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Abstract: In this paper we consider the parametrizations of gluon transverse momentum

dependent (TMD) correlators in terms of TMD parton distribution functions (PDFs).

These functions, referred to as TMDs, are defined as the Fourier transforms of hadronic

matrix elements of nonlocal combinations of gluon fields. The nonlocality is bridged by

gauge links, which have characteristic paths (future or past pointing), giving rise to a

process dependence that breaks universality. For gluons, the specific correlator with one

future and one past pointing gauge link is, in the limit of small x, related to a correlator of

a single Wilson loop. We present the parametrization of Wilson loop correlators in terms of

Wilson loop TMDs and discuss the relation between these functions and the small-x ‘dipole’

gluon TMDs. This analysis shows which gluon TMDs are leading or suppressed in the small-

x limit. We discuss hadronic targets that are unpolarized, vector polarized (relevant for

spin-1/2 and spin-1 hadrons), and tensor polarized (relevant for spin-1 hadrons). The latter

are of interest for studies with a future Electron-Ion Collider with polarized deuterons.

Keywords: QCD Phenomenology

ArXiv ePrint: 1607.01654

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP10(2016)013

mailto:d.boer@rug.nl
mailto:scotogno@nikhef.nl
mailto:tvdaal@nikhef.nl
mailto:mulders@few.vu.nl
mailto:asignori@nikhef.nl
mailto:zhouyj@sdu.edu.cn
http://arxiv.org/abs/1607.01654
http://dx.doi.org/10.1007/JHEP10(2016)013


J
H
E
P
1
0
(
2
0
1
6
)
0
1
3

Contents

1 Introduction 1

2 Parametrizations of gluonic TMD correlators 3

2.1 Unpolarized hadrons 4

2.1.1 The gluon-gluon correlator 4

2.1.2 The Wilson loop correlator 5

2.2 Vector polarized hadrons 7

2.2.1 The gluon-gluon correlator 7

2.2.2 The Wilson loop correlator 9

2.3 Tensor polarized hadrons 9

2.3.1 The gluon-gluon correlator 9

2.3.2 The Wilson loop correlator 11

3 The gluon-gluon correlator at small x 11

4 Summary and discussion 15

A Constraints on correlators 17

B Definitions of TMDs 18

B.1 The gluon-gluon correlator 18

B.2 The Wilson loop correlator 20

C Symmetric traceless tensors and TMDs in bT -space 21

C.1 Symmetric traceless tensors 21

C.2 TMDs in bT -space 21

C.2.1 The gluon-gluon correlator 22

C.2.2 The Wilson loop correlator 23

1 Introduction

In high energy collisions gluons become more important with increasing energy, due to the

decreasing longitudinal momentum fraction x that is typically being probed. This region

has for example been studied by experiments at the Hadron-Electron Ring Accelerator

(HERA) in inclusive deep inelastic scattering (DIS) and currently by experiments at the

Large Hadron Collider (LHC) in proton-proton collisions. In less inclusive processes one can

in addition become sensitive to the transverse momentum distribution of gluons. There is a

rich variety of gluon transverse momentum dependent (TMD) parton distribution functions

(PDFs), or TMDs for short, especially if one includes the polarization of hadrons. At

– 1 –



J
H
E
P
1
0
(
2
0
1
6
)
0
1
3

the Relativistic Heavy Ion Collider (RHIC), experiments with spin-polarized protons are

conducted and in future experiments, such as at an Electron-Ion Collider (EIC), polarized

deuteron beams may be used. For this reason it is useful to parametrize gluon TMD

correlators as efficiently and systematically as possible for unpolarized, vector, and tensor

polarized hadrons and to consider specifically the small-x region. This is the intention of

this paper.

In the present work, the starting point for the gluon TMD correlators are Fourier

transforms of hadronic matrix elements of field strength tensors connected by Wilson lines

or gauge links [1–6] that bridge the nonlocality of the field operators, ensuring color gauge

invariance. The nonlocality includes transverse directions [1, 2], in which case one can

consider, besides gluon-gluon correlators, also the matrix element of a single Wilson loop

operator, which in this work is referred to as the Wilson loop correlator. The gauge in-

variant correlators are parametrized in terms of TMDs, depending on the longitudinal

momentum fraction x and the transverse momentum k2
T
[7]. Including transverse momen-

tum dependence, i.e. going beyond collinear kinematics, gives rise to a wealth of azimuthal

asymmetries. This is particularly true when polarization degrees of freedom of the hadrons

involved are considered, giving for instance rise to single spin asymmetries [6, 8–11]. The

parametrizations in terms of TMDs have been extensively studied, especially for the quark

case, for different polarizations of hadrons up to and including spin 1 [10, 12–18]. In the

collinear case, the parametrization in terms of PDFs for gluons in tensor polarized spin-1

hadrons has first been considered in refs. [19, 20]. A further proliferation of TMDs comes

from the structure, i.e. the path dependence, of the gauge links. The gauge links depend on

the process and as a consequence they give rise to observable process dependence and thus

to a proliferation of TMDs. Since the dependence can be traced to the color flow in the hard

scattering process, it is in principle possible to unravel this dependence [6, 21–23]. In some

cases one may find how different TMDs and processes are related, but in some cases TMDs

with different gauge links are not related at all, encoding independent information [24].

Here we limit ourselves to TMDs appearing in those contributions to the cross sections

that are leading in inverse powers of the hard scale, referred to as leading twist TMDs.

We will not be concerned with higher twist contributions [25] nor with QCD corrections

that are of higher order in the strong coupling αs, relevant for the evolution and the

large transverse momentum region [26–28]. The higher twist contributions would generally

involve correlators with more fields. In order to facilitate the study of the evolution of these

TMDs we will discuss the transition to impact parameter space, without further studying

the evolution itself. We present the parametrizations of the gluon-gluon and Wilson loop

TMD correlators in terms of TMDs of definite rank for unpolarized, vector polarized, and

tensor polarized hadrons, the latter being considered here for the first time. We also provide

a new treatment of the connection between the gluon-gluon correlator at small x and the

Wilson loop correlator. This confirms the results of some specific examples that have been

discussed in an earlier paper [29].
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2 Parametrizations of gluonic TMD correlators

In 2001, Mulders and Rodrigues [7] presented the first parametrization of the gluon-gluon

light-front correlator in terms of TMDs considering both unpolarized and vector polarized

hadrons. In 2007, a different nomenclature for those TMDs was proposed by Meißner,

Metz, and Goeke in ref. [30], in close analogy to the ones for quarks. In this section we

extend the analyses of refs. [7, 30] by parametrizing both the gluon-gluon and Wilson loop

correlators for unpolarized, vector polarized, as well as tensor polarized hadrons. The

light-front correlators are expanded in a Lorentz basis of completely symmetric traceless

tensors built from the partonic momentum kT (see appendix C.1 for the definitions of the

relevant symmetric traceless tensors), and are expressed in terms of TMDs. Furthermore,

a more systematic way of naming the various TMDs is introduced, keeping and extending

the notation proposed in ref. [30].

We start with outlining the most relevant variables. We denote by P and k the hadron

and parton momenta respectively. We parametrize k in terms of the dimensionful vectors

P and n, where n is a lightlike vector satisfying n2 = 0 and P ·n = 1:

kµ = xPµ + kµT + (k·P − xM2)nµ, (2.1)

whereM is the mass of the hadron. The transverse direction is projected out using the met-

ric tensor in transverse space, gµνT ≡ gµν−P {µnν} (curly brackets denote symmetrization of

the indices), with nonvanishing elements g11
T

= g22
T

= −1. For a polarized hadron we employ

a spin vector S needed to describe vector polarization for any hadron with spin ≥ 1/2 and

a symmetric traceless spin tensor T to describe tensor polarization for hadrons with spin

≥ 1 [18, 31]. We again parametrize S and T in terms of the dimensionful vectors P and n,1

Sµ = SL
Pµ

M
+ Sµ

T −MSL nµ, (2.2)

Tµν =
1

2

[

2

3
SLL gµνT +

4

3
SLL

PµP ν

M2
+

S
{µ
LTP

ν}

M
+ Sµν

TT

−
4

3
SLLP

{µnν} −MS
{µ
LTn

ν} +
4

3
M2SLL nµnν

]

, (2.3)

ensuring the relations

P 2 = M2, P ·S = 0, PµT
µν = 0. (2.4)

For a spin-1/2 hadron only a spin vector is needed to parametrize the density matrix. For a

spin-1 hadron also a tensor is required. While the spin vector S for a spin-1 hadron signals

a polarized hadron with m = 1 along that direction (in case of its length being one), the

spin tensor T corresponds to particular combinations of spin states (see e.g. refs. [18, 31]).

The spin tensor has five independent parameters, namely SLL, the two components of the

transverse vector SLT , and the two independent components of the symmetric traceless

transverse tensor STT .

1We use the definition of SLL that is used in ref. [18], which differs by a numerical factor from the

definition in ref. [31].
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We note that one could reinstate the combination P ·n = P+ by replacing everywhere

n → n/P ·n. Introducing n̄ ≡ (P − 1
2M

2 n)/P ·n, such that n·n̄ = 1, one can work with

light cone components a+ = a·n and a− = a·n̄. Hence, in the infinite momentum frame

n̄ corresponds to the target hadron direction and n to the conjugate direction. They are

defined frame independently, however. In order to get the more natural interpretation in

the hadron rest frame, one has the covariantly defined time- and spacelike directions,

t̂ ≡
P

M
, ẑ ≡

P

M
−M n, (2.5)

which become the standard time and spatial z-directions in the hadron rest frame. They

are useful since the spin vector and tensor only contain the spacelike combination ẑ:

Sµ = SL ẑµ + Sµ
T ,

Tµν =
1

2

[

4

3
SLL

(

ẑµẑν +
1

2
gµνT

)

+ ẑ{µS
ν}
LT + Sµν

TT

]

. (2.6)

2.1 Unpolarized hadrons

2.1.1 The gluon-gluon correlator

For a color gauge invariant description of gluon correlations in hadrons one can consider

the (unintegrated) gluon-gluon correlator as a starting point,

Γ[U,U ′]µν;ρσ(k;P, n) ≡

∫

d4ξ

(2π)4
eik·ξ 〈P |Fµν(0)U[0,ξ]F

ρσ(ξ)U ′
[ξ,0] |P 〉 , (2.7)

where color summation, a trace in color space (Trc), is implicitly assumed. The Wilson

lines U[0,ξ] and U ′
[ξ,0] guarantee color gauge invariance. Even though without specifying a

process the path integrations could run along arbitrary paths, we have already included

a dependence on the lightlike four-vector n, that enters upon consideration of staple-like

gauge links running along the light-front (ξ·n = 0) via lightlike ξ·P = ±∞. A possible

parametrization of the unintegrated correlator in eq. (2.7), constrained by hermiticity and

parity conservation and respecting relations induced by time reversal (see appendix A), is2

Γ[U,U ′]µν;ρσ(k;P, n) = M2A1 ǫ
µναβǫρσαβ +A2 P

[µgν][ρP σ] +A3 k
[µgν][ρkσ]

+ (A4 + iA5)P
[µgν][ρkσ] + (A4 − iA5) k

[µgν][ρP σ]

+ (A6/M
2)P [µkν]P [ρkσ] +M4A′

7 n
[µgν][ρnσ]

+M2(A′
8 + iA′

9)P
[µgν][ρnσ] +M2(A′

8 − iA′
9)n

[µgν][ρP σ]

+M2(A′
10 + iA′

11) k
[µgν][ρnσ] +M2(A′

10 − iA′
11)n

[µgν][ρkσ]

+M2A′
12 P

[µnν]P [ρnσ] +M2A′
13 k

[µnν]k[ρnσ]

+ (A′
14 + iA′

15)P
[µkν]P [ρnσ] + (A′

14 − iA′
15)P

[µnν]P [ρkσ]

+ (A′
16 + iA′

17)P
[µkν]k[ρnσ] + (A′

16 − iA′
17) k

[µnν]P [ρkσ]

+M2(A′
18 + iA′

19)P
[µnν]k[ρnσ]

+M2(A′
18 − iA′

19) k
[µnν]P [ρnσ], (2.8)

2Relevant mass dimensions are [Γ] = −2 and [Ai] = −4.
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where Ai = Ai(k·n, k·P, k
2) and the completely antisymmetric Levi-Civita tensor ǫµνρσ is

fixed by taking ǫ−+12 = 1. Terms with coefficients A5, A
′
9, A

′
11, A

′
15, A

′
17, A

′
19 are T -odd,

and a prime on the coefficient indicates that the corresponding Lorentz structure includes

the four-vector n. As it turns out, these structures do not give rise to any leading twist

TMDs (see ref. [32] for the analogous case for quarks). As we are only interested in leading

twist functions, we will later on omit the terms containing n from our description of the

gluon-gluon correlators in case of polarized hadrons.

Integrating eq. (2.7) over k·P , one obtains the TMD (light-front) correlator

Γ[U,U ′]µν;ρσ(x,kT ;P, n) ≡

∫

dξ·P d2ξT
(2π)3

eik·ξ 〈P |Fµν(0)U[0,ξ]F
ρσ(ξ)U ′

[ξ,0] |P 〉

∣

∣

∣

∣

ξ·n=0

. (2.9)

The relevant correlator showing up in leading terms in the inverse hard scale can be recog-

nized by counting P ∝ Q and n ∝ 1/Q, with Q denoting the hard scale. Suppressing the P

and n dependence, which of course is present in the definition of transverse directions and

in the paths of the gauge links, the leading (usually referred to as leading twist) correlator

is then

Γij(x,kT ) ≡ Γ[U,U ′]ni;nj(x,kT ;P, n). (2.10)

Employing constant or symmetric traceless tensors, the light-front correlator is

parametrized in terms of leading twist (i.e. twist-2) TMDs of definite rank. For the unpo-

larized correlator one obtains

Γij(x,kT ) =
x

2

[

− gijT f1(x,k
2
T
) +

kijT
M2

h⊥1 (x,k
2
T
)

]

, (2.11)

where the expressions of the TMDs in terms of the coefficients Ai can be found in ap-

pendix B. Throughout this paper, the remaining dependence of TMDs on the gauge link

as well as a reference to gluons, such as in f
g[U,U ′]
1 (x,k2

T
), is implicitly assumed, so we often

simply write f1(x,k
2
T
), etc.

We note that integration over kT in eq. (2.11) leads to the collinear correlator

Γij(x) ≡

∫

d2kT Γij(x,kT ) = −
xgijT
2

f1(x), (2.12)

parametrized in terms of a collinear PDF. Integrating over k·n = x shows that this nor-

malization is in agreement with the momentum sum rule for gluons taking the form

0 ≤

∫ 1

0
dxxf1(x) ≤ 1, (2.13)

which is not saturated because there is also a contribution from quarks.

2.1.2 The Wilson loop correlator

Again we start with a fully unintegrated correlator, now containing a Wilson loop operator,

Γ
[loop]
0 (k;P ) ≡

∫

d4ξ

(2π)4
eik·ξ 〈P |U [loop] |P 〉 , (2.14)

– 5 –



J
H
E
P
1
0
(
2
0
1
6
)
0
1
3

where we implicitly include color tracing. The above quantity is a path-dependent quantity

that reduces to the normalization Nc〈P |P 〉 upon integration over d4k. In certain processes

the latter contribution is subtracted, involving the operator U [loop]−I, such as in diffractive

scattering [33]. As this subtraction only matters at k = 0, we will not consider it here. To

make contact with TMD correlators we can construct the loop from two staple-like paths

along n, possibly including additional (color averaged) loops [23] in U[0,ξ]U
′
[ξ,0], but now

without ‘parton’ fields residing at 0 and ξ,

Γ
[U,U ′]
0 (k;P, n) ≡

∫

d4ξ

(2π)4
eik·ξ 〈P |U[0,ξ]U

′
[ξ,0] |P 〉 . (2.15)

In the unintegrated amplitude expansion constrained by hermiticity and parity conservation

for an unpolarized hadron, just one (T -even) amplitude remains:3

Γ
[U,U ′]
0 (k, P, n) =

B1

M2
, (2.16)

with B1 = B1(k·n, k·P, k
2). The absence of the ‘parton’ fields and the structure of the

loop on the light-front still allows integration over k·P , and invariance in the ξ·P direction

implies a delta function δ(k·n):

Γ
[U,U ′]
0 (x,kT ;P, n) ≡

∫

dξ·P d2ξT
(2π)3

eik·ξ 〈P |U[0,ξ]U
′
[ξ,0] |P 〉

∣

∣

∣

∣

ξ·n=0

= δ(x) Γ
[U,U ′]
0 (kT ;P, n), (2.17)

where the loop correlator integrated over k·P and k·n is given by

Γ
[U,U ′]
0 (kT ;P, n) ≡

∫

d2ξT
(2π)2

eikT ·ξT 〈P |U[0,ξ]U
′
[ξ,0] |P 〉

∣

∣

∣

∣

ξ·n=0

. (2.18)

Note that this correlator allows for azimuthal dependence in kT . In the limit x → 0 we have

t ≡ k2 = k2
T
= −k

2
T
(see also appendix B). Bearing in mind the proportionality to the lon-

gitudinal extent L of the loop, L ≡
∫

dξ·P = 2π δ(0), the light-front correlator in eq. (2.18)

is parametrized in terms of TMDs as follows (we suppress now the dependence on P and n):

Γ
[U,U ′]
0 (kT ) =

πL

M2
e(k2

T
), (2.19)

where the expression of the function e in terms of the coefficient B1 can be found in

appendix B. The correlator in eq. (2.18) appears for instance in the dipole cross section

∝
∫

d2r⊥/(2π)
2 e−ik⊥·r⊥〈TrU(0)U †(r⊥)〉/Nc, where U is a gauge link running along the

light cone from −∞ to +∞, up to endpoints forming a loop (see e.g. ref. [34]).

In section 3 we will elaborate on the link between the Wilson loop operator and the

gluon-gluon correlator at zero longitudinal momentum (i.e. x = 0). We will consider

two specific gauge links, namely a future and a past pointing staple-like gauge link, the

simplest ones denoted by [+] and [−] respectively. These two gauge links also make up the

3Relevant mass dimensions are [Γ0] = −6 and [Bi] = −4.
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rectangular Wilson loop U [�] ≡ U
[+]
[0,ξ]U

[−]
[ξ,0], consisting of Wilson lines running from −∞ to

∞ along the n direction, at some transverse separation ξT . This loop can be written as a

‘square’ of the form O(0)O†(ξ) for a specific nonlocal operator O:

U [�] = Un
[−∞,0T ;∞,0T ]U

T
[∞,0T ;∞,ξT ]U

n
[∞,ξT ;−∞,ξT ]U

T
[−∞,ξT ;∞,0T ]

=
(

UT
[−∞,∞T ;−∞,0T ]U

n
[−∞,0T ;∞,0T ]U

T
[∞,0T ;∞,∞T ]

)

×
(

UT
[−∞,∞T ;−∞,ξT ]U

n
[−∞,ξT ;∞,ξT ]U

T
[∞,ξT ;∞,∞T ]

)†
, (2.20)

which are just the ingredients in the dipole operator [34] now including transverse pieces.

From eq. (2.20) it follows that e[�](k2
T
) is positive definite. Similarly, also f

[+,−]
1 (x,k2

T
) is

positive definite.

2.2 Vector polarized hadrons

2.2.1 The gluon-gluon correlator

Let us now consider vector polarized hadrons. Since here we are only interested in vector

polarization (we already discussed the unpolarized case), we would like to single out those

terms from the parametrization of the correlator that describe a vector polarized hadron

(i.e. terms containing S). To that end, we define

∆Γµν;ρσ(k;P, S) ≡
1

2
[Γµν;ρσ(k;P, S)− Γµν;ρσ(k;P,−S)] . (2.21)

A possible parametrization of this unintegrated correlator that is constrained by hermiticity

and parity conservation and respects relations induced by time reversal (see appendix A) is4

∆Γµν;ρσ(k;P, S) = −2MA7 ǫ
µνρσk·S + iMA8

(

ǫµνP [ρSσ] − ǫρσP [µSν]
)

+ iMA9

(

ǫµνS[ρP σ] − ǫρσS[µP ν]
)

+ iMA10

(

ǫµνk[ρSσ] − ǫρσk[µSν]
)

+ iMA11

(

ǫµνS[ρkσ] − ǫρσS[µkν]
)

+
iA12

M

(

ǫµνP [ρP σ] − ǫρσP [µP ν]
)

k·S

+
iA13

M

(

ǫµνk[ρkσ] − ǫρσk[µkν]
)

k·S +
iA14

M

(

ǫµνP [ρkσ] − ǫρσP [µkν]
)

k·S

+
iA15

M

(

ǫµνk[ρP σ] − ǫρσk[µP ν]
)

k·S +
A16 + iA17

M
ǫµνPSk[ρP σ]

+
A16 − iA17

M
ǫρσPSk[µP ν] +

A18 + iA19

M
ǫµνkSk[ρP σ]

4As already mentioned in the previous subsection, we omit gauge links for gluon-gluon correlators in

the case of polarized hadrons, hence there is no dependence on the four-vector n (which is the case in

eq. (2.8)). Since gauge links will always be present, we will, however, still allow for T -odd terms in the

parametrizations.
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+
A18 − iA19

M
ǫρσkSk[µP ν] +

A20 + iA21

M
ǫµνkPP [ρSσ]

+
A20 − iA21

M
ǫρσkPP [µSν] +

A22 + iA23

M
ǫµνkPk[ρSσ]

+
A22 − iA23

M
ǫρσkPk[µSν] +

A24 + iA25

M3
ǫµνkPk[ρP σ]k·S

+
A24 − iA25

M3
ǫρσkPk[µP ν]k·S, (2.22)

where we have employed the notation ǫabcd ≡ ǫµνρσaµbνcρdσ and square brackets denote

antisymmetrization of the indices. The terms with coefficients A7, A16, A18, A20, A22, A24

are T -odd, and we note that the ones with coefficients A8 up to A15 are slightly different

from those in ref. [7].

Employing symmetric traceless tensors in kT , the light-front correlator is parametrized

in terms of leading twist (i.e. twist-2), definite rank TMDs as follows (in analogy to

eq. (2.10)):

∆Γij(x,kT ) = ∆Γij
L (x,kT ) + ∆Γij

T (x,kT ), (2.23)

where5

∆Γij
L (x,kT ) =

x

2

[

iǫijT SL g1(x,k
2
T
) +

ǫ
{i
T αk

j}α
T SL

2M2
h⊥1L(x,k

2
T
)

]

, (2.24)

∆Γij
T (x,kT ) =

x

2

[

−
gijT ǫST kT

T

M
f⊥
1T (x,k

2
T
) +

iǫijT kT ·ST

M
g1T (x,k

2
T
)

−
ǫ
kT {i
T S

j}
T + ǫ

ST {i
T k

j}
T

4M
h1(x,k

2
T
)−

ǫ
{i
T αk

j}αST
T

2M3
h⊥1T (x,k

2
T
)

]

, (2.25)

where ǫµνT ≡ ǫPnµν , with nonzero components ǫ12
T

= −ǫ21
T

= 1. The expressions of the

TMDs in terms of the coefficients Ai can be found in appendix B. The functions h⊥1L, f
⊥
1T ,

h1, and h⊥1T are T -odd. The only surviving collinear PDF is the rank-0 function g1, where

we have omitted the index ‘L’ on g1 ≡ g1L. Note that h1 6= h1T . The function h1 now

corresponds to the function −∆HT in the originally proposed parametrization in ref. [7].

The link to the more traditional parametrization is found by using the identity

ǫ
{i
T αk

j}αβ
T ST β = ǫ

kT {i
T k

j}
T kT ·ST +

1

4
k
2
T

(

S
{j
T ǫ

i}kT
T + k

{j
T ǫ

i}ST
T

)

. (2.26)

We can now recast eq. (2.23) into the more traditional, quite compact form

∆Γij(x,kT ) =
x

2

[

gijT ǫkTST
T

M
f⊥
1T (x,k

2
T
) + iǫijT g1s(x,k

2
T
)

−
ǫ
kT {i
T S

j}
T + ǫ

ST {i
T k

j}
T

4M
h1T (x,k

2
T
)−

ǫ
kT {i
T k

j}
T

2M2
h⊥1s(x,k

2
T
)

]

, (2.27)

5Throughout the paper, momenta indicated in boldface are two-dimensional vectors on the transverse

plane rather than four-vectors. We define k
µ
T
= [0, 0,kT ] etc., so that e.g. kT ·ST = −kT ·ST .
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where we have made use of the shorthand notation

g1s(x,k
2
T
) ≡ SL g1L(x,k

2
T
) +

kT ·ST

M
g1T (x,k

2
T
), (2.28)

and likewise for h⊥1s. The functions h1 and h1T are related as

h1(x,k
2
T
) ≡ h1T (x,k

2
T
) +

k
2
T

2M2
h⊥1T (x,k

2
T
). (2.29)

The function h1 is a rank-1 function, h1T contains both rank-1 and rank-3 pieces, and h⊥1T
is a rank-3 function. Note that the function h1 for gluons is, in spite of similarity in name,

quite different from the quark transverse polarization (transversity) function h1.

2.2.2 The Wilson loop correlator

For the same reason as in the case of the gluon-gluon correlator, we define

∆Γ
[U,U ′]
0 (k;P, S, n) ≡

1

2

[

Γ
[U,U ′]
0 (k;P, S, n)− Γ

[U,U ′]
0 (k;P,−S, n)

]

. (2.30)

A possible parametrization of this unintegrated correlator that is constrained by hermiticity

and parity conservation and respects relations induced by time reversal (see appendix A) is

∆Γ
[U,U ′]
0 (k;P, S, n) =

B2

M3
ǫnPkS , (2.31)

which is a T -odd term.

The loop correlator integrated over k·P and k·n is parametrized in terms of TMDs as

follows:

∆Γ
[U,U ′]
0 (kT ) =

πL

M2

ǫST kT
T

M
eT (k

2
T
), (2.32)

where the expression of the T -odd function eT in terms of the coefficient B2 can be found

in appendix B.

2.3 Tensor polarized hadrons

2.3.1 The gluon-gluon correlator

We now include tensor polarization, which is relevant for spin-1 hadrons. Similarly as for

the vector polarized case, we define

∆Γµν;ρσ(k;P, T ) ≡
1

2
[Γµν;ρσ(k;P, T )− Γµν;ρσ(k;P,−T )] , (2.33)

where we have taken the vector polarization to be zero (i.e. S = 0). A possible parametriza-

tion of this unintegrated correlator that is constrained by hermiticity and parity conserva-
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tion and respects relations induced by time reversal (see appendix A) is

∆Γµν;ρσ(k;P, T ) = A26 k
[µT ν][ρkσ] +A27 P

[µT ν][ρP σ] + (A28 + iA29) k
[µT ν][ρP σ]

+ (A28 − iA29)P
[µT ν][ρkσ] +

A30 + iA31

M2
kαT

α[µkν]k[ρP σ]

+
A30 − iA31

M2
kαT

α[ρkσ]k[µP ν] +
A32 + iA33

M2
kαT

α[µP ν]k[ρP σ]

+
A32 − iA33

M2
kαT

α[ρP σ]k[µP ν] +M2A34

(

gµ[ρT σ]ν − gν[ρT σ]µ
)

+ (A35 + iA36) kαT
α[µgν][ρkσ] + (A35 − iA36) kαT

α[ρgσ][µkν]

+ (A37 + iA38) kαT
α[µgν][ρP σ] + (A37 − iA38) kαT

α[ρgσ][µP ν]

+A39 kαkβT
αβǫµνκλǫρσκλ +

A40

M2
kαkβT

αβP [µgν][ρP σ]

+
A41

M2
kαkβT

αβk[µgν][ρkσ] +
(A42 + iA43)

M2
kαkβT

αβP [µgν][ρkσ]

+
(A42 − iA43)

M2
kαkβT

αβk[µgν][ρP σ]

+
A44

M4
kαkβT

αβP [µkν]P [ρkσ], (2.34)

where the terms with coefficients A29, A31, A33, A36, A38, A43 are T -odd.

The light-front correlator is parametrized in terms of leading twist (i.e. twist-2) TMDs

of definite rank as follows:

∆Γij(x,kT ) = ∆Γij
LL(x,kT ) + ∆Γij

LT (x,kT ) + ∆Γij
TT (x,kT ), (2.35)

where

∆Γij
LL(x,kT ) =

x

2

[

− gijT SLL f1LL(x,k
2
T
) +

kijT SLL

M2
h⊥1LL(x,k

2
T
)

]

, (2.36)

∆Γij
LT (x,kT ) =

x

2

[

−
gijT kT ·SLT

M
f1LT (x,k

2
T
) +

iǫijT ǫ
SLT kT
T

M
g1LT (x,k

2
T
)

+
S
{i
LTk

j}
T

M
h1LT (x,k

2
T
) +

kijαT SLT α

M3
h⊥1LT (x,k

2
T
)

]

, (2.37)

∆Γij
TT (x,kT ) =

x

2

[

−
gijT kαβT STT αβ

M2
f1TT (x,k

2
T
) +

iǫijT ǫ
β
T γk

γα
T STT αβ

M2
g1TT (x,k

2
T
)

+Sij
TT h1TT (x,k

2
T
) +

S
{i
TT α

k
j}α
T

M2
h⊥1TT (x,k

2
T
)

+
kijαβT STT αβ

M4
h⊥⊥
1TT (x,k

2
T
)

]

. (2.38)

The expressions of the TMDs in terms of the coefficients Ai can be found in appendix B.

The functions g1LT and g1TT are T -odd. In the collinear case the rank-0 functions f1LL
and h1TT survive. The former function was also called b1 in the quark case, and the latter

function shows up in the structure function ∆(x,Q2) discussed in ref. [19] and is called

∆2G(x) in ref. [20].
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2.3.2 The Wilson loop correlator

Similarly to the vector polarized case, we define

∆Γ
[U,U ′]
0 (k;P, T, n) ≡

1

2

[

Γ
[U,U ′]
0 (k;P, T, n)− Γ

[U,U ′]
0 (k;P,−T, n)

]

, (2.39)

where we have taken the vector polarization to be zero (i.e. S = 0). A possible parametriza-

tion of this unintegrated correlator that is constrained by hermiticity and parity conserva-

tion and respects relations induced by time reversal (see appendix A) is

∆Γ
[U,U ′]
0 (k;P, T, n) =

B3

M4
kµkνT

µν +B4 nµnνT
µν +

B5

M2
kµnνT

µν . (2.40)

The loop correlator integrated over k·P and k·n is parametrized in terms of TMDs as

follows:

∆Γ
[U,U ′]
0 (kT ) =

πL

M2

[

SLL eLL(k
2
T
) +

kT ·SLT

M
eLT (k

2
T
) +

kαβT STT αβ

M2
eTT (k

2
T
)

]

, (2.41)

where the expressions of the TMDs in terms of the coefficients Bi can be found in ap-

pendix B.

3 The gluon-gluon correlator at small x

In this section we discuss the relation between the gluon-gluon correlator at small x and the

Wilson loop correlator. This connection only applies to the gluon-gluon correlator with

the staple-like [+] and [−] gauge links. In the Wilson loop correlator those gauge links

constitute the rectangular Wilson loop U [�] ≡ U
[+]
[0,ξ]U

[−]
[ξ,0].

We will start from the Wilson loop correlator integrated over k·P and k·n given in

eq. (2.18). To study its kT dependence, we use the results in eq. (15) of ref. [23] to calculate

ki
T
kjTΓ0. Performing one partial integration in 0 and the other in ξ and using the relevant

gluonic pole factor C
[�]
GG = 4, we obtain

ki
T
kjT Γ

[�]
0 (kT ) = 4

∫

d2ξT
(2π)2

eikT ·ξT 〈P |Gi
T (0)U

[+]
[0,ξ]G

j
T (ξ)U

[−]
[ξ,0] |P 〉

∣

∣

∣

∣

ξ·n=0

=

∫

dη·P dη′·P d2ξT
(2π)2

eikT ·ξT 〈P |Fni(η′)U
[+]
[η′,η] F

nj(η)U
[−]
[η,η′] |P 〉

∣

∣

∣

∣η′·n=η·n=0,

η′
T
=0T , ηT=ξT

= 2πL

∫

dξ·P d2ξT
(2π)3

eik·ξ 〈P |Fni(0)U
[+]
[0,ξ] F

nj(ξ)U
[−]
[ξ,0] |P 〉

∣

∣

∣

∣

ξ·n=k·n=0

= 2πL Γ[+,−] ij(0,kT ), (3.1)

which implies that

Γ[+,−] ij(0,kT ) =
ki
T
kjT

2πL
Γ
[�]
0 (kT ). (3.2)
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The dependence on kT is in fact in this limit just the dependence on t ≡ k2, remaining

after the integration over k·n = x and k·P (the mass spectrum of intermediate states).

Thus it is appropriate to write the previous equation as

Γ[+,−] ij(x,kT )
x→0
−→

ki
T
kjT

2πL
Γ
[�]
0 (kT )

∣

∣

∣

k2
T
=t

. (3.3)

The above results agree with the result in ref. [34] where in the small-x limit f
[+,−]
1 (x,k2

T
)

becomes proportional to the dipole cross section. In ref. [29] that connection was made on

the correlator level for the case of a transversely polarized hadron, which corresponds to

the above eq. (3.1) and will also be discussed below.

For unpolarized hadrons the right-hand side of eq. (3.3) is given by the parametrization

in eq. (2.19). It follows that

Γij
U (x,kT ) =

x

2

[

− gijT f1(x,k
2
T
) +

kijT
M2

h⊥1 (x,k
2
T
)

]

x→0
−→

ki
T
kjT

2M2
e(k2

T
)

=
1

2

[

− gijT
k
2
T

2M2
e(k2

T
) +

kijT
M2

e(k2
T
)

]

, (3.4)

which implies that

lim
x→0

xf1(x,k
2
T
) =

k
2
T

2M2
lim
x→0

xh⊥1 (x,k
2
T
) =

k
2
T

2M2
e(k2

T
). (3.5)

This means that h⊥1 must be maximal [7], i.e. h⊥1 = 2M2f1/k
2
T
, as it is in fact the case

in the small-x kT -factorization approach [35] and in the framework of the color glass con-

densate [36]. This result indicates that the unpolarized dipole gluon distribution grows

as 1/x towards small x, apart from subdominant modifications from resummation of large

logarithms in 1/x and higher twist effects.

For longitudinally polarized hadrons eq. (3.3) implies that g1 and h⊥1L are less divergent

than 1/x in the limit of small x. For g1 this is in accordance with the fact that in DGLAP

and CCFM evolution the splitting kernel lacks the 1/x factor of the kernel of f1, see e.g.

ref. [37]. Again this does not include resummation of large logarithms in 1/x leading to

nonlinear evolution, which may alter the result in the very small x region [38–40]. Now let

us consider transversely polarized hadrons. The right-hand side of eq. (3.3) is given by the

parametrization in eq. (2.32). We find for the symmetric part (symmetric in i, j) of the
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transversely polarized gluon-gluon correlator

∆Γij
T sym(x,kT ) =

x

2

[

−
gijT ǫST kT

T

M
f⊥
1T (x,k

2
T
)−

ǫ
kT {i
T S

j}
T + ǫ

ST {i
T k

j}
T

4M
h1(x,k

2
T
)

−
ǫ
{i
T αk

j}αST
T

2M3
h⊥1T (x,k

2
T
)

]

x→0
−→

ki
T
kjT

2M2

ǫST kT
T

M
eT (k

2
T
)

=
1

2

[

−
gijT ǫST kT

T

M

k
2
T

2M2
eT (k

2
T
)−

ǫ
kT {i
T S

j}
T + ǫ

ST {i
T k

j}
T

4M

k
2
T

2M2
eT (k

2
T
)

+
ǫ
{i
T αk

j}αST
T

2M3
eT (k

2
T
)

]

, (3.6)

which implies that

lim
x→0

xf⊥
1T (x,k

2
T
) = lim

x→0
xh1(x,k

2
T
) = −

k
2
T

2M2
lim
x→0

xh⊥1T (x,k
2
T
)

=
1

2
lim
x→0

xh1T (x,k
2
T
) =

k
2
T

2M2
eT (k

2
T
), (3.7)

in agreement with the leading logarithmic result of ref. [29]. It involves the C-odd operator

structure U [�] − U [�]† (see appendix A) surviving in ∆Γ
[�]
0 (k;P, S, n) for a transversely

polarized proton, which is the dipole odderon operator [41]. Therefore, this is also referred

to as the spin-dependent odderon [42]. The odderon operator O⊥
1T as defined in ref. [29]

and used in a model calculation in ref. [43] is related to eT by O⊥
1T = π eT /(2M

2). The

odderon in transverse spin asymmetries in elastic scattering has earlier been considered

in refs. [44–46], but without discussion of its operator structure. As the only nonzero

function in the unpolarized case is the even rank function e(k2
T
), which survives for the

C-even Wilson loop operator combination U [�]+U [�]†, it also follows that there appears no

spin-independent odderon in this formalism, or rather that it is less divergent than 1/x in

the limit of small x. This suggests that it will be suppressed in the small-x limit compared

to the C-even leading contribution.

For spin-1 hadrons eq. (3.3) implies that at small x three tensor polarized TMDs

remain, while the rest becomes zero. To be specific, for longitudinal-longitudinal (LL)

polarization we find

∆Γij
LL(x,kT ) =

x

2

[

− gijT SLL f1LL(x,k
2
T
) +

kijT SLL

M2
h⊥1LL(x,k

2
T
)

]

x→0
−→

ki
T
kjT

2M2
SLL eLL(k

2
T
)

=
1

2

[

− gijT SLL
k
2
T

2M2
eLL(k

2
T
) +

kijT SLL

M2
eLL(k

2
T
)

]

, (3.8)
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which implies that

lim
x→0

xf1LL(x,k
2
T
) =

k
2
T

2M2
lim
x→0

xh⊥1LL(x,k
2
T
) =

k
2
T

2M2
eLL(k

2
T
). (3.9)

For the case of longitudinal-transverse (LT ) polarization, we find for the symmetric

part of the gluon-gluon correlator

∆Γij
LT sym(x,kT ) =

x

2

[

−
gijT kT ·SLT

M
f1LT (x,k

2
T
) +

S
{i
LTk

j}
T

M
h1LT (x,k

2
T
)

+
kijαT SLT α

M3
h⊥1LT (x,k

2
T
)

]

x→0
−→

ki
T
kjT

2M2

kT ·SLT

M
eLT (k

2
T
)

=
1

2

[

−
gijT kT ·SLT

M

k
2
T

4M2
eLT (k

2
T
) +

S
{i
LTk

j}
T

M

k
2
T

4M2
eLT (k

2
T
)

−
kijαT SLT α

M3
eLT (k

2
T
)

]

, (3.10)

which implies that

lim
x→0

xf1LT (x,k
2
T
) = lim

x→0
xh1LT (x,k

2
T
) = −

k
2
T

4M2
lim
x→0

xh⊥1LT (x,k
2
T
) =

k
2
T

4M2
eLT (k

2
T
).

(3.11)

For the case of transverse-transverse (TT ) polarization, we find for the symmetric part

of the gluon-gluon correlator

∆Γij
TT sym(x,kT ) =

x

2

[

−
gijT kαβT STT αβ

M2
f1TT (x,k

2
T
) + Sij

TT h1TT (x,k
2
T
)

+
S
{i
TT α

k
j}α
T

M2
h⊥1TT (x,k

2
T
) +

kijαβT STT αβ

M4
h⊥⊥
1TT (x,k

2
T
)

]

x→0
−→

ki
T
kjT

2M2

kαβT STT αβ

M2
eTT (k

2
T
)

=
1

2

[

−
gijT kαβT STT αβ

M2

k
2
T

6M2
eTT (k

2
T
) + Sij

TT

k
4
T

4M4
eTT (k

2
T
)

−
S
{i
TT α

k
j}α
T

M2

k
2
T

3M2
eTT (k

2
T
) +

kijαβT STT αβ

M4
eTT (k

2
T
)

]

, (3.12)
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which implies that

lim
x→0

xf1TT (x,k
2
T
) =

2M2

3k2
T

lim
x→0

xh1TT (x,k
2
T
) = −

1

2
lim
x→0

xh⊥1TT (x,k
2
T
)

=
k
2
T

6M2
lim
x→0

xh⊥⊥
1TT (x,k

2
T
) =

k
2
T

6M2
eTT (k

2
T
). (3.13)

4 Summary and discussion

We have parametrized the gluon light-front correlators in terms of definite rank TMDs using

a basis of symmetric traceless tensors in kT . In table 1 we list the leading twist TMDs (mul-

tiplied by x), their rank, and their behavior under time reversal and charge conjugation.

The rank-0 functions are the ones that also appear as collinear PDFs. In the last column the

x → 0 limit is considered for the functions xf [+,−]
... (x,k2

T
). We emphasize that the connec-

tion to the Wilson loop or dipole TMDs applies only to the TMDs with one future and one

past pointing link. Some of these functions are expected to be zero at x = 0, others become

equal to the TMDs e...(k
2
T
) in the Wilson loop operator. Conjecturing that the dependence

on k
2
T
reflects the analytic behavior in k2, it simplifies the picture for the gluon TMDs

xf [+,−]
... (x,k2

T
) at small x, several of them becoming proportional to one another. The C-

and T -behavior of the TMDs in the gluon-gluon correlator and those in the Wilson loop

correlator correctly match. The functions with a nonvanishing limit are expected to behave

as 1/x, or a slightly modified power after resummation of other small-x effects, e.g. with

an ln(1/x) behavior. The functions with a vanishing limit are the ones for longitudinally

polarized hadrons as well as those linked to circular gluon polarization (the g-type TMDs).

We end with a brief discussion of the experimental possibilities to study the gluon

TMDs. The unpolarized and vector polarized gluon TMDs could be investigated in pro-

cesses at RHIC, at the LHC, possibly at a future polarized fixed-target experiment at the

LHC called AFTER@LHC [47], and at an EIC [48]. For instance, the unpolarized gluon

TMDs could be studied at the LHC and at AFTER@LHC in (pseudo)scalar C-even heavy

quarkonium production, such as χc,b and ηb,c in the color-singlet configuration [49, 50].

Another option is to consider pseudovector quarkonium such as J/Ψ and Υ, which is pre-

dominantly in the color-singlet configuration when produced in gluon fusion together with

an additional isolated photon in the final state [51]. The latter is also useful to investigate

the QCD evolution of the gluon distributions.

The linearly polarized gluon TMDs could be studied by measuring cos(2φ) modu-

lations in processes such as dijet or heavy quark pair production in electron-proton or

electron-nucleus collisions [52, 53] and in virtual photon-jet pair production in pp or

pA collisions [36]. They can also be accessed through heavy quarkonium production in

(un)polarized pp collisions [49, 50] in association with other gluon TMDs.

The most promising processes that directly give access to the gluon Sivers effect are

p↑p → γ jetX at RHIC and AFTER@LHC [54], p↑p → J/Ψ γ X or p↑p → J/Ψ J/ΨX at

AFTER@LHC [55], and ep↑ → e′ cc̄X at an EIC [56]. Production of color-singlet heavy

quarkonium states [50] and of photon pairs from polarized proton collisions [57] are also

valid possibilities.
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Ref. [30] Ref. [7] Rank T C Limit x → 0

xf1 xf1 xG 0 even even e(1)

xh⊥1 xh⊥1 xH⊥ 2 even even e

xg1 xg1L −x∆GL 0 even odd 0

xh⊥1L xh⊥1L −x∆H⊥
L 2 odd even 0

xf⊥
1T xf⊥

1T −xGT 1 odd odd e
(1)
T

xg1T xg1T −x∆GT 1 even even 0

xh1 xh1T + xh
⊥(1)
1T −x∆HT 1 odd odd e

(1)
T

xh⊥1T xh⊥1T −x∆H⊥
T 3 odd odd −eT

xf1LL 0 even even e
(1)
LL

xh⊥1LL 2 even even eLL

xf1LT 1 even odd e
(1)
LT /2

xg1LT 1 odd even 0

xh1LT 1 even odd e
(1)
LT /2

xh⊥1LT 3 even odd −eLT

xf1TT 2 even even e
(1)
TT /3

xg1TT 2 odd odd 0

xh1TT 0 even even e
(2)
TT

xh⊥1TT 2 even even −2 e
(1)
TT /3

xh⊥⊥
1TT 4 even even eTT

Table 1. An overview of the leading twist gluon TMDs for unpolarized, vector polarized, and

tensor polarized hadrons. In the second and third column, the names of the functions in this paper

are compared to the ones in refs. [7, 30]. In the fourth column we list the rank of the function.

Furthermore, we list the properties (even/odd) under time reversal (T ) and charge conjugation (C),

see appendix A. In the last column it is indicated to which e-type function the TMD reduces in the

limit x → 0. As a shorthand, we use the moment notation f (n)
...

(x,k2
T
) ≡ [k2

T
/(2M2)]n f...(x,k

2
T
).

For some of these processes TMD factorization has not been proven yet, neither for

general x nor for small x. In order to experimentally probe the functions that remain

in the small-x limit, additional processes such as DIS, Drell-Yan, semi-inclusive DIS, or

pA → hX offer possibilities. For a discussion and a more detailed list of relevant processes

see refs. [29, 58, 59].

The study of tensor polarized gluon TMDs would be possible at the experiments pro-

posed to investigate polarized deuterons, e.g. at the EIC option put forward at Jefferson

Lab (JLEIC) [48, 60, 61], or at COMPASS [62], although there the region of small x is

very limited.
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A Constraints on correlators

The gluon-gluon and Wilson loop correlators in this paper are constrained by hermiticity

and parity (P ). In the parametrizations hermiticity ensures that the functions are real

and parity conservation only allows for P -even terms. Time reversal (T ) transformations

relate correlators with time-reversed gauge link structures, e.g. time reversal interchanges

the staple-like [+] and [−] gauge links. Hence, time reversal invariance is not used as a

constraint in the parametrizations of the correlators. For the gluon-gluon correlator the

constraints are as follows:

Hermiticity: Γ[U,U ′] ρσ;µν∗(k, P, S, T, n) = Γ[U,U ′]µν;ρσ(k, P, S, T, n), (A.1)

Parity: Γ[U,U ′]µν;ρσ(k, P, S, T, n) = Γ[U,U ′]
µν;ρσ(k̄, P̄ ,−S̄, T̄ , n̄), (A.2)

Time reversal: Γ[U,U ′]µν;ρσ∗(k, P, S, T, n) = Γ[UT ,U ′T ]
µν;ρσ (k̄, P̄ , S̄, T̄ , n̄), (A.3)

where we have introduced the notation āµ ≡ δµνaν and b̄µν ≡ δµρδνσbρσ. Concerning the

gauge links, these constraints are based on the properties U †
[0,ξ] = U[ξ,0], U

P
[0,ξ] = U[0̄,ξ̄], and

UT
[0,ξ] = U[−0̄,−ξ̄]. By omitting the gauge links from the gluon-gluon correlator, the depen-

dence on n is no longer present. Furthermore, the gluon-gluon correlator is antisymmetric

in both the pair of indices µ, ν and ρ, σ.

For the Wilson loop correlator the constraints read:

Hermiticity: Γ
[U,U ′]∗
0 (k;P, S, T, n) = Γ

[U,U ′]
0 (k;P, S, T, n), (A.4)

Parity: Γ
[U,U ′]
0 (k;P, S, T, n) = Γ

[U,U ′]
0 (k̄; P̄ ,−S̄, T̄ , n̄), (A.5)

Time reversal: Γ
[U,U ′]∗
0 (k;P, S, T, n) = Γ

[UT ,U ′T ]
0 (k̄; P̄ , S̄, T̄ , n̄). (A.6)

By simply omitting the spin vector and/or tensor from the expressions above, we obtain

the constraints that apply to unpolarized (omitting S and T ), vector polarized (omitting

T ), and tensor polarized (omitting S) hadrons.

The effect of charge conjugation (C) symmetry for gluons is found by writing down

the conjugate correlator involving the conjugate field Ac
µ = −A†

µ = −Aµ, such that Fµν c =

−Fµν and U c
[0,ξ] = U †

[0,ξ]. As for the quark case, charge conjugation does not really give

a constraint (hermiticity has already been used), but it enables us to connect partons at

negative x (and kT ) to antipartons at positive x (and kT ), which is relevant for sum rules

and for the relation to antiprotons. For gluons the C-behavior only becomes important due
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to the gauge link structure, in particular for the situation with two different gauge links.

The correlator for the charge conjugated fields becomes

Γc[U,U ′]µν;ρσ(x,kT ) = Γ[U†,U ′†]µν;ρσ(x,kT ), (A.7)

which after rewriting and using the hermiticity constraint can also be related to the corre-

lator at negative x (and kT ),

Γc[U,U ′]µν;ρσ(x,kT ) = Γ[U ′†,U†]µν;ρσ∗(−x,−kT ) = Γ[U ′†,U†]ρσ;µν(−x,−kT ). (A.8)

For the TMDs, depending on rank and symmetry in Lorentz indices, the relations

become either

f
[U,U ′]
1 (−x,k2

T
) = −f

[U ′,U ]
1 (x,k2

T
), (A.9)

or

g
[U,U ′]
1 (−x,k2

T
) = +g

[U ′,U ]
1 (x,k2

T
), (A.10)

referred to as C-even and C-odd respectively. The TMDs f1, h
⊥
1 , h

⊥
1L, g1T , f1LL, h

⊥
1LL,

g1LT , f1TT , h1TT h⊥1TT , and h⊥⊥
1TT are C-even, whereas g1, f

⊥
1T , h1, h

⊥
1T , f1LT , h1LT , h

⊥
1LT ,

and g1TT are C-odd.

The C-property is of special interest for the Wilson loop correlator or in general for

correlators containing a loop Trc(U[0,ξ] U
′
[ξ,0]) = Trc(U[0,ξ] U

′†
[0,ξ]). One has the additional

property Γ
[U†,U ′†]
0 (kT ) = Γ

[U ′,U ]
0 (kT ), thus one finds

Γ
c[U,U ′]
0 (kT ) = Γ

[U†,U ′†]
0 (kT ) = Γ

[U ′,U ]
0 (kT ) = Γ

[U ′†,U†]
0 (−kT ) = Γ

[U,U ′]
0 (−kT ). (A.11)

Hence in the Wilson loop correlator the C-even and C-odd functions can be directly iden-

tified with the even and odd rank functions. For the TMDs in the correlator Γ[�](kT )

the functions e, eLL, and eTT are C-even and the functions eT and eLT are C-odd.

The C-even and C-odd functions are also the ones that would appear in the correlators
(

Γ
[�]
0 (kT )±Γ

[�†]
0 (kT )

)

/2 respectively. The C-behavior of the TMDs in the gluon-gluon and

Wilson loop correlators is consistent with the small-x matching in section 3.

B Definitions of TMDs

In this appendix the definitions of the various TMDs are given in terms of the coefficients Ai

and Bi that have been introduced in the parametrizations at the level of the unintegrated

correlators.

B.1 The gluon-gluon correlator

Let us denote by Γ(k) the gluon-gluon correlator for any type of polarization,6 then the

light-front correlator is defined as

Γ(x,kT ) ≡

∫

dk·P Γ(k) =
M2

2

∫

[dσdτ ] Γ(k), (B.1)

6Lorentz indices are omitted for simplicity, since they are not relevant here.
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where we have introduced the shorthand notation

[dσdτ ] ≡ dσdτ δ

(

τ − xσ + x2 +
k
2
T

M2

)

, (B.2)

with the dimensionless invariants σ and τ given by

σ ≡
2k·P

M2
, τ ≡

k2

M2
, (B.3)

spanning regions in remnant mass M2
R ≡ (P − k)2 and in the partonic virtuality k2. For

both of these, the main contribution comes from small (hadronic) values (i.e. σ and τ of

order one).

The (leading twist) TMDs that occur in the parametrization of the gluon-gluon corre-

lator for the various types of polarization in eqs. (2.11), (2.23), and (2.35), are related to

the coefficients Ai as follows:

xf1(x,k
2
T
) ≡ M2

∫

[dσdτ ]

(

A2 + 2xA4 + x2A3 +
k
2
T

2M2
A6

)

, (B.4)

xh⊥1 (x,k
2
T
) ≡ M2

∫

[dσdτ ]A6, (B.5)

xg1(x,k
2
T
) ≡ 2M2

∫

[dσdτ ]

{

A8 +A9 + x (A10 +A11) +
(σ

2
− x

)

[A12 + x (A14 +A15)

+x2A13

]

+
k
2
T

2M2

[

A19 +A23 +
(σ

2
− x

)

A25

]

}

, (B.6)

xh⊥1L(x,k
2
T
) ≡ −2M2

∫

[dσdτ ]
[

A18 +A22 +
(σ

2
− x

)

A24

]

, (B.7)

xf⊥
1T (x,k

2
T
) ≡ M2

∫

[dσdτ ] [A16 −A20 + x (A18 −A22)] , (B.8)

xg1T (x,k
2
T
) ≡ −M2

∫

[dσdτ ]

[

2A12 +A17 +A21 + 2x (A14 +A15) + x (A19 +A23)

+ 2x2A13 +
k
2
T

M2
A25

]

, (B.9)

xh1(x,k
2
T
) ≡ 2M2

∫

[dσdτ ]

[

A16 +A20 + x (A18 +A22) +
k
2
T

2M2
A24

]

, (B.10)

xh⊥1T (x,k
2
T
) ≡ 2M2

∫

[dσdτ ]A24, (B.11)

xf1LL(x,k
2
T
) ≡

M2

3

∫

[dσdτ ]

{

A27 − 2A34 + 2xA28 + x2A26 + 2(σ − 2x) (A37 + xA35)

+
(σ − 2x)2

2

(

A40 + 2xA42 + x2A41

)

−
k
2
T

M2

[

A26 −A32

+A40 + 2xA42 + x2A41 + (σ − 3x)A30

−

(

(σ − 2x)2

4
−

k
2
T

2M2

)

A44

]}

, (B.12)
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xh⊥1LL(x,k
2
T
) ≡ −

2M2

3

∫

[dσdτ ]

[

A26 −A32 + (σ − 3x)A30

−

(

(σ − 2x)2

4
−

k
2
T

2M2

)

A44

]

, (B.13)

xf1LT (x,k
2
T
) ≡ −M2

∫

[dσdτ ]

{

A37 + xA35 +
(σ

2
− x

)

(

A40 + 2xA42 + x2A41

)

−
k
2
T

4M2

[

A30 +
(

x−
σ

2

)

A44

]

}

, (B.14)

xg1LT (x,k
2
T
) ≡ −

M2

2

∫

[dσdτ ]
[

A29 +
(

x−
σ

2

)

(A33 + xA31)
]

, (B.15)

xh1LT (x,k
2
T
) ≡

M2

2

∫

[dσdτ ]

{

A28 + xA26 +
(σ

2
− x

)

(A32 + xA30)

+
k
2
T

2M2

[

A30 +
(

x−
σ

2

)

A44

]

}

, (B.16)

xh⊥1LT (x,k
2
T
) ≡ −M2

∫

[dσdτ ]
[

A30 +
(

x−
σ

2

)

A44

]

, (B.17)

xf1TT (x,k
2
T
) ≡

M2

2

∫

[dσdτ ]

(

A40 + 2xA42 + x2A41 +
k
2
T

6M2
A44

)

, (B.18)

xg1TT (x,k
2
T
) ≡

M2

2

∫

[dσdτ ] (A33 + xA31) , (B.19)

xh1TT (x,k
2
T
) ≡ −

M2

2

∫

[dσdτ ]

[

A27 + 2xA28 + x2A26 +
k
2
T

M2
(A32 + xA30)

−
k
4
T

4M4
A44

]

, (B.20)

xh⊥1TT (x,k
2
T
) ≡

M2

2

∫

[dσdτ ]

(

A32 + xA30 −
k
2
T

3M2
A44

)

, (B.21)

xh⊥⊥
1TT (x,k

2
T
) ≡

M2

2

∫

[dσdτ ]A44. (B.22)

B.2 The Wilson loop correlator

For the Wilson loop correlator, translation invariance in the ξ·P direction forces k·n = x to

be zero and the integration over x is actually naturally the first to be done, even before the

integration over k·P . The remaining dependence is on the invariant k2, which for vanishing

x is just k2 = k2
T
= −k

2
T
. The TMDs in the parametrization of the Wilson loop correlator

for the various types of polarization in eqs. (2.19), (2.32), and (2.41) depend on t = k2 and

are related to the coefficients Bi as follows:

e(k2
T
) ≡

M2

2πL

∫

dx dσ B1, (B.23)

eT (k
2
T
) ≡

M2

2πL

∫

dx dσ B2, (B.24)

eLL(k
2
T
) ≡ −

M2

4πL

∫

dx dσ

[

2B4 + (σ − 2x)B5 +

(

(σ − 2x)2

2
−

k
2
T

M2

)

B3

]

, (B.25)
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eLT (k
2
T
) ≡ −

M2

4πL

∫

dx dσ [B5 + (σ − 2x)B3] , (B.26)

eTT (k
2
T
) ≡

M2

4πL

∫

dx dσ B3. (B.27)

C Symmetric traceless tensors and TMDs in bT -space

C.1 Symmetric traceless tensors

In this appendix we list the completely symmetric and traceless tensors ki1...inT that are

built from the partonic momentum kT . Up to rank n = 4, these are given by

kijT ≡ ki
T
kjT +

1

2
k
2
T
gijT , (C.1)

kijkT ≡ ki
T
kjTk

k
T
+

1

4
k
2
T

(

gijT kk
T
+ gik

T
kjT + gjkT ki

T

)

, (C.2)

kijklT ≡ ki
T
kjTk

k
T
kl
T
+

1

6
k
2
T

(

gijT kkl
T
+ gik

T
kjlT + gil

T
kjkT + gjkT kil

T
+ gjlT k

ik
T
+ gkl

T
kijT

)

−
1

8
k
4
T

(

gijT gkl
T
+ gik

T
gjlT + gil

T
gjkT

)

, (C.3)

satisfying

gT ijk
ij
T = gT ijk

ijk
T = gT ijk

ijkl
T = 0. (C.4)

Products of kT can be decomposed into symmetric traceless tensors as follows:

ki
T
kα
T
= kiα

T
−

1

2
k
2
T
giα
T
, (C.5)

ki
T
kαβT = kiαβT −

1

4
k
2
T

(

giα
T
kβT + giβT kα

T
− gαβT ki

T

)

, (C.6)

kijT kαβT = kijαβT −
1

6
k
2
T

(

giα
T
kjβT + giβT kjαT + gjαT kiβT + gjβT kiα

T
− 2gijT kαβT − 2gαβT kijT

)

+
1

8
k
4
T

(

giα
T
gjβT + giβT gjαT − gijT gαβT

)

. (C.7)

The symmetric traceless tensor ki1...inT of rank n ≥ 1 only has two independent components.

This allows for a decomposition in polar coordinates:

ki1...in
T

→
|kT |

n

2n−1
e±inϕ, (C.8)

in terms of two real numbers |kT | and ϕ.

C.2 TMDs in bT -space

Mathematically, TMD factorization decomposes a cross section as a product of functions

in bT -space, where bT is Fourier conjugate to the partonic transverse momentum. As a

byproduct, TMD evolution is multiplicative in bT -space. For these reasons, it is useful to

consider the light-front correlators as a function of bT . We define correlators and functions
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in bT -space as Fourier transforms of the ones in kT -space:

Γ̃ij(x, bT ) ≡

∫

d2kT eikT ·bT Γij(x,kT ) , (C.9)

f̃(x, b2
T
) ≡

∫

d2kT eikT ·bT f(x,k2
T
) . (C.10)

Computing directly eq. (C.9), we can see that the functions entering the parametriza-

tions of Γ̃ij(x, bT ) are not the ones in eq. (C.10), but their n-th derivatives with respect to

b
2
T
, n being the rank of the function in kT -space:

f̃ (n)(x, b2
T
) ≡ n!

(

−
2

M2

∂

∂b2
T

)n

f̃(x, b2
T
)

=
2πn!

M2n

∫ ∞

0
d|kT | |kT |

(

|kT |

|bT |

)n

Jn(|kT ||bT |) f(x,k
2
T
), (C.11)

where Jn(z) is the Bessel function of the first kind of order n, which is defined as

Jn(z) =
1

2πin

∫ 2π

0
dϕ einϕeiz cosϕ. (C.12)

In eq. (C.11) we also used the relation

(

1

z

d

dz

)k
(

z−νJν(z)
)

= (−1)kz−ν−kJν+k(z), (C.13)

considering ν = 0, k = n, and z = |kT ||bT | with |kT | fixed. The factor M−2n renders the

derivative operator dimensionless and the n! is added to match the conventions in ref. [63].

From eq. (C.11) it follows that for definite rank TMDs there is a one-to-one correspon-

dence between the functions in bT -space and in kT -space. In the following subsections we

provide the gluon-gluon and Wilson loop correlators in bT -space.

C.2.1 The gluon-gluon correlator

The light-front gluon-gluon correlator for a spin-1 hadron is given in bT -space by

Γ̃ij(x, bT ) = Γ̃ij
U (x, bT ) + Γ̃ij

L (x, bT ) + Γ̃ij
T (x, bT )

+ Γ̃ij
LL(x, bT ) + Γ̃ij

LT (x, bT ) + Γ̃ij
TT (x, bT ), (C.14)

where

Γ̃ij
U (x, bT ) =

x

2

[

− gijT f̃1(x, b
2
T
)−

M2 bijT
2

h̃
⊥(2)
1 (x, b2

T
)

]

, (C.15)

Γ̃ij
L (x, bT ) =

x

2

[

iǫijT SL g̃1(x, b
2
T
)−

M2 ǫ
{i
T α b

j}α
T SL

4
h̃
⊥(2)
1L (x, b2

T
)

]

, (C.16)

Γ̃ij
T (x, bT ) =

x

2

[

− iM gijT ǫST bT
T

f̃
⊥(1)
1T (x, b2

T
)−M ǫijT bT ·ST g̃

(1)
1T (x, b

2
T
)
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−
iM

4

(

ǫ
bT {i
T S

j}
T + ǫ

ST {i
T b

j}
T

)

h̃
(1)
1 (x, b2

T
)

+
iM3 ǫ

{i
T α b

j}αST
T

12
h̃
⊥(3)
1T (x, b2

T
)

]

, (C.17)

Γ̃ij
LL(x, bT ) =

x

2

[

− gijT SLL f̃1LL(x, b
2
T
)−

M2 bijT SLL

2
h̃
⊥(2)
1LL (x, b2

T
)

]

, (C.18)

Γ̃ij
LT (x, bT ) =

x

2

[

− iM gijT bT ·SLT f̃
(1)
1LT (x, b

2
T
)−M ǫijT ǫ

SLT bT
T

g̃
(1)
1LT (x, b

2
T
)

+ iM S
{i
LT b

j}
T h̃

(1)
1LT (x, b

2
T
)−

iM3 bijαT SLT α

6
h̃
⊥(3)
1LT (x, b2

T
)

]

, (C.19)

Γ̃ij
TT (x, bT ) =

x

2

[

M2 gijT bαβT STT αβ

2
f̃
(2)
1TT (x, b

2
T
)−

iM2 ǫijT ǫ
β
T γb

γα
T STT αβ

2
g̃
(2)
1TT (x, b

2
T
)

+Sij
TT h̃1TT (x, b

2
T
)−

M2 S
{i
TT α

b
j}α
T

2
h̃
⊥(2)
1TT (x, b

2
T
)

+
M4 bijαβT STT αβ

24
h̃
⊥⊥(4)
1TT (x, b2

T
)

]

. (C.20)

C.2.2 The Wilson loop correlator

The light-front Wilson loop correlator for a spin-1 hadron is given in bT -space by

Γ̃
[U,U ′]
0 (bT ) = Γ̃

[U,U ′]
0 U (bT ) + Γ̃

[U,U ′]
0 L (bT ) + Γ̃

[U,U ′]
0 T (bT )

+ Γ̃
[U,U ′]
0 LL (bT ) + Γ̃

[U,U ′]
0 LT (bT ) + Γ̃

[U,U ′]
0 TT (bT ), (C.21)

where

Γ̃
[U,U ′]
0 U (bT ) =

πL

M2
ẽ(b2

T
), (C.22)

Γ̃
[U,U ′]
0 L (bT ) = 0, (C.23)

Γ̃
[U,U ′]
0 T (bT ) =

iπL

M
ǫST bT
T

ẽ
(1)
T (b2

T
), (C.24)

Γ̃
[U,U ′]
0 LL (bT ) =

πL

M2
SLL ẽLL(b

2
T
), (C.25)

Γ̃
[U,U ′]
0 LT (bT ) =

iπL

M
(bT ·SLT ) ẽ

(1)
LT (b

2
T
), (C.26)

Γ̃
[U,U ′]
0 TT (bT ) = −

πL

2
bαβT STT αβ ẽ

(2)
TT (b

2
T
). (C.27)
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