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bInstitut de Physique Théorique CEA-Saclay, F-91191 Gif-sur-Yvette, France
cINFN — TIFPA, Dipartimento di Fisica, Università degli Studi di Trento,
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Abstract: The correct description of Double Parton Scattering (DPS), which represents

a background in several channels for the search of new Physics at the LHC, requires the

knowledge of double parton distribution functions (dPDFs). These quantities represent

also a novel tool for the study of the three-dimensional nucleon structure, complementary

to the possibilities offered by electromagnetic probes. In this paper we analyze dPDFs using

Poincaré covariant predictions obtained by using a Light-Front constituent quark model

proposed in a recent paper, and QCD evolution. We study to what extent factorized

expressions for dPDFs, which neglect, at least in part, two-parton correlations, can be

used. We show that they fail in reproducing the calculated dPDFs, in particular in the

valence region. Actually measurable processes at existing facilities occur at low longitudinal

momenta of the interacting partons; to have contact with these processes we have analyzed

correlations between pairs of partons of different kind, finding that, in some cases, they are

strongly suppressed at low longitudinal momenta, while for other distributions they can be

sizeable. For example, the effect of gluon-gluon correlations can be as large as 20 %. We

have shown that these behaviors can be understood in terms of a delicate interference of

non-perturbative correlations, generated by the dynamics of the model, and perturbative

ones, generated by the model independent evolution procedure. Our analysis shows that at

LHC kinematics two-parton correlations can be relevant in DPS, and therefore we address

the possibility to study them experimentally.
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1 Introduction

Multi Parton Interactions (MPI) occur when more than one parton scattering takes place in

one hadron-hadron collision. They have been defined long time ago [1], have been recently

rediscovered and are presently attracting remarkable attention, thanks to the activity of

Large Hadron Collider (LHC), where specific signatures are expected to be observed (see

refs. [2–6] for recent reports).
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In particular, the cross section for hard double parton scattering (DPS), the simplest

MPI process, depends on non-perturbative objetcs, the double parton distribution func-

tions (dPDFs), describing the number density of two partons located at a given transverse

separation in coordinate space and with given longitudinal momentum fractions. dPDFs

encode, for example, the novel information on the probability that partons which are close

to each other are faster, or slower, than those which are far from each other. They are

therefore naturally related to parton correlations, as noticed several years ago [7], and

represent a novel tool to access the three-dimensional (3D) nucleon structure, presently

studied using electromagnetic probes [8, 9]. The correlations in DPS are presently deeply

investigated (see, e.g., [3, 10, 11]).

In addition to this non perturbative information, the knowledge of dPDFs, DPS and

MPI in general could be very useful to constrain the background to the search of new

Physics at the LHC, making their study very timely. No data are presently available for

dPDFs and their calculation using non perturbative methods is cumbersome. A few model

calculations, able in principle to grasp the most relevant features of dPDFs, have been

therefore performed [12–16]. In particular, in ref. [14], a Light-Front (LF) Poincaré covari-

ant approach, reproducing the essential sum rules of dPDFs without ad hoc assumptions

and containing natural two-parton correlations, has been described. We note in passing

that, although it has not yet been possible to extract dPDFs from data, the so called

“effective cross section”, σeff , the ratio of the product of two single parton scattering cross

sections to the DPS cross section with the same final states, has been extracted, in a model

dependent way, in several experiments [17–22]. Despite of large error bars, the present ex-

perimental scenario is consistent with the idea that σeff is constant w.r.t. the center-of-mass

energy of the collision. In ref. [23] we have presented a predictive study of σeff , making use

of the LF quark model approach to dPDFs developed in ref. [14]. It was found that the

order of magnitude of the measured σeff is correctly reproduced by the model and, more

interestingly, in the valence region, a clear dependence is predicted on the longitudinal

momentum fractions of the proton carried by the two partons. If measured, this feature

could represent a first access to the observation of 2-partons correlations in the proton.

Beyond these intriguing results, already found in the valence region, one should check

if similar possibilities survive at LHC kinematics, dominated by low-x partons, at very high

energy scales. In this paper, using our model predictions, we plan therefore:

i) to test the validity of factorization assumptions, which basically neglect at least part

of the correlations between the partons, often used in dPDFs studies, at the scale of

the model and after evolution to experimental energy scales;

ii) to test if correlations in longitudinal and transverse momenta survive the evolution

procedure;

iii) to develop an extension of our approach to include, at the low energy scale of the

model, sea quarks and gluon degrees of freedom;

iv) to study the importance of 2-body correlations between different kinds of partons

(valence quarks, sea quarks and gluons) at values of longitudinal momenta and energy
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scales close to the experimental ones, to establish the possibility to observe them at

the LHC.

The paper is structured as follows. The first section is dedicated to present a short summary

of the formalism and the results obtained in ref. [14]. The second section is dedicated to

compare our results, where correlations are naturally produced by the dynamics of the

model, with a few factorized forms of dPDFs. In the third section, we study how QCD

evolution to high momentum scales affects the results of the model. In the following section

we describe a strategy to introduce sea quarks and gluons at the low momentum scale of the

model. In section five we quantify, within our scheme, how large are the correlation effects

between different kind of partons at very low values of longitudinal momentum fractions

and very high energy scales. This is very important to address measurable signatures of

two-partons correlations. We end by drawing some conclusions of our study.

2 Calculating double parton distribution functions

Recently dPDFs have been explicitly calculated by us within a Light-Front (LF) ap-

proach [14]. The method is fully covariant and is based on a fixed-number Light-Front

SU(6)-symmetric Hamiltonian making use of an Hypercentral potential introduced in

ref. [24] as a generalization of a non-relativistic constituent quark model proposed in

ref. [25]. The approach is particularly suitable for the description of Deep Inelastic Scat-

tering (DIS) processes which find their natural environment in a LF-description. The

numerous applications to a large varieties of DIS observables like polarized [24] and un-

polarized [26–28] structure functions, spin and angular momentum distributions [29, 30],

helicity-independent and dependent GPDs [31–33], demonstrate the reliability and flexibil-

ity of the approach.

2.1 The light-front formulation

Let us briefly summarize the main steps for the LF-evaluation of the dPDFs. In terms of

the Light-Cone (LC) quantized fields qi for a quark of flavor i, helicity λ in an unpolarized

proton, the dPDFs in momentum space, often called “2GPDs” in the literature [34, 35],

read (see, e.g., [12, 13])

F λ1,λ2
ij (x1, x2,~k⊥) = (−8πP+)

1

2

∑

λ

∫

d~z⊥ ei~z⊥·~k⊥ T̂ 1
i T̂ 2

j ×

×
∫

[

3
∏

l

dz−l
4π

]

eix1P+z−1 /2 eix2P+z−2 /2 e−ix1P+z−3 /2 ×

×〈λ, ~P = ~0
∣

∣T̂ 1
i T̂ 2

j

∣

∣~P = ~0, λ〉 , (2.1)

where

T̂ k
i = Ôk

i

(

z−1
n̄

2
, z−3

n̄

2
+ ~z⊥

)

≡ T̂ k
i (z, z′) = Ôk

i (z, z
′) = q̄i(z)Ô(λk)qi(z

′) , (2.2)

and

Ô(λk) =
/̄n

2

1 + λkγ5
2

. (2.3)
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In the above equations, both the light-like four vector n̄ = (1, 0, 0,−1) and the rest frame

state of the nucleon with helicity λ,
∣

∣~P = ~0, λ〉, have been introduced. The “±” components

of a four-vector b are defined according to b± = b0 ± bz and xi = k+i /P
+ is the fraction of

the system momentum carried by the parton “i”, while the notation b̃ = (b+,~b⊥) is used

for light-cone vectors. The LC free quark fields are defined as

qi(ξ) =
∑

r

∫

dk̃

2(2π)3
√
k+

θ(k+)e−iξ−k+ai
k̃,r

uLF (k̃, r) , (2.4)

where the operator ai
k̃,r

destroys a quark of flavor i, helicity r and LC momentum k̃. The

spinors are indicated by uLF (k̃, r) (we adhere to the definitions and notations of ref. [36]).

The proton state
∣

∣~P = ~0, λ〉 can be expanded in its Fock components retaining only the

first (valence) contribution (the short-hand notation ({αi}) is adopted, here and in the

following, for (α1, α2, α3), where αi = xi,~ki⊥, λ
f
i , τi):

|~0, λ〉 ≃ |~0, λf , val〉 =
∑

λf
i τi

∫

[

3
∏

i=1

dxi√
xi

]

δ

(

1−
3

∑

i=1

xi

)

×
[

3
∏

i=1

d~ki⊥
2(2π)3

]

2(2π)3δ

(

3
∑

i=1

~ki⊥

)

×Ψ
[f ]
λ ({xi,~ki⊥, λf

i , τi})
3
∏

i=1

|k̃i, λf
i , τi〉 , (2.5)

in terms of the LF one-quark states of isospin τi, |k̃i, λf
i , τi〉.

At variance the same proton state can be described in terms of canonical, Instant-Form

(IF), one-quark states |~ki, λc
i , τi〉,

|~0, λ〉 ≃ |~0, λc, val〉 =
∑

λc
i τi

∫

[

3
∏

i=1

d~ki

]

δ

(

3
∑

i=1

~ki

)

×Ψ
[c]
λ ({~ki, λc

i , τi})
3
∏

i=1

|~ki, λc
i , τi〉 . (2.6)

The two descriptions are related by Melosh rotations [37].

Following our previous developments (e.g. refs. [24, 31–33]) the considerations made

for free canonical states can be generalized to interacting quarks in a proton, by means

of a suitable representation of the Poincaré operators, namely the Bakamjian-Thomas

construction [38]. The extension to interacting systems requires, in fact, a dynamical

representation of the Poincaré group. One way to achieve this result is to add an interaction

V to the free mass operator M0 to obtain the mass operator M = M0 + V . Since the LF

boosts we use are interaction independent, all the other definitions remain unaffected. All

required commutation relations are satisfied if the mass operator commutes with the total

spin and with the kinematic generators. In practice, the conditions are realized if:

i) V is independent on the total momentum P̃;

ii) V is invariant under ordinary rotations.

Summarizing : in the LF formulation of the quark dynamics, the intrinsic momenta of

the quarks (ki) can be obtained from the corresponding momenta (pi) in a generic frame

– 4 –
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through a LF boost (Ki = u(P ) · pi, P ≡
∑3

i1
pi) such that the Wigner rotations reduce to

the identity. The spin and spatial degrees of freedom are described by the wave function

Ψ =
1√
P+

δ
(

P̃ − p̃
)

χ({ki, µi}) , (2.7)

where µi refers to the eigenvalue of the LF spin, so that the spin part of the wave function

is transformed by the tensor product of three independent Melosh rotations, namely R† =
∏3

⊗i=1R
†(ki,mi). The internal wave function is an eigenstate of the baryon mass operator

M = M0+V , with M0 =
∑3

i=1

√

~k2i +m2
i and where the interaction term V must be inde-

pendent on the total momentum P̃ and invariant under rotations. The nucleon state is then

characterized by isospin (and its third component), parity, Light-Front (non-interacting)

angular momentum operators with well defined projection along the quantization axis.

The relativistic mass equation chosen is built according to such a dynamical construc-

tion [24]. Thanks to the correct kinematical conditions on the longitudinal momentum

fraction carried by the quark as described by the LF-approach, dPDFs vanish in the for-

bidden kinematical region, x1 + x2 > 1. (see ref. [14] for further details).

2.2 Light-front results at the low scale of the model

Reducing eq. (2.1) to the first (valence) Fock components and specializing the result to the

u quarks as an example, one has (λ1, λ2 ≡↑ (↓))

u
↑(↓)
V u

↑(↓)
V (x1, x2, k⊥) = 2(

√
3)3

∫

d~k1⊥d~k2⊥
1

j

E1E2E3

k+1 x1x2(1− x1 − x2)

×〈P̃ ↑(↓)
1 〉〈P̃ ↑(↓)

2 〉ψ∗

(

~k1 +
~k⊥
2
,~k2 −

~k⊥
2
,−~k1 − ~k2

)

×ψ

(

~k1 −
~k⊥
2
,~k2 +

~k⊥
2
,−~k1 − ~k2

)

, (2.8)

with

k+1 =

{

x1

[

m2

(

1 +
x1
x2

+
x1

1− x1 − x2

)

++k21⊥ +
x1
x2

k22⊥ +
x1

1− x1 − x2
k23⊥

]}1/2

,

k+2 =
x2
x1

k+1 , k+3 =
1− x1 − x2

x1
k+1 ,

kiz = −m2 + k2i⊥
2k+i

+
k+i
2

, (2.9)

Ei =

√

m2 + k2iz +
~k2i⊥ ,

j =

∣

∣

∣

∣

∣

∣

∣

m2 + k21⊥
2k+2

1

+
m2 + k22⊥

2
x2
x1

k+2
1

+
m2 + k23⊥

2
1− x1 − x2

x1
k+2
1

+
1

2x1

∣

∣

∣

∣

∣

∣

∣

.

The spin projector values are determined by the Melosh rotations D̂i:

〈P̃ ↑(↓)
i 〉 = 〈D̂iP̂

↑(↓)(i)D̂†
i 〉 = 〈D̂i

(

1± σz(i)

2

)

D̂†
i 〉 , (2.10)
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to be calculated using the canonical spin-isospin states corresponding to the SU(6) sym-

metric matrix elements.

In particular the combinations

uV uV (x1, x2, k⊥, µ
2
0) = u↑V u

↑
V (x1, x2, k⊥, µ

2
0) + u↓V u

↓
V (x1, x2, k⊥, µ

2
0)

+u↑V u
↓
V (x1, x2, k⊥, µ

2
0) + u↓V u

↑
V (x1, x2, k⊥, µ

2
0) , (2.11)

will describe two unpolarized u-valence quarks, and

∆uV ∆uV (x1, x2, k⊥, µ
2
0) = u↑V u

↑
V (x1, x2, k⊥, µ

2
0) + u↓V u

↓
V (x1, x2, k⊥, µ

2
0)

−u↑V u
↓
V (x1, x2, k⊥, µ

2
0)− u↓V u

↑
V (x1, x2, k⊥, µ

2
0) , (2.12)

two (longitudinally) polarized u-valence quarks. These two distributions only contribute

to the total cross section of events involving unpolarized proton targets.

In figure 1 the numerical results of the eqs. (2.8)–(2.11) for two unpolarized u-valence

quarks. The dPDFs vanish in the region x1 + x2 > 1 and the correlations in x1, x2 are

dictated by the LF-quark dynamics, which governs also the dependence in k⊥, clearly seen

in the right panel of the same figure. Since the Fock expansion of the proton state has been

restricted to the three valence quarks (cf. eq. (2.5)), it is natural that the full momentum is

carried by those quarks and the resulting appropriate energy scale remains quite low (the

so-called hadronic scale, µ2
0 ≈ 0.1GeV2 [39]) as indicated by analogous Leading − Order

calculations (see, e.g., refs. [24, 27, 28]). That scale is clearly indicated in the resulting

expressions (2.11) and (2.12) and in both panels of figure 1.

2.3 Factorization and approximations at the low scale of the model

In the present section we will compare our approach to a number of strategies used in the

literature to calculate dPDFs, strategies that we call, in general, “factorization schemes”.

Differences and analogies will help in understanding the role of correlations and their

dependence on the evolution scale.

2.3.1 Phenomenological factorizations

As a first illustrative example we can restrict the discussion to the approach proposed

by Diehl, Kasements and Keane in ref. [40], which has motivated in part the discussion

presented in this section.

In fact the interest of those authors is on the influence of the evolution scale on cor-

relation effects, precisely one of the goals of the present work. The model they propose

refers to the description of the dPDFs at the starting scale, where they assume independent

partons. In that case, in fact, the dPDFs in coordinate space can be simply written as

a convolution of fa,b(x,~b) functions, which are impact parameter dependent generalized

parton distributions (see, e.g, ref. [3]):

Fab(x1, x2, ~y) =

∫

d2~b fa(x1,~b+ ~y)fb(x2,~b) , (2.13)

– 6 –
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Figure 1. Left panel: x1x2uV uV (x1, x2, k⊥ = 0, µ2

0
) as function of x1 at fixed values of x2. Right

panel: x1x2uV uV (x1, x2 = 0.2, k⊥, µ
2

0
) as function of x1 at various values of k⊥ ( (k0, k1, . . . , k8) ≃

(0, 0.03, 0.14, 0.32, 0.57, 0.85, 1.15, 1.43, 1.68) GeV, which are Gaussian points between 0 and 2GeV).

with a, b denoting parton species. This idea has been firstly presented in refs. [34, 35]. The

authors of ref. [40] assume a Gaussian ~b dependence with an x-dependent width, namely

fa(x,~b) = fa(x)
1

4πha(x)
exp

[

−
~b2

4ha(x)

]

, (2.14)

where fa(x) denotes the usual parton densities (taken from the LO set of the MSTW 2008

analysis [41]), while eq. (2.14) is assumed to be valid at the starting scale Q2
0 = 2GeV2.

Diehl et al. stress that the approach is tailored for the region x1, x2 < 0.1 and its parameters

are specified for gluons and for the sum, q+ = q+ q̄, and difference, q− = q− q̄, of quark and

antiquark distributions. The expressions for ha(x) are found in ref. [40] and not reported

here; the parameters which are necessary to define ha(x) are fixed so that the resulting

parton densities are in tentative agreement with phenomenology.

The final expression for the unpolarized dPDFs eq. (2.13) reads:

Fab(x1, x2, ~y,Q
2
0) = fa(x1, Q

2
0)fb(x2, Q

2
0)

1

4πhab(x1, x2)
× exp

[

− ~y2

4hab(x1, x2)

]

(2.15)

and, as a consequence, one has, for the Fourier transform,

Fab(x1, x2, k⊥, Q
2
0) = fa(x1, Q

2
0)fb(x2, Q

2
0)× exp

[

−hab(x1, x2)k
2
⊥

]

. (2.16)

The term

hab(x1, x2) = ha(x1) + hb(x2) = α′
a ln

1

x1
+ α′

b ln
1

x2
+Ba +Bb (2.17)

is assumed, at the same scale, to introduce correlations between x1 and x2, in fact eq. (2.17)

does not factorize into separate contributions from each of the two partons, a and b (the

values of the parameters in eq. (2.17) can be found in ref. [40]). The combinations u− and

u+ are taken as representatives of the quark sector.

– 7 –
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2.3.2 Factorization by means of generalized parton distributions

In ref. [3], a systematic study of relations between single parton and double parton distri-

butions has been performed. To reduce Fab to single-particle distributions the authors find

it more convenient to work in the transverse-momentum ~k⊥ space, rather than transverse

distance ~y representation and the result reads:

Fqq(x1, x2,~k⊥, Q
2) ≈ Hq(x1, ξ = 0,−k2⊥, Q

2)Hq(x2, ξ = 0,−k2⊥, Q
2) +

+
k2⊥
4M2

p

Eq(x1, ξ = 0,−k2⊥, Q
2)Eq(x2, ξ = 0,−k2⊥, Q

2) , (2.18)

where Mp is the proton mass and Hq(x, ξ, t) and Eq(x, ξ, t) are Generalized Parton Dis-

tributions (GPDs) (see, e.g., [42] and references therein). Hq generalize the unpolarized

quark densities q(x) while Eq is related to unpolarized quarks in a transversely polarized

proton. The first term in eq. (2.18) depends on Hq only and it corresponds to the simplest

approximation of the two-parton distribution as a product of single-parton distributions

(cf. eq. (2.16)).

In ref. [3] one can read: “although the relation between multiparton distributions and

GPDs is an approximation whose accuracy is not easy to estimate (and although our current

knowledge of GPDs is far less advanced than that of ordinary parton densities) this relation

provides opportunities to obtain information about multiple interactions that is hard to get

by other means”.

The question on the accuracy is particularly relevant in view of possible experimental

studies of multi-parton effects, and the LF-approach we are presenting can shed some light

on the approximation (2.18), including the role played by the E correction term. Since

GPDs have been studied, precisely within the same LF-approach, by Pasquini, Boffi and

Traini [31–33] some years ago, one can check directly the accuracy of eq. (2.18).1 Because

of the natural normalization of the expression eq. (2.11):
∫

dx1dx2 uV uV (x1, x2, k⊥ = 0, µ2
0) = 2 , (2.19)

and the normalization of the HuV GPDs
∫

dxHuV (x, ξ = 0,−k2⊥) = 2 , (2.20)

the comparison holds for

FuV uV
(x1, x2, k⊥, µ

2
0) = 2× uV uV (x1, x2, k⊥, µ

2
0) (2.21)

≈ HuV (x1, ξ = 0,−k2⊥, µ
2
0)H

uV (x2, ξ = 0,−k2⊥, µ
2
0) +

+
k2⊥
4M2

p

EuV (x1, ξ = 0,−k2⊥, µ
2
0)× EuV (x2, ξ = 0,−k2⊥, µ

2
0) .

Figure 2 shows a first comparison at k⊥ = 0, where the correction due to the presence of

Eq contributions vanishes. A clear conclusion emerges: the approximations (2.18) or (2.21)

1We are indebted to Markus Diehl who brought our attention to eq. (4.48) of ref. [3], corresponding to

eq. (2.18) and for his useful suggestions.
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Figure 2. Left panel: FuV uV
(x1, x2, k⊥ = 0, µ2

0
) as function of x1 at fixed values of x2 = 0.2, 0.4, 0.6.

The continuous lines represent the results obtained within the LF-approach (FuV uV
= 2 × uV uV

of eqs. (2.8), (2.11)), the dot-dashed lines the results of the approximation (2.18). See text for

discussion. Right panel: as in the left panel, in logarithmic x-scale to emphasized the low-x behavior.
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Figure 3. Left panel: FuV uV
(x1, x2, k⊥ = 0, µ2

0
) as function x1 at fixed x2 = 0.1 and k⊥ = 0.

Right panel: as in the left panel, at fixed x2 = 0.3. The continuous line (FuV uV
= 2 × uV uV

of eqs. (2.8), (2.11)), crosses the dashed line (approximation (2.18)) for x1 ≈ 0.3. See text for

discussion.

can have some validity in the restricted regions x1 + x2 < 1, the range where the dPDFs

do not vanish. For x1 + x2 > 1 the dPDFs must vanish while the single parton responses

H and E do not.

A detailed comparison is shown in figure 3 and figure 4 for two specific values of x2,

namely x2 = 0.1 and x2 = 0.3. In these two cases the comparison is not restricted to

k⊥ = 0 only (see figure 3), but it extends to the kinematical region up to k2⊥ = 0.5GeV2

(see figure 4). Once again no systematic agreement is found. The only weak improvement,

for k⊥ > 0, is due to the EuV dependent correction term.
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Figure 4. Left panel: FuV uV
(x1, x2, k⊥, µ

2

0
) as function of k⊥ at fixed x1 = x2 = 0.1. The

continuous line represents the results obtained within the LF-approach (FuV uV
= 2 × uV uV of

eqs. (2.8), (2.11)), the dashed lines the results of the approximation (2.18), the dot-dashed lines

neglect the corrections due to the k2
⊥
-term in eq. (2.18). See text for discussion. Right panel: as in

the left panel, at fixed x1 = x2 = 0.3.

3 Scale impact on correlations

3.1 Analysis of the approach of ref. [40]

Let us first analyze the scale dependence of the correlations introduced at Q2
0 within the

assumptions eqs. (2.15) and (2.16), as proposed by Diehl et al.. in ref. [40]. To this end,

we study the QCD-evolution of the dPDFs. In particular one could ask oneself to which

extent the Gaussian y-dependence (or k⊥-dependence) of the starting scale is preserved

under evolution. Quantities particularly suitable to this end are the ratios

ln

[

Fab(x1 = x2, ~y
2, Q2)

Fab(x1 = x2, ~y2 = 0, Q2)

]

Q2
0

= − ~y2

4hab(x1, x2)
, (3.1)

ln

[

Fab(x1 = x2,~k
2
⊥, Q

2)

Fab(x1 = x2,~k2⊥ = 0, Q2)

]

Q2
0

= −hab(x1, x2)~k
2
⊥ , (3.2)

which, at Q2
0 and x1 = x2 = constant, are just straight lines as functions of ~y2 or k2⊥.

Perturbative evolution of the dPDFs is summarized and discussed in appendix A;

however let us anticipate the results in this example, proposed in ref. [40]. As it is done also

in ref. [40], only the homogeneus part of dPDFs evolution is implemented, for the moment

being, in our scheme. According to some studies, the inhomogeneus part could play some

role in this phenomenology [35, 43]; its analysis is beyond the scope of the present paper.

In figure 5 we show the ratios eqs. (3.1) for different quark and gluon combinations:

Fu+u+ , Fu−u− and Fgg at x1 = x2 = 0.1 at different scales, namely the starting scale

Q2
0 = 2GeV2 and Q2 = 104GeV2. One can check that, for quarks, the shape remains

approximately Gaussian (a straight line) up to scales as high as Q2 = 104GeV2 even if the

slope changes rather strongly. For gluons, also the Gaussian property is not preserved.
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Figure 5. Effects of evolution on correlations according to the scheme of ref. [40]. Upper panel:

ln[Fu−u−(~y2)/Fu−u−(0)] at x2 = x1 = 0.1 as function of ~y2 [fm2] at fixed values of Q2 and following

the assumptions of ref. [40]. Middle panel: as in the upper panel for ln[Fu+u+(~y2)/Fu+u+(0)]. Lower

panel: as previous panels, for ln[Fgg(~y
2)/Fgg(0)].
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[fm−2 ] and fixed values of Q2. Middle

panel: ln[Fu+u+(k2
⊥
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⊥
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the same notations. The gluon distribution Fgg vanishes identically at Q2 = µ2

0
(cf. eqs. (3.3)).
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In particular the upper panel of figure 5 shows the valence components of Fab (Fu−u− =

F(u−ū)(u−ū) ≡ FuV uV
). For those distributions, only the non-singlet evolution is relevant. In

the case of Fu+u+ = F(u+ū)(u+ū) = F(uV +2ū)(uV +2ū) = FuV uV
+2[FuV ū+FūuV

]+4Fūū (middle

panel), the singlet components are contributing in a substantial way; Fgg (lower panel) is

purely singlet. The distributions are defined as functions of the distance |~y|, the Fourier

transform would give the distributions as functions of ~k⊥ without adding more information.

The choice to show the ~y 2- dependence makes easier the comparison of the results shown in

figure 5 with the calculation of Diehl at al. as illustrated in their figures 1(a), 1(c), and 1(e).

3.2 Scale dependence within the LF-approach

In the LF-approach the Fock decomposition of the proton state at the lowest scale µ2
0

includes valence quarks only and one remains with the following reductions

Fu−u− ≡ FuV uV
→ 2uV uV (x1, x2, k⊥, µ

2
0) ,

Fu+u+ ≡ FuV uV
+ 2[FuV ū + FūuV

] + 4Fūū → 2uV uV (x1, x2, k⊥, µ
2
0) ,

Fgg → 0 , (3.3)

with uV uV (x1, x2, k⊥, µ
2
0) given by eqs. (2.8) and (2.11).

The distributions are now function of ~k⊥ since in the LF-approach they are defined

in momentum space. The relation with ~y is a simple Fourier transform (cfr. eqs. (2.15)

and (2.16)); however their functional forms, entirely determined by the dynamical structure

of the LF-wavefunctions, are far from being Gaussian.

The distributions at the starting point are strongly simplified as indicated by eqs. (3.3),

but they evolve in a complicated way as combination of non-singlet (V alence = Vi = qi− q̄i,

T3 = u+−d+, T8 = u++d+−2s+) as well as singlet components (Σ = u++d++s+ =
∑

i q
+
i ,

gluons).

In figure 6, the results are shown at fixed x2 = x1 = 0.1, Q2 = 104GeV2, as function

of k2⊥.

The form is clearly non-Gaussian, since non-Gaussian is its functional form at µ2
0, fact

which is related to the dynamics of the LF, not on the value of µ2
0. The complete results

are shown in figure 6, following the same notations and criteria of figure 5.

Comparing the results of the two set of figures 5 and 6, it is evident that the evolution

effects are similar in the two different cases, but it is also evident that the Gaussian ansatz

is rather arbitrary and not supported by LF dynamics.

4 Adding sea quarks and gluons at a low energy scale

In the previous sections, our Light-Front approach has been focused on the study of valence

degrees of freedom at low momentum scale. Other partons, and their correlation effects,

emerge from radiated gluons in the perturbative QCD-evolution of the dPDFs. In the

present section we enlarge the perspective studying how sea quarks and gluons can be

included at a low-momentum scale and within the same LF framework. An example (e.g.

refs. [27, 28]) is given by inclusive DIS, where the (non-perturbative) meson degrees of
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freedom can be introduced by means of a description of the meson cloud and the scattering

of the virtual photon off the constituents of the mesons (Sullivan process). Analogous

approach can be applied to the explicit evaluation of meson cloud effects on GPDs (e.g.

refs. [31–33, 44]).

Hereafter we will propose a simplified approach in which the effects of the valence

degrees of freedom (producing the largest part of the dPDFs at low-momentum scale) are

calculated using eqs. (2.8) and (2.11), while the non-perturbative sea and gluons com-

ponents are evaluated by means of a factorized approximation of the kind discussed in

section 2.3. In order to minimize the hypothesis on factorization let us start discussing the

limiting case k⊥ = 0. Let us first illustrate, as an example, the uu dPDFs:

Fuu(x1, x2, k⊥ = 0, Q2
0) = F(uV +ū)(uV +ū)(x1, x2, k⊥ = 0, Q2

0)

= FuV uV
(x1, x2, k⊥=0, Q2

0) +
[

FuV ū(x1,x2, k⊥=0, Q2
0)+ (4.1)

+ FūuV
(x1,x2, k⊥=0, Q2

0)
]

+ Fūū(x1, x2, k⊥ = 0, Q2
0) . (4.2)

The pure valence (and dominant) term, the expression (4.1) in the above equation,

FuV uV
(x1, x2, k⊥, Q

2
0) = 2× uV uV (x1, x2, k⊥, Q

2
0) , (4.3)

can be evaluated in a direct way within the LF-approach described in the previous sections.

In order to calculate the residual terms, eqs. (4.2) and (4.2), one can assume factorized

forms (see e.g. ref. [3]).

The complete (approximate) expression for Fuu becomes:

Fuu(x1, x2, k⊥=0, Q2
0) ≈ FuV uV

(x1, x2, k⊥=0, Q2
0) + (4.4)

+
{[

uV (x1, Q
2
0)ū(x2, Q

2
0) + ū(x1, Q

2
0)uV (x2, Q

2
0)
]

+ū(x1, Q
2
0)ū(x2, Q

2
0)
}

(1− x1 − x2)
nθ(1− x1 − x2) . (4.5)

Few comments are in order:

i) the contribution eq. (4.4) is the term due to valence quarks, it is not approximated

by a factorized procedure and it is based on the calculated expressions eqs. (2.8)

and (2.11);

ii) the residual contributions imply the knowledge of the singlet component ū(x,Q2
0) and

fulfill the correct kinematical conditions for x1 + x2 > 1, owing to the constraints

introduced by the phenomenological function (1 − x1 − x2)
nθ(1 − x1 − x2). The

exponent n has to be fixed phenomenologically, as seen in section 2.3.1 in the case of

the model of ref. [40] and will be discussed in the next sections for the LF-approach;

iii) ū(x,Q2
0) = usea(x,Q

2
0) has, at the low momentum scale Q2

0, a non-perturbative origin,

basically due to the meson cloud surrounding the nucleon;

iv) the scale Q2
0 is not to be identified with µ2

0, i.e. the scale of the bare nucleon, where

only the three valence quarks contribute.

In the following sections we will discuss a straight-forward (phenomenological) way of

introducing meson and gluon degrees of freedom at the low-momentum non-perturbative

scale. QCD evolution will be used to reach the high energy scale of the LHC experiments.
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4.1 Factorization procedures within the LF-approach at k⊥ = 0

The advantage of the approach we are discussing is based on a complete calculation of

correlation effects within the LF-dynamics, in the restricted space of valence degrees of

freedom. At the same time it allows to discuss the role of the factorization procedure

and its validity, comparing our approach with phenomenological factorized models. This

comparison aims to identify the coherence and self-consistency of the factorization schemes.

In the following we will give three examples: i) the identification of the exponent n to fix

the correlating function eq. (4.5) [see section 4.1.1]; ii) the introduction of a larger number

of degrees of freedom at k⊥ = 0 [section 4.1.2]; iii) the extension to k⊥ > 0 of the sea and

gluon contributions to dPDFs [section 4.2].

4.1.1 Fixing the factorization form

The optimization of factorization procedures for dPDFs is not a simple issue. The most

relevant constraints are related to momentum and quark number sum rules [2]. Our LF-

approach, on the contrary, fulfills such sum rules by construction and therefore one does

not need to implement phenomenological assumptions required to build factorized dPDFs.

As an example the resulting valence dPDF uV uV (x1, x2, k⊥ = 0, µ2
0), as well as the

single PDFs (sPDFs) calculated within the same LF dynamical approach, fulfill the mo-

mentum and quark number sum rules. One can take advantage from such fundamental

properties to fix the order of magnitude of the phenomenological exponent n in eq. (4.5),

trying to combine the knowledge of sPDFs and dPDFs in the following (factorized) relation:

FuV uV
(x1, x2, k⊥ = 0, µ2

0) = 2 · uV uV (x1, x2, k⊥ = 0, µ2
0)
∣

∣

LF
= (4.6)

≈ uV (x1, µ
2
0)
∣

∣

LF
uV (x1, µ

2
0)
∣

∣

LF
× (1− x1 − x2)

nθ(1− x1 − x2) .

The restricted validity of the factorization approach has been already discussed in sec-

tion 2.3, therefore one cannot expect eq. (4.7) to be satisfied with a high degree of accuracy.

We expect, however, indications for the value of the exponent n to be used for building the

additional sea and gluon contributions to the dPDFs. The value n = 2 has been discussed

in the past as a good choice (see, e.g., ref. [45] and references therein). More recent ar-

guments (see, e.g., refs. [40], and [2]) are in favor of more sophisticated parametrizations.

Given the restricted use we are going to make of the factorization assumption, we prefer

to remain within the straight-forward formulation eq. (4.7). Our numerical analysis con-

firms a limited validity of the factorization and, at the same time, suggests n ≈ 0.2 (more

precisely, values within the range 0.1 < n < 0.5; n = 0.2 is our optimal choice).

4.1.2 Sea and gluon contribution according to ref. [41]

The advantages of the approximation eq. (4.4) are now clear: the largest contributions

are due to the valence components and the LF approach has the merit of preserving at

µ2
0 quark number and momentum sum rules. The perturbative evolution needed to reach

the new low-momentum scale Q2
0 to integrate new degrees of freedom preserves those

constraints. At the same time the residual terms can be approximated within a clear
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Figure 7. x1x2FuV uV
(x1, x2, k⊥ = 0, Q2) as function of x1 and x2 = 0, 2, 0.4, 0.6, 0.8 and for two

values of Q2, namely the extreme low momentum scale µ2

0
(dotted lines) and the scale (dashed

lines) of the MSTW parametrization, Q2 = Q2

0
= 1.0GeV2.

and self constrained factorized approach able to select the form of the factorization as

discussed in the previous subsection.

In the following we discuss the introduction of sea and gluon degrees of freedom

by means of one of the most used phenomenological parametrization of sPDF, the LO

MSTW2008 parametrization (see table 4 of ref. [41]). The parametrization is valid at

Q2
0 = 1.0GeV2. The fact that we are proposing LO parametrization is specifically due to

the evolution properties of the dPDFs, known at LO only.

At the scale Q2
0 , the sPDF MSTW2008 parametrization is characterized by the pres-

ence of partons like uV , dV , ū, d̄, s, s̄ and gluons. The total momentum is shared among

such degrees of freedom and one has:

∫

dxx
[

uV (x,Q
2
0) + dV (x,Q

2
0)
]

= 0.452 ; (4.7)
∫

dxxSea(x,Q2
0) =

∫

dxx
[

(2ū(x,Q2
0) + 2d̄(x,Q2

0))

+ s(x,Q2
0) + s̄(x,Q2

0)
]

= 0.108 (4.8)
∫

dxx g(x,Q2
0) = 0.431 . (4.9)

Since at the scale µ2
0 the system is determined by the valence degrees of freedom only, one

has:
∫

dxx
[

uV (x, µ
2
0) + dV (x, µ

2
0)
]

=1; Sea(x, µ2
0) = 0; g(x, µ2

0) = 0. As a consequence, to

use eq. (4.6) at the scale Q2
0, the dPDF uV uV (x1, x2, k⊥ = 0, µ2

0) at the scale µ2
0 has to

be evolved to Q2
0. The evolution is performed by means of the Non-Singlet reduction of

the QCD evolution as described in ref. [14] and summarized in the appendix A, where the
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Figure 9. The dPDFs (at Q2

0
and k⊥ = 0) due to the interference of u quarks and gluons as

function of x1 and selected values of x2.

complete Mellin procedure we are proposing for both Singlet and Non-Singlet sectors is

illustrated in some detail. The result is shown in figure 7 for four selected values of x2.

In figure 8 and figure 9 we show the complete set of dPDFs involving the u-quark at

the starting scale Q2
0. In particular, the combination Fuu = F(uV +ū)(uV +ū) = FuV uV

+

[FuV ū+FūuV
]+Fūū is shown in figure 8 giving explicit evidence to the contribution due to

ū quarks. The largest effects of the sea component are clearly evident for smallest values of

the momentum fraction. In figure 9 we show the dPDFs (Fug +Fgu)/2 containing valence,

sea and gluon contributions. The order of magnitude of those components is comparable

with the valence part FuV uV
at the scale Q2

0 (cf. figure 7).
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4.2 Factorization procedures within the LF-approach at k⊥ > 0

The dPDFs in a pure valence scenario have been discussed in previous sections and the

dependence on k⊥ has been explicitly investigated (cf. for example, figures 1, 4, and 6).

As a result they do not admit simple factorized forms. However, as a first attempt to go

beyond the valence scenario at k⊥ 6= 0, we could add the other degrees of freedom using

factorized expressions. To this aim, the knowledge of the exact LF valence component at

k⊥ = 0 helps to define the additional, factorized contributions. In this section we find a

reasonable factorized approximation to the exact valence LF dPDFs. In this way we fix

the parameters which will be used for the non-valence degrees of freedom

In practice, we want to generalize to k⊥ > 0 eqs. (4.5) and (4.7), valid at k⊥ = 0. For

instance, eq. (4.7) becomes

FuV uV
(x1, x2, k⊥, µ

2
0) = 2 · uV uV (x1, x2, k⊥, µ2

0)
∣

∣

LF
≈ uV (x1, µ

2
0)
∣

∣

LF
uV (x1, µ

2
0)
∣

∣

LF
×

× (1− x1 − x2)
n φ(x1, x2, k⊥) θ(1− x1 − x2) , (4.10)

and simple choices are (cf. eq. (2.16)),

A) φA(k⊥) = exp
[

−b2A k2⊥
]

, (4.11)

B) φB(x1, x2, k⊥) = exp
[

−b2B (1− x1 − x2)
nk2⊥

]

. (4.12)

Within scenario A of eq. (4.11), no correlations between x1, x2 and k⊥ have been introduced:

φA depends on k⊥ and it does not depend on x1, x2; in scenario B of eq. (4.12) the exponent

depends on x1, x2, similarly to eq. (2.16). The knowledge of uV uV (x1, x2, k⊥, µ
2
0)
∣

∣

LF
from

eq. (2.11) and of the sPDF uV (x1, µ
2
0)
∣

∣

LF
with the additional information n = 0.2 from

the analysis of section 4.1.1, can be used to optimize the fit eq. (4.10). The results of the

optimization procedure are shown in figure 10 for selected and extreme examples. Our

recommended values are bA = bB = 0.6GeV−1 and the quality of the fit is, once again,

quite poor with a slight preference for the full correlated approximation of scenario B

(eq. (4.12)). The approximation is crude for the valence-valence correlations, but it is

sound and the next subsection will be devoted to the implementation of additional degrees

of freedom on the basis offered by the factorization eq. (4.10) and scenario B.

4.2.1 Sea and gluon contribution at k⊥ > 0

The valence-valence dPDFs do not allow for a simple factorization. The approximation

proposed in eq. (4.10) is therefore quite poor in that case, as figure 10 explicitly shows.

However, we do not need to approximate valence-valence correlations; we can resort to the

exact calculation also in the case of k⊥ > 0 (cf. figure 1 and eqs. (2.8), (2.11)) and, using

the best factorization scheme (n = 0.2 and bA = bB = 0.6GeV−1 in eqs. (4.11), (4.12))

to introduce the additional degrees of freedom at the scale Q2
0 and k⊥ > 0. We have to

follow once again the steps i)-iv) of section 4 and the procedure described in section 4.1.2.

Numerically they are more challenging and, in a sense, incomplete since the evolution in

k⊥ is still an open problem [3]. We simply evolve at fixed k⊥ applying the scale evolution

of appendix A. As an example we show in figure 11 the distribution Fuu(x1, x2, k⊥, Q
2
0) at
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Figure 10. The exact LF dPDFs x1x2FuV uV
(x1, x2, k⊥, µ

2

0
) (continous lines) and its factorized

approximation eq. (4.10) (scenario B eq. (4.12) , dashed lines, scenario A eq. (4.11), dotted, almost

indistinguishable for k⊥ = k3), as function of x1 at x2 = 0.2 (left panel) and x2 = 0.4 (right panel);

k3 = 0.32GeV and k8 = 1.68GeV (cf. the caption of figure 1). We remind that n = 0.2 and

bA = bB = 0.6GeV−1 (see text).

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x1

x
1
x

2
F

q
1
q
2
(x

1
,x

2
=

0
.2

,k
⊥

,Q
2 0
)

k⊥ = k8

k⊥ = k3

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x1

x
1
x

2
F

q
1
q
2
(x

1
,x

2
=

0
.4

,k
⊥

,Q
2 0
)

k⊥ = k8

k⊥ = k3

Figure 11. The exact LF dPDFs x1x2FuV uV
(x1, x2, k⊥, Q
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0
) (eq. (4.13), dashed lines lines) as

function of x1 and at fixed x2 = 0.2 (left panel) and x2 = 0.4 (right panel). x1x2Fuu(x1, x2, k⊥, Q
2

0
)

(continuos lines) are obtained from the expression (4.13) and scenario B eq. (4.12); k3 = 0.32GeV

and k8 = 1.68GeV (cf. the caption of figure 1).

the scale Q2
0 which generalizes eq. (4.5) and figure 8, and whose resulting expression reads

(from now on, we will discuss the scenario B of eq. (4.12) only):

Fuu(x1, x2, k⊥, Q
2
0)≈2 · uV uV (x1, x2, k⊥, Q2

0) + (4.13)

+
{[

uV (x1, Q
2
0)ū(x2, Q

2
0) + uV (x2, Q

2
0)ū(x1, Q

2
0)
]

+

+ ū(x1, Q
2
0)ū(x2, Q

2
0)
}

(1−x1−x2)
nφB(x1, x2, k⊥)θ(1−x1−x2) ; (4.14)

where uV uV (x1, x2, k⊥, Q
2
0) is obtained evolving at the scale of the MSTW parametrization,

Q2
0 = 1.0GeV2, the LF result (2.8), (2.11) at fixed k⊥. Besides, uV (x,Q

2
0) is the PDF

obtained at the same scale within the LF approach, and ū(x,Q2
0) is taken from the LO

MSTW parametrization [41].
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Figure 12. Left panel: the x1x2FuV uV
dPDFs obtained from perturbative evolution from the

lowest scale µ2

0
to Q2 = 250GeV2 (continuous lines) as function of x1 and at fixed x2 = 0.2 (and for

two values of k⊥), are compared with x1x2FuV g dPDFs (dashed lines) at the same high scale. Right

panel: the x1x2FuV ū dPDFs (amplified 20 times) at the scale Q2 = 250GeV2 are compared with the

x1x2Fgg dPDFs at the same scale, and kinematical conditions. (k3 ≃ 0.32GeV and k8 ≃ 1.68GeV).
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Figure 13. Left panel: the x1x2FuV uV
dPDFs obtained from perturbative evolution from the Q2

0

scale to Q2 = 250GeV2 (continuous lines) as function of x1 and at fixed x2 = 0.2 (and for two values

of k⊥), are compared with x1x2FuV g dPDFs (dashed lines) at the same high scale. Right panel: the

x1x2FuV ū dPDFs (amplified 10 and 20 times respectively) at the scale Q2 = 250GeV2 are compared

with the x1x2Fgg correlations at the same scale, and kinematical conditions. (k3 ≃ 0.32GeV and

k8 ≃ 1.68GeV). The only difference of the present figure with figure 12 is represented by the starting

scale Q2

0
= 1.0GeV2 > µ2

0
. As a consistency check one can verify that the results obtained in the

two figures for x1x2FuV uV
are exactly the same. See text.
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By means of the perturbative evolution developed in appendix A one can now evolve the

distribution calculated at low-momentum scale to a typical experimental scale. We evolve

to Q2 = 250GeV2, a scale relevant to study properties of dPDFs, as shown by experi-

ments [17–22] and by a quite recent theoretical study within the LF approach [23]. In two

series of figures, (figures 12 and 13), we compare the results obtained evolving directly from

the lowest scale µ2
0 where only valence-valence dPDFs are present (cfr. figure 1), with those

obtained with the evolution from the scale of the MSTW parametrization Q2
0 = 1GeV2,

where also gluon and sea dPDFs contribute (cf. figure 11). The presence of the additional

Singlet components is quite relevant, in particular for those components containing sea and

gluon degrees of freedom, as it appears clearly from the comparison of the set of figures.

The Singlet components parametrized by means of the factorization procedure appear to

play a relevant role at low x, where the dPDFs can be more easily studies by means of

proton-proton collisions at very high energy. On the other hand the evolution obtained from

the lowest momentum scale has the merit of being directly connected with quark dynamics

and correlations are generated in a transparent way. A detailed study of the interrelations

between non-perturbative correlations, generated by the dynamics of the model, and per-

turbative ones, generated by QCD evolution, is performed, at low-x, in the next sections.

5 Perturbative and non-perturbative two-parton correlations at low-x

In this section we present results obtained within our LF scheme, aimed at establishing

what kind of error one can do if two-parton correlations are neglected in treating dPDFs,

for example in analyzing collider data. In previous papers of ours [14, 23] we have already

emphasized that this error can be rather sizeable when x1, x2 lie in the valence region. We

want now to analyze the low x scenario, reaching x values as low as 10−2, using a full, non-

singlet and singlet, LO QCD evolution to the very high Q2 scales typical of pp scattering at

the LHC. As in ref. [40], for the moment being, only the homogeneus part of the evolution

of dPDFs is performed. As already said, the Q2 evolution of the k⊥ dependence has not

been investigated yet and is still a missing item in this phenomenology. For the seek of

clarity let us stress that all calculations performed with the initial scale µ0 are associated

to the LF model where valence quarks are the only non perturbative degrees of freedom

while those performed starting from Q0 are related to the model where non perturbative

gluons and sea quarks have been taken into account in the analysis, see eq. (4.14).

5.1 Characterizing the two-parton correlations at low-x

To study the relevance of two-parton correlations at low-x, we found very helpful to show

ratios of dPDFs to products of PDFs; in the case of gluon distributions, for example at

x2 = 0.01, this ratio reads

ratiogg(x1, x2 = 0.01, k⊥ = 0, Q2) =
Fgg(x1, x2 = 0.01, k⊥ = 0, Q2)

g(x1, Q2) · g(x2 = 0.01, Q2)
, (5.1)

where Q2 is a phenomenologically relevant scale, chosen in the following to be Q2 = 250 and

104GeV2. These scales are reached by performing QCD evolution of the results obtained
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Figure 14. Left panel: the ratio eq. (5.1) at different values of Q2 as function of x1 at fixed

x2 = 0.01. Numerator and denominator are evolved by means of dPDF evolution and single parton

evolution, respectively. The starting point is the low momentum scale µ2

0
. Right panel: the same

ratio for the valence-valence components within the same kinematical and dynamical conditions.

within our LF scheme for both sPDFs and dPDFs, starting from the hadronic scale µ2
0,

where only valence degrees of freedom are present. Results for the evolution which includes

gluons and sea degrees of freedom within the factorization scheme of section 4 will be

discussed in the next section 5.2.

It is clear that the ratio (5.1) would be just 1 if it were possible to approximate the

dPDF with the product of two sPDFs. The difference from 1 of the ratio is a measure of

the error which is done by using that approximation, which amounts to disregard any kind

of two-parton correlations.

In general the ratio can be written

ratioab(x1, x2 = 0.01, k⊥ = 0, Q2) =
Fab(x1, x2 = 0.01, k⊥ = 0, Q2) + a → b

a(x1, Q2) · b(x2 = 0.01, Q2) + a → b
, (5.2)

including other kind of partons; in the following, we will analyze the selected combinations

{ab} = {uV uV }, {uV g + guV }, {uV ū+ ūuV }, {gg}, {ūū} (5.3)

The symmetrization is mandatory from the point of view of the experimental measure-

ments, which cannot distinguish the two combinations. Obviously uV is a Non− Singlet-

index, as well as g is a Singlet-index, while the sea indexes have no fixed flavor-symmetries;

the different distributions evolve following the corresponding equations, as discussed in ap-

pendix A.

Results of the ratio eq. (5.2) for the flavor combinations gg, uV uV , uV ū, ūū, uV g are

shown in figures 14–16.

All the ratios have two common qualitative features:

i) results at Q2 = 250GeV2 do not really differ from those at Q2 = 104GeV2; the role of

correlations does not depend therefore on the different high momentum scale which

is chosen;
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Figure 15. As in figure 14 for the ratio involving valence-sea (left panel) or sea-sea correlations

(right panel). Numerator and denominator are evolved by means of dPDF evolution and single

parton evolution, respectively. The starting point is the low momentum scale µ2

0
. Notations as in

figure 14.
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Figure 16. As in previous figures for the ratio involving valence-gluon correlations. Numerator

and denominator are evolved by means of dPDF evolution and single parton evolution, respectively.

The starting point is the low momentum scale µ2

0
. Notations as in figure 14.

ii) in all flavor combinations, when at least one of the momentum fractions of the two

partons is in the valence region, correlations are strong and the error which is done

in approximating a dPDF with a product of sPDFs is huge.

When both the momentum fractions of the partons are small, the situation is more

involved. In the valence-valence sector, one finds negligible correlations and the ratio is

basically 1 (cf. figure 14, right panel). This fact, in the Non-Singlet (NS) sector, had been

already found and discussed in ref. [14]. In all other cases, where singlet evolution is playing

a role, even at values of x1, x2 as low as 10−2, correlations are found to produce sizable

deviations of the ratios from 1. The maximum effect is found in the gluon-gluon case (cf. fig-

ure 14, left panel), when it reaches 20 %. One should realize that, if two-parton correlations

were present at the LHC scale, one could access through DPS studies novel information
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on the proton structure. Our evolved model results show that if one were able to measure

dPDFs at a 20 % accuracy, a specific dynamical information would be reachable. The differ-

ent behavior of the valence-valence sector from the others, as well as the fact that the gluon-

gluon sector experiences the biggets effect, are interesting features of our results and deserve

to be understood through a further investigation. This is carried on in the next section.

5.2 Perturbative versus non-perturbative two-parton correlations

In this subsection we will find that the results described in the previous one can be under-

stood by disentangling perturbative and non-perturbative effects.

To this aim, let us consider again the ratios

ratioab =
Fab(x1, x2 = 0.01, k⊥ = 0, Q2) + a → b

a(x1, Q2) · b(x2 = 0.01, Q2) + a → b
. (5.4)

In the previous subsection 5.1, results are obtained evolving the numerator from µ2
0 to Q2,

considering at the lowest scale the dPDFs predicted by our LF-model. The denominator

is obtained evolving to Q2 the analogous sPDFs of the same LF-model.

A first consideration is in order: if the denominator, given by the product of single

PDFs, had been evolved by means of dPDF-evolution criteria, we would have obtained a

simplified approximation of the dPDFs at Q2, including perturbative correlations only.

Let us define the following quantity

Fab(x1, x2 = 0.01, k⊥ = 0, Q2)
∣

∣

Perturbative
=

[

a(x1, Q
2) · b(x2 = 0.01, Q2)

]dPDFevolution
.

(5.5)

In fact, Fab(x1, x2 = 0.01, k⊥ = 0, Q2)
∣

∣

Perturbative
contains those correlations which

come from dPDF perturbative evolution only.

At this point, we could consider three different ratios:

i) the ratioab, eq. (5.4);

ii) the ratioPerturbativeab :

ratioPerturbativeab =
Fab(x1, x2 = 0.01, k⊥ = 0, Q2)

∣

∣

Perturbative
+ a → b

a(x1, Q2) · b(x2 = 0.01, Q2) + a → b
, (5.6)

which contains perturbative correlations only; in fact it would be strictly 1 if

the dPDF-evolution did not include double-parton correlations (see the definition

eq. (5.5));

iii) the ratioNon−Perturbative
ab

ratioNon−Perturbative
ab =

Fab(x1, x2 = 0.01, k⊥ = 0, Q2) + a → b

Fab(x1, x2 = 0.01, k⊥ = 0, Q2)|Perturbative + a → b
, (5.7)

which would be strictly 1 if only perturbative correlations were included in the nu-

merator.
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Figure 17. Left panel: the ratios (5.4) (dashed lines), (5.6) (dot-dashed lines) and (5.7) (continuous

lines) specified for (ab) = (gg) and at Q2 = 250 GeV2 as function of x1 at fixed x2 = 0.01.

Evolutions run from the low momentum scale µ2

0
. Right panel: the same ratios for the valence-

valence components (ab) = (uV uV ) within the same kinematical and dynamical conditions.

The three ratios are very useful to disentangle the effects of perturbative versus non-

perturbative double-parton correlations; of course the ratios (5.2) or (5.4) are the most

complete, including both kind of correlations in a consistent way.

In figures 17, 18 and 19, the results for the three ratios are compared at the scale

Q2 = 250GeV2, at x2 = 0.01, as functions of x1 (evolutions run from the low momentum

scale µ2
0).

The ratiogg, shown in figure 17 (left panel), is particularly emblematic. The full ratiogg
of eq. (5.4) (dashed line), clearly influenced by both perturbative (dot-dashed line) and non-

perturbative (continuous line) effects, is compared with those where perturbative and non-

perturbative correlations are disentangled, contributing to the behavior of gluon − gluon

dPDFs at low values of x1 and x2. The same comments hold for dPDFs corresponding

to the other partons. An interesting feature of these results, clearly read in figures 17, 18

and 19, is that in few cases the perturbative and non-perturbative components tend to

cancel (in the case of V alence− V alence illustrated in figure 17 (right panel), or ū− ū, as

it borns out from figure 18 (right panel)). In the case of the gluon-gluon sector, the effect

tends instead to sum coherently: this explains the persistence of correlations in this sector,

even at high Q2 and low x, observed in the previous subsection.

In closing this section, we conclude that correlations in dPDFs, for some flavor

combinations, are present also at low x1 and x2, even at the large energy scale of

LHC experiments. This arises because perturbative and non-perturbative effects sum

coherently. These conclusions are not artifacts of the specific LF model used. They hold

qualitatively also in ratios obtained starting the evolution from Q2
0 = 1GeV2 ≫ µ2

o, using

as non-perturbative input the semi-factorized model of section 4. In order to illustrate

this important point, two more plots are included (figure 20) to compare the evolutions

starting from µ2
0 and Q2

0 = 1GeV2. In the right panel, the valence-valence ratio is

shown, in the left panel we show the gluon-gluon one. These examples are illustrative,

– 25 –



J
H
E
P
1
0
(
2
0
1
6
)
0
6
3

0.01 0.1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x1

r
a
ti

o
u

V
ū
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Figure 18. As in figure 17 for the ratio involving valence-sea (left panel) or sea-sea correlations

(right panel). Evolutions run from the low momentum scale µ2

0
. Notations as in figure 17.
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Figure 19. As in figures 18 and 19, for the ratio involving valence-gluon correlations. Evolutions

run from the low momentum scale µ2

0
. Notations as in figure 17.

indeed, of two specific aspects: i) the valence-valence ratios should not depend on the

starting point because they converge at the same values at the common hadronic scale

µ2
0. The small differences which appear in the figures are therefore a clear estimate of the

errors introduced by our numerical evolution and one can appreciate the precision of our

approach; ii) the second figure, showing the gluon-gluon ratio, is included because the glue

is the dominant component at low-x and it contributes in a negligible way to the valence

region. The correlations induced at low-x still contain a specific sign of the correlations

introduced in the valence sector and this is due to the presence of the valence component

in the quark-singlet sector in the evolution procedure. The strength of the correlation

seems to become smaller but they are still sizable.

6 Conclusions

Double Parton Scattering (DPS) represents a background in several channels for the search

of new Physics at the LHC. Its correct description depends on our ability of modelling
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Figure 20. Left panel: the ratio ratiouV uV
at Q2 = 250GeV2 as function of x1 at fixed x2 = 0.01.

Numerator and denominator are evolved by means of dPDF evolution and single parton evolution,

respectively. The starting scales differ for the two curves: the low momentum one µ2

0
(continuous)

and the larger Q2

0
(dashed), where gluons and sea quark, generated non perturbatively according

to eq. (4.14), are taken into account. The differences are artifacts due to numerical uncertainties.

Right panel: the same of the left panel but for the ratiogg.

double parton distribution functions (dPDFs). The knowledge of these quantities would

represent also a novel tool for the study of the three-dimensional nucleon structure, com-

plementary to possibilities offered by electromagnetic interactions, in the framework of

Generalized Parton Distribution functions. In this paper we have analyzed dPDFs, using

Poincaré covariant predictions obtained, at a low energy scale, within a Light-Front model

proposed by us in a recent paper, evolved using QCD evolution to experimentally relevant

scales. We checked to what extent factorized expressions of dPDFs, in terms of products or

convolutions of one-body densities, can be used, neglecting, at least in part, two-parton cor-

relations. Our tests were performed using our model predictions starting from a scale where

only quark degrees of freedom are relevant, or from higher scales, modeling sea quark and

gluon contributions. Our model study demonstrates that factorization procedures strongly

fail in reproducing the calculated dPDFs in the valence region, where measurements of DPS

could really allow to access two-parton correlations. Besides, a gaussian behavior for the

transverse distance in coordinate or momentum space seems rather arbitrary. Anyway, to

have contact with measurable processes at existing facilities, everything has to be pushed

to very low values of the longitudinal momenta of the interacting partons. This study has

been carried on systematically and represents the most interesting part of our investiga-

tions. Correlations between pairs of partons of different kind have been considered, finding

that, in some cases, their effect tends to be washed out at low-x, as it happens for the va-

lence, flavor non-singlet distributions, while they can affect other distributions in a sizable

way, as in the gluon sector, when they can be as large as 20 %. We have shown that this

different behavior can be understood in terms of a delicate interference of non-perturbative

correlations, generated by the dynamics of the model, and perturbative ones, generated by

the model independent evolution procedure. Our analysis shows that at LHC two-parton

correlations can be relevant in DPS, opening a possibility to observe them for the first time.
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Our model dPDFs have now to be used to predict cross sections in specific channels where

DPS is known to give an important contribution, such as, for example, the production of

two W bosons with the same sign. Our research is now addressing this final goal.
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A Perturbative evolution of dPDFs in Mellin space

Following Diehl and Kasemets [46] one has to admit that “a consistent formulation of

factorization for double parton scattering does not yet exist, so that it remains unclear how

dPDFs should best be defined (and how they evolve)”. However some phenomenological

aspects of QCD-evolution are known since long time (e.g refs. [47, 48]) and have been

recently retaken [49–51] developing numerical codes able to solve the evolution equations.

In addition also theoretical progresses have been reported (for example the demonstration

that the exchange of Glauber gluons cancels for the considered observable, a step forward

in the proof of QCD factorization for DPS [52]).

In the following we develop a systematic numerical approach to the evolution of dPDFs,

in Mellin space instead of coordinate space, restricting ourselves to the, so called, homoge-

nous equation, a restriction we share with numerical solutions in coordinate space as applied

in several contributions by Diehl and other coauthors (see ref. [53] and reference therein).

If we assume equal renormalization scales Q1 and Q2 for the two partons (i.e.

Q1 = Q2 = Q), the LO evolution equation for the unpolarized double parton distribu-

tions Fj1j2(x1, x2;Q
2) then reads (see ref. [54])

dFj1j2(x1, x2;Q
2)

d logQ2

∣

∣

∣

∣

LO

=
αs(Q

2)
∣

∣

LO

4π
×





∑

j′1

∫ 1−x2

x1

dy1
y1

Fj′1j2
(y1, x2;Q

2)Pj′1→j1

(

x1
y1

)

+

+
∑

j′2

∫ 1−x1

x2

dy2
y2

Fj1j′2
(x1, y2;Q

2)Pj′2→j2

(

x2
y2

)

+

+
∑

j′

Fj′(x1 + x2;Q
2)

1

x1 + x2
Pj′→j1j2

(

x1
x1 + x2

)



 (A.1)

The convolution integrals appearing in eq. (A.1) have the same structure of the integrals

appearing in the evolution of the single parton distributions, namely the renormalization
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group equation (RGE). In order to solve evolution equations, one can perform a Mellin-

transformation of eqs. (A.1), in particular for the first two terms

dMn1n2
j1j2

(Q2)

d logQ2

∣

∣

∣

∣

∣

LO

=
αs(Q

2)
∣

∣

LO

4π
×

×
[

∑

i

P
(0)
ij1

(n1)M
n1n2
ij2

(Q2) +
∑

k

P
(0)
kj2

(n2)M
n1n2
j1k

(Q2)

]

+

+ inhomogeneous term , (A.2)

where

Mn1n2
j1j2

(Q2) =

∫ 1

0
dx1

∫ 1

0
dx2 θ(1− x1 − x2) · xn1−1

1 xn2−1
2 Fj1j2(x1, x2;Q

2) (A.3)

P
(0)
ij (n) =

∫ 1

0
dxxn−1 P

(0)
ij (x) (A.4)

and the θ(1 − x1 − x2) appearing in the definition of the moments eq. (A.3) is a direct

consequence of the limit of integration in eq. (A.1) and the momentum conservation. Pij

are the evolution kernels or splitting functions. They are calculated perturbatively as a

series expansion in as(Q
2) = αs(Q

2)/(4π):

Pij

(

x

y
, as(Q

2)

)

=
∞
∑

m=0

am+1
s (Q2)P

(m)
ij

(

x

y

)

, (A.5)

and m = 0 indicates the Leading-Order contribution.

(Expressions for P
(0)
ij in the context of dPDFs can be found (e.g.) in appendix A of

ref. [46]).

A.1 dPDF (flavor) decomposition and evolution

In order to solve eqs. (A.2) one has to combine the flavor indices in a way consistent

with evolution, in particular one has to identify combinations evolving as Singlet and Non-

Singlet. The combinations depend on the order of the evolution. At LO and NLO a useful

transformation is the following

Σ =
∑

i

q+i , Vi = q−i ,

T3 = u+ − d+, T8 = u+ + d+ − 2s+ , (A.6)

with q±i = qi ± q̄i ;

and similar combination if one includes heavier quarks (e.g. ref. [55] section 4.3.3). For

the up and down quarks, Vi corresponds to the valence contributions Vu ≡ uV , Vd ≡ dV .

After performing the evolution, the individual quark and antiquark distributions can be
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recovered using

ū =
1

4

(

2

3
Σ +

1

3
T8 + T3

)

− 1

2
uV ;

d̄ =
1

4

(

2

3
Σ +

1

3
T8 − T3

)

− 1

2
dV .

s+ s̄ =
1

3
(Σ− T8) ; (A.7)

Specifically, in the case of dPDFs Fij , the same argument holds for indices i, j combined

in such a way to produce T3, T8 and Vi structures. Consequently, in addition to FuV uV
,

FdV dV and FuV dV , FdV uV
, also combinations like

FT3T3 , FT3T8 , FuV T3 , FdV T3 , FuV T8 , FdV T8 , (A.8)

will evolve following the simple Non-Singlet rules.

Just to give an example, we will discuss, in the next section, the evolution of the dPDF

FVuT3 ≡ FuV (u+ū−d−d̄) = FuV u + FuV ū − FuV d − FuV d̄ =

= FuV uV
+ 2FuV ū − FuV dV − 2FuV d̄ . (A.9)

Neglecting the inhomogeneous term, the solution of eq. (A.2), for the Mellin moments

of combination eq. (A.9) is:

Mn1n2
VuT3

(Q2) =

(

as
as0

)−
P
(0)
qq (n1)+P

(0)
qq (n2)

β0 ·Mn1n2
VuT3

(Q2
0) (A.10)

(compare also the definition eq. (A.3)).

The Mellin-inversion completes the solution in x-space:

FVuT3(x1, x2, Q
2) =

1

2πi

∮

C

dn1
1

2πi

∮

C

dn2 x
(1−n1)
1 x

(1−n2)
2 Mn1n2

VuT3
(Q2) . (A.11)

The procedure described for the example FVuT3 , is valid for each Fij combination

((i, j) = Vi , T3 , T8).

On the other hand, the double-distributions containing gluons and Σ evolve mixing

the two and each index must be evolved in the appropriate way. For example:







Mn1n2
VuΣ

(Q2)

Mn1n2
Vug

(Q2)






=

(

as
as0

)−
P
(0)
qq (n1)

β0 ×







W 0
qq(n2) W 0

qg(n2)

W 0
gq(n2) W 0

gg(n2)






·







Mn1n2
VuΣ

(Q2
0)

Mn1n2
Vug

(Q2
0)






, (A.12)

a result valid also replacing the first index Vu with the other Non-Singlet components,

namely T3 or T8.
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Last examples the Singlet− Singlet components:

Mn1n2
ΣΣ (Q2) = W 0

qq(n1)W
0
qq(n2)M

n1n2
ΣΣ (Q2

0) +W 0
qg(n1)W

0
qq(n2)M

n1n2
gΣ (Q2

0) +

+W 0
qq(n1)W

0
qg(n2)M

n1n2
Σg (Q2

0) +W 0
qg(n1)W

0
qg(n2)M

n1n2
gg (Q2

0) ; (A.13)

Mn1n2
gg (Q2) = W 0

gg(n1)W
0
gg(n2)M

n1n2
gg (Q2

0) +W 0
gq(n1)W

0
gg(n2)M

n1n2
Σg (Q2

0) +

+W 0
gg(n1)W

0
gq(n2)M

n1n2
gΣ (Q2

0) +W 0
gq(n1)W

0
gq(n2)M

n1n2
ΣΣ (Q2

0) ; (A.14)

Mn1n2
Σg (Q2) = W 0

qq(n1)W
0
gg(n2)M

n1n2
Σg (Q2

0) +W 0
qg(n1)W

0
gg(n2)M

n1n2
gg (Q2

0) +

+W 0
qq(n1)W

0
gq(n2)M

n1n2
ΣΣ (Q2

0) +W 0
qg(n1)W

0
qg(n2)M

n1n2
gΣ (Q2

0) ; (A.15)

Mn1n2
gΣ (Q2) = W 0

gq(n1)W
0
qg(n2)M

n1n2
Σg (Q2

0) +W 0
gg(n1)W

0
qg(n2)M

n1n2
gg (Q2

0) +

+W 0
gq(n1)W

0
qq(n2)M

n1n2
ΣΣ (Q2

0) +W 0
gg(n1)W

0
qq(n2)M

n1n2
gΣ (Q2

0) . (A.16)

The Mellin-inversion eq. (A.11), completes again the procedure.

A.2 Examples of flavor decomposition

A. Flavor decomposition at the generic scale Q2

Fu−u− = F(u−ū)(u−ū) ≡ FuV uV
; (A.17)

Fu+u+ = F(u+ū)(u+ū) = FuV uV
+ 2 [FuV ū + FūuV

] + 4Fūū =

=
1

16
[4FΣΣ + FT8T8 + 9FT3T3+ 2(FΣT8 + FT8Σ) + 3(FT8T3 + FT3T8) +

+6(FΣT3 + FT3Σ)] ; (A.18)

and the inverse

FΣΣ = Fu+u+ + Fd+d+ + Fs+s+ + (Fu+d+ + Fd+u+) + (Fu+s+ + Fs+u+) +

+(Fd+s+ + Fs+d+) ; (A.19)

FT3T3 = Fu+u+ + Fd+d+ − (Fu+d+ + Fd+u+) ; (A.20)

FΣT8 + FT8Σ = 2Fu+u++2Fd+d+−4Fs+s++2(Fu+d++Fd+u+)−(Fu+s++Fs+u+) +

−(Fd+s+ + Fs+d+) ; (A.21)

FΣT3 + FT3Σ = 2Fu+u+ − 2Fd+d+ − (Fu+s+ + Fs+u+)− (Fd+s+ + Fs+d+) ; (A.22)

FT3T8 + FT8T3 = 2Fu+u+ + 2Fd+d+ − 2(Fu+s+ + Fs+u+) + (Fd+s+ + Fs+d+) ; (A.23)

These relations are generally valid, not only at the specific Q2
0.

B. Reduction at the µ2
0 scale

At the lowest scale one has:

Fu−u− = F(u−ū)(u−ū) ≡ FuV uV
= uV uV (x1, x2, µ

2
0) ; (A.24)

Fu+u+ = F(u+ū)(u+ū) = FuV uV
+ 2 [FuV ū + FūuV

] + 4Fūū

= uV uV (x1, x2, µ
2
0) ; (A.25)

Fs+s+ = 0 ; (A.26)

Fgg = 0 . (A.27)
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and the inverse

FΣΣ = 3FuV uV
; (A.28)

FT3T3 = −FuV uV
; (A.29)

FT8T8 = 3FuV uV
; (A.30)

FΣT3 + FT3Σ = 2FuV uV
; (A.31)

FΣT8 + FT8Σ = 6FuV uV
; (A.32)

FT3T8 + FT8T3 = 2FuV uV
. (A.33)

These relations are valid when the contributions at µ2
0 reduce to valence contributions

only.
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