory duals, consisting of CY 4-folds with K3 fibers over the distinct base manifolds B2

and B′2

τ : Y4
K3−→ B2 , τ ′ : Y ′4

K3−→ B′2 (4.45)

These 4-folds will be potentially topologically distinct, with different G-flux backgrounds.

However, by the observation above, they must give rise to truly identical 4-dimensional

dual theories. This then, is a new example of string duality appearing in 4-dimensions

and it will be our goal here to briefly sketch some of the possible structure of Y4 and Y ′4 .

It should be noted as well that for known datasets of CY 3-folds, the number of such

inequivalent genus-one fibrations can number in the dozens — implying that there can exist

vast networks of dual CY 4-folds whose effective theories can be linked. We will illustrate

this phenomenon for a pair of fibrations below.

In order to apply the standard maps of heterotic/F-theory duality [33], we will focus

here on the case where X3 is smooth and has no fibral divisors (i.e no blow-ups in the fiber).

In this case, h1,1(X3) = h1,1(B) + rkMW + 1 for each of its fibrations. Having chosen a

given fibration, say, π in (4.44), we can divide the divisors into “horizontal” and “vertical”

types with respect to this choice:

σm : sections to fibration π : X → B (m = 0 . . . rkMW ) ,

Db
α : divisors pulled back from base B, as π∗(D̂b

α) (α = 1 . . . h1,1(B)) .
(4.46)

The fact that a single threefold X3 is multiply elliptically fibered as in (4.44) means that

its topology can be expanded in a basis of forms dual to (4.46) in distinct ways. Focusing,

in particular, on cases with rkMW = 0, the second Chern class of a bundle in the E8 ×E8

theory, as described in (4.37), takes the form:

c2(V ) = η ∧ ω0̂ + ζ = η′ ∧ ω0̂ + ζ ′ . (4.47)
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This leads naturally to the twists over B2 and B′2,

η = 6c1(B2) + T and η′ = 6c1(B′2) + T ′ , (4.48)

and a natural question arises as to how T and T ′ are related. The divisors (equivalently

(1, 1)-forms) on X3 are fixed and must be expanded as in (4.46) in two different ways,

related by an integral basis change. This schematically takes the form(
σ′m′

D′α′

)
= MΛΣ

(
σm
Dα

)
(4.49)

where MΛΣ is an invertible matrix and Λ,Σ run over the full range of h1,1(X3). Note that

although the length of the vectors is fixed by h1,1(X3) the fiber/base division in (4.46) can

be very different in B2 and B′2.

For a given example, this correspondence can be determined explicitly. Moreover, in

general the basis change MΛΣ will be constrained by the topology of X3 itself. For simply

connected manifolds, Wall’s theorem [112] says that the diffeomorphism class of X3 is

determined by the collection of numbers,

{dΛΣΨ , c1(X3) , c2(X3) , c3(X3) , h1,1(X3) , h2,1(X3)} , (4.50)

where dΛΣΨ for Λ,Σ,Ψ = 1, . . . h1,1(X) are the triple intersection numbers of X3. But for

an elliptically fibered manifold with section (and no fibral divisors), the Chern class and

triple intersection numbers take a constrained form. See appendix B for a collection of such

useful results. In general these can be used to determine the relationship between T and T ′

for any given example.

To illustrate this, for simplicity, we will consider an example in which there is a

single section σ0 to each fibration. In this case, h1,1(X3) = 1 + h1,1(B) (with h1,1(B) =

h1,1(B2) = h1,1(B′2)). Furthermore, the triple intersection numbers and links between

c2(TX) and c1(B2) are highly constrained (see appendix B). It is clear however that some

bases could satisfy these conditions — including the Hirzebruch surfaces with h1,1(Fn) = 2

and χ(Fn) = 4 for all n ≥ 0. Simplifying still further, the heterotic/F-theory duality map is

most easily defined in the case that both fibrations are in fact holomorphic (rather than

merely rational). As we can see from the examples of previous sections, requiring both

fibrations to have exactly one holomorphic section and no fibral divisors is by no means

generic, however even this case can demonstrate some interesting possibilities.

In the constrained case of exactly one holomorphic section for each fibration, the triple

intersection numbers obey [33]:

d000 = ηαβK
αKβ d00α = ηαβK

β (4.51)

d0αβ = ηαβ dαβγ = 0 (4.52)

where Kα are the coefficients in the expansion of the base canonical class, K = − [c1(B2)] =

KαD̂b
α, and ηαβ = D̂b

α · D̂b
β are the double intersection numbers for the divisors on B2.

For illustration, let us choose the two bases to be Hirzebruch surfaces, B2 = Fm and

B′2 = Fk. To avoid singular Weierstrass models that must be resolved (and added fibral
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divisors), we will restrict ourselves to the case when m, k ≤ 2. In this case, it can readily

be observed that the equivalence of the intersection numbers in (4.51) for integral basis

changes fixes the choice of integers to k = 2 and m = 0. Then, many changes of basis

in (4.49) are possible. These include the following map from the description of X3 → F0 to

that of X3 → F2:  σ′0
h′

f ′

 =

 1 0 0

0 1 −1

0 0 1


 σ0

h

f

 , (4.53)

with h2 = f2 = 0, h · f = 1, h′2 = −2, h′ · f ′ = 1, and f ′2 = 0. Note that this solution is

purely a basis change within the Hirzebruch base itself, a fact that is not surprising since

F0 and F2 are infinitesimally close in moduli space [113]. For this choice, the twists (and

hence the F-theory geometry) are related as

T ′F2
= ah′ + bf ′ ⇔ TF0 = ah+ (b− a)f . (4.54)

More novel possibilities that actually mix fiber/base descriptions include for example: σ′0
h′

f ′

 =

 1 2 2

0 −1 1

0 0 1


 σ0

h

f

 (4.55)

which yields (by choosing to look at the η = 6c1(B) + T case)

T ′F2
= ah′ + bf ′ ⇔ TF0 = −(a+ 24)h+ (b+ 24)f . (4.56)

It would be an intriguing prospect to construct such a duality explicitly for specific

bundles on a realistic CY 3-fold and construct the F-theory duals, including G-flux. It

has been observed [80, 114, 115] that in the context of heterotic/F-theory duality novel

solutions for G-flux (such as T-branes) depend on the decompositions such as (4.47). We

hope to explore such examples in future work.

4.3.3 Exploring the moduli space of stable bundles

It has recently been observed [80, 84, 85] that heterotic/F-theory duality in 4-dimensions

can provide a useful window into the allowed geometry of both heterotic and F-theory

compactifictions. In particular, it was noted that simple criteria in F-theory could help to

constrain how possible structure groups are linked to the topology of slope-stable vector

bundles over Calabi-Yau 3-folds. In the context of heterotic model building, the following

question is a notoriously difficult one, with few mathematical tools available to address it:

Given a CY 3-fold, X3, does there exist a stable bundle, V → X3, with given rank, rk(V ),

structure group, H ⊂ E8, and total Chern class, c(V )?

In general, very little is known about the structure of the moduli space MX3(c(V )) of

semi-stable sheaves on X3 with fixed rank and total Chern class.

In [80], the singularity structure of Y4 was used to link the form of η in (4.37) to

the structure group of V → X3. In particular, the existence of generic (non-Higgsable)
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H a in η ≥ ac1(B2)

SU(n) n (n ≥ 2)

SO(7) 4

SO(m) m
2 (m ≥ 8)

Sp(k) 2k (k ≥ 2)

F4 4

G2 3

E6
9
2

E7
14
3

E8
24
5

Table 2. Constraints on the “size” of η required for certain structure groups H of heterotic bundles

derived in [80, 84, 85]. Here, η ≥ ac1(B2) indicates that η − ac1(B2) is an effective divisor on B2.

symmetries on Y4 provides a simple criteria for the triviality/vanishing of MX3(c(V )).

Briefly, if a generic symmetry G (arising from singular fibers in Y4) cannot be Higgsed in

the 4-dimensional effective theory, it follows that for the given topology of the bundle (η

in (4.37)) there cannot exist a bundle with a structure group larger than H , the commutant

of G ⊂ E8 (i.e., in order to build a bundle with structure group H over the elliptically

fibered CY threefold, there is a minimum “size” for η). Table 2 gives a sample of such

constraints on η in the case of a dual 4-fold (without G-flux).

Importantly, these bounds involve only a part of the second Chern class of the bundle,

V (i.e., the twist T , or equivalently, η in (4.38)). In this context then, multiple fibrations to

the heterotic threefold play a remarkable role in that each fibration constrains a further

component of c2(V ). A systematic exploration of the bounds on all possible η, η′s in the

context of (4.44) could provide information on the full c2(V ) and a more complete view of

the moduli space of heterotic bundles. Information linking structure group (and further, the

zero-mode spectrum [80]) to the topology of a bundle would make the large scale systematic

searches [116–118] for phenomenologically relevant heterotic vacua dramatically simpler.

5 Conclusions and other dualities in diverse dimensions

In this work we have taken some first steps in an exploration of some of the rich duality

structures that can be brought to light by multiple fibrations in CY geometries. Our primary

results include the following

• Within the M-/F-theory correspondence, the use of M-theory to determine the

structure of the F-theory effective field theory has been a powerful tool which has lead

to considerable recent progress (see e.g [44, 75, 81, 82]). In this work, we have seen

that the multiple fibration structures explored in section 3 provide numerous examples

of related EFTs — e.g. in section 3.5 for example, 9 different elliptic fibrations arise

from a single CY 3-fold. The 6-dimensional F-theory compactifications are all distinct
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theories — with different numbers of vector, tensor and hypermultiplets. However, the

correspondence of a shared M-theory limit indicates that in some way, the collected

F-theory vacua share a broader moduli space. Since the complex structure moduli of

one CY n-fold controls the deformations of all of the F-theory limits, any deformation

of the geometry will deform the EFTs linked by different fibrations in a correlated and

anomaly-cancelling way. This suggests that essential properties (and deformations)

of these theories can be connected in deep and previously unseen ways. It will be

intriguing to further explore the consequences of such multiple CY fibrations on the

effective theories in more detail in future work.

One area of particular interest includes the linking of non-flat fibrations (known

to give rise to superconformal theories [29–31, 62, 63]) to ordinary, flat fibrations

through the shared M-theory limits seen in section 3. As expected, we find that

the construction of the Weierstrass models for CY geometries with non-flat fibers

give rise to discriminant loci with vanishing orders (f, g,∆) ≥ (4, 6, 12), as expected.

Interestingly, the occurrence of such superconformal points in discriminant loci has

primarily been systematically studied to date via blowing-up points in the base [29, 30].

This work highlights the fact that by considering more exotic, non-flat fibers (at higher

co-dimension) there are other choices of resolution leading to smooth CY geometries.

These possibilities are all clearly linked to such superconformal theories and they may

have a further role to play in string dualities.

• Within heterotic/F-theory duality (and heterotic/Type IIA dualities), we find that

multiple fibrations are present in most known correspondences — including het-

erotic/heterotic duality in 6-dimensions, T-duality and Mirror symmetry.

Perhaps most novel in this collection of results is the observation that the choice of

an elliptic fibration does not effect the form of a N = 1 heterotic compactification on

a (multiply) elliptically fibered CY 3-fold in 4-dimensions. However, the form of its

4-dimensional F-theory dual can appear very different — with topologically distinct

CY 4-folds and G-flux being linked by these common heterotic duals. It seems that

these observations could shed light on the notoriously difficult problem of classifying

(and explicitly constructing) G-flux in 4-dimensional compactifications.

• Finally, the tools developed here and in [1] make it possible to systematically scan for

fibration structures and the corresponding string dualities in known datasets of CY

n-folds. Already in this work we have found examples of CY geometries with high

rank Mordell-Weil groups, intriguing non-flat fibration structures and novel examples

of dualities. As observed in section 2 and in [1] the vast majority of known CY 3-

and 4-folds admit multiple elliptic and K3-fibrations and it has been conjectured

that in fact, all CY n-folds with large enough Hodge numbers may be elliptically

fibered [3]. As a result, we hope in future work to use these tools to complete a

“duality cartography” [28] and survey fibrations and dualities in CY datasets beginning

with the CICY 3- and 4-folds.
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To conclude we briefly outline a number of other interesting areas in which multiple

fibrations in CY geometries may play a role in new string dualities and other correspondences.

5.1 Further directions and applications

(0, 2) target space duality and heterotic/F-theory duality. It was observed in [119]

that apparently distinct (0, 2) Gauged Linear Sigma Models (GLSMs) [120] can be related

to one another by a shared non-geometric phase. The nature of this correspondence and

extensions of it which allowed for topologically distinct geometric limits (with CY 3-folds

with different Hodge numbers and vector bundles over them) were explored and extended

in [121, 122]. Despite numerous examples of target space dual GLSMs, thus far, a concrete

linking of the underlying (0, 2) sigma models has remained elusive. It is an open question

as to whether this target space duality corresponds to two distinct (0, 2) sigma models with

a shared locus in their moduli space (akin to a conifold transition between CY 3-folds in

Type II theories [123]) or is instead a true duality of the underlying theories. Some recent

evidence in favor of the latter possibility was assembled in a landscape scan [124, 125] which

systematically explored the zero mode spectrum of thousands of models and in [126] which

explored the N = 1 potential (i.e., D-terms and F-terms) and the vacuum structure of

the paired theories. In both cases the target space “dual” theories agreed to a high level

of detail.

One simple class of target space dual theories involves Calabi-Yau threefolds that are

related by simple conifold-type transitions [124]. In this case, if the CY 3-fold associated

to the starting GLSM is elliptically fibered, in many cases the dual theory will be as well.

In this case, it is expected that both theories will admit F-theory duals defined by CY

4-folds. It was conjectured in [124] that perhaps the F-theory dual geometries of the two

heterotic target space theories could be the same CY 4-fold. This could be possible if the

single geometry Y4, was of the “Case 1” type and admitted two K3- fibrations of the form

discussed in section 4 and equation (4.4) — that is, a single 4-fold, Y4, which admits two

distinct K3-fibrations with a shared elliptic fibration. It would be intriguing to put this

conjecture to the test using the tools developed here and in [1].

Finally, it should be noted that understanding the target space duality (and the

corresponding relationships in F-theory vacua) could play an important role in highlight-

ing key structures and removing “redundancy” from systematic/algorithmic searches for

phenomenologically relevant 4-dimensional, N = 1 vacua such as the scans undertaken

in [59, 116–118, 127–131].

Superconformal theories in 6-dimensions and multiple fibrations. Multiple ellip-

tic fibrations and T-duality have been recently observed to play a role in Little String

Theories (LSTs) [132–134]. Both LSTs and superconformal theories (SCFTs) in 6-dimensions

have been systematically studied as geometric phases of F-theory. Recent results [135–138]

include a demonstration that all 6-dimensional superconformal theories can be classified

according to an “atomic classification” of blow-ups of the base B2 of an F-theory elliptic

fibration, and that in addition, all 6-dimensional SCFTs naturally embed into an LST. These

results also shed light on SCFTs in 4-dimensional compactifications [139]. Importantly, in
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the context of LST examples have been found [132, 134] of geometries admitting multiple

elliptic fibrations. As in the examples presented here, distinct 6-dimensional vacua were

linked through further dimensional reduction on a circle — with T-duality of the circle

radius mapping distinct LSTs into one another.

In view of the present study of multiple fibrations in CY geometries, an intriguing open

question remains how the structure of non-flat fibers in 6- and 4-dimensions can be linked

to the superconformal theories studied above? In addition, in geometries admitting SCFT

or LST limits, there can be many more than two fibrations and it would be fruitful to see

how this network of theories could be linked.

2-dimensional (0, 2) theories and multiple fibrations in Calabi-Yau 5-folds. In-

teresting recent results [140, 141] have demonstrated that F-theory compactifications on

CY 5-folds give rise to (0, 2) supersymmetric theories in 2-dimensions. The form of the

2-dimensional sigma models are directly linked to the structure of the elliptic fibration of

Y5 and its singularities. Many non-trivial features of the elliptically fibered CY geome-

try appear in the cancellation of anomalies, Chern-Simons terms and more. In addition,

the resulting 2-dimensional (0, 2) theories can be linked to, and interpreted as, heterotic

worldsheet theories (and GLSMs).

In this context, it is clear that CY 5-folds admitting multiple fibrations could play a

significant role in dualities linking 2-dimensional (0, 2) theories. In particular, as seen in

section 4, nested fibration structures in which Y5 admits any combination of the following

chain of possible sub-fibrations

π1 : Y5
E−→ B4 , π2 : Y5

K3−→ B3 (5.1)

π3 : Y5
CY3−→ B2 , π4 : Y5

CY4−→ P1 (5.2)

with potentially nested or distinct sub-fibers

E ⊂ K3 ⊂ CY3 ⊂ CY4 ⊂ Y5 (5.3)

and rationally fibered bases, Bn, could have consequences for the (0, 2) GLSMs introduced

in [140, 141].

In summary, we view the tools developed here and in [1, 28] as an important first step

towards understanding how the geometry of CY fibrations sheds light on fundamental string

dualities. We hope the questions above and many others will be explored in future work.
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A Counting of nodes in a complex curve

Here, we give a brief review of how the nodes of a complex curve are counted. In general,

for complex curves the singularities can include nodes, cusps, tacnodes (See figure 9) and

multiple point singularities. In the context of the main text of this paper, the algebraic curve

C in question is defined as a component (i.e. the I1 component) of the discriminant locus,

{∆ = 0}, in a two-fold surface B, which may itself be defined as a complete intersection of

N polynomials, Pj=1,··· ,N in AB. Defining C via the zero locus of a polynomial {F = 0}
we have

C F
↪→ B

Pj
↪→ AB . (A.1)

We denote by xi ∈ C for i = 1, · · · , N + 2, the affine coordinates of the (N + 2)-dimensional

ambient space, AB.

A.1 A hypersurface curve

When N = 0, the algebraic curve C is a single hypersurface, C = {F (x1, x2) = 0} ⊂ B, and

the singularities are associated with the following ideal,

I = 〈F, dF 〉 = 〈F, Fx1 , Fx2〉 , (A.2)

where, by an abuse of notation, we denote the polynomial coefficients of the expansion of a

differential form in a basis of forms of an appropriate degree, by the form expression itself.

Here, Fxi denote the first derivatives of F with respect to xi. Next, we form the ideal,

H = 〈h〉 , (A.3)

generated by the determinant, h = Det(H), of the Hessian matrix,

H =

(
Fx1x1 Fx1x2
Fx2x1 Fx2x2

)
. (A.4)

The ideal associated with the nodes can then can be obtained via the commutative algebra

procedure of “saturation” as follows:

Inode = (I : H∞) . (A.5)

Intuitively, this corresponds to (the algebraic closure of) the part of the ideal I that remains

when the generators of H do not vanish. Then we arrive at last at

#(Nodes) = dimV (Inode) , (A.6)

where by dimV (Inode) we mean the vector space dimension of the zero-dimensional ideal

Inode. This counting can be done practically with the tools in [142–144].

In general, there may arise double point singularities that are not nodes but either cusps

or tacnodes. Tacnode singularities never appear in any of the examples of flat fibrations

analyzed in this paper. Nevertheless, they do appear in non-flat cases and we believe that

they are relevant to the physics of non-flat fibrations. To complete the story, let us also
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Figure 9. Examples of double point singularities from left to right: node, cusp, and tacnode.

See [145] for details of multiple point singularities.

describe the relevant ideals that can be used to count both cusps and tacnodes. We first

define a combined ideal

Inon−node = 〈F, Fx1 , Fx2 , h〉 (A.7)

and then form the ideal associated with cusps as a saturation

Icusp = (Inon−node : H∇∞) (A.8)

where H∇ is defined by taking the derivative of the determinant of the Hessian (itself as

defined in (A.4)), and forming the following ideal,

H∇ = 〈hx1 , hx2〉 , (A.9)

which yields a count

#(Cusps) = dimV (Icusp) , (A.10)

Finally, to count the number of tacnodes, it is necessary to quantify the possible multiple

point singularities,

Imult = 〈F, Fx1 , Fx2 , Fx1x1 , Fx1x2 , Fx2x2〉 , (A.11)

where Fxi and Fxixj denote the first and the second derivatives of F with respect to the

respective variables. With these definitions in hand, we can then describe the following ideal

Inon−node−non−cusp = 〈F, Fx1 , Fx2 , h, hx1 , hx2〉 . (A.12)

The tacnodes are then simply counted by removing the multiple point singularities from

the dimension of Inon−node−non−cusp as

#(Tacnodes) = dimV (Inon−node−non−cusp)− dimV (Imult) (A.13)

Again, we note that tacnodes (and multiple point singularities) only appear in the context

of the non-flat examples considered in this work. See section 3.5.
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A.2 A complete intersection curve

The node-counting algorithm for a complete intersection curve, with N > 0, is given as a

straightforward generalization of that for the hypersurface case. The formula (A.6) still

applies once the relevant ideals, I and H, are defined in an appropriately generalized manner

as follows. Firstly, the ideal describing all of the singular points of the curve is given by

I =
〈
F, P1, · · · , PN , (∧Nj=1dPj) ∧ dF

〉
. (A.14)

The ideal H is then defined as in (A.3) where the Hessian matrix H , in the presence of base

defining equations, P1, · · · , PN , is constructed as [146]

H =



0 · · · 0 ∂P1
∂x1

· · · ∂P1
∂xN+2

...
. . .

...
...

. . .
...

0 · · · 0 ∂PN
∂x1

· · · ∂PN
∂xN+2

∂P1
∂x1

· · · ∂PN
∂x1

Fx1x1 · · · Fx1xN+2

...
. . .

...
...

. . .
...

∂P1
∂xN+2

· · · ∂PN
∂xN+2

FxN+2x1 · · · FxN+2xN+2


. (A.15)

As in (A.6) this allows us to obtain a count of the number of nodes (with analogous formulae

for cusps, tacnodes, etc) for a more general description of the base manifold, B.

B The topology of an elliptically fibered Calabi-Yau 3-fold

In this section, a brief review is provided of a collection of useful results regarding the

geometry and topology of elliptically fibered Calabi-Yau 3-folds (see [33, 82, 147] for a more

complete treatment).

In the case of a flat fibration, π : X3 → B2, the Shioda-Tate-Wazir theorem [56–58]

guarantees that we can decompose the divisors DΛ of X3, for Λ = 1, . . . , h1,1(X3), as

Db
α = π∗(Db

α) : divisors pulled back from the base (B.1)

DI : fibral divisors (B.2)

D0̂ : the zero section (B.3)

Dm : rational sections, elements of the Mordell-Weil group of X , (B.4)

where the indices of different types run over the following ranges:

α, β, · · · = 1, . . . , h1,1(B2) ; I, J, · · · = 1, . . . , rkG ; m, p, · · · = 1, . . . , rkMW . (B.5)

Here, G denotes the non-Abelian fiber symmetry associated to the resolved singular fibers

of X, whose rank counts the fibral divisors. In particular, we have

h1,1(X3) = h1,1(B2) + #(fibral divisors) + 1 + rkMW . (B.6)
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We will denote the basis of (1, 1)-forms dual to the different types of divisors above as

ωΛ = {ωα, ωI , ω0̂, ωm} , (B.7)

with the index Λ running over the full range of h1,1(X3).

We begin by exploring the triple intersection numbers of X3:

dΛΣΓ = DΛ ·DΣ ·DΓ =

∫
X3

ωΛ ∧ ωΣ ∧ ωΓ . (B.8)

First, since the base is a 2-fold it is clear that

Db
α ·Db

β ·Db
γ = 0 . (B.9)

Moreover, from the very definition of what it means for D0̂ and Dm to be rational sections

(rather than multisections), it is guaranteed that for any four-form ζ̂ on B2, the following

relation holds: ∫
X3

ω0̂ ∧ ζ =

∫
B2

ζ̂ , (B.10)

where ζ = π∗(ζ̂), and likewise for ωa. That is, a section intersects the generic elliptic fiber

precisely once. It then follows that for either a holomorphic or rational section,

Dm ·Db
α ·Db

β = ηαβ , (B.11)

where ηαβ = Db
α ·Db

β .

The observations above are enough to derive the following important double intersection

formula which holds for holomorphic sections, Dhol,

Dhol ·Dhol = KB2 ·Dhol , (B.12)

where KB2 is the canonical class of the base. In the case that a section Drat is merely

rational, the (slightly weaker) triple intersection formula holds (frequently used to help

identify rational sections in X3 [1]),

Drat ·Drat ·Db
α = KB2 ·Drat ·Db

α , for α = 1, . . . , h1,1(B2) , (B.13)

which in particular must hold for D0̂ and Dm.

Following [75, 82] it is possible to define a simple, shifted version of the zero section

which obeys convenient “orthogonality” properties under the Shioda map. These can

be found in general in [75, 82]. For the zero section D0̂, a shifted version, D0, can be

obtained from

D0 = D0̂ −
1

2
(D0̂ ·D0̂ ·D

b,α)Db
α , (B.14)

where the indices α, β, · · · are raised and lowered using the ηαβ = Db
α ·Db

β. Such a shift

guarantees that D0 ·D0 ·Db
α = 0, for α = 1, . . . , h1,1(B2). Then, with respect to this basis
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(with the shifted zero section), whether the zero section is holomorphic or not, the triple

intersection numbers are given as

dαβγ = 0 d0αβ = ηαβ d00α = 0 (B.15)

dαβI = 0 dα0I = 0 dαIJ = −CIJ(Sb ·Db
α) (B.16)

dαβm = 0 dαIm = 0 d0αm = 0 (B.17)

dαmn = π(Dm ·Dn)α (B.18)

Here, Sb is a divisor in B2 over which the elliptic fiber develops singularities and CIJ is the

co-root matrix. See [75, 82] for further details.

For the analysis in section 4.3.2 we will consider the form of the intersection numbers

in the blown-down limit in which all fibral divisors DI go to zero volume. Furthermore, in

the case that the zero section is holomorphic we have that

D0̂ ·Dm = 0 , (B.19)

and it follows that the remaining intersection numbers take the simple form [82]:

d000 =
1

4
ηαβK

αKβ d0mn = −1

2
π(Dm ·Dn)αK

α (B.20)

d00m = 0 ,

where Kα are the coefficients in the expansion, KB2 = − [c1(B2)] = KαDb
α, of the base

canonical class. Once again the equalities in (B.20) only hold in the case of a holomorphic

zero section.

The fibration structure guarantees if X3 has a holomorphic zero section and no fibral

divisors, then the second Chern class of X3 can be written as [33]

c2(TX3) = 12c1(B2) ∧ ω0̂ + c2(B2) + 11c1(B2)2 , (B.21)

where in addition the topology of B2 satisfies

χ(B2) =

∫
B2

c2(B2) = 2 + h1,1(B2) ,

∫
B2

c2
1(B2) = KαKβηαβ = 10− h1,1(B2) . (B.22)

In general, the second Chern class of an elliptically fibered CY 3-fold obeys [33]∫
X3

ωα ∧ c2(X3) = −12Kα . (B.23)

Finally, in the case of a single section obeying (B.12) the second Chern class of any bundle,

V , on X3 can be written:

c2(V ) = η ∧ ω0̂ + ζ , (B.24)

where η and ζ are pullbacks through π of (1, 1)- and (2, 2)-forms on B2, respectively.
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[104] P. Hořava and E. Witten, Heterotic and type-I string dynamics from eleven-dimensions, Nucl.

Phys. B 460 (1996) 506 [hep-th/9510209] [INSPIRE].

[105] P.S. Aspinwall and R.Y. Donagi, The Heterotic string, the tangent bundle and derived

categories, Adv. Theor. Math. Phys. 2 (1998) 1041 [hep-th/9806094] [INSPIRE].

[106] J. Louis and R. Valandro, Heterotic-Type II Duality in the Hypermultiplet Sector, JHEP 05

(2012) 016 [arXiv:1112.3566] [INSPIRE].

[107] K. Hori et al., Clay mathematics monographs. Vol. 1: Mirror symmetry, AMS Press,

Providence U.S.A. (2003), http://www.claymath.org/library/monographs/cmim01.pdf.

[108] P. Berglund and P. Mayr, Heterotic string/F theory duality from mirror symmetry, Adv.

Theor. Math. Phys. 2 (1999) 1307 [hep-th/9811217] [INSPIRE].

[109] S. Alexandrov, J. Louis, B. Pioline and R. Valandro, N = 2 Heterotic-Type II duality and

bundle moduli, JHEP 08 (2014) 092 [arXiv:1405.4792] [INSPIRE].

[110] N. Leung and S. Yau, Mirror Symmetry of Fourier-Mukai Transformation for Elliptic

Calabi-Yau Manifolds, in The Many Facets of Geometry: A Tribute to Nigel Hitchin, Oxford

University Press, Oxford U.K. (2007).

[111] D.-E. Diaconescu and G. Rajesh, Geometrical aspects of five-branes in heterotic/F theory

duality in four-dimensions, JHEP 06 (1999) 002 [hep-th/9903104] [INSPIRE].

[112] C.T.C. Wall, Classification problems in differential topology. V, Invent. Math. 1 (1966) 355.

[113] T. Hubsch, Calabi-Yau manifolds: A Bestiary for physicists, World Scientific, Singapore

(1994).

[114] L.B. Anderson, J.J. Heckman and S. Katz, T-Branes and Geometry, JHEP 05 (2014) 080

[arXiv:1310.1931] [INSPIRE].

[115] L.B. Anderson, Spectral Covers, Integrality Conditions and Heterotic/F-theory Duality,

arXiv:1603.09198 [INSPIRE].

[116] L.B. Anderson, A. Constantin, J. Gray, A. Lukas and E. Palti, A Comprehensive Scan for

Heterotic SU(5) GUT models, JHEP 01 (2014) 047 [arXiv:1307.4787] [INSPIRE].

[117] L.B. Anderson, J. Gray, A. Lukas and E. Palti, Heterotic Line Bundle Standard Models,

JHEP 06 (2012) 113 [arXiv:1202.1757] [INSPIRE].

– 61 –

http://dx.doi.org/10.1088/1126-6708/2000/01/010
http://dx.doi.org/10.1088/1126-6708/2000/01/010
https://arxiv.org/abs/hep-th/9911156
http://inspirehep.net/search?p=find+EPRINT+hep-th/9911156
http://dx.doi.org/10.1007/JHEP04(2012)028
https://arxiv.org/abs/1112.5106
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.5106
http://dx.doi.org/10.1016/S0550-3213(97)00375-1
https://arxiv.org/abs/hep-th/9606133
http://inspirehep.net/search?p=find+EPRINT+hep-th/9606133
http://dx.doi.org/10.1016/0370-2693(96)00453-4
https://arxiv.org/abs/hep-th/9602097
http://inspirehep.net/search?p=find+EPRINT+hep-th/9602097
http://dx.doi.org/10.1016/0550-3213(95)00621-4
http://dx.doi.org/10.1016/0550-3213(95)00621-4
https://arxiv.org/abs/hep-th/9510209
http://inspirehep.net/search?p=find+EPRINT+hep-th/9510209
https://arxiv.org/abs/hep-th/9806094
http://inspirehep.net/search?p=find+EPRINT+hep-th/9806094
http://dx.doi.org/10.1007/JHEP05(2012)016
http://dx.doi.org/10.1007/JHEP05(2012)016
https://arxiv.org/abs/1112.3566
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.3566
http://www.claymath.org/library/monographs/cmim01.pdf
https://arxiv.org/abs/hep-th/9811217
http://inspirehep.net/search?p=find+EPRINT+hep-th/9811217
http://dx.doi.org/10.1007/JHEP08(2014)092
https://arxiv.org/abs/1405.4792
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.4792
http://dx.doi.org/10.1088/1126-6708/1999/06/002
https://arxiv.org/abs/hep-th/9903104
http://inspirehep.net/search?p=find+EPRINT+hep-th/9903104
http://dx.doi.org/10.1007/JHEP05(2014)080
https://arxiv.org/abs/1310.1931
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.1931
https://arxiv.org/abs/1603.09198
http://inspirehep.net/search?p=find+EPRINT+arXiv:1603.09198
http://dx.doi.org/10.1007/JHEP01(2014)047
https://arxiv.org/abs/1307.4787
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.4787
http://dx.doi.org/10.1007/JHEP06(2012)113
https://arxiv.org/abs/1202.1757
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.1757


J
H
E
P
1
0
(
2
0
1
6
)
1
0
5

[118] L.B. Anderson, J. Gray, A. Lukas and E. Palti, Two Hundred Heterotic Standard Models on

Smooth Calabi-Yau Threefolds, Phys. Rev. D 84 (2011) 106005 [arXiv:1106.4804] [INSPIRE].

[119] J. Distler and S. Kachru, Duality of (0, 2) string vacua, Nucl. Phys. B 442 (1995) 64

[hep-th/9501111] [INSPIRE].

[120] E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys. B 403 (1993) 159

[hep-th/9301042] [INSPIRE].

[121] R. Blumenhagen, Target space duality for (0, 2) compactifications, Nucl. Phys. B 513 (1998)

573 [hep-th/9707198] [INSPIRE].

[122] R. Blumenhagen, (0, 2) Target space duality, CICYs and reflexive sheaves, Nucl. Phys. B 514

(1998) 688 [hep-th/9710021] [INSPIRE].

[123] P. Candelas, P.S. Green and T. Hubsch, Rolling Among Calabi-Yau Vacua, Nucl. Phys. B

330 (1990) 49 [INSPIRE].

[124] R. Blumenhagen and T. Rahn, Landscape Study of Target Space Duality of (0, 2) Heterotic

String Models, JHEP 09 (2011) 098 [arXiv:1106.4998] [INSPIRE].

[125] T. Rahn, Target Space Dualities of Heterotic Grand Unified Theories, Proc. Symp. Pure

Math. 85 (2012) 423 [arXiv:1111.0491] [INSPIRE].

[126] L.B. Anderson and H. Feng, New Evidence for (0, 2) Target Space Duality,

arXiv:1607.04628 [INSPIRE].

[127] L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, Stabilizing All Geometric Moduli in

Heterotic Calabi-Yau Vacua, Phys. Rev. D 83 (2011) 106011 [arXiv:1102.0011] [INSPIRE].

[128] L.B. Anderson, Y.-H. He and A. Lukas, Heterotic Compactification, An Algorithmic

Approach, JHEP 07 (2007) 049 [hep-th/0702210] [INSPIRE].

[129] L.B. Anderson, J. Gray, Y.-H. He and A. Lukas, Exploring Positive Monad Bundles And A

New Heterotic Standard Model, JHEP 02 (2010) 054 [arXiv:0911.1569] [INSPIRE].

[130] L.B. Anderson, A. Constantin, S.-J. Lee and A. Lukas, Hypercharge Flux in Heterotic

Compactifications, Phys. Rev. D 91 (2015) 046008 [arXiv:1411.0034] [INSPIRE].

[131] E.I. Buchbinder, A. Constantin, J. Gray and A. Lukas, Yukawa Unification in Heterotic

String Theory, Phys. Rev. D 94 (2016) 046005 [arXiv:1606.04032] [INSPIRE].

[132] L. Bhardwaj, M. Del Zotto, J.J. Heckman, D.R. Morrison, T. Rudelius and C. Vafa, F-theory

and the Classification of Little Strings, Phys. Rev. D 93 (2016) 086002 [arXiv:1511.05565]

[INSPIRE].

[133] S. Hohenegger, A. Iqbal and S.-J. Rey, Instanton-monopole correspondence from M-branes on

S1 and little string theory, Phys. Rev. D 93 (2016) 066016 [arXiv:1511.02787] [INSPIRE].

[134] D.R. Morrison and T. Rudelius, F-theory and Unpaired Tensors in 6D SCFTs and LSTs,

arXiv:1605.08045 [INSPIRE].

[135] J.J. Heckman, D.R. Morrison and C. Vafa, On the Classification of 6D SCFTs and

Generalized ADE Orbifolds, JHEP 05 (2014) 028 [Erratum ibid. 1506 (2015) 017]

[arXiv:1312.5746] [INSPIRE].

[136] M. Del Zotto, J.J. Heckman, A. Tomasiello and C. Vafa, 6d Conformal Matter, JHEP 02

(2015) 054 [arXiv:1407.6359] [INSPIRE].

– 62 –

http://dx.doi.org/10.1103/PhysRevD.84.106005
https://arxiv.org/abs/1106.4804
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.4804
http://dx.doi.org/10.1016/S0550-3213(95)00130-1
https://arxiv.org/abs/hep-th/9501111
http://inspirehep.net/search?p=find+EPRINT+hep-th/9501111
http://dx.doi.org/10.1016/0550-3213(93)90033-L
https://arxiv.org/abs/hep-th/9301042
http://inspirehep.net/search?p=find+EPRINT+hep-th/9301042
http://dx.doi.org/10.1016/S0550-3213(97)00721-9
http://dx.doi.org/10.1016/S0550-3213(97)00721-9
https://arxiv.org/abs/hep-th/9707198
http://inspirehep.net/search?p=find+EPRINT+hep-th/9707198
http://dx.doi.org/10.1016/S0550-3213(97)00842-0
http://dx.doi.org/10.1016/S0550-3213(97)00842-0
https://arxiv.org/abs/hep-th/9710021
http://inspirehep.net/search?p=find+EPRINT+hep-th/9710021
http://dx.doi.org/10.1016/0550-3213(90)90302-T
http://dx.doi.org/10.1016/0550-3213(90)90302-T
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B330,49%22
http://dx.doi.org/10.1007/JHEP09(2011)098
https://arxiv.org/abs/1106.4998
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.4998
http://dx.doi.org/10.1090/pspum/085/1396
http://dx.doi.org/10.1090/pspum/085/1396
https://arxiv.org/abs/1111.0491
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.0491
https://arxiv.org/abs/1607.04628
http://inspirehep.net/search?p=find+EPRINT+arXiv:1607.04628
http://dx.doi.org/10.1103/PhysRevD.83.106011
https://arxiv.org/abs/1102.0011
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.0011
http://dx.doi.org/10.1088/1126-6708/2007/07/049
https://arxiv.org/abs/hep-th/0702210
http://inspirehep.net/search?p=find+EPRINT+hep-th/0702210
http://dx.doi.org/10.1007/JHEP02(2010)054
https://arxiv.org/abs/0911.1569
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.1569
http://dx.doi.org/10.1103/PhysRevD.91.046008
https://arxiv.org/abs/1411.0034
http://inspirehep.net/search?p=find+EPRINT+arXiv:1411.0034
http://dx.doi.org/10.1103/PhysRevD.94.046005
https://arxiv.org/abs/1606.04032
http://inspirehep.net/search?p=find+EPRINT+arXiv:1606.04032
http://dx.doi.org/10.1103/PhysRevD.93.086002
https://arxiv.org/abs/1511.05565
http://inspirehep.net/search?p=find+EPRINT+arXiv:1511.05565
http://dx.doi.org/10.1103/PhysRevD.93.066016
https://arxiv.org/abs/1511.02787
http://inspirehep.net/search?p=find+EPRINT+arXiv:1511.02787
https://arxiv.org/abs/1605.08045
http://inspirehep.net/search?p=find+EPRINT+arXiv:1605.08045
http://dx.doi.org/10.1007/JHEP05(2014)028
https://arxiv.org/abs/1312.5746
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.5746
http://dx.doi.org/10.1007/JHEP02(2015)054
http://dx.doi.org/10.1007/JHEP02(2015)054
https://arxiv.org/abs/1407.6359
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.6359


J
H
E
P
1
0
(
2
0
1
6
)
1
0
5

[137] J.J. Heckman, D.R. Morrison, T. Rudelius and C. Vafa, Atomic Classification of 6D SCFTs,

Fortsch. Phys. 63 (2015) 468 [arXiv:1502.05405] [INSPIRE].

[138] J.J. Heckman, D.R. Morrison, T. Rudelius and C. Vafa, Geometry of 6D RG Flows, JHEP

09 (2015) 052 [arXiv:1505.00009] [INSPIRE].

[139] D.R. Morrison and C. Vafa, F-theory and N = 1 SCFTs in four dimensions, JHEP 08 (2016)

070 [arXiv:1604.03560] [INSPIRE].
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