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1 Introduction

Recently, a thermal observable called the thermal helicity was defined for relativistic quan-

tum field theories in even-dimensional spacetime [1] and a variety of evidence now suggests

that this quantity is closely related to anomalies. In a QFTd (with d = 2n), thermal

helicity is the thermal expectation value of products of all (n − 1) mutually commuting

angular momentum operators L̂ij and the spatial momentum operator P̂i in the remaining

direction. More explicitly, let L̂2k−1,2k denote the angular momentum operators in the

(x2k−1, x2k)-plane for each k = 1, . . . , (n− 1) in R2n−1,1 where the QFT2n lives. Then one

can define the thermal helicity as:〈(
n−1∏
k=1

L̂2k−1,2k

)
P̂2n−1

〉
= 〈L̂12L̂34 . . . L̂2n−3,2n−2P̂2n−1〉 . (1.1)

where 〈. . .〉 is the expectation value in the thermal ground state with temperature T and

chemical potential µ.

Thermal helicity per unit volume is conveniently written in terms of another function

of T and µ, denoted by FAnom[T, µ]:

1

Vol2n−1
〈L̂12L̂34 . . . L̂2n−3,2n−2P̂2n−1〉 ≡ −(n− 1)!(2T )n−1Fanom[T, µ] , (1.2)

where Vol2n−1 is the spatial volume. Furthermore, ref. [1] conjectured a deep relation

between the thermal helicity per unit volume and the anomaly polynomial PQFT [F ,R]

which can be written in terms of a remarkable replacement rule

FAnom[T, µ] = PQFT
[
F → µ, p1(R)→ −T 2, pk>1(R)→ 0

]
, (1.3)

where pk(R) is the k-th Pontryagin class (see ref. [1] for definitions and conventions). The

equation above has to be interpreted thus as: to obtain FAnom[T, µ], we take the anomaly

polynomial written in terms of the gauge field strength 2-form F and various Pontryagin

classes of Riemann curvature 2-form R, replace F with the corresponding chemical po-

tential µ and the first Pontryagin class with −T 2 and set the higher Pontryagin classes to

zero. Thus, the replacement rule completely fixes the thermal helicity per unit volume of a

QFT to be a homogeneous polynomial in T and µ with the polynomial coefficients directly

related to the anomaly coefficients of the theory. For our purposes, it is useful to rewrite

the replacement rule in terms of traces of Riemann products:

FAnom[T, µ] = PQFT
[
F → µ, tr R2k → 2(2πT )2k

]
. (1.4)
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This conjecture suggests that thermal helicity is a protected quantity when we turn

on finite temperature and chemical potential in a relativistic field theory. This surprising

result is not obvious at all even in thermal perturbation theory and probably hints at

deeper aspects of thermal field theory. For example, for d = 2 CFTs, the replacement rule

is a corollary of the Cardy formula and its significance lies in the fact that it is a weaker

corollary of the Cardy formula which nevertheless generalizes to the larger class of even

dimensional QFTs. Furthermore, this conjectured rule is closely related to and is motivated

by advances in the role of anomalies in finite temperature and chemical potential [1–28]. A

formal argument made by the authors of [22] at the level of equilibrium partition function

in d = 2 and d = 4 spacetime dimensions can be directly adopted into an argument for the

thermal helicity conjecture. Recently, this formal argument has been extended to higher

dimensions [29].

Until now, various attempts at explicit diagrammatic calculations in interacting field

theories to study this result have faced difficulties because of the technical complexities

of thermal perturbation theory [23, 30]. As shown by [1, 31, 32], even in free theories,

the replacement rule in eq. (1.4) holds true because of somewhat mysterious cancellations

between various Fermi-Dirac and Bose-Einstein integrals.1Given these difficulties, it is nat-

ural to turn to holography which provides an explicit testing ground for this conjecture.

In particular, we seek general insights as to how one should understand the origins of the

replacement rule and holography is a promising avenue to look for such insights.

The main aim of this paper is then to understand how a rule of the form given in

eq. (1.4) arises in a holographic setting. As emphasized in [1], often the most convenient

way to compute thermal helicity is to place the theory under question on a sphere, turn on

chemical potentials for angular momenta on the sphere and then study its free energy in

the limit where the rotational chemical potentials are small and the radius of the sphere is

large. The AdS dual of this procedure is to study large charged rotating AdS black holes

and their thermodynamics. To do this, we will begin by adopting the familiar tools of

fluid/gravity correspondence for the problem at hand (for some of the related works which

study fluid/gravity correspondence in the context of anomalies, see [2–5, 11, 27, 33, 34]).

Basic setup. We will begin by describing the basic setup on the AdS side. In hologra-

phy, conformal field theories with anomalies in d = 2n spacetime dimensions are dual to

gravitational theories with Chern-Simons terms in d + 1 = 2n + 1 spacetime dimensions

(with the bulk Chern-Simons coefficients being determined by the anomaly coefficients

of the CFT as we will describe below). Thus we study the simplest class of gravitational

theories with Chern-Simons terms: the Einstein-Maxwell-Chern-Simons theory with a neg-

ative cosmological constant. In every odd spacetime dimension, we allow the most general

gauge/gravitational/mixed Chern-Simons term that can be formed out of a single Maxwell

field A and the Christoffel connection Γ. Realistic holographic examples with Chern-

Simons terms often also contain other higher derivative corrections and we believe many of

our arguments are sufficiently general to apply to that general case. Thus, our motivation

1The subtlety of these cancellations is demonstrated by free field theories with chiral gravitini where

such cancellations no longer happen leading to a violation of the replacement rule [1].
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in considering Einstein-Maxwell-Chern-Simons theory is mainly to provide the simplest (if

somewhat contrived) context in which our arguments can be clearly articulated.

We thus focus on the black hole solutions of the Einstein-Maxwell-Chern-Simons sys-

tem. The Lagrangian is of the form

L = dd+1x
√
−G

[
1

16πGN
(R− 2Λ)− 1

4g2
EM

FabF
ab

]
+ ICS , (1.5)

where the Chern-Simons part of the Lagrangian is denoted as ICS . The fields are subject

to the equations of motion following from (1.5)

Rab −
1

2
(R− 2Λ)Gab = 8πGN [(TM )ab + (TH )ab] ,

∇bFab = g2
EM

(JH )a ,
(1.6)

where Gab is an asymptotically AdSd+1 metric with d = 2n, Fab is the Maxwell field

strength, GN and gEM are the Newton and Maxwell couplings respectively. The cosmolog-

ical constant is taken to be negative and is given by Λ ≡ −d(d−1)/2 where the AdS radius

is set to one. For future use, recall that the normalized U(1) gauge coupling κq is related

to magnetic permeability g2
EM

by 16πGN /g
2
EM

= κq (d− 1)/(d− 2) .2 We now turn to the

Einstein and Maxwell sources. The Maxwell energy-momentum tensor (TM )ab becomes

(TM )ab ≡ κq
16πGN

d− 1

d− 2

[
F acF bc −

1

4
GabFcdF

cd

]
, (1.7)

whereas (TH )ab and (JH )a are the energy-momentum tensor and the Maxwell charge current

obtained by varying the Chern-Simons part of the action. We will call these currents as

Hall currents since in the case of Hall insulators, the only terms in the generating function

is just the Chern-Simons term. Thus, we can think of the system under study as made of

three components: metric (with a negative cosmological constant), a Maxwell field and a

Hall insulator coupled to them via the currents (TH )ab and (JH )a.

The bulk Hall currents on the AdSd+1 side encode the anomaly coefficients of the CFTd

and play a central role in the rest of our paper. Therefore, we will begin by describing

the basic structure of these currents that we will need for the rest of this introduction.

Let ICS [A,F ,Γ,R] be the Chern-Simons (d + 1)-form appearing in the bulk Lagrangian

density (1.5). The bulk Hall currents are more conveniently written in terms of the formal

(d + 2) form PCFT[F ,R] = dICS . More concretely, we can define the spin Hall current

(ΣH )cba and the charge Hall current (JH )c corresponding to ICS via3

(?ΣH )ba ≡ (ΣH )cba
?dxc ≡ −2

∂PCFT

∂Ra
b
,

?JH ≡ (JH )c ?dxc ≡ −
∂PCFT

∂F
.

(1.8)

2It is sometimes convenient to normalize the gauge field such that κq (d − 1)/(d − 2) = 1 which is

equivalent to setting g2
EM

= 16πGN .
3We refer the reader to ref. [28] for our conventions for spin currents, differential forms etc. Note that our

spin current (ΣH )cba is twice the tensor (LH )cba ,viz., (ΣH )cba = 2(LH )cba. We can convert our convention

to the one commonly used in the gravity literatures by replacing ?U with (−1)?U (for every bulk form U)

and sending the bulk εabcd... to −εabcd..., while keeping ?CFT unchanged. See ref. [35] for more detail.
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The energy-momentum tensor associated with the Hall currents can in turn be written in

terms of the spin-Hall currents: (TH )ab = ∇c(ΣH )(ab)c.

We now turn to describing the procedure that we adopt to solve the Einstein-Maxwell-

Chern-Simons system. We begin with the CFT2n thermal state living in flat spacetime in

the absence of any external electric or magnetic fields. This thermal state is dual to the

Anti de Sitter Reissner-Nordstrom (AdS-RN) solution of the above equations.4 In ingoing

Eddington-Finkelstein co-ordinates, we have

ds2 = 2 dt dr − r2f(r,m, q) dt2 + r2 d~x2
d−1 , A = −Φ(r, q) dt , (1.9)

where

f ≡ 1− m

rd
+

1

2
κq

q2

r2(d−1)
, Φ ≡ q

rd−2
. (1.10)

In order to study the replacement rule, we need to construct an explicit gravitational

solution in the fluid/gravity derivative expansion starting from a boosted counterpart of

the solution above and compute directly the anomaly-induced currents and stress tensor.

More concretely, to compute the helicity of this thermal state, we turn on a small

rotation on the thermal state letting uµ correspond to a rotating fluid configuration. This

is dual to bulk solutions in the fluid/gravity expansion to the appropriate orders (which

will be made precise later on). The thermal helicity is contained in terms proportional

to the following pseudo-vector appearing in the fluid/gravity expansion of metric and the

gauge field5

V µ ≡ εµνλ1σ1λ2σ2...λn−1σn−1uν(∇λ1uσ1)(∇λ2uσ2) . . . (∇λn−1uσn−1) , (1.11)

or in terms of forms ?CFTV = u ∧ (du)n−1 ≡ u ∧ (2ω)n−1 where u ≡ uµdx
µ is the

velocity one-form and ω ≡ (1/2)du = (1/2)ωµνdx
µ ∧ dxν is the vorticity 2-form with

ωµν ≡ Pµ
αPν

β(∂αuβ − ∂βuα)/2. Here, Pµν ≡ δµν + uµuν is the transverse projector which

projects a vector to its component normal to uµ and ωµν is the vorticity of the rotating

fluid configuration . Thus, the relevant fluid/gravity solution takes the form

ds2 = −2uµdx
µ ⊗sym dr − r2f(r,m, q) uµuνdx

µ ⊗sym dxν + r2 Pµνdx
µ ⊗sym dxν + . . .

+2gV (r,m, q)uµVν dx
µ ⊗sym dxν + . . . ,

A = Φ(r, q) uµ dx
µ + . . . . . .+ aV (r,m, q)Vµ dx

µ + . . . , (1.12)

where we will find useful for later to define the function ΦT ≡ 1
2r

2 df
dr . The functions

gV (r,m, q) and aV (r,m, q) are obtained by solving Einstein-Maxwell-Chern-Simons equa-

tions and are proportional to the Hall currents. They describe how the Hall currents dress

the original AdS Kerr-Newman solution.

4We note that the Hall currents evaluate to zero in the AdS-RN solution. Hence, the AdS-RN solution

is an exact solution of the Einstein-Maxwell-Chern-Simons system.
5Our convention for ε will be given in section 2.
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Once these solutions are constructed, we compute the currents and stress tensor of the

dual CFT.6 In fluid/gravity expansion, the leading order effect of the cloud of Hall currents

that envelops the blackhole is to shift the total energy, angular momentum and the electric

charge of the rotating blackhole under question. These leading order shifts are all that

is needed to compute the shift in the free energy on the sphere and in turn, the thermal

helicity in the zero rotation limit. In the rest of this introduction, we will describe how the

replacement rule emerges out of our computations followed by an outline of the paper.

Replacement rule in AdS. We will now describe the elegant way in which holography

realizes the replacement rule. The CFT replacement rule in (1.4) is explained by the follow-

ing insight which follows from our computations: the CFT replacement rule gets reflected in

the bulk by the replacement rules obeyed by the Hall currents around the blackhole, i.e., we

find that Hall currents evaluated on the blackhole background assume a very simple form

which holds for arbitrary Chern-Simons terms. Once this fact is realized, a direct applica-

tion of AdS/CFT dictionary then translates this result into the required CFT replacement

rule. We now describe a set of rules which summarize our computations.

The significance of these rules is the following: we have derived them within a particular

holographic setup in the classical gravity limit. However, given the way these rules are

closely linked to the CFT replacement rule (which is a non-perturbative statement), we

expect our rules to be robust features in AdS more generally.

The relevant part of the currents for formulating such rules are the components (JH )µ
and (TH )rµ that describe the Hall flow of the radial momentum and the Abelian charge

along the boundary directions. We find that, in the fluid/gravity expansion, the leading

order contribution to these flows are along the pseudovector Vµ introduced in (1.11), viz.,

(JH )µ = J(V)

H
(r,m, q)Vµ + . . . and (TH )rµ = T(V)

H
(r,m, q)Vµ + . . .. Similarly, the component

(ΣH )(rµ)
r of the spin Hall current has an expansion (ΣH )(rµ)

r = Σ(V)

H
(r,m, q)Vµ + . . ..

These components J(V)

H
(r,m, q),T(V)

H
(r,m, q) and Σ(V)

H
(r,m, q) are apriori general functions

of their arguments which need to be computed case by case. The intent of the rules that we

give below is to let us simply write down these functions by looking at the Chern-Simons

Lagrangian under question.

To formulate these rules, we begin by focusing on the following two functions associated

with AdS-RN blackbrane solution:

ΦT ≡
1

2
r2 df

dr
=

1

2rd−1

[
md− κq(d− 1)

q2

rd−2

]
and

Φ ≡ q

rd−2
.

(1.13)

These functions satisfy ΦT (r = rH ) = 2πT and Φ(r = rH ) = µ where rH is the radius of

the outer horizon, T is the Hawking temperature and µ is the chemical potential of the

6We note that computation of the currents and stress tensor are complicated by the higher derivative

nature of Chern-Simons terms in the bulk Lagrangian. The procedure for computing dual currents and

stress tensor (say by employing counterterms) is not well-understood for higher derivative actions and this

problem is worsened by the fact that Chern-Simons terms are not covariant. We will address this issue in a

subsequent paper [35] in sufficient detail. For purposes of this paper, we will content ourselves with directly

using the results of that subsequent paper with some heuristic motivation to guide the reader.

– 5 –
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black brane. In the next step, we define the functional G(V) via the following rule

G(V) ≡ PCFT

[
F → Φ; tr[R2k]→ 2Φ2k

T

]
. (1.14)

Then, we have

J(V)

H
=

1

rd−3

d

dr

∂G(V)

∂Φ
,

T(V)

H
=

1

rd−2

d

dr

[
rd−2Σ(V)

H

]
= − 1

2rd−1

d

dr
r2 d

dr

∂G(V)

∂ΦT

,

(1.15)

where Σ(V)

H
is defined by (ΣH )(rµ)

r ≡ Σ(V)

H
Vµ and satisfies

Σ(V)

H
= − 1

2rd−2

d

dr

[
r
∂G(V)

∂ΦT

]
. (1.16)

These expressions then describe how the Hall currents are turned on by charged rotating

blackhole background. To see how this gets reflected in the dual CFT, we first work out the

change in the metric and gauge field (the functions gV and aV ) due to these Hall currents

and then use them to compute how they shift the energy/angular momentum/charge of

the blackhole. We then use these shifts to derive the thermal helicity that we are after.

The bulk replacement rules above then get translated in the CFT to the field theoretical

replacement rule.

Outline. In section 2, we briefly describe the equations of motion of the Einstein-

Maxwell-Chern-Simons action with a negative cosmological constant. Then, we obtain

expressions for the anomaly-induced currents and stress tensors in terms of Hall sources

derived from the Chern-Simons terms in the equations of motion. Next, in section 3 we

present the computation of the source term in the Abelian Chern-Simons case and then

proceed to section 4 to compute the general sources. As described in the introduction,

the general structure of the sources satisfies a new set of replacement rules deduced from

the anomaly polynomial. Having obtained the sources explicitly, in section 5 we finally

complete the computation of the currents and stress tensor. The results indeed verify the

replacement rules in eq. (1.4). We then conclude the paper with a brief discussion on the

implications of our results as well as future directions.

In the appendices, we provide details of computations deriving the results in the main

text. In particular, in appendix A, we discuss the AdSd+1-Kerr-Newman metric which we

have computed up to second order in fluid/gravity expansion. Then, in appendix B, we

examine in detail various products (and traces of products) of Riemann curvature two-

forms evaluated on our solutions. These results are then used in appendices C and D to

prove the general structure of the Maxwell and Einstein sources respectively.

– 6 –
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2 Solution of Einstein-Maxwell equations

We write the dual gravitational solution to this rotating fluid configuration as

ds2 = −2uµdx
µ ⊗sym dr − r2f(r,m, q) uµuνdx

µ ⊗sym dxν + r2 Pµνdx
µ ⊗sym dxν + . . .

+2gV (r,m, q)uµVν dx
µ ⊗sym dxν + . . . ,

A = Φ(r, q) uµ dx
µ + . . .+ aV (r,m, q)Vµ dx

µ + . . . , (2.1)

where F = dA. We note that throughout this paper we shall employ the Latin letters

a, b, . . . to denote indices running through all spacetime coordinates and the Greek letters

µ, ν, . . . for all the boundary coordinates. In particular, we use the coordinates xa =

{r, xµ} = {r, t, . . .} with the convention for the bulk epsilon tensor being εrt... = −
√
−G

in a (d + 1)-dimensional bulk spacetime with bulk metric Gab. We also refer the readers

to appendix B.1 for the raising/lowering of the Greek indices. We note that f, gV ,Φ and

aV depend on r but not on the CFT2n coordinates xµ, while the rest of the variables only

depend on xµ. The pseudovector Vµ is of the form ?CFTV = u ∧ (du)n−1 which appears

in the anomaly induced transport at the (n− 1)-th order in the derivative expansion. The

terms preceding the first (. . .) give boosted RN black brane metric about which we will

perform the fluid/gravity expansion. We have dropped all the subsequent terms except the

anomaly induced transport terms.

The Einstein-Maxwell contributions in the equations of motion is then evaluated to

give the homogeneous parts

1

8πGN

{
−
(
Rab −

1

2
GabR

)
+

1

2
d(d− 1)Gab + 8πGN (TM )ab

}
dxa ⊗sym dxb

= . . .+
1

8πGN

× 1

2rd−1

d

dr

[
rd+1 d

dr

(gV
r2

)
− κq(d− 1) qaV

]
× 2

(
dr + r2f uµdx

µ
)
⊗sym Vν dx

ν + . . .

(2.2)

and

− 1

g2
EM

(∇bFab)dxa

= . . .+
1

g2
EM

rd−3

d

dr

[
rd−1f

daV
dr
− (d− 2)q

(gV
r2

)]
Vµ dx

µ + . . .

= . . .+
1

8πGN

× κq
d− 1

d− 2
× 1

2rd−3

d

dr

[
rd−1f

daV
dr
− (d− 2)q

(gV
r2

)]
Vµ dx

µ + . . . ,

(2.3)

where we have exhibited only the anomaly induced transport terms. For the metric and

gauge field in (2.1) to be a solution, we have to choose the functions {gV , aV } such that

the terms above exactly cancel the contribution from the Hall currents arising from the

Chern-Simons terms. We shall solve for {gV , aV } explicitly in the next step.

If we parametrize the contribution from the Hall currents as

(TH )ab dx
a ⊗sym dxb = T(V)

H
2
(
dr + r2f uµdx

µ
)
⊗sym Vν dx

ν + . . . ,

(JH )a dx
a = J(V)

H
Vµ dx

µ + . . . ,
(2.4)

– 7 –
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then we get the Einstein-Maxwell equations with Hall current sources as

−1

2

d

dr

[
rd+1 d

dr

(gV
r2

)
− κq (d− 1) q aV

]
= 8πGN r

d−1T(V)

H
,

− d

dr

[
rd−1f

daV
dr
− (d− 2)q

(gV
r2

)]
= g2

EM
rd−3J(V)

H
.

(2.5)

To solve the above two equations, let us now define the Hall current induced total

mass function M(V)(r) and the total charge function Q(V)(r) (as is familiar from say the

discussions of Tolman-Oppenheimer-Volkoff equation) via

Q(V)(r) ≡
∫ r

r
H

dr′
[
(r′)d−3J(V)

H
(r′)
]
,

M(V)(r) ≡
∫ r

r
H

dr′
[
(r′)d−1 f(r′) T(V)

H
(r′)−Q(V)(r′)

dΦ(r′)

dr′

]
,

(2.6)

which measure the total Hall charge and Hall mass per unit area until a radius r in an

ingoing Eddington-Finkelstein tube. We have defined our mass and charge functions such

that they vanish at the horizon. More precisely Q(V) has a simple zero at r = rH and

M(V) has a double zero at r = rH . Note that the total mass includes the electrostatic

contribution proportional to the 0th order electric field −dΦ
dr times the Hall charge current.

These mass and charge functions can be used to solve the Einstein-Maxwell equa-

tions (2.5) . The first integral of the Maxwell equation is given by

rd−1f
daV
dr
− (d− 2)q

(gV
r2

)
+ g2

EM
Q(V) = 0 . (2.7)

Here we have fixed the constant of integration by demanding that gV vanishes at the

horizon r = rH : we can always do this by an appropriate choice of velocity definition in

dual hydrodynamics.

Next, we turn to the Einstein equations. Subtracting one of the identities in eq. (A.3),

we find

d

dr

[
rd+1 d

dr

(gV
r2

)
− κq (d− 1) q aV

]
− d

dr

[
rd+1 df

dr
+ κq(d− 1)qΦ

](
gV
r2f

)
=

1

f

{
d

dr

[
rd+1f2 d

dr

(
gV
r2f

)]
− κq (d− 1)q

rd−1

[
rd−1f

daV
dr
− (d− 2)q

(gV
r2

)]}
=

1

f

{
d

dr

[
rd+1f2 d

dr

(
gV
r2f

)]
− 16πGNQ

(V)dΦ

dr

}
,

(2.8)

where in the last line we have used (2.7). Thus, Einstein equation simplifies to

d

dr

[
rd+1f2 d

dr

(
gV
r2f

)]
= −16πGN

[
rd−1f T(V)

H
−Q(V)dΦ

dr

]
= −16πGN

dM(V)

dr
. (2.9)

This gives the solution for the metric as

gV = 16πGN r
2f

∫ ∞
r

dr′
M(V)(r′)

(r′)d+1f2(r′)
. (2.10)
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In order to solve the gauge field aV , we rewrite (2.7) in the form

0 =
daV
dr

+

(
gV
r2f

)
dΦ

dr
+ g2

EM

Q(V)

rd−1f

=
d

dr

[
aV + Φ

gV
r2f

]
− Φ

d

dr

(
gV
r2f

)
+ g2

EM

Q(V)

rd−1f

=
d

dr

[
aV + Φ

gV
r2f

]
+ 16πGN q

M(V)

r2d−1f2
+ g2

EM

Q(V)

rd−1f
,

(2.11)

which gives

aV = g2
EM

∫ ∞
r

dr′
Q(V)(r′)

(r′)d−1f(r′)
− 16πGN

q

rd−2

∫ ∞
r

dr′
M(V)(r′)

(r′)d+1f2(r′)

+ 16πGN q

∫ ∞
r

dr′
M(V)(r′)

(r′)2d−1f2(r′)
.

(2.12)

Thus we conclude that our final solution is given by eq. (2.10) and (2.12) with eqs. (2.6).

The asymptotic expansion of the metric and gauge field is hence given by7

gV =
16πGN

rd−2d
M(V)(r =∞) + . . . ,

aV =
g2
EM

rd−2(d− 2)
Q(V)(r =∞) + . . . .

(2.13)

From this we obtain the anomaly-induced part of the renormalized Brown-York stress

tensor and current:8

(Tαβ)anom = − lim
r→∞

rd−2

8πGN
[Kαβ −K(Gαβ − nαnβ) + (d− 1)(Gαβ − nαnβ)]anom

= − (Vαuβ + Vβuα) lim
r→∞

rd+1

16πGN

d

dr

(gV
r2

)
= (Vαuβ + Vβuα)M(V)(r =∞)

= (Vαuβ + Vβuα)

∫ ∞
r
H

dr′

[
(r′)d−1f(r′)T(V)

H
(r′)− dΦ

dr

∫ r′

r
H

dr′′(r′′)d−3 J(V)

H
(r′′)

]
,

(Jα)anom = − lim
r→∞

rd−1

g2
EM

gµα (F rµ)anom

= −Vα lim
r→∞

(d− 1)

(d− 2)

κq
16πGN

rd−1daV
dr

= VαQ(V)(r =∞)

= Vα

∫ ∞
r
H

dr′(r′)d−3 J(V)

H
(r′) , (2.14)

7Note that at this point we have assumed M(V)(r) and Q(V)(r) are O(r0) when r → ∞. Physically,

this assumption is equivalent to saying that gV and aV have fall-off near infinity just like the appropriate

multiple-moments of the fields, i.e. gV and aV both fall off as ∼ r2−d. We will see in eq. (5.9) that indeed

both M(V)(r) and Q(V)(r) are of O(r0) as r →∞ after we have obtained J(V)
H

(r) and T(V)
H

(r) explicitly.
8We assume d > 2. The analysis for d = 2 involves additional contributions to the charges from the

Chern-Simons terms. See, for e.g., ref. [36] for the analysis in d = 2.
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where we have assumed that the integrals under question converge to a finite value. The

extrinsic curvature Kab is defined in the standard way as Kab ≡ (1/2)LnGab where na∂a
is the normal vector of surfaces of constant-r. In ref. [35], we show that the Chern-Simons

contributions to the charges vanish (for AdS2n+1 with n ≥ 2) which is consistent with the

above assumption that the Chern-Simons contribution to the stress tensor is zero.

The intuitive meaning behind these expressions is clear: the anomaly-induced cur-

rents of the boundary are obtained by integrating from horizon to asymptotic infinity, the

contribution to energy-momentum and charge due to the bulk Hall currents. The energy-

momentum integral has a ‘gravitational potential energy’ part proportional to T(V)

H
and the

‘electric potential energy’ part proportional to J(V)

H
.

At this point, the problem of computing (Tαβ)anom and (Jα)anom reduces to that of

computing the sources T(V)

H
and J(V)

H
, which we will carry out in the next sections.

3 Abelian Chern-Simons term

In this section, we explain the evaluation of the Hall contribution for the Abelian Chern-

Simons term. This was first done in [11] and here we repeat their derivation in our notation

for the convenience of the reader. Evaluation of the Hall contribution for more general

Chern-Simons terms is illustrated explicitly in the case of AdS7 while the general results

are summarized in section 4. The detail of the computation is given in appendices C and D.

For the Abelian Chern-Simons term on AdSd+1 with d = 2n and its CFT2n dual, we

take the anomaly polynomial as PCFT = cAF
n+1 where cA is a constant. We then have

the charge and spin Hall current as well as the Hall energy-momentum tensor as

?JH = −(n+ 1)cAF
n and (?ΣH )ab = 0, (?TH )ab = 0 . (3.1)

Using A = Φ u+A∞ + . . ., we obtain the corresponding U(1) field strength as

F =
dΦ

dr
dr ∧ u+ F∞ + Φ du+ . . . , (3.2)

where F∞ ≡ dA∞ = B is the magnetic field. Then, the charge Hall current is evaluated as

?JH = n(n+ 1)cA
dΦ

dr
u ∧ (F∞ + Φdu)n−1 ∧ dr + . . .

= n(n+ 1)cA
dΦ

dr
u ∧ (B + 2ωΦ)n−1 ∧ dr + . . .

= ?CFT

(
d

dr

∂G
∂Φ

)
∧ dr + . . . ,

(3.3)

where we have defined the combination of pseudovectors G as

?CFTG ≡ ?CFT (Gµdx
µ)

=
u

(2ω)2
∧
[
cA(B + 2ωΦ)n+1 − cAB

n+1 − (n+ 1)cAB
n(2ωΦ)

]
=

n∑
k=1

(
n+ 1

k + 1

)
cAΦk+1 u ∧Bn−k ∧ (2ω)k−1 .

(3.4)
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In the presence of external magnetic fields9 B ≡ dA∞, additional pseudo-vectors of

the form

?CFTV ≡ u ∧ (B)n−k ∧ (du)k−1, (3.5)

appear for each k satisfying 1 ≤ k ≤ n. Let us now define G ≡ Gµdx
µ and the corresponding

coefficients of each pseudovector Vµ in G by G(V):

Gµdx
µ =

∑
{V }

G(V)Vµdx
µ. (3.6)

Then, we have

GBn−k(2ω)k−1
=

(
n+ 1

k + 1

)
cAΦk+1 . (3.7)

Note that the second or higher order terms in the fluid/gravity expansion of F do not

contribute at order ωk−1 for any k. This is a direct consequence of the fact that wedge

products of two or more zeroth order F ’s are zero.

In the next step, we use the following result in (3.3): for a p-form N with legs only

along the boundary directions and completely transverse to the velocity vector uµ, the

following relation for the Hodge duals of the CFT and the bulk holds:(
?CFTN

)
∧ dr =

(−1)d

rd−1−2p
?N . (3.8)

Here we assumed one is working in the Eddington-Finkelstein coordinates. This gives

another expression for the charge Hall current which is useful when we compare with the

result of the bulk AdS calculation:

?JH = ?

(
1

rd−3

d

dr

∂G
∂Φ

)
+ . . . , (3.9)

or

(JH )adx
a =

1

rd−3

d

dr

[
∂Gµ

∂Φ

]
dxµ + . . . . (3.10)

Picking out the coefficient of one of the pseudo-vectors Vµ, we have the expression for the

Maxwell source (for convenience, we also denote the expression for the Einstein source,

though it is trivially zero in the case of Abelian Chern-Simons terms)

J(V)

H
=

1

rd−3

d

dr

[
∂G(V)

∂Φ

]
,

T(V)

H
= 0 .

(3.11)

In particular, we have

JB
n−k(2ω)k−1

H
=

1

rd−3

d

dr

[
(k + 1)

(
n+ 1

k + 1

)
cAΦk

]
,

TBn−k(2ω)k−1

H
= 0 .

(3.12)

9We consider non-zero external magnetic fields only in this section (i.e. in the case of Abelian Chern-

Simons terms). For the rest of the paper, we shall switch off the magnetic fields.
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4 General Chern-Simons terms: Maxwell and Einstein sources

For the sake of clarity, in this section we will only present a summary of our results of the

Hall contribution for more general Chern-Simons terms in AdS2n+1 for 1 ≤ n ≤ 4. A more

detailed computation for all the other dimensions can be found in appendices C and D .

To exemplify the computations, we will however first present here the details of the AdS7

(n = 3) case. Using these findings, finally, we make a proposal for the general structure of

the sources and replacement rule.

4.1 Illustrative case: Chern-Simons terms in AdS7

For a theory with anomaly polynomial

PCFT6
= cAF

4 + cMF
2 ∧ tr R2 + cgtr R

2 ∧ tr R2 + c̃gtr R
4 , (4.1)

via eq. (1.8) we find the corresponding charge Hall current (JH )a and the Hall energy-

momentum tensor (TH )ab,

(JH )a = − 1

8
εap1p2p3p4p5p6

[
4cAFp1p2Fp3p4Fp5p6 + 2cMR

b
cp1p2R

c
bp3p4Fp5p6

]
,

(TH )ab = − 1

4
cM∇c

[
εap1p2p3p4p5p6Rbcp1p2Fp3p4Fp5p6 + εbp1p2p3p4p5p6Racp1p2Fp3p4Fp5p6

]
− 1

2
cg∇c

[
εap1p2p3p4p5p6Rbcp1p2R

d
fp3p4R

f
dp5p6

+ εbp1p2p3p4p5p6Racp1p2R
d
fp3p4R

f
dp5p6

]
− 1

2
c̃g∇c

[
εap1p2p3p4p5p6Rbdp1p2R

d
fp3p4R

fc
p5p6

+ εbp1p2p3p4p5p6Radp1p2R
d
fp3p4R

fc
p5p6

]
.

(4.2)

Evaluating these sources (see section 4.1.1 and appendix D.4 for the computations),

we obtain

J(V)

H
=

1

r3

d

dr

∂G(V)

∂Φ
,

T(V)

H
= − 1

2r5

d

dr
r2 d

dr

∂G(V)

∂ΦT

,

(4.3)

where G(V) is the the coefficient of the pseudovector Vµ in a pseudovector combination Gµ

with
?CFTG ≡ ?CFT (Gµdx

µ)

=
u

(2ω)2
∧
[
cA(2ωΦ)4 + 2cM (2ωΦ)2(2ωΦT )2 +

(
22cg + 2c̃g

)
(2ωΦT )4

]
=
[
cAΦ4 + 2cMΦ2Φ2

T
+
(
22cg + 2c̃g

)
Φ4
T

]
u ∧ (2ω)2 .

(4.4)

Thus, we have

G(2ω)2 = cAΦ4 + 2cMΦ2Φ2
T

+
(
22cg + 2c̃g

)
Φ4
T
. (4.5)

The Hall sources are obtained by substituting (4.5) into (4.3).
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4.1.1 Explicit computation for the Maxwell source in AdS7

In the case of AdS7, only one type of the mixed term is allowed in the anomaly polynomial:

PCFT6 = cMF
2 ∧ tr[R2] , (4.6)

from which we get the Maxwell source of the form

?JH = −2cMF ∧ tr[R2] . (4.7)

For now let us consider the 0th and 1st order terms in F and R only and forget the 2nd and

higher order terms. First, we shall explain some notations (which are explained in details in

appendix B). We denote the curvature 2-formRa
b at m-th order of the derivative expansion

as (Rm)ab. Similarly, let us denote the m-th order term of the U(1) field strength F by

(Fm). Then the leading contribution to the Maxwell source is given by

?JH = −4cM (F 1) ∧ tr[(R0R1)]− 2cM (F 0) ∧ tr[(R1R1)]

=
d

dr

(
4cMΦΦ2

T

)
(u ∧ (2ω)2 ∧ dr),

J
(2ω)2

H =
1

r3

d

dr

∂(2cMΦ2Φ2
T )

∂Φ
, (4.8)

where ?JH is indeed of order ω2. At lower orders, we encounter

(F 0) ∧ tr[(R0R0)], (F 0) ∧ tr[(R0R1)], (F 1) ∧ tr[(R0R0)], (4.9)

but these are all zero as a result of (R0R0) = 0 (see eq. (B.8)) and the fact that both (F 0)

and tr[(R0R1)] are proportional to dr ∧ u (see eq. (B.4) and eq. (B.36)). Therefore the

contribution in eq. (4.8) is indeed the leading one.

Now we take into account the 2nd and higher order terms in F and R. Then, up to

ω2 order, we encounter the following terms:

(F 0) ∧ tr[(R0R2)], (F 2) ∧ tr[(R0R0)] , (4.10)

which also vanish, since (R0R0) = 0 and tr[(R0R2)] = 0 (see eq. (B.48)).

As an application of this result, let us compute the thermal helicity of the (2,0) theory

using its anomaly polynomial.10 The thermal helicity of (2,0) theory with a gauge group

G is then given by

FAnom = −2πrG
48

[
p2(µSO(5)) +

1

4
(T 2 + p1(µSO(5)))

2

]
− 2πdGhG

24
p2(µSO(5)) , (4.11)

where rG , dG and hG are the rank, dimension and Coxeter number of the gauge group G

respectively and

p1(µSO(5)) ≡ −
1

(2π)2

(
1

2
Trµ2

SO(5)

)
, (4.12)

p2(µSO(5)) ≡ −
1

(2π)2

(
1

4
Trµ4

SO(5) −
1

8
(Trµ2

SO(5))
2

)
. (4.13)

It would be interesting for future work to study the thermal partition function of (2,0)

theory and match it against this prediction from holography.

10Anomaly polynomial of (2,0) theory is given in say eq. (2.1) and eq. (2.2) of [37] or eq. (2.9) and

eq. (2.10) of [38].
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#n (V ) G(V)

1 (2ω)0 2cgΦ
2
T

2 (2ω)1 cAΦ3 + 2cMΦΦ2
T

3 (2ω)2 cAΦ4 + 2cMΦ2Φ2
T

+
(
22cg + 2c̃g

)
Φ4
T

4 (2ω)3 cAΦ5 + 2cMΦ3Φ2
T

+
(
22c̃M + 2˜̃cM

)
Φ Φ4

T

Table 1. G(V) polynomials for the Maxwell and Einstein sources (4.14) in AdS2n+1 and 1 ≤ n ≤ 4.

4.2 Summary of results: general structure of sources and replacement rule

The computations for the sources in various dimensions are performed in two different ways.

On the one hand, we employed a straightforward brute force computation (till AdS9 using

the solutions up to second order given in appendix A) with Mathematica of the Riemann

tensor and field strength contributions to get the sources.11 On the other hand, we also

performed a more elegant though lengthy computation order-by-order in the derivative

expansion. The details of the latter calculations can be found in appendices B, C and D.

These independent calculations perfectly matched and served as crosschecks of our results

that are contained in table 1 with Maxwell and Einstein sources defined by

J(V)

H
=

1

rd−3

d

dr

∂G(V)

∂Φ
,

T(V)

H
=

1

rd−2

d

dr

[
rd−2Σ(V)

H

]
= − 1

2rd−1

d

dr
r2 d

dr

∂G(V)

∂ΦT

,

(4.14)

where Σ(V)

H
is given by equation (1.16).

Our results are consistent with the replacement rule for G(V) as a polynomial in {Φ,ΦT }
in eq. (1.14). We work out in the next section the implications of such a conjecture.

5 General computations of (Tαβ)anom and (Jα)anom

We now turn to solving the Einstein-Maxwell equations for sources of the form in (4.14).

To do this, we compute the mass and the charge integrals via (2.6). To evaluate these

integrals explicitly, it is useful to define the following function which has a double zero

at r = rH :

G̃(V) =
[
G(V)

]
r=r

H

−G(V)+ [Φ− Φ(rH )]

[
∂G(V)

∂Φ

]
r=r

H

+ [ΦT − ΦT (rH )]

[
∂G(V)

∂ΦT

]
r=r

H

,

(5.1)

11Note that a priori the third order metric can contribute to the sources in AdS9. However, as we argue

in appendix C and appendix D, the second order metric suffices even in AdS9.
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so that we can write the sources (4.14) as

J(V)

H
= − 1

rd−3

d

dr

∂G̃(V)

∂Φ
, T(V)

H
=

1

rd−1

d

dr

[
r2

2

d

dr

∂G̃(V)

∂ΦT

]
. (5.2)

First of all, this gives the total charge function

Q(V) = −∂G̃
(V)

∂Φ
. (5.3)

In order to do the integral in the expression of M(V), we look at

rd−1f T(V)

H
−Q(V)dΦ

dr
= f

d

dr

[
r2

2

d

dr

∂G̃(V)

∂ΦT

]
+
∂G̃(V)

∂Φ

dΦ

dr

=
1

2

d

dr

[
r2f2 d

dr

(
1

f

∂G̃(V)

∂ΦT

) ]
+
∂G̃(V)

∂Φ

dΦ

dr
+
∂G̃(V)

∂ΦT

dΦT

dr

=
d

dr

[
G̃(V) +

1

2
r2f2 d

dr

(
1

f

∂G̃(V)

∂ΦT

) ]
,

(5.4)

so that we finally have the total mass function

M(V) = G̃(V) +
1

2
r2f2 d

dr

(
1

f

∂G̃(V)

∂ΦT

)
. (5.5)

Thus, we finally obtain

gV = 16πGN r
2f

∫ ∞
r

dr′
M(V)(r′)

(r′)d+1f2(r′)
,

aV = g2
EM

∫ ∞
r

dr′
Q(V)(r′)

(r′)d−1f(r′)
− 16πGN

q

rd−2

∫ ∞
r

dr′
M(V)(r′)

(r′)d+1f2(r′)

+ 16πGN q

∫ ∞
r

dr′
M(V)(r′)

(r′)2d−1f2(r′)
,

(5.6)

with

M(V) = G̃(V) +
1

2
r2f2 d

dr

(
1

f

∂G̃(V)

∂ΦT

)
,

Q(V) = −∂G̃
(V)

∂Φ
.

(5.7)

By using these expressions, we calculate the total mass and charge correction due to

the Hall sources. Noticing that as r →∞, {Φ,ΦT } → 0 also(
G̃(V)

)
r=∞

=

(
G(V) − Φ

∂G(V)

∂Φ
− ΦT

∂G(V)

∂ΦT

)
r=r

H

,

(
∂G̃(V)

∂Φ

)
r=∞

=

(
∂G(V)

∂Φ

)
r=r

H

,

(
∂G̃(V)

∂ΦT

)
r=∞

=

(
∂G(V)

∂ΦT

)
r=r

H

.

(5.8)
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Then, the total mass and the charge correction due to the Hall sources is

M(V)(r =∞) =

(
G(V) − Φ

∂G(V)

∂Φ
− ΦT

∂G(V)

∂ΦT

)
r=r

H

,

Q(V)(r =∞) = −

(
∂G(V)

∂Φ

)
r=r

H

.

(5.9)

From this, we get the anomaly induced currents as

(Tαβ)anom =

(
Gα − Φ

∂Gα

∂Φ
− ΦT

∂Gα

∂ΦT

)
r=r

H

uβ

+ uα

(
Gβ − Φ

∂Gβ

∂Φ
− ΦT

∂Gβ

∂ΦT

)
r=r

H

,

(Jα)anom = −
(
∂Gα

∂Φ

)
r=r

H

.

(5.10)

The physics behind eq. (5.9) and eq. (5.10) is very intuitive. In terms of the energyM,

the standard Gibbs potential G and the charge Q are given by thermodynamic relations

M = G+ µQ+ TS = G− µ
(
∂G

∂µ

)
T

− T
(
∂G

∂T

)
µ

, Q = −
(
∂G

∂µ

)
T

, (5.11)

which is just eq. (5.9) after substituting Φ(rH) = µ and ΦT (rH) = 2πT . Thus we conclude

that the vector Gα(r = rH ) is the anomaly-induced free-energy current. We refer the

reader to refs. [12, 32, 39] for a more detailed discussion of how the anomalous parts

of charge/entropy/energy could be derived from the Gibbs current, which gives exactly

eq. (5.10).

As described in [1], the anomaly induced free-energy can be exponentiated to compute

the anomaly-induced partition function from which the correlator describing thermal helic-

ity follows simply. As advertised, it is straightforward to check that this procedure yields

the correct thermal helicity as conjectured in [1].

6 Discussions and conclusions

We will begin with a brief summary of our results. In this paper, we have studied in detail

how holography gives rise to the replacement rule for thermal helicity that was proposed

in [1]. Combined with the tests in free field theory that were performed in [1, 32], these

results suggest that replacement rule holds in a wide class of field theories and complement

the recent formal proofs of the replacement rule in [22, 29]. Let us remind the reader

of some of the features of the replacement rule which are surprising from a field theory

viewpoint but find natural explanation in a holographic context.

The first surprising feature is that the gravitational anomalies contribute to thermal

helicity at all in the first place. In fact, if one merely constrains the equilibrium partition

function of the field theory to have the correct anomalous transformation (or equivalently,
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imposes anomalous Ward identities on thermal correlators) one would naively conclude that

gravitational anomalies involve too many derivatives to contribute to the thermal correlator

that defines thermal helicity [10, 18–21, 39]. Hydrodynamic arguments involving studying

the second law of thermodynamics in the presence of anomalies also lead to the same naive

result [7, 12]. Thus, replacement rule is a puzzling feature in thermal field theory whereby

anomalies impose an important constraint on observables and this constraint cannot be

merely captured by anomalous Ward identities alone.12

On the AdS side, this puzzle gets easily resolved. While it is true that gravitational

Chern-Simons terms have too many derivatives of the metric, as can be gleaned from our

computation, this does not prevent them from affecting the blackhole solution at a much

lower order in the fluid/gravity expansion. This is a simple consequence of the fact that

in AdS the extra derivatives can be soaked up by the radial derivatives thus letting the

higher derivative terms to contribute with low number of boundary derivatives. This is an

example of how a very puzzling feature of the CFT finds an essentially trivial explanation

on AdS side.

The second feature of the replacement rule is that the temperature appears in eq.(1.4)

via the factors of 2πT . These powers of 2π are another indication that any algebraic manip-

ulation of anomalous Ward identities cannot lead to the replacement rule. In holography,

on the other hand, 2πT is just the surface gravity of the black brane and it is unsurprising

that a gravity calculation involves such factors.

It is instructive to compare these features of the replacement rule to the Cardy formula

which also involves derivative-jumping by the conformal anomaly and additional factors of

2π neither of which can be established by examining Ward identities alone. In the case of

Cardy formula, it is well-known that any field-theory proof of it should necessarily invoke

the modular property of the underlying 2d CFT (or an equivalent thereof) to reproduce

these features. On the other hand, Cardy formula is of course routinely derived in the AdS3

by a straightforward gravity computation. Our calculations show that replacement rule in

higher dimension shares this feature: while the formal field-theory proofs of replacement

rule involve subtle arguments regarding partition function on cones [22, 29], on the gravity

side, we have a straightforward gravity computation.

A third puzzling feature of the replacement rule is why only the first Pontryagin class

p1(R) contributes to the thermal helicity. While we do not know of a simple field theoretic

reason for this fact, we have a simple explanation on the gravity side - when Hall currents

are computed in charged rotating blackhole background, to leading order, terms in Hall

currents involving the higher Pontryagin class vanish. We do not yet know of a simple way

to translate this observation to the CFT side. It would be interesting to see whether we

can use such insights gleaned from holography to understand better how the replacement

rule arises in thermal field theory.

We will now conclude by mentioning various future directions. Perhaps the simplest

generalization of the computations in this paper is to turn on the boundary magnetic field.

This was already done for pure Abelian Chern-Simons terms by the authors of [11] as we

12We remark that this issue shows up in a different disguise in studies of thermal Hall effect, which

complicates the derivation of thermal Hall effect [40].
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reviewed in section 3. We expect that most of our arguments for mixed Chern-Simons terms

would continue to hold with some simple modifications. There are detailed predictions from

field theory on how the magnetic field should appear in the anomaly induced transport and

it would be nice to check these predictions against holography.

A more involved exercise would be to study the response to turning on boundary Rie-

mann curvature. This necessarily involves proceeding to higher orders in the fluid/gravity

expansion and studying Hall currents and their backreaction in more detail. The field

theory studies of these terms [28, 29] suggests that the new terms would be conveniently

arranged in terms of a spin chemical potential (µR)αβ defined via (µR)αβ = T∇β
(
uα

T

)
. It

would be instructive to see how this happens in gravity. In this paper, we have essentially

used the standard holographic counter term prescription for the Einstein-Maxwell system

to compute the currents and stress tensor of the dual CFT. We have done it by assuming

that the modifications due to Chern-Simons terms do not contribute to the computations

in this paper. This is a non-trivial assumption since the counter term procedure has never

been generalized to arbitrary higher dimensional Chern-Simons terms. AdS/CFT with

Chern-Simons terms have been studied extensively in the last decade mostly in the con-

text of AdS3/CFT2 [36]. In AdS3/CFT2 context, many proposals now exist for computing

total charges in the presence of Chern-Simons terms [41–45]. Most of them have not yet

been generalized, much less tested in higher dimensional holography even in the absence

of Chern-Simons terms.

For a manifestly covariant bulk Lagrangian, a more well-established and well-tested

result in higher dimensions is the entropy proposal by Wald for higher derivative actions.

In the last few years, there have been various attempts to extend the famous analysis of

Iyer-Wald to Chern-Simons terms in arbitrary dimensions [46, 47]. As far as we are aware

of, however, there is no current proposal which gives manifestly covariant charges/entropy

for the dual anomalous CFT.13 Hence, it would be nice to write down a covariant proposal

for the charges of dual CFT from the gravitational solution. This would also lead to a

covariant proposal for entropy extending the constructions in [46, 47] to arbitrary Chern-

Simons terms. This will be addressed in our subsequent work [35].

Another generalization would be to study anomaly-induced transport slightly away

from equilibrium, where again recent field theory arguments [29] seem to suggest novel

contributions to anomaly-induced transport. More broadly, we hope that our computations

here are a first step towards a deeper understanding of finite temperature holography in

the presence of Chern-Simons terms.
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A AdSd+1-RN black brane and AdSd+1-Kerr-Newman metric

A.1 AdSd+1-RN black brane solution

AdS-RN black brane solution of the Einstein-Maxwell-Chern-Simons system takes the form

ds2 = 2 dt dr − r2f(r,m, q) dt2 + r2 d~x2
d−1 , A = −Φ(r, q) dt , (A.1)

where

f(r,m, q) ≡ 1− m

rd
+

1

2
κq

q2

r2(d−1)
, Φ(r, q) ≡ q

rd−2
. (A.2)

The Einstein-Maxwell equations in (1.6) then lead to the following relation between

f(r,m, q) and Φ(r, q):

d

dr

[
rd+1 df

dr
+ κq(d− 1)qΦ

]
= 0 ,

d

dr

[
rd−1f

dΦ

dr
+ (d− 2)qf

]
= 0 .

(A.3)

For later convenience, we introduce the function ΦT (r,m, q) via

ΦT (r,m, q) ≡ 1

2
r2 df

dr
=

1

2rd−1

[
md− κq(d− 1)

q2

rd−2

]
. (A.4)

The function ΦT satisfies ΦT (r = rH ) = 2πT where rH is the radius of the outer horizon

and T is the Hawking temperature of the black brane.

We will reparametrize the solution in terms of two other variables {rH , Q} where rH
is the radius of the outer horizon and Q is a measure of the total charge of the AdS

RN solution:

m = rd
H

[
1 +

1

2
κqQ

2

]
, q = rd−1

H
Q . (A.5)

The thermodynamic charges and potentials of this solution are parametrized by (M: mass

density, S: entropy density, Q: electric charge density, µ: chemical potential)

M =
(d− 1)

16πGN

m =
(d− 1)

16πGN

rd
H

[
1 +

1

2
κqQ

2

]
, S =

rd−1
H

4GN

, (A.6)

Q =
(d− 1)κq
16πGN

q =
(d− 1)

16πGN

κqr
d−1
H

Q , µ = Φ(rH ) = Q rH , (A.7)

T =
r2
H
f ′(rH )

4π
=

1

2π
ΦT (rH ) =

rH
4π

[
d− 1

2
(d− 2)κqQ

2

]
. (A.8)

– 19 –



J
H
E
P
0
8
(
2
0
1
4
)
0
4
0

This AdS-RN black-brane solution can be boosted into a solution of the form

ds2 = −2uµ dx
µ(dr + rWνdx

ν)− r2f(r,m, q)uµuν dx
µdxν + r2Pµν dx

µdxν ,

A = Φ(r, q)uµdx
µ,

(A.9)

where uµ is the constant velocity that defines the rest frame of the blackbrane and

Pµν = gµν + uµuν , Wµ = (uν∇ν)uµ −
∇νuν

d− 1
uµ . (A.10)

Here Pµν is the projection operator and Wµ is the hydrodynamic Weyl connection intro-

duced in [48].

A.2 AdSd+1-Kerr-Newman metric: second order

We will now consider the Einstein-Maxwell system with Chern-Simons terms turned off.

The AdSd+1 Kerr-Newman solution — which is unknown — of this system can be found in

a derivative expansion via the fluid/gravity correspondence by starting with the boosted

AdS-RN black brane metric (A.9). The metric and gauge field can be written in the form

ds2 = − 2uµdx
µ
(
dr + rWν dx

ν − Sνλuλdxν
)

− r2f(r,m, q)uµuν dx
µdxν +

[
r2Pµν − ωµαωαν

]
dxµdxν

+ g(r,m, q)ωαβω
αβ uµuν dx

µdxν

+ h(r,m, q)

[
ωµ

α ωαν +
1

d− 1
ωαβω

αβPµν

]
dxµdxν ,

A = Φ(r, q)

[
1− 1

2r2
ωαβω

αβ

]
uµdx

µ,

(A.11)

where Pµν ,Wµ, f(r,m, q) and Φ(r, q) are given by eq. (A.10) and eq. (A.2) while

g(r,m, q) = − m

2rd
+
κq
2

q2

r2(d−1)

[
1− 1

(d− 1)(d− 2)

]
, (A.12)

and

h(r,m, q) = − d

d− 2
κq

r2q2

r2d
H

∫ ∞
r/r

H

ζd − 1

ζ2d+1f(ζ rH ,m, q)
dζ. (A.13)

The Weyl covariantized Schouten tensor Sµν is a tensor defined in terms of the Ricci

tensor Rbdyµν and Ricci scalar Rbdy of the boundary metric gµν and the hydrodynamic Weyl

connection Wµ. It is given by

Sµν ≡
1

d− 2

(
Rbdyµν −

Rbdy

2(d− 1)
gµν

)
+∇µWν +WµWν −

1

2
W2gµν

+
1

d− 2
(∇µWν −∇νWµ) .

(A.14)

We have ignored the non-stationary contributions to the fluid gravity metric which are

zero for AdS-Kerr-Newman solution. We have checked using Mathematica that the above
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metric and gauge field solve the Einstein as well as the Maxwell equations up to second

order and d+ 1 = 11 provided the {m, q, uµ} solve the ideal fluid equations. For the AdS-

Kerr-Newman case, we want to further turn off non-stationary contributions both of which

can be implemented by demanding

∇µm+ d Wµm = 0 , ∇µq + (d− 1) Wµq = 0 , (A.15)

up to second order in a derivative expansion. This, in particular, implies

∇µ∇νm+
(
d ∇µWν − d2 WµWν

)
m = 0 ,

∇µ∇νq +
(
(d− 1) ∇µWν − (d− 1)2 WµWν

)
q = 0 ,

∇µWν −∇νWµ = 0 .

(A.16)

We will present the fluid variables in a convenient coordinate system for comparison

with the rest of the literature. Consider the AdSd+1-Kerr-Newman BHs: we begin by

defining two integers n and σCFT via d = 2n+ σCFT with σCFT = d (mod 2) where n is the

number of angular momenta in AdSd+1.

We can then parametrize AdSd+1 Kerr-Newman solution by a radial coordinate r, a

time co-ordinate t along with d − 1 = 2n + σCFT − 1 spheroidal coordinates on Sd−1. We

choose these spheroidal coordinates to be

• n+σCFT number of direction cosines rk, obeying
∑n+σ

CFT
k=1 r2

k = R2 and rk ≥ 0 where

R denotes the radius of the sphere Sd−1 . We can thus take the first n + σCFT − 1

direction cosines as independent variables with rn+σ
CFT

= (R2 −
∑n+σ

CFT
−1

k=1 r2
k)

1/2 .

• n+ σCFT azimuthal angles ϕi with ϕn+1 = 0 identically.

For the sake of simplicity, in what follows, we denote the sums
∑n+σ

CFT
k=1 as just

∑
k. The

angular velocities along the different ϕk’s are denoted by Ωk (with Ωn+1 = 0 identically).

It is then convenient to take the dual CFT velocity configuration and the boundary

metric of AdS Kerr-Newman solution as

uµ∂µ ≡ ∂t +
∑
i

Ωi∂ϕi ,

gµνdx
µdxν ≡ 1

∆

[
−dt2 +

∑
i

(
dr2
i + r2

i dϕ
2
i

)]
,

∆ ≡ 1−
∑
k

Ω2
kr

2
k .

(A.17)

This corresponds to a purely rotating velocity configuration in a spacetime which is R×Sd−1

up to a convenient conformal factor ∆. With this choice of conformal factor, we have

Wµ = 0 and we can take the corresponding m and q to be constant independent of the

boundary coordinates.
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Using the above configuration, we can then evaluate various tensors appearing in the

fluid/gravity metric

u ≡ uµdxµ = − 1

∆
dt+

1

∆

∑
i

Ωir
2
i dϕi ,

dt+ u =
1

∆

∑
i

r2
i Ωi (dϕi − Ωi dt) ,

dϕk + Ωku = dϕk − Ωkdt+
Ωk

∆

∑
i

r2
i Ωi (dϕi − Ωi dt) ,

Pµνdx
µdxν = − 1

∆
(dt+ u)2 +

1

∆

∑
i

[
dr2
i + r2

i (dϕi + Ωiu)2
]
,

Wµ = 0.

(A.18)

Further we define the following scalars and tensors which will be useful in what follows

Υµνdx
µdxν ≡ 1

R2∆
dt2 − 1

∆

∑
k

Ω2
k

(
dr2
k + r2

kdϕ
2
k

)
−

(
1

∆

∑
k

Ω2
krkdrk

)2

,

Pµ
αPν

βΥαβdx
µdxν ≡ 1

R2∆
(dt+ u)2 − 1

∆

∑
k

Ω2
k

[
dr2
k + r2

k (dϕk + Ωku)2
]

−

(
1

∆

∑
k

Ω2
krkdrk

)2

,

∆1 ≡
1

2∆

[
1

R2
−
∑
k

r2
kΩ

4
k

]
,

∆2 ≡
1

R2
+
∑
k

Ω2
k ,

(A.19)

which obey Υµνu
µuν = 2∆1 and ΥµνP

µν = 4∆1 − 2∆2. In terms of these, we can write

Sµν = ∆1 gµν + Υµν ,

ωµ
λωλν = Pµ

αPν
βΥαβ ,

(A.20)

and

ωαβω
αβ = −PαβΥαβ = −4∆1 + 2∆2 , (A.21)[

2uµSνλuλ − ωµλωλν
]
dxµdxν = − 1

R2∆
dt2 +

∑
k

Ω2
k

∆

(
dr2
k + r2

kdϕ
2
k

)
+

(
1

∆

∑
k

Ω2
krkdrk

)2

, (A.22)

so that when one substitutes all these into eq. (A.11) the AdS-Kerr-Newman metric be-

comes that in Eddington-Finkelstein-like coordinates.
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B Forms and its products in a derivative expansion

In this appendix, we summarize the expressions and properties of the metric, the Christoffel

connection 1-form and the curvature 2-form at different orders in the derivative expansion.

We also calculate various products of the curvature 2-form which we will use for the

evaluation of the Einstein and Maxwell sources in the appendices C and D.

At the 0th and 1st orders, we provide the explicit expression as a result of tedious but

straightforward calculation, while at the 2nd and higher orders, we just summarize some

properties of the curvature 2-form derived from the tensor and form structures as well as

the symmetries, since they are sufficient for the purpose of this paper.

Throughout the text we will label them-th order of the derivative expansion of a form B
as (Bm)ab. Moreover, we denote the product of k matrix-valued 2-forms, (Bm1), (Bm2), · · ·
and (Bmk), as (Bm1Bm2 . . . Bmk), so that the matrix-valued 2-forms inside the brackets

are always multiplied through matrix multiplication. For example, (Bm1Bm2Bm3)ab =

(Bm1)ac1 ∧ (Bm2)c1c2 ∧ (Bm3)c2b is a matrix-valued 6-form. We also abbreviate the k

product of (Bm) by (Bm
k).

B.1 Metric, connection 1-form and curvature 2-form

We consider the metric in eq. (2.1) up to first order in the derivative expansion. The metric

Gab with xa = {r, xµ} and its inverse are given by

Grr = 0, Grµ = −uµ, Gµν = −2Ψ(r)uµuν + r2Pµν ,

Grr = 2Ψ(r), Grµ = uµ, Gµν = r−2Pµν , (B.1)

where the Ψ(r) ≡ r2f(r)/2 and f(r) as defined in eq. (2.1). If we imposed the equations

of motion, then the explicit expression of r2f(r)/2 takes the form in eq. (A.2).

Let us recall that in this paper we set the boundary metric to be flat, gµν = ηµν where

(ηµν) = diag(−1, 1, 1, · · · , 1). Lowering and raising of the Greek boundary indices indices

(µ, ν, ρ, σ, . . .) are done by ηµν and its inverse ηµν (uµ = ηµνuν and Pµν = ηµρηνσPρσ, for

example). Furthermore, we take the velocity vector uµ (normalized as u2 ≡ gµνuµuν = −1)

corresponding to pure rotation, where uµωµν = 0 and ∂(µuν) = 0. Here, ωµν ≡ (∂µuν −
∂νuµ)/2 is the vorticity. We also note that the projection operator Pµν ≡ gµν + uµuν
satisfies Pµνuν = 0 and P ρ

µ Pρν = Pµν .

By using the above metric, the components of the Christoffel connection are calcu-

lated as

Γarr = 0, Γrrν = uνΨ′, Γrρν = 2Ψ
[
Ψ′uρuν − rPρν

]
, Γµrν = r−2 [rPµν + ωµν ] ,

Γµρν = uµ
[
uρuνΨ′ − rPρν

]
− 2r−2(2Ψ− r2)u(νωρ)

µ , (B.2)

or, in terms of the differential form, the connection 1-form defined as Γab ≡ Γabcdx
c (the

latin indices label all the spacetime directions in the bulk, including r-direction) is

Γrr = Ψ′u, Γrρ = uρΨ
′dr + 2Ψ

(
Ψ′uρu− rPρνdxν

)
, Γµr = r−2 (rPµν + ωµν) dxν ,

Γµρ = r−2 (rPµρ + ωµρ) dr +
[
uµuρΨ

′ + r−2(2Ψ− r2)ωµρ
]
u

−ruµPρνdxν + r−2
(
2Ψ− r2

)
uρω

µ
νdx

ν , (B.3)

where the velocity 1-form is u ≡ uµdxµ.
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Employing the notation introduced already at the beginning of this appendix B, let us

denote the m-th order term of the U(1) field strength F by (Fm). In particular, the first

three terms in the derivative expansion are

(F 0) = Φ′dr ∧ u, (F 1) = 2Φω, (F 2) ∼ dr ∧ u× ωαβωαβ . (B.4)

Note that du = 2ω and ω ≡ (1/2)ωµνdx
µ∧dxν . We remind the reader of eq. (A.11), from

which (Fm) for m ≤ 2 above are computed.

Next, we evaluate the curvature 2-form defined from the Riemann tensor Rabcd as

Ra
b ≡ (1/2)Rabcddx

c ∧ dxd at 0th and 1st orders:

At 0th order, we have

(R0)rr = Ψ′′dr ∧ u,
(R0)µr = r−1Ψ′dxµ ∧ u,
(R0)rρ = rΨ′Pρνdx

ν ∧ dr − 2ΨΨ′′uρu ∧ dr, (B.5)

(R0)µρ = −r
(
∂r
(
r−1Ψ′

))
uµuρu ∧ dr + r−1Ψ′uρdx

µ ∧ dr
−rΦTu

µPρνdx
ν ∧ u+ 2r−1Ψdxµ ∧

[
Ψ′uρu− rPρνdxν

]
,

and at 1st order,

(R1)rr = (2ΦTω),

(R1)µr = −r−2u ∧ (ΦTω
µ
νdx

ν), (B.6)

(R1)rρ = dr ∧ (ΦTωρνdx
ν) + 2Ψ [uρ(2ΦTω) + u ∧ (ΦTωρνdx

ν)] ,

(R1)µρ = −2r−2ΦTω
µ
ρu ∧ dr + r−2uρdr ∧ (ΦTω

µ
νdx

ν)

+uµ [uρ(2ΦTω) + u ∧ (ΦTωρνdx
ν)] .

Here we defined ΦT ≡ (1/2)r2 df
dr = r2∂r(r

−2Ψ) = Ψ′ − 2Ψr−1.

At 2nd order the curvature 2-form has non-trivial contributions coming purely from the

0th order metric (and its derivatives). To distinguish from the whole 2nd order curvature

2-form (R2), we denote these by (R2′) and they are given by

(R2′)rr = 0,

(R2′)µr = −r−4 (ωµνω
ν
σdx

σ) ∧ dr − r−4
(
2Ψ− r2

)
(ωµνω

ν
σdx

σ) ∧ u,
(R2′)rρ = 0,

(R2′)µρ = r−2∂νω
µ
ρdx

ν ∧ dr (B.7)

+r−2(2Ψ− r2) [∂νω
µ
ρdx

ν ∧ u+ 2ωµρω − (ωρσdx
σ) ∧ (ωµνdx

ν)]

−r−4
(
2Ψ− r2

)
(uρω

µ
σω

σ
νdx

ν) ∧ dr − r−4
(
2Ψ− r2

)2
(uρω

µ
σω

σ
νdx

ν) ∧ u.

Note that we have used ∂[σω
µ
ν] = 0. As for the rest of the contribution to (R2) coming from

the metric at the 2nd order, we classify it in the appendix B.3.1. We note that the above

contribution purely coming from the 0th order metric is special to the 2nd order curvature

2-form as can be guessed from the fact that the curvature contains two derivatives of metric.

For the 3rd or higher order, there is no contribution coming purely from 0th order metric.

– 24 –



J
H
E
P
0
8
(
2
0
1
4
)
0
4
0

B.2 Products of curvature 2-forms from the metric at 0th and 1st order

This subsection focuses on the various products of the curvature 2-forms containing only

(R0) and (R1). These kind of products can be classified in a simple way taking into account

certain observations derived from the direct computation. For instance, on one hand, the

final expression of nontrivial products of five or more curvature 2-forms at these orders

reduces to the products of four or fewer than four curvature 2-forms multiplied by some

power of (2ΦTω). On the other hand, keeping track of dr and u in the course of the

multiplication is useful to find non-vanishing contributions; each of the dr and u is allowed

to appear at most once in a given non-trivial product of the curvature 2-forms.

B.2.1 Products of two curvature 2-forms

To this order, we find three kind of terms. First, the product of two (R0)’s. One immedi-

ately finds

(R0R0) = 0 . (B.8)

It is worth stressing the difference between (R0) and 0. The former is the 0th order term

of the curvature 2-form, while the latter means zero in the usual sense.

Secondly, the mixed products of (R0) and (R1) read

(R0R1)r r = r−1∂r(rΦT )dr ∧ u ∧ (2ΦTω),

(R0R1)µ r = r−1ΦTdx
µ ∧ u ∧ (2ΦTω),

(R0R1)r ρ = 0, (B.9)

(R0R1)µ ρ = −Φ′Tu
µuρdr ∧ u ∧ (2ΦTω)− r−1ΦTuρdx

µ ∧ dr ∧ (2ΦTω)

−2r−1ΦTdr ∧ u ∧ dxµ ∧ (ΦTωρνdx
ν),

and

(R1R0)r r = r−1∂r(rΦT )dr ∧ u ∧ (2ΦTω),

(R1R0)µ r = 0, (B.10)

(R1R0)r ρ = −rΦTdr ∧ (Pρνdx
ν) ∧ (2ΦTω) + 2rΨΦT (Pρνdx

ν) ∧ u ∧ (2ΦTω),

(R1R0)µ ρ = 2r−1ΦT (Pρνdx
ν) ∧ u ∧ dr ∧ (ΦTω

µ
σdx

σ) + rΦTu
µPρνdx

ν ∧ u ∧ (2ΦTω)

+r−1∂r(rΦT )uµuρu ∧ dr ∧ (2ΦTω). (B.11)

For future reference it is important to observe that all the terms appearing in (R0R1) and

(R1R0) are proportional to either dr or u and hence vanish once multiplied with terms

proportional to dr ∧ u.

A parallel construction is possible, thirdly, for the product of two (R1)’s

(R1R1)r r = (2ΦTω)2,

(R1R1)µ r = −r−2u ∧ (ΦTω
µ
νdx

ν) ∧ (2ΦTω),

(R1R1)r ρ = dr ∧ (ΦTωρνdx
ν) ∧ (2ΦTω), (B.12)

(R1R1)µ ρ = −uµuρ(2ΦTω)2 − 2r−2Ψuρu ∧ (ΦTω
µ
νdx

ν) ∧ (2ΦTω)

−r−2uρdr ∧ (ΦTω
µ
νdx

ν) ∧ (2ΦTω)− uµu ∧ (ΦTωρνdx
ν) ∧ (2ΦTω).
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A final remark concerns the wedging of any of the (R1R1) with dr ∧ u. In this cases,

the only non-zero components obey

dr∧u∧(R1R1)rr = dr∧u∧(2ΦTω)2, dr∧u∧(R1R1)µρ = −uµuρdr∧u∧(2ΦTω)2. (B.13)

B.2.2 Products of three curvature 2-forms

Direct calculation shows that the products of three curvature 2-forms at the 0th or 1st

order are given as follows. For the products of two (R0)’s and one (R1), (R0R0R1) = 0

and (R1R0R0) = 0 as a result of (B.8). Therefore the only nontrivial product is (R0R1R0)

which is calculated as

(R0R1R0)r r = (R0R1R0)r ρ = (R0R1R0)µ r = 0,

(R0R1R0)µ ρ = 2Φ2
Tdr ∧ u ∧ dxµ ∧ (Pρνdx

ν) ∧ (2ΦTω). (B.14)

There are three kinds of products containing one (R0) and two (R1)’s:

(R0R1R1)r r = r−1∂r(rΦT )dr ∧ u ∧ (2ΦTω)2,

(R0R1R1)µ r = r−1ΦTdx
µ ∧ u ∧ (2ΦTω)2,

(R0R1R1)r ρ = 2Ψr−1∂r (rΦT )uρdr ∧ u ∧ (2ΦTω)2, (B.15)

(R0R1R1)µ ρ = Φ′Tu
µuρdr ∧ u ∧ (2ΦTω)2 + r−1ΦTuρdx

µ ∧ dr ∧ (2ΦTω)2

+2r−1ΨΦTuρdx
µ ∧ u ∧ (2ΦTω)2,

(R1R0R1)r r = Φ′Tdr ∧ u ∧ (2ΦTω)2,

(R1R0R1)µ r = 0,

(R1R0R1)r ρ = 2ΨΦ′Tuρdr ∧ u ∧ (2ΦTω)2, (B.16)

(R1R0R1)µ ρ = Φ′Tu
µuρdr ∧ u ∧ (2ΦTω)2,

(R1R1R0)r r = r−1∂r(rΦT )dr ∧ u ∧ (2ΦTω)2,

(R1R1R0)µ r = 0, (B.17)

(R1R1R0)r ρ = 2Ψr−1∂r(rΦT )uρdr ∧ u ∧ (2ΦTω)2 + rΦTPρνdx
ν ∧ dr ∧ (2ΦTω)2,

(R1R1R0)µ ρ = r∂r(r
−1Ψ′)uµuρdr ∧ u ∧ (2ΦTω)2 + rΦTu

µu ∧ Pρνdxν ∧ (2ΦTω)2.

In the end, the product of the three (R1)’s is

(R1R1R1)r r = (2ΦTω)3,

(R1R1R1)µ r = −r−2u ∧ (ΦTω
µ
νdx

ν) ∧ (2ΦTω)2, (B.18)

(R1R1R1)r ρ = 2Ψuρ(2ΦTω)3 + 2Ψu ∧ (ΦTωρνdx
ν) ∧ (2ΦTω)2

+dr ∧ (ΦTωρνdx
ν) ∧ (2ΦTω)2,

(R1R1R1)µ ρ = r−2uρdr ∧ (ΦTω
µ
νdx

ν) ∧ (2ΦTω)2

−2r−2dr ∧ u ∧ (ΦTω
µ
σdx

σ) ∧ (ΦTωρνdx
ν) ∧ (2ΦTω)

+uµuρ(2ΦTω)3 + uµu ∧ (ΦTωρνdx
ν) ∧ (2ΦTω)2.

We also note that

dr ∧ u ∧ (R1R1R1)ab = dr ∧ u ∧ (R1)ab ∧ (2ΦTω)2. (B.19)
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B.2.3 Products of four curvature 2-forms

Let us now turn to (B.8) and consider the products of four curvature 2-forms. One imme-

diately finds that these vanish. Hence, the product of four curvature 2-forms containing

three or more (R0)’s are trivial.

For the same reason (B.8), three possible products containing two (R0)’s and two

(R1)’s, along with (R0R0R1R1), (R1R0R0R1) and (R1R1R0R0) are also trivial. By a direct

inspection we find that the other three four curvature 2-forms containing two (R0)’s and

two (R1)’s also vanish:

(R0R1R0R1) = (R0R1R1R0) = (R1R0R1R0) = 0 . (B.20)

We consider the products containing three or four (R1)’s. The special cases of

(R0R1R1R1) and (R1R1R1R0), can be reduced to products of two curvature 2-forms at

the 0th or 1st order wedged with (2ΦTω)2:

(R0R1R1R1) = (2ΦTω)2 ∧ (R0R1) , (R1R1R1R0) = (2ΦTω)2 ∧ (R1R0) , (B.21)

where the expression such as above should be understood as (R0R1R1R1)a b = (2ΦTω)2 ∧
(R0R1)a b, etc. . . The remaining products containing three (R1)’s either vanish or reduce

to products of three curvature 2-forms

(R1R0R1R1)r r = +(2ΦTω) ∧ (R1R0R1)r r, (R1R0R1R1)µ r = (R1R0R1R1)r ρ = 0,

(R1R0R1R1)µ ρ = −(2ΦTω) ∧ (R1R0R1)µ ρ, (B.22)

(R1R1R0R1)r r = +(2ΦTω) ∧ (R1R0R1)r r, (R1R1R0R1)µ r = (R1R1R0R1)r ρ = 0,

(R1R1R0R1)µ ρ = −(2ΦTω) ∧ (R1R0R1)µ ρ. (B.23)

Among the products with four (R1)’s we find that reduce to products of (R1R1) as follows

(R1R1R1R1) = (2ΦTω)2 ∧ (R1R1). (B.24)

B.2.4 General products of curvature 2-forms

Having explored several situations in previous subsections, it is interesting to shift our

calculations now to the general products — more than four products of 0th and 1st order

curvature 2-forms. These can also be categorized and, denoted by χm (m ≥ 0), according

to the m-number of (R0)’s (wedged with arbitrary number of (R1)’s) that a given product

contains. Interestingly enough, as we will show below, all general products downgrade

to products of four or fewer than four curvature 2-forms wedged with suitable powers

of (2ΦTω).

Set χ0. The element of the set χ0 is either (R1R1)k or (R1) ∧ (R1R1)k−1 where k ≥ 1.

By applying the identity

(R1R1)k+1 = (2ΦTω)2k ∧ (R1R1) , (B.25)

we can always reduce these products to

(R1), (R1R1), (R1R1R1), (B.26)

wedged with an appropriate power of (2ΦTω).
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Set χ1. In this case, we can have the following nontrivial possibilities:

(R0R12k), (R0R12k+1), (B.27)

(R12k+1
R0R12l+1), (R12k+1

R0R12l), (R12k+2
R0R12l+1), (R12k+2

R0R12l),

where k, l ≥ 0. Employing the results of the products of four curvature two-forms in

subsection B.2.3 and the subsequent relations

(R1R1)k ∧ (R1R0R1) ∧ (R1R1)l = (2ΦTω)2k+2l ∧ (R1R0R1) ,

(R1R1R0R1R1) = (2ΦTω)2 ∧ (R1R0R1) , (B.28)

we can reduce all the possibilities in this category into the following 8 objects wedged with

powers of (2ΦTω) to

(R0), (R0R1), (R1R0),

(R0R1R1), (R1R1R0), (R1R0R1), (R1R0R1R1), (R1R1R0R1). (B.29)

Set χ2. Within this subclass, there are two cases depending on whether a given product

starts with (R0) or (R1).

First we consider the four possible products beginning with (R1)

(R12k+2
R0R12l+2

R0), (R12k+2
R0R12l+1

R0),

(R12k+1
R0R12l+2

R0), (R12k+1
R0R12l+1

R0), (B.30)

where k, l ≥ 0. Similarly to the χ1 set, with the help of the aforementioned identities,

these reduce to products containing either (R1R0R1R0) or (R0R1R1R0) which vanish.

Secondly, we consider products starting with (R0). As in the preceding case, there are

four possibilities (k, l ≥ 0)

(R0R12k+2
R0R12l), (R0R12k+2

R0R12l+1), (R0R12k+1
R0R12l), (R0R12k+1

R0R12l+1).

(B.31)

Via eq. (B.20), some identities for the the χ1 set as well as

(R0R1R1R1R0) = (2ΦTω)2 ∧ (R0R1R0), (B.32)

we can show that all the non-trivial elements in (B.31) reduce to

(R0R1R0), (B.33)

wedged with its corresponding power of (2ΦTω).

Set χm with m ≥ 3. Recalling that (R0R0) = 0 for the set χm with m ≥ 3 we

essentially have the succeeding structures (where k, l ≥ 0)

(. . . R0R12k+1
R0R12l+1

R0 . . .), (. . . R0R12k+2
R0R12l+1

R0 . . .),

(. . . R0R12k+1
R0R12l+2

R0 . . .), (. . . R0R12k+2
R0R12l+2

R0 . . .), (B.34)

where . . . denotes an arbitrary products of 0th and 1st order curvature 2-forms. All of

them reduce to strings containing either (R0R1R0R1) or (R1R0R1R0) as a result of (B.28)

which in turn vanish. We thus conclude that χm = ∅ for m ≥ 3 and, in the following

arguments, we consider χ0, χ1 and χ2 only.
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B.2.5 Summary for products of curvature 2-forms at 0th and 1st order

The building blocks for products of curvature 2-forms at 0th and 1st order (that is, by

wedging them with certain power of (2ΦTω)) are

χ0 : {(R1), (R1R1), (R1R1R1)},

χ1 :
{

(R0), (R0R1), (R1R0), (R0R1R1), (R1R1R0),

(R1R0R1), (R1R0R1R1), (R1R1R0R1)
}
,

χ2 : {(R0R1R0)},

χm : ∅ (for m ≥ 3). (B.35)

This reduction of the products allows us to evaluate various quantities in general d + 1-

dimensions, as explained in the appendices C and D.

B.2.6 Traces of products of curvature 2-forms

To evaluate the Maxwell and Einstein sources, we also encounter traces of the products of

the curvature 2-forms. Once we have the products of the curvature 2-forms, the evaluation

of the traces is straightforward. Hence, for later use in our computations we will only

consider traces of products of even numbers of the curvature 2-forms.

With the help of (B.8) and the cyclic property of the trace, the only non-trivial traces

made of (R0) and (R1) are (for k ≥ 0)

tr
[
(R0R1 (R1R1)k)

]
= 2Φ′Tdr ∧ u ∧ (2ΦTω)2k+1 ,

tr
[
(R1R1)k+1

]
= 2(2ΦTω)2k+2. (B.36)

Notice that eq. (B.36) is (up to a factor of 2) exactly the same as products of zeroth and

first order gauge field

(F 0F 1(F 1F 1)k) = Φ′dr ∧ u ∧ (2Φω)2k+1 ,

(F 1F 1)k+1 = (2Φω)2k+2 , (B.37)

after we have sent Φ→ ΦT .

Finally, we want to remark that traces of elements of a set χ1 are proportional to

dr ∧ u and that of the elements of χm with m ≥ 2 are all zero.

B.3 Curvature 2-forms from the metric at 2nd and 3rd order

We consider now the curvature 2-form at the 2nd and 3rd order and summarize their prop-

erties. For these cases, it is complicated to calculate these higher order terms explicitly and

completely from the metric. Instead of the explicit calculation, we focus on the contraction

and form structure as well as in the symmetries of the curvature 2-form to figure out the

kind of terms appearing in the higher order curvature 2-forms.
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B.3.1 2nd order curvature 2-form

To discuss R at the 2nd order, let us first list out the possible 2-forms at 0th and 1st orders:

At 0th order : dr ∧ u, dr ∧ dxρ, u ∧ dxρ, dxρ ∧ dxν ,
At 1st order : ω, ωµν × (zeroth order forms). (B.38)

At 2nd order, there could be structures coming from two derivatives of the zeroth order

metric. However, since we have calculated the full contribution from the 0th order metric

(which is also valid to 1st order) to the curvature 2-form in (B.7), we only need to discuss

the form structures constructed from those appearing in the 2nd order metric and then

write the most general 2nd order curvature 2-form consistent with its symmetries. By

adding to it the explicit contributions from the 0th order metric, we can list out all the

terms that can potentially appear in the explicit calculation of the curvature 2-form at the

2nd order.

From the 2nd order metric (see eq. (A.11)), the structure of the 2-forms that could

appear at 2nd order are

ωαβωαβ × (zeroth order forms), (B.39)

∂λωµ
λ × (zeroth order forms),

ωµ
αωαν × (zeroth order forms). (B.40)

We would like to stress some other possibilities. Structures such as uν∂µω
α
ν reduce to

ωµνω
αν which have already been captured in the aforementioned classification. In principle

∂µων
αdxµ ∧ dxν should also be considered, but it will not be present due to ∂[µων]

α =

∂[µ∂ν]u
α = 0. And finally, structures like ∂αωµνdx

ν ∧ dxµ can be rewritten as ∂µων
αdxµ ∧

dxν , which are zero.

We note that the possible zero-derivative tensor structures that one can use to construct

appropriately indexed objects are

uµ, Pµν and, products among them. (B.41)

For later purpose, it is useful to classify the most general 0th order 2-form consistent

with the symmetry of the curvature 2-form. The curvature 2-form at the 0th order could

have the following structures (we ignore all non-index/non-form information)

(R0)rr = dr ∧ u, (R0)µr = (♥)uµdr ∧ u+ (♥)dr ∧ Pµσdxσ + u ∧ Pµσdxσ,
(R0)rρ = uρdr ∧ u+ Pρσdx

σ ∧ dr + (♥)Pρσdx
σ ∧ u,

(R0)µρ = uµuρdr ∧ u+ (♥)Pµρdr ∧ u− uρdxµ ∧ dr + (♥)uµPρσdx
σ ∧ dr + uρdx

µ ∧ u
+uµPρσdx

σ ∧ u+ Pρνdx
ν ∧ dxµ. (B.42)

The (♥) structures do not appear in the explicit computations from the zeroth order

metric. We denote by ‘bar’ any matrix-valued two-forms consistent with the symmetry of

the curvature 2-form including the Bianchi identity, while the un-barred one is the explicit
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result computed from our metric, i.e. (Rn) = (Rn)|(♥)→0. Notice that(
R0R0

)r
r =

(
R0R0

)r
ρ =

(
R0R0

)µ
r = 0,

(
R0R0

)µ
ρ = (♥) (Pµσdx

σ) (Pρνdx
ν) ∧ u ∧ dr.

(B.43)

In fact, (R0R0) and (R0R0) have exactly the same form structures as (R0R0) above without

any obvious simplifications. We also have

(R0R0R0) = 0. (B.44)

At second order, for example, we can have the structure of the form ωαβωαβ × (R0).

Let (R2′′) be a matrix two-form which include all possible structures constructed from

2nd order metric (as discussed above) and the contributions from the 0th order metric

calculated explicitly (i.e. (R2′) in eq. (B.7)). In all,

(R2′′)rr = ωαβωαβ(R0)rr + ∂λω
λ
σdx

σ ∧ (u+ dr),

(R2′′)µr = ωαβωαβ(R0)µr + ∂λω
λµdr ∧ u+ ∂λω

λ
σdx

σ ∧ [Pµνdx
ν + uµ (u+ dr)]

+ωµαωασdx
σ ∧ (dr + u),

(R2′′)rρ = ωαβωαβ(R0)rρ + ∂λω
λ
ρdr ∧ u+ ∂λω

λ
σdx

σ ∧ (Pαρdx
α)

+∂λω
λ
σdx

σ ∧ uρ [u+ dr] + ωρ
αωασdx

σ ∧ (dr + u),

(R2′′)µρ = ωαβωαβ(R0)µρ + ωµαωαρu ∧ dr
+ωρ

αωασdx
σ ∧ [Pµνdx

ν + uµ (u+ dr)] + ωµαωασdx
σ ∧ [Pρνdx

ν + uρ (u+ dr)]

+∂λω
λµ [uρdr ∧ u+ (Pρνdx

ν) ∧ (dr + u)]

+∂λω
λ
ρ [uµdr ∧ u+ (Pµνdx

ν) ∧ (dr + u)]

+∂λω
λ
σdx

σ ∧ [uµuρ(dr + u) + uµ(Pρνdx
ν) + uρ(P

µ
νdx

ν) + Pµρ(dr + u)]

−2c0ω
µ
ρω + c0 (ωρσdx

σ) (ωµνdx
ν) + ∂νω

µ
ρdx

ν ∧ (dr + u). (B.45)

The coefficients in the terms containing c0 are equal and fixed by the Bianchi identity. We

will only use this implication of the Bianchi identity in later computations. Note that since

(R2′′) 6= (R2) in general, when one computes (R2) explicitly from the metric (up to 2nd

order), some of the terms written above for (R2′′) might be zero. Below, we will use (R2′′)

to prove statements which are also true if we replaced (R2′′) by (R2) since (R2′′) contains

more general terms than the actual (R2). Hence, we will use (R2) directly in all equations

hereafter. The same comment applies to (R3) in the subsequent subsection.

As a next step, we calculate the product of the 2nd order term in the curvature 2-form

with the lower order terms. We first calculate the product of (R0) and (R2) and find

(R0R2)r r = 0,

(R0R2)µ r = ∂λω
λ
σdx

σ ∧ (Pµνdx
ν) ∧ dr ∧ u,

(R0R2)r ρ = ∂λω
λ
σdx

σ ∧ (Pραdx
α) ∧ dr ∧ u,

(R0R2)µ ρ = ωαβωαβ (Pµσdx
σ) ∧ (Pρνdx

ν) ∧ dr ∧ u+ (Pµσdx
σ) ∧ (ωρ

αωασdx
σ) ∧ dr ∧ u

+uµ(∂λω
λ
σdx

σ) ∧ (Pρνdx
ν) ∧ dr ∧ u+ uρ(∂λω

λ
σdx

σ) ∧ (Pµνdx
ν) ∧ dr ∧ u

+(∂λω
λ
αdx

α) ∧ (Pµνdx
ν) ∧ (Pρσdx

σ) ∧ (dr + u), (B.46)
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and

(R2R0)r r = 0,

(R2R0)µ r = ∂λω
λ
σdx

σ ∧ (Pµνdx
ν) ∧ dr ∧ u,

(R2R0)r ρ = ∂λω
λ
σdx

σ ∧ (Pραdx
α) ∧ dr ∧ u,

(R2R0)µ ρ = ωαβωαβ (Pµσdx
σ) ∧ (Pρνdx

ν) ∧ dr ∧ u+ (Pρσdx
σ) ∧ (ωµαωασdx

σ) ∧ dr ∧ u
+uµ(∂λω

λ
σdx

σ) ∧ (Pρνdx
ν) ∧ dr ∧ u+ uρ(∂λω

λ
σdx

σ) ∧ (Pµνdx
ν) ∧ dr ∧ u

+(∂λω
λ
αdx

α) ∧ (Pµνdx
ν) ∧ (Pρσdx

σ) ∧ (dr + u). (B.47)

In the latter computation, we have explicitly used the Bianchi identity relating terms with

coefficient c0. We note that all the terms in (R0R2) or (R2R0) are proportional to either

dr or u. Thus, when multiplied with terms containing dr ∧ u, as for instance (R1R0R1)

or tr[(R0R1)], all these products vanish. Moreover we notice that the trace of these two

products is zero:

tr[(R0R2)] = 0. (B.48)

Let us now consider the more complicated products containing (R2). Using the form

structures explicitly written out above, one can show that

(R0R2R0) = (R0R2R1R0) = (R0R2R1R1R0) = (R0R1R2R0) = (R0R1R1R2R0) = 0 ,

(R0R1R0R2) = (R2R0R1R0) = 0 , (B.49)

as well as

(R0R1R2)r r ∼ (R0R2)r r ∧ ω,
(R0R1R2)r ρ ∼ (R0R2)r ρ ∧ ω,
(R0R1R2)µ r ∼ (R0R2)µ r ∧ ω,
(R0R1R2)µ ρ ∼ (R0R2)µ ρ ∧ ω + (ωσ

γωγ
αωανdx

σ ∧ dxν) (Pρβdx
β)dr ∧ u ∧ dxµ,(B.50)

where by ∼ we mean that tensor and form structures are the same. In the above calculation

we have used the following properties for the lower order terms:(
R0R1R0

)r
r =

(
R0R1R0

)r
ρ =

(
R0R1R0

)µ
r = 0 ,(

R0R1R0
)µ

ρ = (Pρνdx
ν) ∧ dxµ ∧ dr ∧ u ∧ ω. (B.51)

Hence, we have

(. . . R1R0R1 . . . R0R1R2 . . .) = tr[(R0R1)] ∧ . . . ∧ (. . . R0R1R2 . . .) = 0. (B.52)

Also, since (R0R1) and (R1R0) both contain solely terms proportional to dr or u, these obey

(. . . R0R1R2 . . . R1R0 . . .) ∼ (. . . R0R2 . . . R1R0 . . .),

(. . . R0R1R2 . . . R0R1 . . .) ∼ (. . . R0R2 . . . R0R1 . . .), (B.53)
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by absorbing some ω 2-forms into the ‘. . .’). In particular, this implies

(R0R1R2R1R0) ∼ (R0R2R1R0) ∧ ω = 0, (R0R1R2R1R1R0) ∼ (R0R2R1R1R0) ∧ ω = 0.

(B.54)

Additionally, employing the relations(
R0R1R1R0

)r
r =

(
R0R1R1R0

)µ
r =

(
R0R1R1R0

)r
ρ = 0,(

R0R1R1R0
)µ

ρ = (Pρνdx
ν) ∧ dxµ ∧ dr ∧ u ∧ ω2, (B.55)

one can confirm that

(R0R1R1R2) ∼ (R0R2) ∧ ω2, (B.56)

which immediately leads to

(R0R1R1R2R0) ∼ (R0R2R0) = 0,

(R0R1R1R2R1R0) ∼ (R0R2R1R0) = 0,

(R0R1R1R2R1R1R0) ∼ (R0R2R1R1R0) = 0. (B.57)

Similarly, one can show that

tr[R1R0R2] = tr[R1R1R0R2] = 0, (B.58)

which entails, through eq. (B.50),

tr[R1R0R1R2] = tr[R1R1R0R1R2] = 0 . (B.59)

Collecting all the above results, the products containing (R2) condense to

(χ1R2χ1) = 0, tr[χ1R2] = 0, (χ2R2) = (R2χ2) = 0. (B.60)

B.3.2 3rd order curvature 2-form

For the 3rd order terms in the curvature 2-form merely a few identities, which we are going

to elaborate along this subsection, will be relevant for the arguments in this paper.

The first equality to show is

(R0R1R0R3R0) = (R0R3R0R1R0) = 0. (B.61)

Before jumping into the classification of the most general form structures of (R3), let us

discuss the structure of (R0R1R0) and (R0) in more detail. Given a matrix-valued 2-form

(M), we have the following relations:

(R0R1R0MR0)r r = (R0R1R0MR0)r ρ = (R0R1R0MR0)µ r = 0 ,

(R0R1R0MR0)µ ρ = (R0R1R0)µ σ ∧ (M)σν ∧ (R0)νρ. (B.62)

and

(R0MR0R1R0)r r = (R0MR0R1R0)r ρ = (R0MR0R1R0)µ r = 0 ,

(R0MR0R1R0)µ ρ = (R0)µν ∧ (M)νσ ∧ (R0R1R0)σ ρ, (B.63)
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where we have used the fact that, except of one term in (R0)ρµ, all the terms in (R0) are

proportional to either dr or u. Then the explicit calculation shows that

(R0R1R0)µρ(M)ρν(R0)να ∼ u ∧ dr ∧ dxµ ∧ (Pρβ(M)βνdx
ρ ∧ dxν) ∧ (Pασdx

σ),

(R0)µν(M)νµ (R0R1R0)ρ α ∼ u ∧ dr ∧ dxµ ∧ (Pρβ(M)βνdx
ρ ∧ dxν) ∧ (Pασdx

σ). (B.64)

Now, let us construct the relevant case where (M) = (R3). Since we are wedging (R3)

with dr ∧ u, the only possible form structure for (R3)αβ that survives is dxα ∧ (Pβσdx
σ).

From above, we see that if the indices of (M)ρν are carried by dxρ, Pνσdx
σ, uρ or uν ,

they will be zero after contraction with the projection matrix P or after wedging with u.

Therefore, the free indices on (M) must come from the different powers (and appropriate

contractions) of ωαβ or derivatives of ωαβ. At 3rd order, the possible two-forms can be

split in

Case I : ωα1β1ωα2β2ωα3β3dx
µ ∧ dxν , Case II : ωα1β1∂γωα2β2dx

µ ∧ dxν . (B.65)

In Case I, the two form indices can contract in two ways with ωα1β1ωα2β2ωα3β3 and

then we need to further contract two more free indices to have only two free tensor indices.

After the contraction, we are left with

ωβλω
λ
νω, or ωβλωλσωναdx

α ∧ dxσ. (B.66)

where we have used ωσαω
α
βdx

β ∧ dxσ = 0. However, we see that these terms vanish by

inserting them into eq. (B.64).

On the other hand, in Case II there is an odd number of free indices (hence cannot

reduce to an 2-index object by contracting the indices within that term). Thus at least a

contraction with uµ is necessary leaving two possibilities, either

ωα1
α2u

λ∂γωλβ2dx
µ ∧ dxν , or ωα1

α2u
γ(∂γωα2β2)dxµ ∧ dxν . (B.67)

However, since uλ∂γωλβ2 = −ωγλωλβ2 and uγ∂γωα2β2 = uγ∂α2ωγβ2 = −ωα2
γωγβ2 , Case II

reduces to Case I. We thus confirmed (B.61) which leads to

(χ2R3χ1) = (χ1R3χ2) = 0 . (B.68)

Actually, the above argument is pertinent also when we evaluate tr[(R0R1R0R3)] and

tr[(R0R3)] ∧ dr ∧ u. Due to

tr[(R0R1R0R3)] = (R0R1R0)µρ(R3)ρµ ∼ dr ∧ u ∧ ω
(
Pβµ(R3)βνdx

µ ∧ dxν
)
,

tr[(R0R3)] ∧ dr ∧ u = (R0)µν(R3)νµ ∧ dr ∧ u ∼ dr ∧ u ∧
(
Pβµ(R3)βνdx

µ ∧ dxν
)
,

and using analogous arguments as before, we conclude

tr[(R0R1R0R3)] = tr[(R0R3)] ∧ dr ∧ u = 0. (B.69)

Similarly, we can also confirm that (R0R3R0) ∧ dr ∧ u = 0, which leads to

(χ1R3χ1) ∧ dr ∧ u = 0 . (B.70)

In summary, we have shown that

(χ2R3χ1) = (χ1R3χ2) = (χ1R3χ1) ∧ dr ∧ u = tr[χ2R3] = 0. (B.71)
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B.4 General structures of trace with higher-order curvature 2-form

In the computations of Maxwell and Einstein sources, we often encounter

T ≡ tr
[
R2k

]
. (B.72)

In this subsection, we will prove that when 2nd or higher order terms of R is contained,

T vanishes at sufficiently low orders. In other words, to have a nonzero result, there is a

constraint on the total number of the derivatives in T when it contains 2nd or higher order

terms of R. As we will see in the computation of the sources, this constraint makes the

classification of the sources with 2nd and/or higher order terms of R (as well as F ) easy.

Let us notice that the trace T can take one of the following three forms (by using the

cyclic property of the trace):

TR(1) ≡ tr[χ],

TR(2) ≡ tr[υ(1)χυ(2)χ · · ·υ(j)χ · · ·υ(I)χ], (I ≥ 1),

TR(3) ≡ tr[υ(1)], (B.73)

where the symbol χ represents one of the elements in χ0 ∪ χ1 ∪ χ2, that is, it is a string

made of (R0)’s and (R1)’s only. Another symbol υ(j) is defined to represent a string made

of 2nd or higher order terms, (Rm) with m ≥ 2 (for example, (R22
R5R3)). In the following

argument, we sometimes use χm to denote an element of χm for simplicity. Let us define

NT i as the number of derivatives for the case of T = TR(i) (for i = 1, 2, 3). Then we have

the following constraints on NT i, depending on which form T takes:

• T = TR(1) :

In this case, since tr[χ2] = 0, T = tr[χ0] or tr[χ1], which means that NT1 for

nontrivial T can take two values:

– NT1 = 2k : TR(1) = tr[χ0] .

– NT1 = 2k − 1 : TR(1) = tr[χ1] ∼ dr ∧ u .

• T = TR(2) :

For T = TR(2), we will show that T vanishes for NT2 ≤ 2k and thus NT2 > 2k

is required for non-trivial T . To see this, we consider the following three cases

separately:

– NT2 ≤ 2k − 2 :

We always encounter two or more χ2’s and thus T vanishes.

– NT2 = 2k − 1 :

To avoid having more than one χ2, we must set all υ(j)’s to be (R2), one χ to

be χ2 and the rest of χ’s to be χ1. However, T in this case also vanishes as a

result of (χ2R2) = (R2χ2) = 0 (see eq. (B.60)).

– NT2 = 2k :

In order not to have more than one χ2, there are two sub-cases:
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∗ One of the υ(j)’s is (R3), the rest of the υ(j)’s are (R2)’s, one of the χ’s

is χ2 and the rest of the χ’s are χ1’s. In this case, we always encounter

(R2χ2) = (χ2R2) = 0 (see eq. (B.60)) for I ≥ 2. For I = 1 (that is, when

there is one (R3) and no (R2)’s), TR(2) = tr[R3χ2] which also vanishes

thanks to eq. (B.71).

∗ All υ(j)’s are (R2)’s. When one of χ’s is χ2 and the rest are χ1’s, we always

encounter (R2χ2) = (χ2R2) = 0. On the other hand, when all χ’s are

χ1’s, T contains (χ1R2χ1) or tr[χ1R2] and both of them are zero due to

eq. (B.71).

• T = TR(3) :

It is easy to see that NT3 satisfies NT3 ≥ 4k. The equality holds only when υ(1)

contains (R2) only.

We will use these bounds on NT i’s repeatedly in our arguments in the

subsequent sections.

C Maxwell sources

In this appendix, we present the computations of the Maxwell sources at the leading or-

der in the fluid/gravity derivative expansion using the relations summarized in the ap-

pendix B. The simplest example are the anomaly polynomials containing purely the U(1)

field strength, PCFT = cAF
n+1, on AdS2n+1, which we have already explained in sec-

tion 3. We will consider the mixed Chern-Simons terms here. We will do so by starting

with the computations of the Maxwell sources for specific examples on AdS5 and AdS9 to

complement the case of AdS7 in section 4.1.1. We then provide a general argument for any

dimensions and any mixed Chern-Simons terms to show the complete agreement with the

replacement rule. Interestingly enough, as we will show, the 2nd and higher order terms in

the U(1) field strength F and curvature 2-form R do not contribute to the leading order

computations of the Maxwell sources. Remarkably, in AdS2n+1 the leading nontrivial result

for the Maxwell sources is proportional to ωn−1.

C.1 AdS5

Let us start with AdS5 case and consider the mixed term of the form

PCFT4 = cMF ∧ tr[R2] , (C.1)

where cM is a constant (in the following examples, we also introduce constant c... or simply

c to denote coefficients in the expression of the anomaly polynomials). From this, we get

the following expression for the Maxwell source:

?JH = −cM tr[R2] . (C.2)

We first restrict ourselves to the 0th and 1st order terms of the curvature 2-forms. As

shown in appendix B the product (R0R0) = 0, therefore the leading order contribution is

?JH = −2cM tr[(R0R1)] =
d

dr
(2cMΦ2

T )(u ∧ (2ω) ∧ dr), J
(2ω)
H =

1

r

d

dr

∂(2cMΦΦ2
T )

∂Φ
, (C.3)

where ?JH is indeed of order ω1.
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Let us then take into account the higher order terms in the curvature 2-form. In this

case, it is obvious that the higher order terms in the curvature 2-form do not contribute at

order ω1 or lower.

For the Abelian Chern-Simons term discussed in section 3 and the mixed Chern-Simons

term above, a straightforward comparison with the conventions of [49] gives the follow-

ing dictionary:

−16πGN cA =
4κ

3
, −16πGN cM = 4λ ,

J =
1

r2
H

16πGN r
3T(2ω)

H
, A = − 1

rH
16πGN rJ

(2ω)
H

. (C.4)

Using these relations, one can show that our sources in eq. (3.12) and eq. (C.3) are the

same as those found by authors of [49] (assuming sign typos in W4i term in [49] ).

C.2 AdS9

As a final explicit example for the Maxwell source, we consider AdS9 case. There are three

kinds of the mixed terms in the anomaly polynomial

PCFT8 = cMF
3 ∧ tr[R2] + c̃MF ∧ tr[R2] ∧ tr[R2] + ˜̃cMF ∧ tr[R4] . (C.5)

The corresponding Maxwell source is given by

?JH = −3cMF
2 ∧ tr[R2]− c̃M tr[R2] ∧ tr[R2]− ˜̃cM tr[R4] . (C.6)

For simplicity, we will evaluate the three terms separately.

• First term (proportional to cM ):

Let us first ignore the 2nd and higher order terms in F and R. We then find that

the leading contribution to this term is

?JH = −6cM (F 0F 1) ∧ tr[(R1R1)]− 6cM (F 12) ∧ tr[(R0R1)]

=
d

dr

(
6cMΦ2Φ2

T

)
(u ∧ (2ω)3 ∧ dr) , (C.7)

which is of order ω3. Lower orders terms such as

(F 02) ∧ tr[(R1R1)] , (F 0F 1) ∧ tr[(R0R1)] , (F 12) ∧ tr[(R0R0)] ,

(F 02) ∧ tr[(R0R1)] , (F 0F 1) ∧ tr[(R0R0)] , (F 0F 0) ∧ tr[(R0R0)] , (C.8)

will all vanish as a result of (R0R0) = 0, (F 0) ∼ dr ∧ u and tr[(R0R1)] ∼ dr ∧
u. Therefore (C.7) is indeed the leading order contribution to the Maxwell source

proportional to cM .

Having identified already the leading contributions we can consider 2nd and higher

order terms of F and R. At order ω3 or lower, we encounter the following configu-

rations containing 2nd or higher order terms:

(F 02) ∧ tr[(R1R2)] , (F 0F 1) ∧ tr[(R0R2)] , (F 0F 2) ∧ tr[(R0R1)] ,

(F 1F 2) ∧ tr[(R0R0)] , (F 02) ∧ tr[(R0R3)] , (F 0F 3) ∧ tr[(R0R0)] ,

(F 02) ∧ tr[(R0R2)] , (F 0F 2) ∧ tr[(R0R0)] . (C.9)
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One can direct identify that all these vanish since (R0R0) = 0, tr[(R0R2)] = 0,

(F 0) ∼ dr ∧ u and tr[(R0R1)] ∼ dr ∧ u. We therefore determine that there is no ω3

or lower order contribution containing 2nd or higher order terms of F or R.

• Second term (proportional to c̃M ):

By considering the 0th and 1st order terms in R only, we uncover that the leading

order term of order ω3 turns out to be

?JH = −4 c̃M tr[(R0R1)] ∧ tr[(R1R1)] =
d

dr
(22c̃MΦ4

T )(u ∧ (2ω)3 ∧ dr) . (C.10)

Meanwhile, (R0R0) = 0 and tr[(R0R1)] ∼ dr ∧ u, renders trivially all lower or-

ders terms

tr[(R0R0)] ∧ tr[(R1R1)] , tr[(R0R1)] ∧ tr[(R0R1)] ,

tr[(R0R0)] ∧ tr[(R0R1)] , tr[(R0R0)] ∧ tr[(R0R0)] . (C.11)

Once we take into account the 2nd and higher order contributions to R, at ω3 or

lower order, we are faced with several possibilities

tr[(R0R0)] ∧ tr[(R1R2)] , tr[(R0R1)] ∧ tr[(R0R2)] , tr[(R0R0)] ∧ tr[(R0R3)] ,

tr[(R0R0)] ∧ tr[(R0R2)] . (C.12)

However, all of them are zero as a result of (R0R0) = 0 and tr[(R0R2)] = 0. Con-

sequently there is no ω3 or lower order contributions containing 2nd or higher order

terms of R.

• Third term (proportional to ˜̃cM ):

Disregarding the 2nd and higher order terms in F and R, we find the leading ω3

order contribution to the third term

?JH = −4˜̃cM tr[(R0R1R1R1)] =
d

dr
(2˜̃cMΦ4

T )(u ∧ (2ω)3 ∧ dr) . (C.13)

As for the lower order terms, which from (R0R0) = 0 and (R0R1R0R1) = 0 we will

conclude that these vanish, we can have terms involving

tr[(R0R0R1R1)] , tr[(R0R1R0R1)] , tr[(R0R0R0R1)] , tr[(R0R0R0R0)] .(C.14)

From the 2nd and higher order terms in R, many configurations at ω3 or lower order

are possible

tr[(R0R0R1R2)] , tr[(R0R0R2R1)] , tr[(R0R1R0R2)] , tr[(R0R0R0R3)] ,

tr[(R0R0R0R2)] . (C.15)

The entire set will be irrelevant when we considering (R0R2R0) =(R0R1R0R2)= 0

and (R02) = 0. In this way, we can say that there is no ω3 or lower order contributions

containing 2nd or higher order terms of R.
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Adding the contributions computed for each of the three terms of the AdS9 Maxwell

source, yields

?JH =
d

dr

∂

∂Φ

(
2cMΦ3Φ2

T + 22c̃MΦΦ4
T + 2˜̃cMΦΦ4

T

)
(u ∧ (2ω)3 ∧ dr), (C.16)

J
(2ω)3

H = =
1

r5

d

dr

∂

∂Φ

(
2cMΦ3Φ2

T + (22c̃M + 2˜̃cM )ΦΦ4
T

)
, (C.17)

where ?JH is of order ω3.

C.3 General argument for Maxwell sources

Previously in appendix C and section 3, we recorded explicit examples and calculated the

Maxwell sources for the mixed terms in the anomaly polynomials for dimension n ≤ 4,

corresponding to solutions up to AdS9. Now, we consider more general cases for AdS2n+1

in any dimensions.

Let us then study the mixed term in the bulk anomaly polynomial

PCFT2n+1 = cMF
l+1 ∧ tr

[
R2k1

]
∧ tr

[
R2k2

]
∧ . . . ∧ tr

[
R2kp

]
, (C.18)

where l ≥ 0, p ≥ 1 and ki > 0 (i = 1, 2, · · · , p) which might be considered in AdS2n+1 for

n = 2 ktot + l (here ktot =
∑p

i=1 ki). We will argue that the general Maxwell source is

?JH = −cM (l + 1)F l ∧ tr
[
R2k1

]
∧ tr

[
R2k2

]
∧ . . . ∧ tr

[
R2kp

]
≡ −cM (l + 1)F l ∧ T ,

where T = tr
[
R2k1

]
∧ tr

[
R2k2

]
∧ . . . ∧ tr

[
R2kp

]
. (C.19)

(1) 0th and 1st order terms only. To start we will overlook the 2nd and higher order

contributions to F andR. For the leading order contribution to the Maxwell source (C.19),

since both (F 0) and tr[χ1] are proportional to dr ∧ u and tr[χ2] = 0, we obtain

?JH = −cM (l + 1)(F 1l) ∧
p∑
i=1

(2ki)tr
[
(R12k1)

]
∧ . . .

∧tr
[
(R0R1) ∧ (R12ki−2)

]
∧ . . . ∧ tr

[
(R12kp)

]
−cM l(l + 1)(F 0) ∧ (F 1l−1) ∧ tr

[
(R12k1)

]
∧ . . . ∧ tr

[
(R12kp)

]
=

d

dr

∂

∂Φ

[
cMΦl+1(2pΦ2ktot

T )
]

(u ∧ (2ω)n−1 ∧ dr), (C.20)

which is of order ωn−1. Therefore J
(2ω)n−1

H is given by

J
(2ω)n−1

H =
1

rd−3

d

dr

∂G(2ω)n−1

∂Φ
=

1

rd−3

d

dr

∂

∂Φ

(
cMΦl+1(2pΦ2ktot

T )
)
, (C.21)

where we have used d = 2n and verified the replacement rule for G(2ω)n−1
.
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(2) 2nd and higher order terms. The next step is to show that there is no contribution

containing (R2), (F 2) or higher order terms at order ωn−1 or lower in the computation of

the Maxwell source. The underlying idea, as the number of the 2nd and higher order

terms is increased, is to add more 0th order terms to compensate which will entail the

classification of the contribution with 2nd and/or higher order terms tractable.

Recall from appendix. B.4 that the trace tr[R2ki ] can take one of the following three

forms (by using the cyclic property of the trace):

TR(1) ≡ tr[χ] ,

TR(2) ≡ tr[υ(1)χυ(2)χ · · ·υ(j)χ · · ·υ(I)χ] , (I ≥ 1) ,

TR(3) ≡ tr[υ(1)] , (C.22)

where the symbol χ represents one of the elements in χ0 ∪ χ1 ∪ χ2, while υ(j) is used to

represent a string made of 2nd or higher order terms, e.g. (R2), (R3) or higher order terms.

Without loss of generality, let us suppose that contribution from first p1 traces is of the

form TR(1) while for p1 + 1 ≤ i ≤ p2 it is of the form TR(2). Then the remaining tr[R2ki ]

contribution for p2 + 1 ≤ i ≤ p is of the form TR(3). With this ordering, after dividing T
into three parts, T = T1 ∧ T2 ∧ T3, where T1 (T2, T3, respectively) is made of the traces of

the form TR(1) (TR(2), TR(3), respectively) only, we have

T1 ≡ tr[R2k1 ] ∧ . . . ∧ tr[R2kp1 ] ,

T2 ≡ tr[R2kp1+1 ] ∧ . . . ∧ tr[R2kp2 ] ,

T3 ≡ tr[R2kp2+1 ] ∧ . . . ∧ tr[R2kp ] . (C.23)

We denote the number of derivatives contained in Ti (i = 1, 2, 3) by NTi .

Let us first consider the case where either p1 < p or p2 < p, i.e. there exists at least

one TR(2) or TR(3). The non-trivial contributions for each Ti will satisfy a lower bound on

the number of derivatives NTi . Results from appendix B.4 imply that Ti is zero unless

• T1 : NT1 =
∑p1

i=1(2ki) or
∑p1

i=1(2ki)− 1 .

In the first case, all the traces in T1 are tr[χ0]’s. In the second case, T1 contains

exactly one tr[χ1] ∼ dr ∧ u while the rest of the traces are equal to tr[χ0]’s. Since

we cannot have more than one tr[χ1], these are the only two non-trivial cases.

• T2 : NT2 >
∑p2

i=p1+1(2ki).

• T3 : NT3 ≥
∑p

i=p2+1(4ki) >
∑p

i=p2+1(2ki) .

Taking the number of the derivatives in F l to be NF , the total number of derivatives

in the Maxwell source is given by Ntot = NF + NT1 + NT2 + NT3 . In turn, two separate

cases have to be analyzed. Namely, NF ≥ l or NF < l. On one hand, for NF ≥ l,

Ntot >

p∑
i=1

(2ki) + l − 1 = 2ktot + l − 1 = n− 1 . (C.24)
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Therefore this case does not add to the Maxwell source at ωn−1 or lower order. On the

other, for NF < l, since (F 02) = 0, the only potentially non-trivial configurations are the

ones with (F l) = (F 0F 1l−1) and thus NF = l − 1. All satisfy the inequality in eq. (C.24),

except for the case where NT1 =
∑p1

i=1(2ki)−1. In this exceptional case, T1 and F l contain

tr[χ1] ∼ dr ∧ u and F 0 ∼ dr ∧ u respectively. Thus, this possibility is trivial.

The previous argument assumes that p1 or p2 are simultaneously equal to p, i.e. there

exists at least one TR(2) or TR(3). When p1 = p2 = p, the trace becomes T = T1, thus F l

needs to contain 2nd and/or higher order terms of F . However, since (F 02)=0, nontrivial

contributions to F l containing 2nd and/or higher order terms must satisfy NF ≥ l. This

implies Ntot ≥ 2ktot + l − 1. For the Ntot = 2ktot + l − 1 case, we necessarily have one

tr[χ1] ∼ dr ∧ u in T1 and also one (F 0) in F l, and thus this product is zero.

To summarize, we have confirmed that 2nd and higher order terms of F and R do not

add to the Maxwell sources at ωn−1 or lower order.

D Einstein sources

The computation of the Einstein sources is the main subject of this section. For this pur-

pose, we have to consider solely the (r, µ)-compontent of (TH )ab. As we will explain, only

the (ΣH )(rµ)
r components of (ΣH )(ab)

c will contribute to (TH )rµ. Surprisingly, (ΣH )(rµ)
r

satisfies a replacement rule which subsequently implies a replacement rule for (TH )rµ in

eq. (4.14). We will discuss how this works in appendix D.1. We then scan specific examples

in AdS2n+1 (n = 1, 2, 3, 4) in appendix D.2 to appendix D.5 where such replacement rules

are verified and consider a more general replacement rule for (ΣH )(rµ)
r in AdS2n+1 in ap-

pendix D.6 . At the end of this section, we provide a proof of some symmetry properties of

the spin Hall current used in appendix D.1 to demonstrate that only (ΣH )(rµ)
r contributes

to (TH )rµ.

D.1 Replacement rule for (ΣH)(rµ)
r

To evaluate the Einstein source, we consider the (r, µ)-component of (TH )ab defined by

(TH )rµ ≡ ∇c(ΣH )(rµ)
c = ∂c(ΣH )(rµ)

c − Γdrc(ΣH )(dµ)
c − Γdµc(ΣH )(rd)

c + Γccd(ΣH )(rµ)
d .

(D.1)

For a moment, let us assume that the only nontrivial contribution to (ΣH )(ab)
c are those

of the 0th and 1st order terms of F and R. Moreover, we also assume that the leading

order contribution to (TH )rµ is of order ωn−1 and comes only from (ΣH )(ab)
c at ωn−1

order. These two at first ad hoc assumptions will be justified in the upcoming sections by

proving two statements: (1) when only 0th and 1st order terms of F , R and the Christoffel

symbol are considered, the leading order contribution to (TH )rµ is of order ωn−1 and comes

from (ΣH )(ab)
c at order ωn−1; (2) 2nd or higher order terms of F , R and the Christoffel

connection can generate nontrivial contribution to (TH )rµ only at ωn or higher order. Then

(TH )rµ = ∂r(ΣH )(rµ)
r + r−1(d− 1)(ΣH )(rµ)

r − r−1P νµ(ΣH )(rν)
r

−Γrµc(ΣH )(rr)
c − r−1P νρ(ΣH )(νµ)

ρ − Γνµρ(ΣH )(rν)
ρ − Γrrρ(ΣH )(rµ)

ρ, (D.2)

where we have used the fact that Γaar = r−1(d− 1) and Γaaµ = 0 at the 0th order.
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From appendix D.7, we know that the leading order contributions to (ΣH )ab
c from

zeroth and first order objects satisfy several symmetry properties

(ΣH )(rr)
c = (ΣH )(rν)

ρ = P νρ(ΣH )(νµ)
ρ = 0, P νµ(ΣH )(rν)

r = (ΣH )(rµ)
r , (D.3)

yielding an expression for (TH )rµ which depends only on (ΣH )(rµ)
r, namely,

(TH )rµ =
1

rd−2

d

dr

[
rd−2(ΣH )(rµ)

r
]
. (D.4)

Based on the prior observations, we claim that

(ΣH )(rµ)
r = − 1

2rd−2

d

dr

[
r
∂G(V)

∂ΦT

]
Vµ ≡ Σ(V)

H
Vµ . (D.5)

This leads to

T(V)

H
= − 1

2rd−1
r
d

dr

[
d

dr

(
r
∂G(V)

∂ΦT

)]
= − 1

2rd−1

d

dr

[
r2 d

dr

(
∂G(V)

∂ΦT

)]
, (D.6)

which is the replacement rule for the Einstein source in eq. (4.14).

In the next sections, we will first work out some examples to verify eq. (D.5) and justify

the assumptions we have made above. We then prove this new replacement rule for the

most general AdS2n+1 case.

D.2 AdS3

The simplest situation is AdS3 with the anomaly polynomial given by

PCFT2 = cgtr[R
2] . (D.7)

The leading order contribution to (ΣH )abc can be easily found

(ΣH )abc = −2cgε
a p1p2(R0)bc p1p2 , (D.8)

which represents a ω0 order. Evaluating

(ΣH )rµ
r = +4cgΨ

′Vµ , (ΣH )µr
r = −4cg(rΨ

′′)Vµ . (D.9)

we find

Σ(V)

H
= −1

2

d

dr

[
r
∂

∂ΦT

(
2cgΦ

2
T

)]
, (D.10)

which is consistent with G(V) = 2cgΦ
2
T for the gravitational Chern-Simons term in AdS3

and confirms the replacement rule in eq. (D.5).

We note that even if we take into account 2nd and higher order terms in the Christoffel

connection or the curvature 2-form, it is obvious that there is no extra contribution at the

leading order to the Einstein source.
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D.3 AdS5

The mixed term in the anomaly polynomial in AdS5 spacetimes is

PCFT4 = cMF ∧ tr[R2] , (D.11)

which in turn gives

(ΣH )abc = −cM ε
a p1p2p3p4Fp1p2R

b
c p3p4 . (D.12)

The leading order term of (ΣH )abc is of order ω0 such that

(ΣH )′abc ≡ −cM ε
a p1p2p3p4 ∧ (F 0)p1p2(R0)bc p3p4 ∼ εa p3p4νruν(R0)bc p3p4 . (D.13)

The only non-zero component of dr∧u∧ (R0)bc is dr∧u∧ (R0)βγ ∼ dr∧u∧dxβ ∧ (Pγδdx
δ)

thus the only nontrivial components of (ΣH )′abc are

(ΣH )′αβγ ∼ εαβνδruνPγδ . (D.14)

This implies that (ΣH )′rb
c = (ΣH )′ar

c = (ΣH )′ab
r = 0, and hence the only potentially non-

trivial contribution to (TH )rµ from (ΣH )′abc is the second term in eq. (D.1), which involves

(ΣH )′(δµ)
γ . Conversely,

(ΣH )′δµ
γ ∼ εαβγνrPαδPβµuν ⇒ (ΣH )′(δµ)

γ = 0 , (D.15)

and, we conclude that (ΣH )′abc does not contribute to (TH )rµ at any order.

It is worth stressing that the aforementioned arguments are actually more general, in

the sense that the arguments follow (and play no role) whenever the spin Hall current

contains a structure of the form (ΣH )abc ∼ εap1p2···
(
dr ∧ u ∧ (R0)bc

)
p1p2··· .

To find the first non-trivial contribution to (TH )rµ we will have to calculate the sub-

leading term of the spin Hall current given by

(ΣH )abc = −cM ε
a p1p2p3p4

[
(F 0)p1p2(R1)bc p3p4 + (F 1)p1p2(R0)bc p3p4

]
≡ (Σ(1)

H
)abc + (Σ(2)

H
)abc , (D.16)

where we have divided this contribution into two pieces for later use. The first term

(Σ(1)
H

)abc, considering (F 0) = Φ′dr ∧ u, becomes

(Σ(1)
H

)µr
r = −4cM r

−2Φ′(rΦT )Vµ , (Σ(1)
H

)rµ
r = 0 , (D.17)

leading to

(Σ(1)
H

)(V) = −2cM r
−2Φ′(rΦT ) . (D.18)

The second term (Σ(2)
H

)(µr)
r can be evaluated easily by attaching (F 1) = 2Φω to the AdS3

computation in appendix D.2 and hence

(Σ(2)
H

)(V) = −2cM r
−2Φ∂r(rΦT ) . (D.19)
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Combining the two terms yields14

Σ(V)

H
= − 1

2r2

d

dr

[
r
∂

∂ΦT

(
2cMΦΦ2

T

)]
, (D.20)

showing an agreement with eq. (D.5).

As in the case of AdS3, it is obvious that 2nd and higher order terms in F , R and the

Christoffel connection add nontrivially to the Einstein source at the ω1 or lower orders.

D.4 AdS7

Now we consider AdS7 case with three different types of terms in the anomaly polyno-

mial with potential to contribute nontrivially to the Einstein source. We deal with each

term separately.

(1) PCFT6 = cMF
2 ∧ tr[R2]. The spin Hall current is denoted by

(ΣH )abc = −1

2
cM ε

ap1p2p3p4p5p6Fp1p2Fp3p4R
b
cp5p6 . (D.21)

We concentrate on the 0th and 1st order terms in F , R and the Christoffel connection

and ignore the higher orders to start. By noticing that (F 02) = 0, the leading order

contribution to the spin Hall current is of order ω1 reduces to

(ΣH )
′ab

c ≡ −cM ε
ap1p2p3p4p5p6(F 0)p1p2(F 1)p3p4(R0)bcp5p6 . (D.22)

However, as in the case of (F 0) ∧ (R0) term in AdS5 (see eq. (D.13) and below) these do

not contribute to the Einstein source at any order of the derivative expansion. Therefore,

we will only need to consider terms of order ω2 in (ΣH )abc of the form

(ΣH )abc = − 1

2
cM ε

ap1p2p3p4p5p6
[
2× (F 0)p1p2(F 1)p3p4(R1)bcp5p6

+ (F 1)p1p2(F 1)p3p4(R0)bcp5p6

]
. (D.23)

This structure is essentially the same as the AdS5 case with extra (F 1) = (2Φω) attached.

It follows that

(Σ(1)
H

)(V) = −2cM r
−4(2ΦΦ′)(rΦT ) , (Σ(2)

H
)(V) = −2cM r

−4Φ2∂r(rΦT ) , (D.24)

which add up to

Σ(V)

H
= − 1

2r4

d

dr

[
r
∂

∂ΦT

(
2cMΦ2Φ2

T

)]
, (D.25)

and also agrees with eq. (D.5).

It is interesting to see that when 2nd and higher order terms of F ,R and the Christoffel

connection are taken into account, no extra contributions to the Einstein source exist at

ω2 or lower orders. Mainly, due to (F 02) = (F 0F 2) = 0 as well as the fact that the leading

order contribution to the spin Hall current is of order ω1.

14To compare with [49], we refer the readers back to the discussion around eq. (C.4).
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Observe that we can generalize this line of thoughts to the case of PCFTd+1
= cMF

l ∧
tr[R2] in AdSd+1 (with d+ 1 = 2l+ 3): (1) the leading order term of the spin Hall current

does not contribute at any order to the Einstein source, (2) the two subleading order

contributions (which are of order ωl) to (ΣH )abc are

(Σ(1)
H

)(V) = −r2−d(lΦl−1Φ′)(2cM rΦT ) , (Σ(2)
H

)(V) = −r2−dΦl∂r(2cM rΦT ) , (D.26)

which add up to

Σ(V)

H
= − 1

2rd−2

d

dr

[
r
∂

∂ΦT

(
2cMΦlΦ2

T

)]
, (D.27)

and represent to final result which is as well in agreement with eq. (D.5), and finally (3)

the 2nd and higher order terms in F , R and the Christoffel connection do not generate

extra contribution to the Einstein source at ωl or lower orders, since (F 02) = (F 0F 2) = 0

and the fact that the leading order contribution to the spin Hall current is of order ωl−1.

(2) PCFT6 = cgtr[R2] ∧ tr[R2]. The spin Hall current is

(ΣH )abc = −cgεa p1p2p3p4p5p6Rf gp1p2Rgfp3p4Rbc p5p6 . (D.28)

As in the previous case, let us for a while consider 0th and 1st order terms in R and

the Christoffel connection only. The leading order contribution to the spin Hall current is

of order ω1 and is given by

(ΣH )
′ab

c ≡ −2cgε
ap1p2p3p4p5p6

[
tr[(R0R1)]p1p2p3p4(R0)bcp5p6

]
. (D.29)

Notice that tr[(R0R1)]∧ (R0) ∼ dr ∧u∧ (R0) and thus we can apply analogous arguments

as in the AdS5 case (see eq. (D.13) and below). Therefore, such a term does not contribute

to the Einstein source at any order of the derivative expansion. The next to leading order

term, comprises the ω2 terms of the spin Hall current, reduces to

(ΣH )abc = −cgεap1p2p3p4p5p6
[
2× tr[(R0R1)]p1p2p3p4(R1)bcp5p6

+tr[(R1R1)]p1p2p3p4(R0)bcp5p6

]
≡ (Σ(1)

H
)abc + (Σ(2)

H
)abc , (D.30)

where (Σ(1)
H

)abc and (Σ(2)
H

)abc respectively denote the first and second terms of the right

hand side of the first line.

We first evaluate (Σ(1)
H

)(V) and find

(Σ(1)
H

)(V) = −8r−4(2ΦTΦ′T )(rcgΦT ) . (D.31)

The second term (Σ(2)
H

)(V) is essentially the same as the computation in the AdS3 case,

with extra tr[(R1R1)] = 2(2ωΦT )2 attached so that

(Σ(2)
H

)(V) = −8r−4Φ2
T∂r(rcgΦT ) . (D.32)
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Combining the above two contributions, we finally obtain

Σ(V)

H
= − 1

2r4

d

dr

[
r(cg16Φ3

T )
]
, (D.33)

which again agrees with eq. (D.5).

Alike other cases in AdS7 the 2nd and higher order terms in R and the Christof-

fel connection, do not contribute to (TH )rµ at ω2 or lower orders, as of (R02) = 0 and

tr[(R0R2)] = 0 and the fact that the leading order contribution to the spin Hall current is

of order ω1.

(3) PCFT6 = c̃gtr[R4]. The spin Hall current in this case is given by

(ΣH )abc = −c̃gεap1p2...p6Rbep1p2Refp3p4Rf cp5p6 . (D.34)

The leading contribution to the spin Hall current is of order ω1 while considering only

the 0th and 1st order terms in R and Christoffel connection

(ΣH )′abc ≡ −c̃gεap1p2...p6(R0R1R0)bcp1p2...p6 . (D.35)

Identical arguments as in the previous case, since (R0R1R0) ∼ tr[(R0R1)] ∧ (R0). indicate

that (ΣH )′abc generates no contribution to (TH )rµ independently of its order. The next

order terms in (ΣH )abc are given by

(ΣH )abc = −c̃gεap1p2...p6
[
(R0R1R1)bcp1p2...p6 + (R1R0R1)bcp1p2...p6 + (R1R1R0)bcp1p2...p6

]
,

(D.36)

from which a few components are relevant to the Einstein source computation, specifically

(ΣH )rµ
r = 8c̃g(r

−4Φ3
T )Vµ , (ΣH )µr

r = −8c̃gr
−4
[
∂r
(
rΦ3

T

)
+ Φ3

T

]
Vµ . (D.37)

In the end, we find

Σ(V)

H
= − 1

2r4

d

dr

[
r
∂

∂ΦT

(
2c̃gΦ

4
T

)]
, (D.38)

which coincides with eq. (D.5).

Two results, (R02) = 0 and (R0R2R0) = 0 and the fact that the spin Hall current starts

at ω1 order, imply that the 2nd and higher order terms in R and Christoffel connection,

support no further contributions to the Einstein source at ω2 or lower orders.

D.5 AdS9

For AdS9, we consider the following two cases that have not been discussed yet.

(1) PCFT8 = c̃MF ∧ tr[R2] ∧ tr[R2]. The corresponding spin Hall current is given by

(ΣH )abc = −1

2
c̃M ε

a p1p2p3p4p5p6p7p8Fp1p2R
f
gp3p4R

g
fp5p6R

b
c p7p8 . (D.39)
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Taking the 0th and 1st order terms in the derivative expansion of F , R and Christoffel

connection we find the leading order contribution to (ΣH )abc

(ΣH )′abc ≡ −
1

2
c̃M ε

a p1p2p3p4p5p6p7p8 (D.40)

×
[
2× (F 1)p1p2tr[(R0R1)]p3p4p5p6(R0)bc p7p8

+(F 0)p1p2tr[(R1R1)]p3p4p5p6(R0)bc p7p8

]
,

which is of order ω2. Since (F 0) ∧ (R0) ∼ tr[(R0R1)] ∧ (R0), the statements employed

for AdS5 and AdS7 are applicable here as well implying that the (ΣH )′abc does contribute

trivially to the Einstein source at all orders. The next leading order (i.e. ω3 order) of the

spin Hall current becomes

(ΣH )abc = −1

2
c̃M ε

a p1p2p3p4p5p6p7p8
[
2× (F 1)p1p2tr[(R0R1)]p3p4p5p6(R1)bc p7p8 (D.41)

+(F 1)p1p2tr[(R1R1)]p3p4p5p6(R0)bc p7p8

+(F 0)p1p2tr[(R1R1)]p3p4p5p6(R1)bc p7p8

]
.

The contribution from the first two terms can be easily evaluated by attaching (F 1) =

(2Φω) to the cM term calculation of the AdS7. The resultant contribution to Σ(V)

H
is

− 8c̃M r
−6Φ∂r

(
rΦ3

T

)
. (D.42)

The third term in eq. (D.41) could be simply calculated by attaching tr[(R1R1)] =

2(2ΦTω)2 to the AdS5 result ((Σ(1)
H

)(V) for the cM term). Then the contribution to Σ(V)

H

from this term is

− 8c̃M r
−6Φ′(rΦ3

T ) . (D.43)

By combining them, the overall contribution takes the form

Σ(V)

H
= − 1

2r6

d

dr

[
r
∂

∂ΦT
(4 c̃MΦΦ4

T )

]
, (D.44)

in accord with eq. (D.5).

Let us take into account 2nd and higher order terms in F ,R and Christoffel connection.

We consider F∧tr[R2]∧R from which the spin Hall current is constructed. Then we classify

the ω3 and lower order contributions to F ∧tr[R2]∧R containing 2nd or higher order terms

as follows:

• (F 0) ∧ tr[(R0R0)] ∧ (R2), (F 2) ∧ tr[(R0R0)] ∧ (R0), (F 1) ∧ tr[(R0R0)] ∧ (R2),

(F 2) ∧ tr[(R0R0)] ∧ (R1), (F 0) ∧ tr[(R0R0)] ∧ (R3), (F 3) ∧ tr[(R0R0)] ∧ (R0)

→ vanish because tr[(R0R0)] = 0 .

• (F 0) ∧ tr[(R0R2)] ∧ (R0), (F 0) ∧ tr[(R0R2)] ∧ (R1), (F 1) ∧ tr[(R0R2)] ∧ (R0)

→ vanish because tr[(R0R2)] = 0 .

• (F 0) ∧ tr[(R0R1)] ∧ (R2)

→ vanish because both (R0) and tr[(R0R1)] are proportional to dr ∧ u.
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• (F 0) ∧ tr[(R0R3)] ∧ (R0)

→ vanish because (F 0) ∼ dr ∧ u and then tr[(R0R3)] ∧ dr ∧ u = 0.

• (F 2) ∧ tr[(R0R1)] ∧ (R0), (F 0) ∧ tr[(R1R2)] ∧ (R0)

→ do not contribute to the Einstein source since both of them are proportional to

dr ∧ u ∧ (R0)bc .

In addition to this, since the derivative expansion of the spin Hall current starts at ω2, the

2nd and higher order terms of the Christoffel connection do not generate new contribution

to the Einstein source at ω3 or lower order. We thus conclude that 2nd and higher order

terms in F , R and Christoffel connection do not contribute to the Einstein source at ω3

or lower order.

(2) PCFT8 = ˜̃cM F ∧ tr[R4]. The spin Hall current in this case is

(ΣH )abc = −1

2
˜̃cM ε

a p1p2...p8Fp1p2R
b
fp3p4R

f
gp5p6R

g
cp7p8 . (D.45)

We notice that both (F 0) and (R0R1R0) are proportional to dr∧u and all the compo-

nents of (R0R1R1) , (R1R0R1) and (R1R1R0) are linear combinations of terms proportional

to dr or u. Then the leading order term of (ΣH )abc — restricting ourselves to the 0th and

1st order terms in F , R and the Christoffel connection — is given by

(ΣH )′abc ≡ −
1

2
˜̃cM ε

ap1...p8(F 1)p1p2

[
(R0R1R0)bcp3...p8

]
, (D.46)

which is of order ω2. As in the argument for the c̃g term in the AdS7 case, (ΣH )′abc does

not contribute to the Einstein source at any order. We thus consider the next order terms,

of order ω3, in (ΣH )abc:

(ΣH )abc = −1

2
˜̃cM ε

ap1...p8(F 1)p1p2

[
(R0R1R1)bcp3...p8 +(R1R0R1)bcp3...p8 +(R1R1R0)bcp3...p8

]
−1

2
˜̃cM ε

ap1...p8(F 0)p1p2

[
(R1R1R1)bcp3...p8

]
. (D.47)

The contribution to the Einstein source from the first line (labeled by (T(1)
H

)rµ) is

evaluated essentially in the same way as the c̃g term in the AdS7 case with extra

(F 1) = (2Φω) attached

(Σ(1)
H

)(V) = − 1

2r6
(8˜̃cM )

[
Φ∂r

(
rΦ3

T

)]
. (D.48)

To evaluate the second line of (D.47) (labeled by (Σ(2)
H

)abc), we first note that (Σ(2)
H

)rbc =

uα(Σ(2)
H

)αbc = 0, since (F 0) ∼ dr ∧ u which produces

(Σ(2)
H

)µr
r = − 1

2r6
16˜̃cM [Φ′(rΦ3

T )]Vµ (Σ(2)
H

)rµ
r = 0 , (D.49)

and henceforth

(Σ(2)
H

)(V) = − 1

2r6
(8˜̃cM )

[
Φ′
(
rΦ3

T

)]
. (D.50)
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Combining (D.48) and (D.50) ultimately add to

(ΣH )(V) = − 1

2r6

d

dr

[
r
∂

∂ΦT

(
2˜̃cMΦΦ4

T

)]
, (D.51)

which agrees with eq. (D.5).

Once we take into account 2nd and higher order terms in F , R and Christoffel symbol,

then we encounter many potential nontrivial terms. Let us consider F ∧R3 from which

we construct the spin Hall current. Then we can classify the contribution of order ω2 or

ω3 with 2nd or higher order terms of F and R contained as follows:

• (F 0) ∧ (R0R2R0), (F 1) ∧ (R0R2R0) → vanish because of (R0R2R0) = 0.

• (F 2) ∧ (R0R1R0) → vanish because (F 2) ∼ dr ∧ u.

• (F 0) ∧ (R0R3R0) → vanish because of (R0R3R0) ∧ dr ∧ u = 0.

• (F 0) ∧ (R2R1R0), (F 0) ∧ (R2R0R1), (F 0) ∧ (R0R2R1), (F 0) ∧ (R1R2R0),

(F 0) ∧ (R1R0R2), (F 0) ∧ (R0R1R2)

→ vanish because all the terms appearing in (R0R1), (R1R0), (R0R2) and (R2R0)

are proportional to dr or u.

We also notice that 2nd and higher order terms in the Christoffel connection do not give

nontrivial contribution to the Einstein source at ω3 or lower order, since the spin Hall

current does not contain nontrivial ω1 or lower order terms. We thus conclude that 2nd

and higher order terms do not contribute to the Einstein source at the leading order

or lower.

D.6 General argument for Einstein sources

In this subsection, we provide a general argument to calculate the leading order contribution

to the Einstein source. In particular, we will show that 2nd and higher order terms in R,

F as well as the Christoffel connection do not contribute at this or lower orders. The

proof of this straightforward argument involves many steps. We will initially resolve the

most simple cases and construct the more elaborated and most general arguments towards

the end.

Case I: PCFT = cg tr[R2k+4] with k ≥ 0. We first consider the case with the single

trace of the curvature 2-forms. This anomaly polynomial is allowed on AdSd+1 with d =

4k + 6. Since the case of tr[R2] has been covered in details in the AdS3 example, we shall

consider k ≥ 0 here.

(1) 0th and 1st order terms only:

For a while, we assume that there is no contribution containing 2nd or higher order

terms of R and Christoffel connection. By noticing that more than two (R0)’s are

not allowed in a given wedge product of R, the derivative of the anomaly polynomial

∂PCFT/∂R
a
b at the leading order is proportional to (R0R1R0)∧(2ΦTω)2k. As in the
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previous arguments for AdS9, it does not generate any contribution to the Einstein

source at any order. We thus consider the next leading contribution to the derivative:

∂PCFT

∂Ra
b

= cg(2k + 4)
2k+2∑
i=0

(R1iR0R12k+2−i)ba (D.52)

= cg(2k + 4)
[
(R0R1R1)ba+(R1R1R0)ba+(2k+1)(R1R0R1)ba

]
∧ (2ΦTω)2k,

which is of order ω2k+2. In the second line, we have used the identities in the

appendix B. Repeating the same calculation as in the c̃g term in AdS7 case, we

obtain the corresponding contribution to the spin Hall current as follows:

(ΣH )rµ
r = +2(2k + 4)cgr

2−d(Φ2k+3
T )Vµ , (D.53)

(ΣH )µr
r = −2(2k + 4)cgr

3−d(Φ2k+2
T )

[
(2k + 2)Φ′T + r−1ΦT + r−1∂r(rΦT )

]
Vµ .

This leads to

Σ(V)

H
= − 1

2rd−2
(2cg)(2k + 4)

[
(2k + 2)(Φ2k+1

T Φ′T )(rΦT ) + Φ2k+2
T ∂r(rΦT )

]
= − 1

2rd−2

d

dr

[
r
∂

∂ΦT
(2cgΦ

2k+4
T )

]
, (D.54)

which agrees with eq. (D.5).

(2) 2nd and higher order terms:

Now let us take into account the 2nd and higher order terms in R and Christoffel

connection to show that these do not contribute at ω2k+2 or lower order of the

Einstein source. By using the same notation as in the general argument for Maxwell

source, we classify the wedge products of (2k+3) curvature 2-forms into the following

five cases (I ≥ 1):

Case A :
(
υ(1)χυ(2)χ . . .υ(I)χυ(I+1)

)
,

Case B :
(
υ(1)χυ(2)χ . . .υ(I)χ

)
,
(
χυ(1)χυ(2) . . .χυ(I)

)
,

Case C :
(
χυ(1)χυ(2) . . .χυ(I)χ(I+1)

)
,

Case D :
(
υ(1)

)
,

Case E : (χ) . (D.55)

Since Case E does not contain 2nd or higher order terms, we consider the rest of the

cases, Case A, B, C and D, one by one to show that 2nd and higher order terms do

not contribute to the Einstein source at the leading (ω2k+2) or lower order. Let us

denote the number of derivatives in the (R2k+3)ba by NR. To consider contributions

up to the order that we are interested in, we have NR ≤ 2k + 2.

• Case A:

In this case, there are one more υ(j)’s than χ’s. Let us suppose that all the

– 50 –



J
H
E
P
0
8
(
2
0
1
4
)
0
4
0

υ(j)’s are (R2). Then, for the product to be ω2k+2 or lower order, at least two

of χ’s are χ2 and thus there is no contribution from this case. When some or

all of υ(j)’s contain 3rd or higher order terms of R or are products of the 2nd or

higher order terms, we need to introduce more χ2 and thus this case does not

provide any ω2k+2 or lower order contribution to the derivative of the anomaly

polynomial ∂PCFT/∂R
a
b .

• Case B:

For Case B, the product contains the same number of υ(j)’s and χ’s. Let us

consider order ω2k+2 contribution first. Except for the case in which all the

υ(j)’s are (R2), we need to have more than one χ2 which vanishes as in the

previous case. Then, the only nontrivial possibility is when all the υ(j)’s are

(R2), while one of χ’s is χ2 and the rest are all χ1. This contribution vanishes

nevertheless as a result of (χ2R2) = (χ2R2) = 0.

For lower order than ω2k+2, we need to add more than one χ2’s and we also

have vanishing contribution.

• Case C:

This third case requires more careful treatment since the number of χ’s is one

more than that of υ(j)’s. We call the total number of the derivative in υ(j)’s as

Nυ and carry out the classification depending on the value of Nυ:

(1) Nυ = 2I:

The only allowed configuration is that all the υ(j)’s are (R2). To have or-

der ω2k+2 contribution to ∂PCFT/∂R
a
b, all the χ’s need to be χ1. Since

(χ1R2χ1) = 0, the product vanishes in this case. For lower-order contri-

butions, there always exists at least one χ2. This means that the product

contains (R2χ2) or (χ2R2) which are zero as in Case B.

(2) Nυ = 2I + 1:

The only choice of υ(j)’s is that there is one (R3) and the rest are (R2). In

this case, to have the contribution of order ω2k+2 and to avoid the appear-

ance of more than one χ2’s, we need to have one χ2 and the rest of the χ’s

need to be χ1. We first note that (R2χ2) = (χ2R2) = 0 and thus we cannot

put χ2 next to (R2) to have a nontrivial result. Then, we instead encounter

the structure of the form (χ1R3χ2) or (χ2R3χ1), which is also zero because

of eq. (B.71).

For the product to be lower order than ω2k+2, we need to introduce more

than one χ2’s and thus these contributions vanish.

(3) Nυ ≥ 2I + 2:

In any of this case, we need to have more than one χ2’s, which leads to

vanishing contribution.

• Case D:

Obviously, this case does not give any contribution of order ω2k+2 or lower.

– 51 –



J
H
E
P
0
8
(
2
0
1
4
)
0
4
0

To summarize, we confirmed that 2nd and higher order terms of R do not give any

contribution to the derivative of the anomaly polynomial ∂PCFT/∂R
a
b at ω2k+2 or

lower order. We also notice that the derivative expansion of the spin Hall current

(containing R at any order) starts at ω2k+1 and thus 2nd and higher order terms of

the Christoffel connection do not generate new contribution to the Einstein source

at ω2k+2 or lower order. Therefore, the Einstein source at ω2k+2 or lower order does

not contain the 2nd or higher order terms of R as well as Christoffel connection.

Together with the result from the AdS3 case (with tr[R2]), we have also shown that

for a product of (2k+ 1) curvature 2-forms (R2k+1), the contribution which contains

2nd and/or higher order terms of R can become nontrivial only at order ω2k+1 or

higher, i.e. NR > 2k.

Case II: PCFT = cM F l ∧ tr[R2k+4] with k, l ≥ 0. Let us now take into account

U(1) gauge field and consider the mixed term with single trace of the product of curvature

2-forms. This term in the anomaly polynomial is admitted in AdSd+1 with d = 4k+ 2l+ 6.

Since the case of F l ∧ tr[R2] has been covered in details in appendix D.4, we shall consider

k ≥ 0 here.

(1) 0th and 1st order terms only:

As in the previous case, we just consider the 0th and 1st order terms in R, F and

the Christoffel connection only. Then there are two potential leading contribution to

∂PCFT/∂R
a
b at the order ω2k+l+1. The first one is a linear combination of the terms

of the form (R0R1R0)∧ω2k+l. As in the argument for AdS9, this kind of terms does

not contribute to the Einstein source at any order. The second one is proportional

to (F 0) ∧ (R0R1) ∧ ω2k+l or (F 0) ∧ (R1R0) ∧ ω2k+l. These however vanish since

(F 0) ∼ dr ∧ u and all the terms in (R0R1) and (R1R0) are proportional to dr or u.

Therefore we focus on the subleading contribution (order ω2k+l+2) to the derivative

∂PCFT/∂R
a
b:

∂PCFT

∂Ra
b

= cM (2k + 4)

[
(F 1l) ∧

2k+2∑
i=0

(R1iR0R12k+2−i)ba

+l (F 0) ∧ (F 1l−1) ∧ (R1R12k+2)ba

]
= cM (2k + 4)

{[
(R0R1R1)ba + (R1R1R0)ba + (2k + 1)(R1R0R1)ba

]
∧(2Φω)l ∧ (2ΦTω)2k

+l(F 0) ∧ (R1)ba ∧ (2Φω)l−1 ∧ (2ΦTω)2k+2
}
. (D.56)

In the second line, we have used the identities in the appendix B.

The evaluation of the contribution to the Einstein source from the terms in the first

line is the same as in Case I, but with an extra (2Φω)l attached. Therefore, the

contribution from the first line to Σ(V)

H
is evaluated as

− 1

2rd−2
(2k + 4)(2cM )Φl∂r

(
rΦ2k+3

T

)
. (D.57)
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Similarly, the second line is essentially the same as the contribution encountered

in the AdS7 case (see (Σ(1)
H

)(V) term in the cM case) but with extra (2ΦTω)’s and

(2Φω)’s. Then we have

− 1

2rd−2
(2k + 4)(2cM )

[
(rΦ2k+3

T )∂r(Φ
l)
]
. (D.58)

Combining both terms gives

Σ(V)

H
= − 1

2rd−2

d

dr

[
r
∂

∂ΦT
((cMΦl(2Φ2k+4

T ))

]
, (D.59)

which agrees with eq. (D.5).

(2) 2nd and higher order terms:

We call the number of the derivative contained in F l as NF . Similarly as before, the

number of derivatives in the (R2k+3)ba is defined as NR. Since we are considering up

to order ω2k+l+2 contribution, we have that NF +NR ≤ 2k + l + 2. and then carry

out the classification depending of its value. For the curvature 2-form part, we use

the classification, Case A, B, C, D and E, that we introduced in Case I. Then the

classification goes as follows:

• NF < l:

Since (F 02) = 0, the only case which can give nontrivial contribution is when

NF = l − 1 (and hence NR ≤ 2k + 3) where F l = (F 0F 1l−1) ∼ dr ∧ u. Then,

to have a nontrivial result, no χ2 ∼ dr ∧ u is allowed in the product of the

curvature 2-forms. For the 2nd and/or higher order terms to be contained we

have only to consider Case A,B,C and D for the curvature 2-form part. Then

the classification goes as follows:

(1) Case A:

To have the contribution of order ω2k+l+2 or lower, we need to have at least

one χ2. We thus conclude that this type of contribution vanishes.

(2) Case B:

In order not to have any χ2, we need to set all the υ(j)’s to be (R2) and

all the χ’s to be χ1. Then we always encounter (R2χ1) or (χ1R2) which

contains terms proportional to dr or u only. Therefore this contribution

vanishes when it is wedged with (F 0).

(3) Case C:

Let us first consider the contribution with NR = 2k + 3. There are two

possible nontrivial contributions:

∗ The first one is when all the υ(j)’s are (R2), while there is only one χ0

and all the rest of χ’s are χ1. We then always encounter (R2χ1) or

(χ1R2), which means that the product vanishes when it is wedged with

(F 0) as in Case B.

∗ Another case is when one of υ(j)’s is (R3), the rest are (R2) and all

the χ’s are χ1. In this case, if there exist at least one (R2), then this
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product vanishes since (χ1R2χ1) = 0. On the other hand, when there

is no (R2), we have the structure of the form (χ1R3χ1), which also

vanishes when it is wedged with (F 0) ∼ dr ∧u as a result of eq. (B.71).

When lower order contribution is considered, there is only one case in which

no χ2 is contained: all the υ(j)’s are (R2) and all the χ’s are χ1. This case

turns out to be zero since the product contains (R2χ1) or (χ1R2), which

vanishes when it is wedged with (F 0) as in Case B.

(4) Case D:

Obviously this case does not give any nontrivial contribution to the Einstein

source at ω2k+l+2 or lower order.

• NF = l:

Due to (F 02) = (F 0F 2) = 0, it follows that F l = (F 1l). The classification of the

product of the curvature 2-form part is exactly the same as in Case I.

• NF ≥ l + 1:

Previously in Case I, we showed that second and higher order objects do not

contribute to (R2k+3) for NR ≤ 2k + 2. Since in this case NR ≤ 2k + 1 these

will similarly be trivial.

To summarize we have shown that 2nd and higher order terms in F and R do not

generate extra contribution to ∂PCFT/∂R
a
b at ω2k+l+2 or lower order. In addition to

this, we also notice that the derivative expansion of the spin Hall current (containing

R and F at any order) starts at ω2k+l+1 and thus 2nd and higher order terms of

the Christoffel connection do not generate new contribution to the Einstein source at

ω2k+l+2 or lower order. Therefore, 2nd and higher order terms in F and R as well

as the Christoffel connection do not contribute to the ω2k+l+2 or lower order of the

Einstein source.

In particular, together with the analysis from F l ∧ tr[R2], we have also shown that

in dr∧u∧ (R2k+1), the contribution which contains at least one 2nd or higher order

term of R can become nontrivial only at order ω2k+2 or higher, i.e. NR > 2k + 1.

Case III: PCFT = cg tr[R2k1] ∧ . . . ∧ tr[R2kp] with ki ≥ 1, p ≥ 2. We next turn

to the multiple traces case. We first start with the purely gravitational term admitted in

AdSd+1 with d = 4ktot − 2, where ktot ≡
∑p

i=1 ki.

(1) 0th and 1st order terms only:

To start with this computation, we ignore all terms aside from the 0th and 1st order

terms in R and the Christoffel connection. And, first consider the case with more

than two (R0)’s in the derivative ∂PCFT/∂R
a
b. We always encounter tr[χ1]∧tr[χ1] or

(χ2)∧ tr[χ1], both of which are zero since χ2 ∼ dr∧u and tr[χ1] ∼ dr∧u. Secondly,

we consider the case with two (R0)’s and find that the only nontrivial contribution to

∂PCFT/∂R
a
b is of the form (χ1) ∧ tr[χ1] or χ2 multiplied by an appropriate power

of ω. We notice that all the terms appearing in (R0R1) and (R1R0) are proportional

to dr or u and thus the only nontrivial contribution in (χ1) ∧ tr[χ1] is proportional
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to (R0) ∧ tr[(R0R1)]. Henceforth, the arguments used in the AdS7 and AdS9 cases

pertain here too, and we can conclude that these only contribute trivially to the

Einstein source at any order.

Therefore, to calculate the Einstein source at the leading order, we need only to

consider the case involving just one (R0). The derivative ∂PCFT/∂R
a
b in this case

is given by

∂PCFT

∂Ra
b

= cg

p∑
i=1

(2ki)2
p−1Sb(i)a ∧ (2ΦTω)2ktot−4 (D.60)

+ cg

p∑
i,j;i 6=j

(2ki)(2kj)2
p−1(R1)ba ∧ tr[(R0R1)] ∧ (2ΦTω)2ktot−4,

where

Sb(i)a = [(R0R1R1) + (R1R1R0) + (2ki − 3)(R1R0R1)]ba, for ki ≥ 2 ,

Sb(i)a = (R0)ba ∧ (2ΦTω)2, for ki = 1 . (D.61)

The first line of the expression for ∂PCFT/∂R
a
b is from the cases where (R0) is located

at the product of R’s (that is, not in the traces), while the second one corresponds

to the cases where (R0) is inside of one of the traces.

Without loss of generality, let Sb(i)a = (R0)ba ∧ (2ΦTω)2 for 1 ≤ i ≤ p0 (i.e. these are

the terms generated when ∂/∂Ra
b acts on a tr[R2] in PCFT) and Sb(i)a = [(R0R1R1)+

(R1R1R0)+(2ki−3)(R1R0R1)]ba, for p0+1 ≤ i ≤ p (i.e. these are the terms generated

when ∂/∂Ra
b acts on a tr[R2ki ] with ki ≥ 2 in PCFT). Then, we can further simplify

the derivative ∂PCFT/∂R
a
b as

∂PCFT

∂Ra
b

= cg

(
p0∑
i=1

ki

)
2p(R0)ba ∧ (2ΦTω)2ktot−2

+cg

 p∑
i=p0+1

ki

 2p
[
(R0R1R1) + (R1R1R0)

+(2ki − 3)(R1R0R1)
]b
a ∧ (2ΦTω)2ktot−4

+4cg

(
k2

tot −
p∑
i=1

k2
i

)
2p−1(R1)ba ∧ tr[(R0R1)] ∧ (2ΦTω)2ktot−4 . (D.62)

The contributions to Σ(V)

H
from the first two lines can be obtained from the results of

the AdS3 case as well as Case I by attaching appropriate powers of ω. The results
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combine to give

− 1

2rd−2
(cg 2p)

p∑
i=1

(2ki)
[
∂r

(
rΦ2ki−1

T

)]
(ΦT )2ktot−2ki

= − 1

2rd−2
(cg 2p)

p∑
i=1

(2ki)
[(
∂r(rΦT ) + r(2ki − 2)Φ′T

)]
(ΦT )2ktot−2

= − 1

2rd−2
(cg 2p)

{
2ktot∂r(rΦT ) + 4

[(
p∑
i=1

k2
i

)
− ktot

]
rΦ′T

}
Φ2ktot−2
T . (D.63)

For the third line of (D.62) the contributions to Σ(V)

H
can be calculated by using the

result of (Σ(1)
H

)(V) in the cg term of AdS7 by attaching appropriate power of ω and

one immediately finds

− 1

2rd−2
(cg 2p)

[
(2ktot)

2 − 4

p∑
i=1

k2
i

]
(rΦ′T )Φ2ktot−2

T . (D.64)

By adding them up, we finally have

Σ(V)

H
= − 1

2rd−2
(cg 2p)(2ktot)

[
∂r(rΦT ) + [2ktot − 2] rΦ′T

]
Φ2ktot−2
T

= − 1

2rd−2

d

dr

[
r
∂

∂ΦT
(cg 2pΦ2ktot

T )

]
, (D.65)

which agrees with eq. (D.5).

(2) 2nd and higher order terms:

Now we consider 2nd and higher order terms in R and Christoffel connection to show

that these do not generate contributions to the Einstein source at order ωn−1 =

ω2ktot−2 or lower orders. We note that terms in ∂PCFT/∂R
a
b have the following form

T ∧
(
R2k1−1

)
≡ T ∧R. (D.66)

As in the general argument for the Maxwell sources, we divide the trace part T as

T = T1 ∧ T2 ∧ T3, where T1 (T2, T3, respectively) is the wedge product of the trace

of the form TR(1) (TR(2), TR(3), respectively) only. Without loss of generality, we

have considered the term generated by acting the derivative ∂/∂Ra
b on the first trace

tr[R2k1 ]. We also let each trace tr[R2ki ] to be of the form TR(1) for 2 ≤ i ≤ p1, TR(2)

for p1 + 1 ≤ i ≤ p2 and TR(3) for p2 + 1 ≤ i ≤ p:

T1 ≡ tr[R2k2 ] ∧ . . . ∧ tr[R2kp1 ] ,

T2 ≡ tr[R2kp1+1 ] ∧ . . . ∧ tr[R2kp2 ] ,

T3 ≡ tr[R2kp2+1 ] ∧ . . . ∧ tr[R2kp ] . (D.67)

We note that in contrast with the Maxwell case, the ki in T1 starts from i = 2. We

then define NTi to be the number of derivatives contained in Ti and NR the number

of derivatives in R.
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We first study the case where either p1 < p or p2 < p is satisfied (i.e. T2 ∧T3 contains

at least one nontrivial trace and thus T contains 2nd and/or higher order terms of

R). Similarly to the general argument for the Maxwell source, we know that Ti is

zero unless:

• T1 : NT1 =
∑p1

i=2(2ki) or
∑p1

i=2(2ki)− 1

(we notice that, in the latter case, T1 contains one tr[χ1] ∼ dr ∧ u ).

• T2 : NT2 >
∑p2

i=p1+1(2ki).

• T3 : NT3 ≥
∑p

i=p2+1(4ki).

From the results in Case I, it is also known that the contributions to R containing

2nd and/or higher order terms of R become nontrivial only when NR ≥ 2k1 − 1.

When only the 0th and 1st order terms of R are considered, the possible nontrivial

configurations are R = χ0,χ1 or χ2, which correspond to NR = 2k1, 2k1 − 1 or

2k1 − 2, respectively.

Combining these results on T and R, for NR ≥ 2k1 − 1, we deduce that

Ntot > 2ktot − 2 = n− 1 . (D.68)

Therefore the contributions to ∂PCFT/∂R
a
b are of order higher than ωn−1. Let

us consider another case, that of NR = 2k1 − 2. For NT1 =
∑p1

i=2(2ki), the above

inequality (D.68) still holds while for NT1 =
∑p1

i=2(2ki)−1, the contribution vanishes

since R = χ2 ∼ dr ∧ u and T1 contains one tr[χ1] ∼ dr ∧ u.

Comments on the special case with p1 = p2 = p are in order (i.e. T does not contain

any 2nd or higher order term of R). In this case, R needs to have 2nd and/or

higher terms of R but from the result of Case I, NR ≥ 2k1 − 1 is required to have a

nontrivial result. For NT1 =
∑p

i=2(2ki), this leads to Ntot ≥ 2ktot − 1 > n − 1. For

NT1 =
∑p

i=2(2ki)− 1, we first notice that T1 contains a tr[χ1] ∼ dr ∧ u. In addition

to this, from Case II, we know that dr ∧ u ∧ (R2k1−1) with 2nd and/or higher order

term of R contained in (R2k1−1) can become nontrivial only when NR > 2k1 − 1.

Then we finally have Ntot > 2ktot − 2 = n− 1.

From the above argument we conclude that there is no nontrivial contribution to the

derivative ∂PCFT/∂R
a
b at order ω2ktot−2 (or lower) coming from 2nd or higher order

terms of R. We also notice that the Christoffel connection at the 2nd or higher order

do not generate new contribution to ∂PCFT/∂R
a
b at order ω2ktot−2 (or lower), since

the derivative expansion of the spin Hall current starts at the order ω2ktot−3.

In all, we have shown that 2nd and higher order terms in R as well as the Christoffel

connection do not give nonzero contribution to the Einstein source at the ω2ktot−2 or

lower order.

Case IV: PCFT = cM F l ∧ tr[R2k1] ∧ . . . ∧ tr[R2kp] with l ≥ 1, ki ≥ 1 and p ≥ 2.

Lastly we consider the most general form of the terms in the anomaly polynomial. This

anomaly polynomial is admitted in AdSd+1 with d = 4ktot + 2l − 2
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(1) 0th and 1st order terms only:

Ignoring the 2nd or higher terms in R, F and the Christoffel symbol we will now

consider the derivative ∂PCFT/∂R
a
b. We first show that there is no contribution to

the Einstein source at order lower than ω2ktot+l−2. Since (F 02) = 0, F l can contain

one or no (F 0). When F l contains no (F 0) (i.e. F l = (F 1l)), the argument is the

same as Case III. We next consider the case when F l contains only one (F 0). In

this case, for the curvature 2-form part, since tr[χ1] ∼ dr ∧ u and tr[χ2] = 0, no

(R0) can be put in any of the traces. Hence, all the (R0)’s need to be located in the

non-trace part. Moreover, since (R0R1R0) ∼ dr ∧ u, only one or no (R0) can be put

in that part. In the former case (in which ∂PCFT/∂R
a
b is of order ω2ktot+l−3), the

only one nontrivial possibility is when ∂PCFT/∂R
a
b is proportional to (F 0) ∧ (R0)

wedged by an appropriate power of ω. As we have seen in the AdS5 case, this does

not give any contribution to the Einstein source at any order. Therefore, we conclude

that there is no (R0) in the non-trace part, i.e. all the R’s are (R1). Hence, the first

non-trivial contribution to the Einstein source is at order ω2ktot+l−2 and is given by

ω2ktot+l−2 contribution

−cM
p∑
i=1

(2ki)2
p−1Sb(i)a ∧ (2ΦTω)2ktot−4 ∧ (2Φω)l

−cM
p∑

i,j;i 6=j
(2ki)(2kj)2

p−1(R1)ba ∧ tr[(R0R1)] ∧ (2ΦTω)2ktot−4 ∧ (2Φω)l

−cM l(F 0) ∧
p∑
i=1

(2ki)2
p−1(R1)ba ∧ (2ΦTω)2ktot−2 ∧ (2Φω)l−1, (D.69)

where

Sb(i)a = [(R0R1R1) + (R1R1R0) + (2ki − 3)(R1R0R1)]ba, for ki ≥ 2,

Sb(i)a = (R0)ba, for ki = 1. (D.70)

In (D.69), the first two lines are contributions coming from the cases with F l = (F 1l),

while the third one is from the cases with F l = (F 0F 1l−1).

On the one hand, the contributions to Σ(V)

H
from the first two lines can be obtained

by attaching (2ωΦ)l to the result of Case III. We find

− 1

2rd−2
(2ktot)(2

pcM )Φl∂r

[
r(Φ2ktot−1

T )
]
. (D.71)

On the other hand, we can evaluated the contribution from third line to Σ(V)

H
by

attaching appropriate powers of (2Φω) and (2ΦTω) to the result for the term pro-

portional to (F 0)∧ (R0)ba of ∂PCFT/∂R
a
b in Case II (see the final line of eq. (D.56))

− 1

2rd−2
(2ktot)(2

pcM )(rΦ2ktot−1
T )∂r(Φ

l) . (D.72)

Combining both contributions, that also yields an agreement with eq. (D.5), we have

Σ(V)

H
= − 1

2rd−2

d

dr

[
r
∂

∂ΦT
(cMΦl2pΦ2ktot)

]
. (D.73)
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(2) 2nd and higher order terms:

Our aim is to show that 2nd and higher order terms of R, F as well as the Christoffel

connection do not contribute to the Einstein source at order ω2ktot+l−2 or lower. For

this purpose, we carry out the classification based on the number of the derivatives

contained in F l (we denote it by NF ). For the classification of the curvature 2-

from part, we use the same notations and strategy as in Case III. Similarly to that

in Case III, let us start with the case where either p1 < p or p2 < p is satisfied.

For NF ≥ l, the arguments go through exactly as in Case III. For NF < l, since

(F 02) = 0, the only one potential nontrivial case is when F l = (F 0lF 1) ∼ dr ∧ u
(NF = l − 1). To have a nonzero result, T1 must not contain any tr[χ1] ∼ dr ∧ u
and hence the NT1 =

∑p1
i=2(2ki)− 1 case gives no contribution to ∂PCFT/∂R

a
b. For

NT1 =
∑p1

i=2(2ki), since ∂PCFT/∂R
a
b contains dr ∧ u ∧ R with R = R2k1−1, it is

known from the result of Case II that this contribute can become nontrivial only

when NR > 2k1 − 1. Then we have

Ntot > 2ktot + l − 2 = n− 1. (D.74)

For p1 = p2 = p, the same argument above goes through exactly.

Therefore, we conclude that there is no contribution to the derivative ∂PCFT/∂R
a
b

at the ω2ktot+l−2 or lower order with 2nd or higher order terms of R or F . In addition

to this, since the derivative expansion of the spin Hall current start with ω2ktot+l−3,

the 2nd and higher order terms in the Christoffel connection do not generate any

contribution to the Einstein source at ω2ktot+l−2 or lower order.

To recapitulate, we confirmed that the leading order contribution to the Einstein

source is of order ω2ktot+l−2 and does not contain 2nd or higher order terms of R and

F or any Christoffel connection.

D.7 Symmetry properties of the spin Hall current

This subsection is devoted to the prove of the symmetry properties of the Hall current

summarized in eqs. (D.3). For the benefit of the reader, we quote eqs. (D.3) below:

(ΣH )(rr)
c = (ΣH )(rν)

ρ = P νρ(ΣH )(νµ)
ρ = 0, P νµ(ΣH )(rν)

r = (ΣH )(rµ)
r . (D.75)

As confirmed in the previous sections, we know that the leading order contribution to

(ΣH )(ab)
c is at order ωn−1 and is composed of 0th and 1st order objects only. Therefore, in

this part, we will prove eqs. (D.3) for such contributions. For concreteness, we will explic-

itly mention the AdS3 case to illustrate how the proofs go. The generalization to higher

dimensions is straightforward and we highlight the analogous computations/arguments.

For AdS3 with a gravitational Chern-Simons term, the anomaly polynomial reads:

PCFT2 = cgtr[R
2] . (D.76)

To calculate the Einstein source, what we need to evaluate is

(TH )ab = ∇c(ΣH )(ab)
c , where (ΣH )abc = −2 cgε

a p1p2Rbc p1p2 . (D.77)
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The leading order contribution to (ΣH )abc is given by

(ΣH )abc = −2cgε
a p1p2(R0)bc p1p2 , (D.78)

which is of order ω0. For computational purpose, it is useful to notice that

(ΣH )ab
c = +2cgε

a p1p2(R0)cb p1p2 , (D.79)

which results from the anti-symmetric property of (ΣH )abc: (ΣH )abc = −(ΣH )acb.

For higher-dimensional AdS2n+1, as we have seen in the previous sections, in the

computations of the ωn−1 order contribution to (ΣH )abc, we encounter similar expressions

for (ΣH )abc as above but with (R0) replaced by either of (R0R1R1), (R1R0R1) or (R1R1R0)

or dr ∧ u ∧ (R1) or by a linear combination of them (wedged by an appropriate power of

ω). In all of these cases, we will show eqs. (D.75) hold.

Then the proof of eqs. (D.75) is as follows:

1. (ΣH )(rr)
c = 0:

Since (R0)cr is proportional to u, we have

(ΣH )rr
c = −uα(ΣH )αr

c ∼ uαεαp1p2(R0)crp1p2 = 0 , (D.80)

and thus (ΣH )(rr)
c = 0 for the AdS3 case.

Let us next explain generalization to the higher dimensional cases. For the case with

(R0) replaced by (R0R1R1), (R1R0R1), (R1R1R0), or dr∧u∧ (R1R1R1), this relation

holds, since (R0R1R1)cr, (R1R0R1)cr, (R1R1R0)cr and dr ∧ u ∧ (R1R1R1)cr are all

proportional to u, leading to (ΣH )rr
c ∼ uαuβεαβ··· = 0.

2. (ΣH )(rµ)
ν = 0:

To show the relation, we first evaluate the terms before symmetrization. The direct

calculation shows

(ΣH )rµ
ν = −uα(ΣH )αµ

ν = −2cguαε
αp1p2(R0)νµp1p2 = −4cg(r

−1Ψ′uµ)(εανruα) ,

(ΣH )µr
ν = −uµ(ΣH )rr

ν = −2cguµε
rp1p2(R0)νrp1p2 = 4cg(r

−1Ψ′uµ)(εανruα) ,

(D.81)

from which we have (ΣH )(rµ)
ν = 0.

For higher-dimensional computation, when (R0) is replaced by (R1R0R1) or

(R1R1R0), the components before the symmetrization are already zero. When the re-

placement is done by (R0R1R1), (ΣH )rµ
ν and (ΣH )µr

ν are nonzero but (ΣH )(rµ)
ν = 0.

In the cases of dr ∧u∧ (R1), it is straightforward to show (ΣH )rµ
ν ∼ uαuβεαβ··· = 0,

while (ΣH )µr
ν = 0 holds since (R1)νr is proportional to u.

3. P νρ(ΣH )(νµ)
ρ = 0:

Before the symmetrization, we first have

P νρ(ΣH )νµ
ρ ∼ Pρα(ΣH )αµ

ρ ∼ Pραεαp1p2(R0)ρµp1p2 = 0 , (D.82)
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since the upper index ρ of (R0)ρµ is carried either by uρ or dxρ. We also have

P νρ(ΣH )µν
ρ ∼ P νρ(R0)ρν = 0 , (D.83)

since either uρ, uν or dxρ ∧ (Pνσdx
σ) appears in all the terms in (R0)ρν . Thus we

conclude P νρ(ΣH )(νµ)
ρ = 0 holds.

For higher dimensions, when (R0) is replaced by either of (R0R1R1), (R1R0R1) or

(R1R1R0), the same arguments go through and we have P νρ(ΣH )νµ
ρ = P νρ(ΣH )µν

ρ =

0. In the case of the replacement by dr ∧ u ∧ (R1), P νρ(ΣH )νµ
ρ = P νρ(ΣH )µν

ρ = 0

hold as a result of dr ∧u∧ (R1)ρµ ∼ uρuµ. Therefore, the relation P νρ(ΣH )(νµ)
ρ = 0

is true for higher dimensions as well.

4. P νµ(ΣH )(rν)
r = (ΣH )(rµ)

r:

Lastly, from eq. (D.9) in the computation of the Einstein source in AdS3, we see that

both the lower index ν of (ΣH )rν
r and (ΣH )νr

r are carried by Pνγ . Therefore the

equality P νµ(ΣH )(rν)
r = (ΣH )(rµ)

r holds.

In higher dimensions, when (R0) is replaced by (R0R1R1), (R1R0R1) or (R1R1R0),

the lower index ν of (ΣH )rν
r and (ΣH )νr

r is still carried by Pνγ and thus the same

computations go through. In the case of the replacement by dr ∧ u ∧ (R1), we

have (ΣH )rν
r ∼ uαuβε

αβ... = 0 as well as (ΣH )νr
r = r2Pνα(ΣH )αr

r. Consequently

P νµ(ΣH )(νr)
r = (ΣH )(µr)

r holds even in higher dimensions.
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