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1 Introduction

In the development of theories of massless higher-spin fields (HS), it is recognized that a

cosmological constant of background spacetime is necessary to construct consistent theories

of those fields [1–3]. In particular, higher-spin field theories under AdS backgrounds are

expected as an important route studying AdS/CFT correspondence [4, 5]. According to

this line of approach, there are many attempts to study AdS dual of conformal vector fields,

which are sources of HS in AdS spacetime. It is also expected that those HS are realized in

tensionless limit of string theory. In particular, recently, there arises an interesting point of

view such that the aggregate of those HS is dual to a bi-local collective field out of conformal

vector fields in the large N limit. In terms of O(N) vector fields φa(x), (a = 1, 2, · · · , N),

the bi-local collective field, there, is given by

Φ(x, x′) =
N∑
a=1

φa(x)φa(x′). (1.1)

Further, as a constructive approach, the studies have also been made on an effective action

of the bi-local collective fields [6–9], which provide Feynman diagrams associated with the

CFT under some conditions.

Meanwhile, the bi-local fields have another history in the context of non-local field

theories started by Yukawa at 1948 [10, 11], which are intended to introduce a physical

constant with dimension of length to elementary particle theories under consideration of

divergence problems and a variety of properties in elementary particles. In the beginning,

Yukawa’s bi-local fields have a meaning of two-particle systems constrained by a definite
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spacelike distance. Soon afterward, it was pointed out that such a two-particle system

is reduced to free two particles by a canonical transformation [12]. In response to this

criticism, Yukawa modified his model so as to include an interaction between two particles.

Nowadays, this type of bi-local field theories is discussed within the framework of relativis-

tic two-particle systems bounded by a potential depending on spacelike distance of those

particles. In this sense, such a modified bi-local system should be understood as a reduced

model of relativistic string [13, 14]; and so, Yukawa’s original attempt should be regarded

as a bi-local counterpart of tensionless string.

The purpose of this paper is, thus, to investigate the bi-local systems in AdS5 spacetime

by taking aim at the relation between Yukawa’s bi-local field theories with vanishing spring

constant and the bi-local collective fields in higher-spin field theories. In the next section,

we try to construct a classical action of bi-local systems embedded in AdS5 spacetime.

Therein, the two-body interaction in this curved spacetime is introduced by means of

the geodesic interval connecting two particles. In section three, we discuss the bi-local

field equation in bulk, the wave equation for the first quantized bi-local system in AdS5

spacetime. The analysis of the bi-local field, the one-particle wave function of the bi-local

system, in respective branes is discussed in section four. It is shown that in particular,

the bi-local fields in the low-energy IR brane are reduced to those of bi-local systems with

vanishing spring constant due to an exponential hierarchy in energy scale. The section five

is devoted to summary and discussion.1

2 Embedding of a bi-local system in AdS5 spacetime

The AdS5 spacetime with anti de Sitter radius l is realized as the hyper-surface described

by coordinates (Xµ, X4, X5) satisfying ηABX
AXB = ηµνX

µXν + (X4)2 − (X5)2 = −l2,

where (A) = (µ, 4, 5) and diag(ηµν) = (− + ++). The transformation Xµ = e−kyxµ,

X4 = l sinh(−ky) − 1
2lx

2e−ky, and X5 = l cosh(−ky) + 1
2lx

2e−ky with k = l−1 can define

another coordinate system of independent variables (xµ̂) = (xµ, y). In this coordinate

system, the spacetime can be characterized by the warped metric

ηABdX
AdXB = gµ̂ν̂dx

µ̂dxν̂ = e−2kyηµνdx
µdxν + dy2, (2.1)

which is used in Randall-Sundrum model to address the Higgs Hierarchy Problem [15,

16]. In what follows, we consider the AdS5 spacetime described by the coordinate system

(xµ, y), (0 ≤ y ≤ L) with this warped metric.2

Now, we set the action of a bi-local system in this curved spacetime so that3

S =

∫
dτ

1

2

2∑
i=1

{
e−1

(i) gµ̂ν̂Dx
µ̂
(i)Dx

ν̂
(i) − U

(
x(2), x(1)

)
e(i)

}
,

(
Dxµ̂(i) =

dxµ̂(i)

dτ
− (−1)iδµ̂y θ

)

=

∫
dτ

1

2

2∑
i=1

[
e−1

(i)

{
ηµνe

−2ky(i) ẋµ(i)ẋ
ν
(i) +

(
ẏ(i) − (−1)iθ

)}2
− U

(
x(2), x(1)

)
e(i)

]
, (2.2)

1Some of those results were presented at “CST & MISC Joint Symposium on Particle Physics, 2015”.
2We set that the Planck energy scale brane and the low-energy brane are located respectively at y = 0

and y = L; and, we regard kL ' 32 ∼ 50 so that e−kL ' 10−14 ∼ 10−22.
3In this paper, we use the unit ~ = c = 1.
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Figure 1. The figure shows the geodesic interval σ2,1 connecting two particles in a curved spacetime

so that x(1)(τ) = x(ξ0) and x(2)(τ) = x(ξ1). The real lines are world lines of respective particles;

and, the dotted line designates the geodesic having x(i), (i = 1, 2) as its ends.

where τ and e(i) (i = 1, 2) are respectively a time ordering parameter of dynamical variables

and einbeins in τ space. The θ is an auxiliary variable, which transforms in the same way

as ẏ under the transformation of τ . We have introduced the θ term to restrict the relative

motion of y [17], although the covariance of this formalism is spoiled unless θ → 0. The

U(x(2), x(1)), U2,1 simply, is a bi-scalar function representing the interaction of two particles

at x(i), (i = 1, 2) with the same numerical value of τ . According to a previous paper [18]

we define this interaction term in such a way that

U(x(2), x(1)) = 2κ2σ(x(2), x(1)) + ω, (2.3)

where κ and ω are positive constants with dimension of mass square; and, σ(x(2), x(1)) is

the geodesic interval defined by [19]

σ(x(2), x(1)) = (ξ2 − ξ1)

∫ ξ2

γ,ξ1

dξL ,
(
L =

1

2
gµ̂ν̂

dxµ̂

dξ

dxν̂

dξ

)
. (2.4)

The geodesic equation is equivalent to the Euler-Lagrange equation reading L as a

Lagrangian. Substituting the solution with conservative quantities along the geodesic

for (2.4), the geodesic interval is obtained as function of both ends of the geodesic (figure 1);

that is, σ2,1 becomes a function of xµ̂(i)(τ), (i = 1, 2) only.

The σ(x(2), x(1)), σ2,1 simply, is equal to one half the square of the distance along the

geodesic between x(1) and x(2), which tends to 1
2ηµ̂ν̂(x(2) − x(1))

µ̂(x(2) − x(1))
ν̂ according

as gµ̂ν̂ → ηµ̂ν̂ . Thus, in such a flat spacetime limit, the S in (2.2) represents the action of

a two-particle system bounded by a relativistic harmonic oscillator potential with a spring

constant κ2.

Now, in a single-valued region of y(ξ) such as 0 ≤ y(ξ) ≤ L bounded by y(ξ0) = 0

and y(ξL) = L, the geodesic equations for xµ(ξ) and y(ξ) two kinds of constants along the

geodesic γ such that

V µ = e−2ky(ξ)x′µ(ξ), (2.5)

K =
1

2

(
y′2(ξ) + e2ky(ξ)V 2

)
, (2.6)

where x′µ̂ = dxµ̂

dξ . Equation (2.6) says that if we read y as the coordinate of a particle with

unite mass under the potential 1
2e

2kyV 2, then K becomes a total energy of the particle,
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Figure 2. The figure shows the conservation of K = 1
2y

′2 + V 2

2 e
2ky. It is obvious that y′ = 0 at

the turning point L = 1
2k log

(
2K
V 2

)
; and so, we have K = V 2

2 e
2kL at y = L.

which is related to the turning point L byK = V 2

2 e
2kL (figure 2). Since K is nothing but

L, one can obtain the expression

σ2,1 = K(ξ2 − ξ1)2, (2.7)

in a single-valued region of y. When we write down the right-hand side of this equation

by K and V µ, we firstly be careful about the distinction of two kinds of geodesics xµ̂+(ξ)

with y′(ξ) > 0, (ξ0 ≤ ξ ≤ ξL) and xµ̂−(ξ) with y′(ξ) < 0, (ξL ≤ ξ ≤ ξ0, ). Then, using the

abbreviation (xµi,j)± = xµ±(ξi) − xµ±(ξj) and |xi,j |± =
√

(xi,j)2
±, we can get the following

formula (appendix A):

σ2,1 =
1

2k2

[
tanh−1

(
ke−kL|xL,2|±

)
− tanh−1

(
ke−kL|xL,1|±

)]2
(2.8)

on condition that ke−kL|xi,j |± < 1. The (2.8) is the same for ±; and, as a result, we do

not have to worry about that signs. In what follows, we deal with the geodesic starting

with y = L along x− line without notice.

The potential U(x(2), x(1)) defined by (2.8) is, then, not a function of the translational

invariant variable x2,1 due to the curvature in the AdS5 spacetime. Furthermore, it is

not applicable for a long-distance interval ke−kL|xj,i| � 1. However, if we confine our

attention to a case such that the two particles are located near y = L brane, the low-

energy IR brane, then the situation will be changed. In this case, the geodesic interval can

be expressed as follows:

σ2,1 '


1
2e
−2L̃|x2,1|2 e−L̃|x̃2,1| < 1 (a) ,

1
2 L̃

2e−2L̃|x2,1|2 e−L̃|x̃2,1| & 1 (b) ,
(2.9)

where the tilde denotes the scaled variables L̃ = kL, x̃ = kx, and so on. The result implies

that the geodesic interval becomes ∼ 1
2 L̃

2 near e−L̃|x̃2,1| ∼ 1. Since, however, we are

interested in the bi-local system with an extension such as |x2,1| > eL̃l � l, we should

apply (2.9-b) to define the potential (2.3) for the present practical application. Thus, the

two-body potential under those considerations is

U(x(2), x(1)) = U2,1 = (κL̃)2e−2L̃|x2,1|2 + ω, (2.10)
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where ω is a free parameter effecting on the ground state mass of the bi-local system. We

also stress that we may regard the |x2,1| in the right-hand side is independent of y due to

e−L̃|x̃2,1| � 1; and, that the resultant two-body potential is fortunately invariant under

the translation of four-dimensional variables xµ(i), (i = 1, 2).

3 The wave equation of bi-local system in AdS5 spacetime

The wave equation of the bi-local field in AdS5 spacetime is q-number representation of

the constraints derived from the action (2.2). The Lagrangian out of this action defines

the canonical momenta (p(i), π(i)) conjugate to (x(i), y(i)) in the following form:

L =
1

2

2∑
i=1

[
1

e(i)

{
ηµνe

−2ky(i) ẋµ(i)ẋ
ν
(i) +

(
ẏ(i) − (−1)iθ

)2}− U2,1e(i)

]
, (3.1)

p(i)µ =
∂L
∂ẋµ(i)

=
1

e(i)
e−2ky(i) ẋ(i)µ, (3.2)

π(i) =
∂L
∂ẏ

=
1

e(i)

(
ẏ(i) − (−1)iθ

)
. (3.3)

Under the definition of those canonical momenta, the variations of the Lagrangian with

respect to e(i), (i = 1, 2) and θ give rise to the constraints

Hi ≡ −2
∂L

∂e(i)
= e2ky(i)p2

(i) +
(
π2

(i) + U2,1

)
= 0 (i = 1, 2), (3.4)

and

π̄ ≡ 1

2

∂L
∂θ

=
1

2

(
π(1) − π(2)

)
. (3.5)

The constraints (3.4) and (3.5) are not compatible each other; then, we eliminate π̄ with

its conjugate variable ȳ =
(
y(1) − y(2)

)
strongly by means of the Dirac bracket for the

second class constraints π̄ = ȳ = 0. After that, we do not need to worry about the

degrees of freedom (ȳ, π̄). Then using the combinations 1
4H = 1

2

∑
i e
−2ky(i)H(i) and T =

−1
2

∑
i(−1)ie−2ky(i)H(i), the constraints (3.4) can be written as

1

4
H ≡

[
1

4
P 2 + p̄2 + e−2ky

(
1

4
π2 + U2,1

)]
= 0, (3.6)

T ≡ P · p̄ = 0, (3.7)

where P =
(
p(1) + p(2)

)
, p̄ = 1

2

(
p(1) − p(2)

)
, and π =

(
π(1) + π(2)

)
are the momenta conju-

gate to X = 1
2

(
x(1) + x(2)

)
, x̄ =

(
x(1) − x(2)

)
, and y = 1

2

(
y(1) + y(2)

)
, respectively.

The canonical quantization is carried out by replacing the Dirac bracket by the com-

mutator. Then the q-number counterparts of (3.6) and (3.7) define respectively a master

wave equation and its subsidiary condition. In the case of flat (k = 0) spacetime, those

equations are reduced to bi-local field equations in five-dimensional Minkowski spacetime.

– 5 –



J
H
E
P
1
0
(
2
0
1
6
)
0
9
0

In such a reduced system, the condition (3.7) is understood in the sense of expectation

value by a physical state 〈Ψ|T |Ψ〉 = 0 or by T (+)|Ψ〉 = 0, where T (+) is a part of T written

by the annihilation operators defined out of (p̄, x̄). Then the equations H|Ψ〉 = 0 and

T (+)|Ψ〉 = 0 come to be compatible each other; and so, there arise no ghost states due to

time-like oscillations of the bi-local system.

In the curved spacetime with k 6= 0, we can not apply this method directly to equa-

tions (3.6) and (3.7). First, we have to make clear the operator ordering of e−2kyπ2 in

q-number theory. In what follows, we simply take the Weyl ordering

W ≡
(
e−2kyπ2

)
W

= e−2ky(π + ik)2. (3.8)

Thus the wave equation and its subsidiary condition in q-number theory become[
1

4
P 2 + p̄2 +

(
1

4
W + e−2kyU2,1

)]
Ψ = 0, (3.9)

(P · p̄)(+) Ψ = 0, (3.10)

where the definition of (P · p̄)(+) is not given in this stage.

The operator W has the eigenstates φλ(z) = z√
Ni
J0

(√
λ
k z
)
, (z = eỹ, Ni = const.) (ap-

pendix B) associated with the boundary condition d
dzφλ(z)

∣∣
y=L

= 0, whose roots r1, r2, · · ·
determine the eigenvalues so that λi = (e−L̃kri)

2, (i = 1, 2, · · · ). Then the Ψ satisfying the

boundary condition ∂yΨ|y=L = 0 can be expanded by a Fourier-Bessel series such as

Ψ(X, x̄, y) =

∞∑
n=1

anΦn(X, x̄)φλn(y), (3.11)

where the coefficient an decreases according as n increases, since φλn rapidly oscillates for

a large n.

Until now, the spring constant κ2 and L̃ are free parameters; in what follows, we put

restriction on those parameters by the conditions in UV and IR branes. First, in UV brane

with y = 0, we require by taking |x̄| > eL̃L into account that the order of x̄-potential

term becomes e−2L̃(κL̃)2|x̄|2 > (κk L̃
2)2 � λn ∼ e−2L̃k2; then, we obtain the first condition

κ� e−L̃k2/L̃2. In this case, the order of the eigenvalues λn’s are negligible small compared

with that of U2,1 in UV brane even for a large rn, since the an in (3.11) itself is decaying

according as rn →∞. Thus, we discard the W term in (3.9) at UV brane.

Subsequently, we move the bi-local system from UV brane to the brane with y > 0

(figure 3); then, (3.9) and (3.10) take the following simple forms:[
1

4
P 2 + p̄2 +

(
e−(L̃+ỹ)κL̃

)2
x̄2 + e−2ỹω

]
Ψ(X, x̄, y) = 0, (3.12)

(P · p̄)(+) Ψ(X, x̄, y) = 0. (3.13)

As a matter of course, hereafter, the y in those equations should be treated as a parameter

instead of a dynamical variable, otherwise the bi-local system allows contiguous spectrum.

– 6 –
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Figure 3. The bi-local systems in respective branes.

The next task is to determine the (P · p̄)(+); for this purpose, we introduce y-dependent

κy = e−(L̃+ỹ)κL̃. Then, we can say that κ0 = e−L̃κL̃ and κL = e−2L̃κL̃ are the square

roots of spring constants in UV and IR branes, respectively. With this y-dependent κy, we

define the y-dependent oscillator variables such that

x̄µ =

√
1

2κy

(
a†µ + aµ

)
and p̄µ = i

√
κy
2

(
a†µ − aµ

)
, (3.14)

to which one can verify [x̄µ, p̄ν ] = iηµν ⇔ [aµ, a
†
ν ] = ηµν . In terms of those oscillator

variables, (3.12) can be written as[
1

4
P 2 + 2κy

(
a† · a+ 2

)
+ e−2ỹω

]
Ψ(X, x̄, y) = 0, (3.15)

from which one can say that α′y = (8κy)
−1 is the Regge slope parameter in a y-fixed brane.

Then, as the second condition on (κ, L̃), we require κL . 10−20k2 so as to obtain almost

infinite slope parameter α′L at IR brane. Both conditions at UV and IR branes give rise to

a possible choice such as (κ, L̃) ∼ (k2, 50).

As the final step in this section, we set (P · p̄)(+) = −i
√

κy
2 P ·a, then (3.13) becomes a

subsidiary condition compatible with (3.12). Therefore, in what follows, we read (3.13) as

P · aΨ(X, x̄, y) = 0. (3.16)

4 The bi-local fields in a brane near IR one

Let us consider the solutions of (3.15) and (3.16) in each y-fixed brane. First, the ground

state of the oscillator variables (aµ, a
†
µ) defined by aµ|0〉 = 0 can be solved as4

〈x̄|0〉 =
(κy
π

)
e−

κy
2
x̄2 , (4.1)

4The accurate representation of ground state should be |0y〉, although we have used a simple notation

|0〉. The normalization of 〈x̄|0〉 in the indefinite metric formalism is given by

〈0|0〉 =

∫ ∞
−∞

dξ

∫ ∞
−∞

d3x|〈iξ, xi|0〉|2 = 1 .

– 7 –
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to which (3.15) yields the mass-square eigenvalue

My(0)2 = 16κy + 4e−2ỹω. (4.2)

In this stage, we adjust ω so as to be ML(0)2 = 0; that is, we put ω = −4κL̃.

To construct the excited states of relative oscillation, one can use the physical oscillator

variables â†µ = Λµνa
†ν , (Λµν ≡ ηµν − PµPν/P 2), which tend to (â†µ) = (0, a†i) in the rest

frame (Pµ) = (P 0, 0) of the bi-local system. In terms of those physical oscillator variables,

one can write a complete basis so that â†µ1 â
†
µ2 · · · â

†
µJ |0〉, (J = 0, 1, · · · ). Since those states

belong to reducible representations of rotation group in the rest frame of the bi-local system,

it is convenient to use those states under the following combination:

|Φ(m)
µ1,··· ,µJ 〉 = (â†2)mâ†(µ1 â

†
µ2 · · · â

†
µJ )|0〉 (m = 0, 1, · · · ; J = 0, 1, · · · ) , (4.3)

where â†(µâ
†
ν · · · â†ρ) is the totally symmetric and traceless combination of â†µâ

†
ν · · · â†ρ; further,

the state with J = m = 0 is read as the ground state given by (4.1). One can verify that

the state |Φ(m)
µ1,··· ,µJ 〉 is a simultaneous eigenstate of N = a† · a and Q = â†2â2 such that

N |Φ(m)
µ1···µJ 〉 = (2m+ J)|Φ(m)

µ1···µJ 〉, (4.4)

Q|Φ(m)
µ1···µJ 〉 = 2m(2m+ 2J + 1)|Φ(m)

µ1···µJ 〉 (4.5)

(appendix C); and so, the state |Φ(m)
µ1,··· ,µJ 〉 represents the bi-local system with mass square

My(J,m)2 = (8κy)(J + 2m) +My(0)2. (4.6)

In particular, since the spin operator S of the bi-local system in the rest frame satisfies

S2 = N(N +1)−Q, the state |Φ(0)
µ1,··· ,µJ 〉 belongs to an irreducible spin representation with

the highest spin J . Then (4.6) implies that the particles represented by |Φ(0)
µ1,··· ,µJ 〉 exist

on a leading Regge trajectory with a slope parameter α′y ≡ (8κy)
−1 (figure 4). Thus, the

general solution of (3.15) and (3.16) with a fixed J has the form

Φy;µ1···µJ (X, x̄) =
∞∑
m=0

∫
d4Pδ(4)

(
P 2 +My(J,m)2

)
eiP ·X

× C(m)(P )

(
π

κy

)
〈x̄|Φ(m)

µ1µ2···µJ 〉, (4.7)

where

|x̄〉 =
(κy
π

)
e−

1
2
a†·a†+

√
2κya†·x̄|0〉e−

1
2
κyx̄2 (4.8)

is the eigenstate such as x̄µ|x̄′〉 = x̄′µ|x̄′〉 with the normalization 〈x̄′|x̄′′〉 = δ(4)(x̄′ − x̄′′).
The factor ( πκy ) in the right-hand side of (4.7) is introduced for the normalization of

Φy;µ1···µJ (X, x̄) in the limiting case of κL ∼ 0; strictly speaking, κL ∼ 0 means that

the order of κL comes to be 0 compared with the energy scale in IR brane. It should be

noticed that the states (4.7) and (4.8) contain the parameter y through κy.
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Figure 4. The black and gray circles designate respectively leading Regge and their daughter par-

ticles. The particles on horizontal dashed line have a common spin, whose mass will be degenerate

to the ground-state one in the limit α′
y →∞ (y → L).

Now, from (4.8), it is not difficult to evaluate(
π

κy

)
〈x̄|Φ(m)

µ1µ2···µJ 〉 =

(
π

κy

)(
∂

∂k
· ∂
∂k

)m ∂

∂k(µ1
· · · ∂

∂kµJ )
〈x̄|ek·â† |0〉

∣∣∣∣
k=0

= e
1
2
κy ˆ̄x2

(
∂

∂k̂
· ∂
∂k̂

)m ∂

∂k̂(µ1
· · · ∂

∂k̂µJ )
e−

1
2

(k̂−
√

2κy ˆ̄x)2
∣∣∣∣
k=0

≡ e
1
2
κy ˆ̄x2S

(m)
µ1···µJ

(√
2κy ˆ̄x

)
. (4.9)

Since we are interested in the bi-local fields in the IR brane at y = L, in what follows, we

consider the limiting case of κL ∼ 0; then, one can show that S
(m)
µ1···µJ (0) = 0 for J 6= 0 and

S
(m)
0 (0) = (−1)m(2m+ 1)!! for J = 0, respectively. Therefore, within the states (4.7), only

scalar components remain in the limit κy → κL ∼ 0; and then, the resultant expression to

the remaining state becomes

ΦL;0(X, x̄) =
∞∑
m=0

∫
dµ(P )C(m)(P )S

(m)
0 (0)eiP ·X (4.10)

=
∞∑
m=0

∫
dµ(P )φ

(m)
P (x(1))φ

(m)
P (x(2)), (4.11)

where

dµ(P ) = d4Pδ(4)
(
P 2 +ML(0,m)2

)
(4.12)

and

φ
(m)
P (x(i)) = e

i
2
P ·x(i)

√
C(m)(P )S

(m)
0 (0) . (4.13)

The φ
(m)
P (x(i)), (i = 1, 2) are scalar fields associated with respective particles with the

mass 1
2ML(0,m) ∼ 0 because of κL ∼ 0; that is, the masses of those particles are almost

degenerate. If we truncate the summation with respect to m in (4.11) to some number,

the resultant bi-local field becomes the one, which should be compared with the bi-local

collective field (1.1).
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5 Summary and discussion

In this paper, we have discussed the relation between a bi-local system embedded in AdS5

spacetime with warped metric and the higher-spin bulk fields emerging as bi-local collective

fields. We tried to formulate the bi-local system in AdS5 curved spacetime in such a way

that the system is reduced to two-particle bound system with a covariant harmonic oscilla-

tor potential in flat Minkowski spacetime. As a counterpart of such a harmonic oscillator

potential in curved spacetime, we used the geodesic interval connecting two particles. We

also modify the kinetic term of the bi-local system so that the internal relative motion is

suppressed with the aid of an auxiliary gauge variable overlooking the full covariance of

this formalism.

The resultant bi-local system is characterized by three kinds of constraints. Two of

them are associated with the invariance of the action under the reparametrization of time

ordering parameters of respective particles; and, the other is the one due to the auxiliary

gauge variable θ. In canonical formalism, the first two constraints are corresponding to on-

mass-shell condition of the system and physical condition eliminating some relative motions

of the bi-local system respectively.

In q-number theory, those two constraints become the wave equation of the bi-local

system and its subsidiary condition, which extracts the physical states of the bi-local sys-

tem, the one-particle wave function of the bi-local field. As for the constraint suppressing

internal relative motion, we eliminated it beforehand as a second class constraint in the

stage of classical theory. However, the remaining constraints are still not compatible each

other. Then, first, we discarded the W term, the kinetic term of internal center of mass

variable y, in the UV brane; then, y becomes simply a parameter designating each brane,

on which the bi-local system is placed. We further treated the T condition suppressing

timelike oscillations of the bi-local system in a form of expectation value; and then, the

wave equation and it subsidiary condition, T condition, become compatible each other.

The on-mass-shell solutions of resultant wave equation represent the particles overlying

on Regge trajectories with the slope parameter α′y = (8κy)
−1. Here, the κ2

y is a spring

constant in a y-fixed brane, which tend to 0 according as y comes close to L, the place

of IR brane. Strictly speaking
√
κL is almost 0 compared with the energy scale of IR

brane. To realize these setup on the bi-local system, we have chosen the parameters in

our model so that (κ, L̃) ∼ (k2, 50), which derive the reasonable order of
√
κy such as

(
√
κ0,
√
κL) ∼ k(10−10, 10−21) for k ∼ Planck energy scale.

Hence, in the IR brane, all particles degenerate in almost massless one’s; furthermore,

non-zero spin components of the bi-local field can be shown to vanish naturally on that

brane. Therefore, the bi-local field on the IR brane behaves as the bi-local collective

field (1.1) out of higher-spin bulk fields as we wanted to show. It should be, however,

noticed that the respective particles described by the bi-local field (4.11) hold a common

center of mass momentum as their hysteresis of a bound system in bulk.

Further, from the bi-local field (4.11), we cannot say anything about 1) the bound

system of particles laid on different branes and 2) the bi-local system with very small

interval such as |x2,1| . e−L̃l. In relation with 2), we should also notice that the practi-
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cal interaction between two particles on the IR brane can take place only under discreet

distances with the unit of e−L̃l. This property of the interaction evokes the behavior of

elementary domains proposed by Yukawa [20, 21]. Those are important and interesting

future problems to make clear the relation between the bi-local system and the bi-local

collective field.
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A The geodesic in AdS5 within 0 < y(ξ) < L

Regarding L as the Lagrangian of generalized coordinates (xµ(ξ), y(ξ)) in AdS5 described

by (2.1), the equations (2.5) and (2.6) are respectively direct results of equations of motion

with respect to xµ(ξ) and y(ξ). As can be seen from figure 5, the y(ξ) is a multi-valued

function of ξ. Changing the variable ζ(ξ) = e−ky(ξ), (2.5) can be rewritten as

ζ ′ = ±k
√

2K
√
ζ2 − V 2/(2K), (A.1)

which can be integrated easily in a single valued region of y so that

ζ±(ξ) = e−ky±(ξ) =

√
V 2

2K
cosh

{
∓k
√

2K(ξ − ξ∗) + c∗

}
, (A.2)

where the ± in (A.2) designate the sign of y′; the c∗ is a constant related to one end of

γ such as y∗ = y(ξ∗). In what follows, we choose simply y∗ = L (ξ∗ = ξL) one turning

point of γ, which leads to c∗ = 0 because of e−kL =
√

V 2

2K as pointed out in figure 2. In

this case, xµ+(ξ) and x−(ξ) become functions defined respectively in the region ξ0 ≤ ξ ≤ ξL
and ξL ≤ ξ ≤ ξ0, where ξ0 and ξL are points such as by y(ξ0) = 0 and y(ξL) = L. Then,

substituting (A.2) in this case for (2.5), we can integrate x′µ± (ξ) as

xµ±(ξ)− xµ±(ξL) = V̂ µ e
kL

k
tanh

{
k
√

2K(ξ − ξL)
}

(A.3)

where V̂ µ = V µ/
√
V 2 is a constant unit vector for the direction of x′µ. Hereafter, we write

xµb,a ≡ xµ(ξb) − xµ(ξa), which allows to express |xb,a| ≡
√

(xb,a)2 = (xb,a) · V̂ for ξa < ξb.

It is also convenient to use the symbol Ã = kA, which is the A measured by k−1 ∼ l.

Then (A.3) can be written as

|x̃i,L|± = eL̃ tanh
{√

2K(ξ̃i,L)
}
,
(
ξ̃i,j = k(ξi − ξj)

)
, (A.4)

5In flat Minkowski spacetime, the bi-local collective field (1.1) has a similar structure to the three vertex

function of bi-local fields [22]. Indeed, R. Satake [23] deduced that (1.1) could be understood as an infinite

slope limit of such a vertex function. After completing this paper, we found [24], which discuss the same

line of approach as [23].

– 11 –



J
H
E
P
1
0
(
2
0
1
6
)
0
9
0

from which the following follows

ξ̃b,a =
1√
2K

[
tanh−1

(
e−L̃|x̃b,L|

)
±
− tanh−1

(
e−L̃|x̃a,L|

)
±

]
(A.5)

providing e−L̃|x̃i,L|± < 1, (i = a, b). The result means that we do not need to worry about

the ± when we represent ξ̃b,a in terms of x̃i,L. Further, (A.2) yields another expression to

ξ̃b,a (> 0) such that

ξ̃b,a =
∓√
2K

[
cosh−1

(
e−ỹb,L

)
± − cosh−1

(
e−ỹa,L

)
±

]
, (A.6)

which gives rise to

σ0,L = Kξ2
0,L =

1

2k2

{
cosh−1

(
eL̃
)}2
' L2

2
. (A.7)

If we apply (A.5) formally to |ξ̃0,L|, then σ0,L ' L2/2 requires e−L̃|x̃0,L| = tanh(L̃) ∼ 1.

Since, however, e−L̃|x̃0,L| ∼ 1 is near the applicable limit of (A.5), we must be careful to

evaluate it. The right value of |x̃0,L| can be obtained from

|x̃i,L| = eL̃ tanh
{

cosh−1
(
e−ỹi,L

)}
= eL̃

√
1− e2ỹi,L , (A.8)

which is obtained by substituting (A.6) for (A.3). From this equation, one can find that

|x̃i,L| runs from |x̃L,L| = 0 to |x̃0,L| = eL̃
√

1− e−2L̃ (. eL̃) according as ỹi runs from L̃ to

0; and so, the domain of |x̃| is very large against the one of ỹ.

Now, let us consider the case such that ỹi, (i = a, b) are located very close to L̃ in (A.5);

then, it can be verified easily that

ξ̃b,a '
1√
2K

e−L̃ (|x̃b,L| − |x̃a,L|) =
1√
2K

e−L̃|x̃b,a| → σb,a '
1

2
e−2L̃|xb,a|2. (A.9)

To extent this relation to multi-valued regions of y(ξ), we have to take the successive

turnings of geodesic at y = 0 and y = L branes in (figure 5) into account. Writing, here,

ξ
(k)
i,j = ξ

(k)
i − ξ

(k)
j and ξb(n),a(m) = ξ

(n)
b − ξ(m)

a , it can be verified from (figure 5) that

ξ̃b(n),a(0) = ξ̃
(n)
b.L +

(
ξ̃

(n)
L,0 + ξ̃

(n−1)
0,L + ξ̃

(n−2)
L,0 + · · ·+ ξ̃

(0)
0,L

)
+ ξ̃

(0)
L,a (A.10)

for a odd number of n; and,

ξ̃b(n),a(0) = ξ̃
(n)
b.L +

(
ξ̃

(n−1)
L,0 + ξ̃

(n−2)
0,L + · · ·+ ξ̃

(0)
0,L

)
+ ξ̃

(0)
L,a (A.11)

for a even number of n. Furthermore, since ξ̃
(2n+1)
L,0 = ξ̃

(2n)
0,L = 1√

2K
L̃ (n = 0, 1, · · · ) and

ξ̃
(n)
b,L + ξ̃

(0)
L,a '

1√
2K

e−L̃
{

(x̃
(n)
b − x̃

(n)
L ) · V̂ + (x̃

(0)
L − x̃

(0)
a ) · V̂

}
, (A.12)

we are able to get the following expression:

ξ̃b(n),a(0) '
1√
2K

{
2

[
n+ 1

2

]
(L̃− 1) + e−L̃|x̃b(n),a(0) |

}
, (A.13)
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Figure 5. The symbolic figure of turning geodesic. The superscript (n) in ξ(n), y(n) designate that

they characterize the geodesic in R(n) region in the figure.

where [n] is the largest integer being not greater than n. In this paper, we are interested

in the bi-local bound system such as n � L̃; then, one can evaluate 2
[
n+1

2

]
' n '

e−L̃|x̃b(n),a(0) |. Therefore, under those approximations, the geodesic interval extended to n

turned regions becomes

σ(xb(n) , xa(0)) =
1

k2
K
(
ξ̃b(n),a(0)

)2
=

1

2
L̃2e−2L̃|xb(n),a(0) |

2, (A.14)

in which the discrete indices (n) and (0) are no longer important to attach. Here, if we

try to apply (A.14) to b(n) = 0(1) and a(0) = L(0), then we can get σ0,L = 1
2L

2, the result

of (A.7). This implies that the|xb,a| in (A.14) is applicable from |xb,a| & eL̃l to infinity. On

the other side, (A.9) is holds in the n = 0 single-valued region with |x̃i,L| � 1, (i = a, b).

B Eigenvalue problem of W

The eigenvalue problem of W can be solved easily by using the variable z(y) = eky. Then,

by taking d
dy = kz d

dz into account, the eigenvalue equation of W can be written as

Wφλ(z(y)) = e−2ky (π + ik)2 φλ(z(y))

(
π = −i d

dy

)
(B.1)

= −k2

(
d2

dz2
− 1

z

d

dz
+

1

z2

)
φλ(z) = λφλ(z) (B.2)
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; that is,

d2φλ
dz2

− 1

z

dφλ
dz

+

{
λ

k2
+

1

z2

}
φλ = 0 . (B.3)

The solutions of this equation are reduced to Bessel functions multiplied by a power of z;

indeed, it is known that the equation

d2w

dz2
+

1− 2α

z

dw

dz
+

(
β2 +

α2 − ν2

z2

)
w = 0 (B.4)

has zαZν(βz) as its solution [25], where Zν(x) is one of Jν(x), Yν(x), H
(1)
ν (x), and H

(2)
ν (x).

The φλ in (B.3) is the case of α = 1, β =
√
λ
k , and ν = 0; and so, we can set

φλ(z) = zZ0

(√
λ

k
z

)
. (B.5)

Further, it is not difficult to derive from (B.3) that{
1

z

(
φλiφ

′
λj
− φ′λiφλj

)}′
= (λi − λj)

1

k2

1

z
φλiφλj , (B.6)

where the “prime”denotes the derivative with respect to z. This means that under the

boundary conditions:

1

z

(
φλiφ

′
λj
− φ′λiφλj

)∣∣∣∣
z=z0,zL

= 0 (B.7)

with z0 = z(0) = 1 and zL = z(L) = eL̃, we can put the normalization

〈φλi |φλj 〉 =

∫ zL

z0

dz

z
φλi(z)φλj (z) (B.8)

=

∫ L

0
kdyZ0

(√
λi
k
eky
)
Z0

(√
λj

k
eky

)
∝ δi,j . (B.9)

To realize the solutions satisfying the boundary conditions, first, we take Z0(x) = J0(x),

which is finite on real x line. Secondly, we require

φ′λ(z)
∣∣
zL

=

{
J0

(√
λ

k
z

)
−
√
λ

k
zJ1

(√
λ

k
z

)}∣∣∣∣∣
zL

= 0, (B.10)

where J ′0(x) = −J1(x); then, the r ≡
√
λ
k zL is determined as a root of this equation. Writing

the i-th root of (B.10) by ri, the i-th eigenvalue λi, (i = 1, 2, · · · ) has the expression

λi =

(
k

zL
ri

)2

(i = 1, 2, · · · ). (B.11)
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We note that the (B.10) implies not the vanishing internal wave function at z = zL but

the vanishing of flux for y ≥ L. Now, using rk =
√
λk
k zL, the z−1

(
φλiφ

′
λj
− φ′λiφλj

)
in the

left-hand side of (B.7) at z (= eỹ) can be rewritten as

z

zL

{
riJ1

(
ri
z

zL

)
J0

(
rj
z

zL

)
− rjJ1

(
rj
z

zL

)
J0

(
ri
z

zL

)}
, (B.12)

which tend to 0 according as z → 1 (i.e. ỹ → 0) because of6 J1(rie
−L̃) ' J1(0) = 0. In this

sense, the boundary conditions (B.7) are satisfied at z0 and zL.

In order to give the normalization of φλ(z), let us consider the limit λi = λj +ε (ε→ 0)

in 〈φλi |φλj 〉 by taking (B.6) into account. Then, a little calculation leads to

〈φλj |φλj 〉 = lim
ε→0

k2

ε

[
1

z

{
φλj+ε(z)φ′λj (z)− φλj+ε(z)′φλj (z)

}]zL
z0

(B.13)

= k2

[
1

z

{
(∂λφλ)(z)φ′λ(z)− (∂λφ

′
λ)(z)φλ(z)

}
λ=λj

]zL
z0

(B.14)

=
z2
L

2

(
1 +

1

r2
j

)
J0 (rj)

2 (≡ Nj ). (B.15)

Therefore, under the rescale φλi(z) = z√
Ni
J0

(√
λi
k z
)

, the eigenfunctions {φλi} form an

independent orthonormal basis, by which any internal wave function Φ(y) can be expanded

in the following series:

Φ(y) =
∑
i

aiφλi(y) ( ai = 〈φλi |Φ〉 ). (B.16)

C Spin eigenstates

In the rest frame of the bi-local system with P = (M, 0, 0, 0), the hatted oscillator

variables are reduced to (âµ) = (0, a1, a2, a3) and (â†µ) = (0, a†1, a
†
2, a
†
3). In terms of

those reduced oscillator variables, the spin operator of the bi-local system is defined by

Si = −iεijka†jak, (i, j, k = 1, 2, 3), to which by taking εijkεilm = (δjlδkm − δklδjm) into

account, one can verify

S2 = (−i)2εijkεilma
†
jaka

†
l am = N(N + 1)−Q , (C.1)

where N = a†·a andQ = a†2a2. Since N andQ are commute each other, there are common

eigenstates of those operators. In particular the spin eigenstates with zero eigenvalue of Q

6In ascending order of ri, (i = 1, 2, · · · ), the roots of (B.10) are obtained numerically as r1 =

1.2557 · · · , r2 = 4.0794 · · · , r3 = 7.1557 · · · , and so on. On the other side, for a sufficiently large ri,

the (B.10) gives J1(ri) = 1
ri
J0(ri) ' 0; and so, ri becomes approximately a zero (= j1,i ' πi) of J1. This

means that the condition rie
−L̃ ' 0 is satisfied even for a huge number rM ∼ e

1
2
L̃, to which the coefficient

aM in the expansion (B.16), however, tends to vanish because of rapid oscillation of φλM .

– 15 –



J
H
E
P
1
0
(
2
0
1
6
)
0
9
0

have the following form:

a†(i1a
†
i2
· · · a†iJ )|0〉 ≡

[
a†i1a

†
i2
· · · a†iJ−

(
d+

(
J
2

)
−1

)−1 ∑
(a,b)

δiaiba
†2a†i1 · · · â

†
ia
· · · â†ib · · · a

†
iJ

]
|0〉

= T ji···jJi1···iJ a
†
j1
· · · a†jJ |0〉 (d = δii = 3), (C.2)

where
∑

(a,b) stands for the summation over two indices (a, b) taken at a time out of J

different objects (1, 2, · · · , J); and,

T ji···jJi1···iJ = δj1i1 · · · δ
jJ
iJ
−

(
d+

(
J

2

)
− 1

)−1 ∑
(a,b)

δiaibδ
jajbδj1i1 · · · δ̂

ja
ia
· · · δ̂jbib · · · δ

jJ
iJ
. (C.3)

One can see that the T ji···jJi1···iJ is symmetric and traceless with respect to both of the sub-

scripted indices (i1, · · · , iJ) and the superscripted indices (j1, · · · , jJ); then, it is not diffi-

cult to verify that

Qa†(i1a
†
i2
· · · a†iJ )|0〉 = 0, (C.4)

S2a†(i1a
†
i2
· · · a†iJ )|0〉 = J(J + 1)a†(i1a

†
i2
· · · a†iJ )|0〉. (C.5)

Thus the states {a†(i1a
†
i2
· · · a†iJ )|0〉} form a spin-J irreducible representation of O(3) group;

and, N becomes the highest spin operator in that representation. Meanwhile, the state

|Φ(m)
(i1···iJ )〉 = (a†2)ma†(i1a

†
i2
· · · a†iJ )|0〉 (m 6= 0) is not a zero eigenstate of Q, although it

again satisfies

S2(a†2)m|Φ(m)
(i1···iJ )〉 = J(J + 1)(a†2)m|Φ(m)

(i1···iJ )〉 . (C.6)

The eigenvalue of Q can be found so that

Q|Φ(m)
(i1···iJ )〉 = a†2a2a†2(a†2)m−1a†(i1a

†
i2
· · · a†iJ )|0〉

= a†2(6 + 4a† · a+ a†2a2)(a†2)m−1a†(i1a
†
i2
· · · a†iJ )|0〉

= a†2 [Q+ (4J + 6) + 8(m− 1)] (a†2)m−1a†(i1a
†
i2
· · · a†iJ )|0〉

= (a†2)2 [Q+ 2(4J + 6) + 8{(m− 1) + (m− 2)}] (a†2)m−2a†(i1a
†
i2
· · · a†iJ )|0〉

...

= 2m(2J + 2m+ 1)|Φ(m)
(i1···iJ )〉 . (C.7)

Now the x representation of |Φ(m)
(i1···iJ )〉 can be evaluated by the expression

(
π

κy

)
〈x̄|Φ(m)

i1···iJ 〉 = e
1
2
κyx̄2

(
∂

∂k
· ∂
∂k

)m
T j1···jJi1···iJ

∂

∂kj1
· · · ∂

∂kjJ
e−

1
2

(k−
√

2κyx̄)2
∣∣∣∣
k=0

(C.8)
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The case of J = 0 is particularly simple, and we obtain(
π

κy

)
〈x̄|Φ(m)

0 〉 = e
1
2
κyx̄2

(
∂

∂t

)m
et(

∂
∂k)

2

e−
1
2

(k−
√

2κyx̄)2
∣∣∣∣
k=0,t=0

= e
1
2
κyx̄2

(
∂

∂t

)m ∫ d3z√
(2π)3

e−
1
2
z2+
√

2tz·( ∂
∂k)e−

1
2

(k−
√

2κyx̄)2

∣∣∣∣∣
k=0,t=0

= e−
1
2
κyx̄2

(
∂

∂t

)m 1√
(1 + 2t)3

e−2 t
1+2t

κyx̄2

∣∣∣∣∣
t=0

(C.9)

→ (−1)m(2m+ 1)!! (κy → 0). (C.10)

The limit in the last expression is taken, since we are interested in the result in the IR

brane at y = L, in which the κy is virtually zero. On the same footing, let us consider the

case of J 6= 0 in the limit κy = 0. Then (C.8) becomes(
π

κy

)
〈x̄|Φ(m)

i1···iJ 〉 =

(
∂

∂k
· ∂
∂k

)m
T j1···jJi1···iJ

∂

∂kj1
· · · ∂

∂kjJ
e−

1
2
k2

∣∣∣∣
k=0

(C.11)

=

{(
∂

∂k
− k

)2
}m

T j1···jJi1···iJ

(
∂

∂kj1
− kj1

)
· · ·
(

∂

∂kjJ
− kjJ

)∣∣∣∣∣
k=0

(C.12)

The right-hand side vanishes for an odd number of J , since the (C.11) is an odd function of

k. For an even number of J , the non-vanishing terms at k = 0 are consisting of the terms

such as ∂
∂kja

kib = δjajb and
(
∂
∂kl
kja
) (

∂
∂kl
kjb
)

= δljaδljb = δjajb . Those terms, however, again

give rise to vanishing contribution due to the traceless property of T j1···jJi1···iJ . Therefore, the

state (C.12) vanishes in the IR brane.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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