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Abstract: Discrete residual symmetries and flavour dependent CP symmetries consistent

with them have been used to constrain neutrino mixing angles and CP violating phases.

We discuss here role of such CP symmetries in obtaining a pseudo-Dirac neutrino which

can provide a pair of neutrinos responsible for the solar splitting. It is shown that if

(a) 3 × 3 Majorana neutrino matrix Mν is invariant under a discrete Z2 × Z2 symmetry

generated by S1,2, (b) CP symmetry X transform Mν as XTMνX = M∗ν , and (c) X and

S1,2 obey consistency conditions XS∗1,2X
† = S2,1, then two of the neutrino masses are

degenerate independent of specific forms of X, S1 and S2. Explicit examples of this result

are discussed in the context of ∆(6n2) groups which can also be used to constrain neutrino

mixing matrix U . Degeneracy in two of the masses does not allow complete determination

of U but it can also be fixed once the perturbations are introduced. We consider explicit

perturbations which break Z2×Z2 symmetries but respect CP. These are shown to remove

the degeneracy and provide a predictive description of neutrino spectrum. In particular, a

correlation sin 2θ23 sin δCP = ±Im[p] is obtained between the atmospheric mixing angle θ23
and the CP violating phase δCP in terms of a group theoretically determined phase factor

p. Experimentally interesting case θ23 = π
4 , δCP = ±π

2 emerges for groups which predict

purely imaginary p. We present detailed predictions of the allowed ranges of neutrino

mixing angles, phases and the lightest neutrino mass for three of the lowest ∆(6n2) groups

with n = 2, 4, 6.
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1 Introduction

Discrete flavour symmetries have been widely used in predicting the observed patterns of

mixing among neutrinos, see [1–5] for reviews. Many of the successful schemes particularly

those involving small discrete groups, predict a leading order mixing patterns which when

perturbed can lead to the desired mixing in terms of very small unknown parameters.

Celebrated examples are tri-bimaximal mixing, bi-maximal mixing or trimaximal mixing

among neutrinos which provide a good description of neutrino mixing at the leading order.

For the neutrino masses, a good leading order description is provided by a pair of degenerate

neutrinos forming the pair responsible for the depletion of the solar neutrino flux. This

leading order mass pattern can also be derived from discrete flavour symmetries [6, 7].

See [8–10] for earlier works on two degenerate neutrinos.

Basic assumptions going in predictions of neutrino mixing are: (i) the leading order

neutrino mass matrix is invariant under a residual Z2×Z2 symmetry (ii) the charged lepton

mass matrix MlM
†
l is invariant under Zm with m > 2 and (iii) both Z2 × Z2 and Zm are

embedded in a discrete group Gf . The last condition determines the form of the generators

of residual symmetries when leptons are assigned to a definite 3-dimensional irreducible

representation of Gf . This in turn determines the exact form of the leptonic mixing matrix

U [11–15]. One can obtain a pair of degenerate neutrinos in this set up if the residual

symmetry of the neutrino mass matrix is replaced by Zn, (n > 2) group with its generating

element S having the eigenvalues (η, η∗, 1) with ηn = 1 [7]. This automatically ensures

degeneracy in two of the neutrino masses. Possible discrete subgroups of SU(3) having such

Zn and the resulting mixing patterns among neutrinos have been extensively studied in [7].

We discuss here an alternative approach in which the occurrence of a pair of degenerate

neutrinos is intimately linked to the imposition of flavour dependent CP symmetry. Flavour

dependent CP symmetries have been widely studied in recent times [16–25] (see [26] for
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a recent review) with a view to constraint neutrino mixing matrix including Majorana

neutrino phases which otherwise remain arbitrary.

In this article, we show that almost the same set up used for predicting mixing can

also be used to obtain either partially degenerate or fully degenerate neutrinos spectrum

with a judicious choice of the flavoured CP symmetry called Generalized CP (GenCP). The

analysis presented here also uses the assumptions (i-iii) outlined above and thus is used

also to constrain leptonic mixing parameters. Exact degeneracy in two of the masses makes

one mixing angle, one Majorana phase and Dirac phase unphysical. The perturbations

introduced to break degeneracy make these parameters physical and lead to predictions for

these quantities which in general depend on the magnitude and nature of perturbations.

We introduce a class of perturbations which are assumed to be invariant under GenCP.

This results into a very predictive framework in which the predicted values of CP phases

are almost independent of perturbations and mostly depend on the underlying symmetries

only. We present some examples of these based on the ∆(6n2) groups. Neutrino mixing

patterns resulting from the assumption of GenCP invariance have been derived earlier in

case of the non-degenerate neutrinos in [19, 25, 27, 28].

We describe in the next section the general conditions under which GenCP symmetry

leads to degeneracy in neutrino masses. The specific examples of such symmetries based on

∆(6n2) groups are discussed in section 3. In section 4, we discuss a class of perturbations

which lead to realistic masses and mixing pattern in a very predictive way and provide a

numerical study of such perturbations in section 5. Finally, we summarize in section 6.

2 Degenerate neutrinos from GenCP

We start with the conventional assumptions made in the symmetry based approaches.

(a) Assume that 3 × 3 Majorana neutrino mass matrix is invariant under a Z2 × Z2

symmetry generated by S1, S2:

ST1,2Mν S1,2 = Mν . (2.1)

The above conditions togather imply ST3 MνS3 = Mν , where S3 = S1S2 is also an

element of the Z2×Z2 group. We also demand that the charged lepton mass matrix

Ml is invariant under a Zm transformation generated by Tl such that

T †l MlM
†
l Tl = MlM

†
l . (2.2)

(b) Mν is invariant under GenCP X:

XT Mν X = M∗ν . (2.3)

(c) CP transformation X followed by a Z2×Z2 transformation and an inverse CP trans-

formation is equivalent to a Z2 × Z2 transformation on fields and operators. This

requires that X maps Z2 ×Z2 groups to itself [16, 17, 20]. This can happen in three

distinct ways. Either

X S∗i X
† = Si , (2.4)
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or

X S∗i X
† = Sj , X S∗j X

† = Si and X S∗k X
† = Sk , (2.5)

or

X S∗i X
† = Sj , X S∗j X

† = Sk and X S∗k X
† = Si , (2.6)

where i, j, k = 1, 2, 3 and i 6= j 6= k. No specific forms for X and Si are assumed here

except that they are unitary and S2
i = 1, SiSj = SjSi, Det.Si = 1. The conditions

in eqs. (2.4), (2.5), (2.6) are special cases of general consistency conditions which

are needed to be satisfied for consistent definition of GenCP in a discrete group

Gf [16, 17, 29–32]:

Xr ρ
∗
r(g)X†r = ρr(g

′) , (2.7)

where Xr is GenCP in representation ρr of Gf and g, g′ ∈ Gf .

We now show that neutrino mass degeneracy directly follows from these basic assump-

tions. Specifically, we prove the following result:

If eqs. (2.1), (2.3) are satisfied and X maps Z2×Z2 to itself according to

eq. (2.5) (eq. (2.6)) then the absolute masses of two (all three) neutrinos

are equal.

The proof goes as follows. For simplicity, we consider a specific case with i = 1, j = 2 and

k = 3 in eq. (2.5). Let US be a common matrix diagonalizing the commuting matrices S1,2:

U †S S1 US = Diag.(1,−1,−1) ≡ d1 , U †S S2 US = Diag.(−1, 1,−1) ≡ d2 . (2.8)

The d1,2 represent sets of eigenvalues of Z2 generators S1,2. We have chosen a specific

ordering in writing above equations. The other ordering would give results which can be

obtained by permutations of the one derived here. Eqs. (2.1), (2.8) imply

d1,2D = Dd1,2 (2.9)

with

D = UTS Mν US . (2.10)

This implies D = Diag.(m1,m2,m3). The masses mi are in general complex. The CP

transformation matrix in the diagonal basis of Mν becomes

X̃ = U †S X U∗S , (2.11)

and the constraint in eq. (2.5) with i = 1, j = 2 and k = 3 then implies

X̃ d1,2 = d2,1 X̃ . (2.12)

Using the explicit form of d1,2 as given in eq. (2.8), one finds that the most general X̃

satisfying eqs. (2.12) is given by

X̃ =

 0 p1 0

p2 0 0

0 0 p3

 . (2.13)

– 3 –



J
H
E
P
0
7
(
2
0
1
8
)
1
3
7

where pi are arbitrary phases. Eq. (2.3) can be rewritten using eqs. (2.10), (2.11) as

X̃T D X̃ = D∗ . (2.14)

Eqs. (2.13), (2.14) give:
m∗2
m1

= p21 = p22 ,
m∗3
m3

= p23 . (2.15)

Since p1,2 are phases, eq. (2.15) immediately leads to degeneracy of two masses

|m1| = |m2|

proving the above assertion.

Following the similar reasoning, it is easy to verify that a choice i = 2, j = 3, k = 1

in eq. (2.5) leads to |m2| = |m3| while i = 3, j = 1, k = 2 in the same equation would

imply |m1| = |m3|. On the other hand, if eq. (2.6) is true then the same reasoning as above

leads to

X̃ =

 0 0 p1
p2 0 0

0 p3 0

 or X̃ =

 0 p1 0

0 0 p2
p3 0 0

 . (2.16)

Substitution of either of the above X̃ in eq. (2.14) leads to equality of the absolute masses

of all three neutrinos. In the following, we confine ourselves to discussion of partially

degenerate spectrum.

Apart from implying degeneracy, eq. (2.14) also fixes phases of two of the masses in

terms of p1,2,3. The latter are determined by the structure of X and would follow once the

forms of S1,2 and the underlying discrete groups are fixed. Explicitly, let m1 = meiα with

m real and positive. Then

m2 = me−iαp−21 , m3 = m′p−13 . (2.17)

Defining

Pν = Diag.
(
e−

iα
2 , e

iα
2 p1, p

1
2
3

)
, (2.18)

UR = USPν makes the neutrino mass matrix diagonal with real positive1 entries. Now

using eq. (2.10) one gets

UTR Mν UR ≡ Diag.(m,m,m′) . (2.19)

In this basis, X̃R ≡ U †RXU∗R has the form

X̃R =

 0 1 0

(−1)l 0 0

0 0 1

 , (2.20)

with l = 0, 1 as can be explicitly checked using eqs. (2.13), (2.18). It is remarkable that

there are only two possible forms of X̃R irrespective of the underlying discrete group or

1We are assuming m′ to be positive. If not, it can be made positive by redefining the (3, 3) element

of Pν .
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the chosen residual symmetry. This result follows from the required consistency equations

in a model independent manner. The other possible X̃R are either related to the above by

permutations or by an overall change of sign. X̃R with l = 0 is symmetric and hence the

corresponding X is symmetric. On the other hand X in case of l = 1 is neither symmetric

or antisymmetric.

Conversely, if we assume two of the neutrinos to be degenerate then one could argue

that the allowed forms of X̃R are still given by eq. (2.20). Going to the basis with real and

positive masses, eq. (2.14) becomes

X̃RDR = DRX̃R ,

where DR is a diagonal matrix with real and positive entries given by |mi|. If we assume

|m1| = |m2| the allowed forms of X̃R satisfying above equations are given by

X̃R =

 cos θ sin θ 0

− sin θ cos θ 0

0 0 ±1

 ; X̃R =

 cos θ sin θ 0

sin θ − cos θ 0

0 0 ±1

 . (2.21)

The above form of X̃R implies existence of an unbroken O(2) symmetry in the neutrino

mass basis. The consistency conditions X̃R d1,2 = d2,1 X̃R which follow from eq. (2.12)

and definition of X̃R lead to θ = π
2 in both the cases and the allowed forms of X̃R reduce

to eq. (2.20). The consistency conditions break the full O(2) symmetry into its discrete

subgroups, Z2 and Z4, generated by X̃R in eq. (2.20) for l = 0 and l = 1 respectively. We

note that:

• Degeneracy here follows from eq. (2.5). If Z2×Z2 is mapped by X instead according

to eq. (2.4) then it is easy to show that the corresponding X̃R is proportional to an

identity matrix instead of non-diagonal X̃R as in eq. (2.20). In that case, eq. (2.3)

does not imply any restriction on the neutrino masses.

• A class of discrete symmetric groups leading to a degenerate mass spectrum were

identified and studied in [7] by requiring that these groups posses a generator S with

eigenvalues (η, η∗, 1), where ηm = 1 and m > 2. The chosen form of S corresponds to

non-trivial discrete subgroups of O(2) which ensures degeneracy in the masses of the

first two generations of neutrinos. The mechanism for obtaining degenerate spectrum

through CP symmetry presented here appears logically different but invariance under

S would nevertheless be present since any neutrino mass matrix with two degenerate

eigenvalues is always invariant in a suitable basis under a symmetry generated by S.

This symmetry thus is an effective symmetry in this approach.

In the next section, we discuss specific groups and CP symmetries as concrete realiza-

tion of above general discussions.

3 Degenerate pair of neutrinos in ∆(6n2) groups

The ∆(6n2) as possible flavour symmetry groups are widely studied [33–35]. In particular,

all possible CP and residual neutrino Z2×Z2 symmetries in ∆(6n2) have been extensively
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studied with a view to constrain neutrino Majorana phases [20]. Here we show that a

subclass of CP symmetries identified in [20] actually satisfy the conditions of theorem

derived in the previous section and hence lead to a degenerate pair of neutrinos. For this

purpose, we closely follow the notation of [20, 34].

The groups in ∆(6n2) series can be constructed from three generators a, b, c satisfying

a3 = b2 = (ab)2 = cn = 1 .

It is convenient to define d = a2ca satisfying aca2 = c−1d−1. We shall be using a specific

three dimensional representation for these:

a =

 0 1 0

0 0 1

1 0 0

 , b = −

 0 0 1

0 1 0

1 0 0

 , c =

 η 0 0

0 η∗ 0

0 0 1

 , d =

 1 0 0

0 η 0

0 0 η∗

 , (3.1)

with ηn = 1. We consider specific Klein groups K = (1, c
n
2 , abcγ , abcγ+

n
2 ) with γ =

0, 1, . . . , n2 − 1 which are obtained as subgroups of an underlying ∆(6n2) group with only

even values for n. Of these, we specifically choose the neutrino symmetries as

S1 = abcγ =

 0 −η−γ 0

−ηγ 0 0

0 0 −1

 ; S2 = abcγ+
n
2 =

 0 η−γ 0

ηγ 0 0

0 0 −1

 . (3.2)

The allowed set of CP symmetries satisfying the consistency conditions are also identified

in [20] as

(X1, X2, X3, X4) ≡ (cxd2γ+2x, abcxd2x, cxd2x+2γ+n
2 , abcxd2x+2γ+n

2 ) , (3.3)

where x = 0, 1, . . . , n− 1 and we have neglected an overall phase. All the four Xi map the

Klein group into itself and X3,4 satisfy eq. (2.5):

X3,4 S
∗
1,2X

†
3,4 = S2,1 .

This can be verified from the explicit 3-dimensional representation in eq. (3.2) and the

form of X3,4 :

X3 =

 ηx 0 0

0 −ηx+2γ 0

0 0 −η−2x−2γ

 ; X4 =

 0 ηx 0

−ηx 0 0

0 0 η−2x

 . (3.4)

Both these symmetries must lead to a degenerate pair. This is explicit from the construction

of neutrino mass matrices satisfying eqs. (2.1), (2.3) with X as X3 and X4. In case of X3

one gets

M0ν = m0

 Aη−x iBη−x−γ 0

iBη−x−γ Aη−x−2γ 0

0 0 Cη2x+2γ

 . (3.5)
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Here A, B, C are required to be real. For X4, imposition of eq. (2.3) leads to the follow-

ing form:

M0ν = m0

 Aη−x iBη−x 0

iBη−x Aη−x 0

0 0 Cη2x

 , (3.6)

with real A,B,C. These matrices lead to a degenerate pair.2 It is to be noted that just the

generalized CP invariance alone is sufficient to give degeneracy in case of X4. Imposition

of the residual symmetries S1,2 invariance further leads to A = 0 in eq. (3.6) for γ 6= 0 in

S1,2. For γ = 0 in S1,2, eq. (3.6) is also invariant under S1,2.

4 GenCP invariant perturbations

The residual Klein symmetry along with particular Zm symmetry of MlM
†
l lead to predic-

tion of vanishing Dirac CP phase [34, 35] in ∆(6n2) groups. The additional use of GenCP

further lead to predictions of the Majorana phases [20]. These predictions hold strictly

only for the non-degenerate neutrino masses and would not be true in cases of specific

CP symmetries X3,4 which imply degeneracy since in this case Dirac CP and one of the

Majorana CP phases can be rotated away. One therefore needs perturbations which break

degeneracy. We consider here a very specific class of perturbations which break the residual

Z2 × Z2 symmetry of Mν but preserve the GenCP invariance. As we will show, this class

of perturbations lead to a departure from degeneracy but lead to very definite prediction

of Dirac CP phase in terms of the atmospheric mixing angle irrespective of the values of

perturbing parameters.

We assume the neutrino mass matrix Mν to be

Mν = M0ν + δMν . (4.1)

Here, M0ν is assumed to satisfy eqs. (2.1), (2.3) and thus has the form given in eq. (3.5).

δMν only satisfies eq. (2.3):

XT
3 δMν X3 = δM∗ν . (4.2)

We do not consider here X4 since in this case the most general matrix Mν invariant under

X4 alone leads to degeneracy as shown in the earlier section. Types of perturbations

considered here are thus not sufficient to give correct neutrino mass spectrum in case of X4.

The explicit form of X3 given in eq. (3.4) leads to the following general neutrino

mass matrix:

Mν = m0

 Aη−x iBη−x−γ iε1η
γ+x

2

iBη−x−γ A(1 + ε3)η
−x−2γ ε2η

x
2

iε1η
γ+x

2 ε2η
x
2 Cη2x+2γ

 . (4.3)

Here ε1,2,3 are required to be real. We have also redefined A,B,C to absorb some of

the redundant parameters implied by perturbations. As seen from above, the general

2Neutrino mass matrices invariant under X3,4 and S1,2 were earlier derived in [20]. These matrices did not

contain a relative factor of i present here between the off-diagonal and diagonal elements in eqs. (3.5), (3.6).

This factor leads to degeneracy which should occur in these cases as argued on general grounds.
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perturbations in this case are characterized by three real parameters. It was shown in [25,

28] that GenCP invariant perturbations in case of X1,2 can be described by an orthogonal

matrix containing three angles. This is true in this case also. We notice that Mν in eq. (4.3)

can be made real by multiplying it with a diagonal phase matrix P :

P = Diag.
(
η
x
2 ,−iη

x
2
+γ , iη−x−γ

)
, (4.4)

P TMνP = m0

 A B −ε1
B −A(1 + ε3) ε2
−ε1 ε2 −C

 . (4.5)

This matrix being real and symmetric, can be diagonalized by an orthogonal matrix. It

follows from eqs. (4.3), (4.5) that the matrix diagonalizing Mν has the form

Uν = POK , (4.6)

where O is a real orthogonal matrix which diagonalizes the matrix, Eq. (4.5) and K is a

diagonal matrix with elements ±1 or ±i which is introduced to make the eigenvalues of

Mν positive. The leptonic mixing matrix is given by

UPMNS ≡ U = U †l Uν = U †l POK . (4.7)

Here Ul can be determined from eq. (2.2) in terms of the matrix which diagonalize Tl.

A diagonal Tl implies a trivial Ul which leads to vanishing θ23 and θ13 in the absence of

perturbations as can be seen from eqs. (3.5), (4.6), (4.7). Viable θ23 would then require

large corrections and therefore we do not consider this case. There exist two classes of

non-diagonal Zm in ∆(6n2) which can be chosen as Tl. These have the general form in the

basis defined by eq. (3.1):

Tl =

 0 η1 0

0 0 η2
η3 0 0

 or Tl = −

 0 0 η1
0 η3 0

η2 0 0

 , (4.8)

with η1η2η3 = 1. The first set of Tl is chosen as a proper symmetry in the discussion of

non-degenerate neutrinos [20, 34, 35]. Here we argue that the second type of Tl or its

permutations are the only viable choices if we assume that perturbations are small and

their role is to provide small corrections to zeroeth order mixing. For this, we note that O

is a block diagonal matrix with Oa3, O3a zero for a = 1, 2 in the absence of perturbations,

see the form of M0ν , eq. (3.5). The third column of O is thus given by ψ = (0, 0, 1)T

and this represents the eigenvector for the non-degenerate mass. It then follows that U †l ψ

should provide a good leading order approximation to the third column of U . If Tl is chosen

as the first set of matrix then the absolute value of all the elements of Ul is 1√
3

and the

|U †l ψ| is also democratic implying sin2 θ13 = 1
3 . This would require large corrections. If Tl

is chosen in the second category, then the corresponding Ul can be written as

Ul =
1√
2

 0 1 −η1λ∗√
2 0 0

0 λη∗1 1

 . (4.9)
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Here, λ = (η1η2)
1
2 and three columns of above Ul correspond to eigenvectors with eigenval-

ues −λ∗2, λ,−λ respectively. Given this Ul, |U †l ψ| is given by 1√
2
(0, 1, 1) corresponding to

vanishing (maximal) θ13 (θ23) at the leading order. This can get corrected to the desired

values after small perturbations.

If neutrinos are non-degenerate, then above Ul alongwith S1,2 given in eq. (3.2) leads

to bi-maximal mixing pattern as long as Tl is not Z2. This predicts maximal solar angle

which would need to be corrected by large perturbations. In the present case, solar angle

remains undetermined at the leading order due to degeneracy and could get corrected by

small perturbations.

One can construct the mixing matrix U using Uν and Ul respectively from eqs. (4.6)

and (4.9). The elements of U are given as follows:

Uej = −iηγ+
x
2O2j ,

Uµj =
η
x
2

√
2

(O1j + pO3j) ,

Uτj =
−λη∗1η

x
2

√
2

(O1j − pO3j) , (4.10)

where j = 1, 2, 3 and p = iλ∗η1η
−γ− 3x

2 . By comparing above U with standard parameteri-

zation of it as given by [36] one arrives at the following relations:

sin 2θ23 sin δCP = ±Im[p] ,

sinα21 = sin(α31 − 2δCP ) = 0 ,

cos 2θ23 = sinχ
(
1− Im[p]2

) 1
2 , (4.11)

where tanχ = O13
O33

. It is seen from the first two equations that the CP violating phases are

predicted solely in terms of a group theoretical phase p and θ23. The latter depends upon

perturbation if p is not purely imaginary. One obtains the µ-τ reflection symmetry [37–44]

(see also [45] for a recent review) results

±δCP = 2θ23 =
π

2
, sinα21 = sinα31 = 0

for special class of residual symmetries for which p is purely imaginary. While this symme-

try is close to the observed values there already exists hints on its small breaking since the

best fit values of θ23 is found to be different from the maximal values for both the orderings

in neutrino masses [46]. For n = 2, the group ∆(6 × 22) ≡ S4 leads to either real or pure

imaginary p as can be seen from figure 1. The first of these implies δCP = 0 while the latter

leads to residual unbroken µ-τ reflection symmetry even in the presence of perturbations as

discussed above. Groups with higher n contain other values of p in additions to the ones in

S4. For example, n = 4 has Im[p] = ± 1√
2

and n = 6 contains Im[p] = ±1
2 and ±

√
3
2 . These

values may be taken as approximate predictions of sin δCP since the allowed 3σ range for

sin 2θ23 is quite narrow (0.97-1.0) [46] and hence sin δCP is nearly close to Im[p]. The exact

values depend on details of perturbations. We study these in the next section.
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Figure 1. The values of ±Im[p] predicted by the groups of ∆(6n2) series for even n, and n ≤ 50.

We note that correlation similar to the first of eq. (4.11) was also derived in [37]

by imposing a specific CP symmetry on the neutrino mass matrix in the flavour basis.

Imposing our CP symmetry X3 in symmetry basis is equivalent to imposing a symmetry

X3f ≡ U †l X3U
∗
l in the flavour basis with diagonal charged lepton mass matrix, where Ul is

given by eq. (4.9). Explicitly

X3f =


ηx+2γ 0 0

0 eiβ cos θ iei
β+α
2 sin θ

0 iei
β+α
2 sin θ eiα cos θ

 , (4.12)

where sin θ = Im[p] = Im[iλ∗η1η
−γ− 3x

2 ], eiβ = λ∗η1η
−x/2−γ and eiα = λη∗1η

−x/2−γ . This

has the same form as the generalized µ-τ reflection symmetry introduced in [37] and cor-

relation derived by them coincide with our eq. (4.11) with an important difference. θ, β,

γ introduced by them are arbitrary parameters while here they are determined by group

theory. As a result, one predicts definite pattern of the µ-τ symmetry breaking since the

phase factor p takes specific discrete values based on the chosen group and residual symme-

tries. The values of real and imaginary parts of p predicted by the first few groups of the

group series ∆(6n2) which possess 3-dimensional irreducible representations are displayed

in figure 1. We have displayed only the groups with even n since the groups with odd n do

not contain any Klein groups as subgroups.

5 Numerical study of GenCP invariant perturbations

The perturbations to M0ν characterized by eq. (4.2) are also expected to induce viable solar

neutrino mass scale. We investigate this by performing numerical study of the neutrino

– 10 –
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Figure 2. Correlations between the effective neutrinoless double beta decay mass and the lightest

neutrino mass in case of n = 2 (with γ = 0, x = −η1 = η2 = 1). The left (right) panel corresponds

to εmax = 0.02 (0.1). The black points in both the panels are in agreement with the results of a

global fit [46] of neutrino oscillation parameters within 3σ.

mass matrix Mν given in eq. (4.3). The parameters A, B and C are chosen from uniform

random distributions of real numbers in the range from ±0.1 to ±1.0. The perturbation pa-

rameters are also randomly chosen such that |εi| ≤ εmax where i = 1, 2, 3 and we study cases

for εmax = 0.02 or 0.1. With this choice, it is ensured that the magnitude of perturbation

parameters is always smaller than that of A, B and C. Several sample points are generated

and for each point the parameter m0 in eq. (4.3) is determined using the known value of

atmospheric squared mass difference, ∆m2
31 = 2.494×10−3 eV2 (∆m2

23 = 2.465×10−3 eV2)

in case of normal (inverted) ordering in the neutrino masses. Here, ∆m2
ij ≡ m2

i −m2
j and

we use the observed values from the latest global fit results NuFIT 3.2 (2018) [46]. We then

compute neutrino masses and mixing using numerical Mν and Ul given in eq. (4.9). The

results obtained for some small groups in ∆(6n2) group series corresponding to n = 2, 4, 6

are displayed in figures 2–4.

The correlations between the effective mass of neutrinoless double beta decay |mββ |
and the lightest neutrino mass are displayed in figure 2 in case of S4 group and for small

and large perturbations. The region shown by the horizontal gray band is disfavoured

by the combined limit obtained from different neutrinoless double beta decay experiments

at 90% confidence level [47]. The vertical gray band represents the region excluded by

the limit on the sum of neutrino masses obtained from the latest results from PLANCK

experiment, baryon acoustic oscillations and type Ia supernovae [48]. The regions shaded

by green and red colours are generically allowed when the Dirac and Majorana phases

are unconstrained in case of normal and inverted ordering in neutrino masses respectively.

The scattered points in figure 2 are in agreement with the 3σ ranges of global fit [46]

values of solar and atmospheric mass differences and all three mixing angles. It can be

seen that the small values of perturbations, corresponding to εmax = 0.02, require nearly
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Figure 3. The results for n = 4 (with γ = 0, x = −η1 = η2 = 1) and εmax = 0.1. In the

left panel, the orange circles (green crosses) correspond to the normal (inverted) ordering in the

neutrino masses. All these points are in agreement with global fit values of ∆m2
21, ∆m2

31, θ12 and

θ13 within 3σ. The region between the vertical dashed lines correspond to experimentally allowed

3σ range of sin2 θ23. The black contours represent the correlation given by the first of eq. (4.11). In

the right panel, all the points are in agreement with the results of global fit of neutrino oscillation

data within 3σ.

degenerate mass spectrum for all the three neutrinos which is almost disfavoured by the

considered limit on the sum of neutrino masses. Increasing the magnitude of perturbations

helps in evading this constraint. However one obtains lower limit on the lightest neutrino

mass: mν1 > 0.015 eV for normal ordering and mν3 > 0.005 eV for inverted ordering if the

magnitude of perturbation is smaller than that of the leading order parameters. This case

predicts maximal values for θ23 and δCP and vanishing Majorana phases irrespective of the

magnitude of perturbation and therefore it is easily falsifiable in many ways.

We also perform similar numerical investigations for some cases which provide alterna-

tive predictions for θ23 and δCP. We choose the groups in ∆(6n2) series corresponding to

n = 4, 6. As it can be seen from figure 1, this choice offer three distinct values for p, one for

n = 4 and two for n = 6, which are neither real nor imaginary. In these cases the predicted

value of θ23 depends on the perturbations and the values of CP phases are determined by

the correlation predicted in the first two of eq. (4.11). The results are displayed in figure 3

for n = 4 and in figure 4 for n = 6. It is noticed that correlation between |mββ | and the

lightest neutrino mass remains almost similar in all these cases.

There exists a lower limit on the lightest neutrino mass if the size of perturbations is

restricted. As it can be seen from eq. (4.5), this is a generic feature of obtained neutrino

mass matrix independent of a choice of group parameters. From eq. (4.5), one obtains the
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Figure 4. Same as figure 3 but for n = 6 (with −η1 = η2 = 1, γ = 1 and x = 1, 2).

following expressions for the neutrino masses at the leading order in εi:

m2
ν1 = m2

0

(
A2 +B2 + ε3A

2

(
1−

√
1 +

B2

A2

)
+O(ε2i )

)
,

m2
ν2 = m2

0

(
A2 +B2 + ε3A

2

(
1 +

√
1 +

B2

A2

)
+O(ε2i )

)
,

m2
ν3 = m2

0

(
C2 +O(ε2i )

)
. (5.1)

Note that splitting between mν1 and mν2 is induced by only ε3 at the leading order while

ε1,2 contribute at the second order. The above masses imply the following relation between

the solar squared mass difference and mν1 .

∆m2
21 = m2

ν1

(
2ε3√

1 +B2/A2
+O(ε2i )

)
. (5.2)

The above relation implies that mν1 cannot be arbitrary small for finite value of ε3 for

nonzero ∆m2
21. For O(1) values of parameters A and B, one obtains mν1 >∼ 0.05 (0.015)

eV for ε3 <∼ 0.02 (0.1) from eq. (5.2) which sets lower bound on the mass of the lightest

neutrino in case of normal ordering. In case of inverted ordering, a lower bound on the

lightest neutrino mass arises if |C| > |εi| is assumed as seen from eq. (5.1). The above

observations are in agreement with the numerical results discussed earlier in this section.

6 Summary

Flavour symmetries with or without CP have been widely used for prediction of the leptonic

mixing angles and phases. We have shown here that the flavour dependent CP symme-

tries can also play a role in restricting neutrino masses and can lead to a partially or fully

degenerate neutrino spectrum. We have studied this in a general set up independent of
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any specific groups and discussed underlying constraints. The degeneracy follows from the

conventional assumptions, eqs. (2.1), (2.3) made in the standard approaches [16, 17, 20]

proposed to constrain neutrino mixing parameters. The only specific additional require-

ment is either eq. (2.5) or eq. (2.6) which imply degeneracy in the masses of two or three

neutrinos respectively. We have elaborately discussed a case which leads to degenerate

solar neutrino pair. The ∆(6n2) groups with even n provide concrete examples of general

set up discussed here. GenCP symmetries implying partially degenerate neutrinos within

these groups were already discussed in [20] but the occurrence of two degenerate neutrinos

within them was not noticed.

The symmetries envisaged here can also be used for predictions of the neutrino mixing

angles and phases. However, a complete determination of these requires perturbations to

break degeneracy in masses. We have discussed specific perturbations in ∆(6n2) which

break the residual Klein symmetry of Mν but preserve the underlying CP symmetry. Even

after perturbations, the GenCP invariance of the full mass matrix Mν leads to predictions

of CP violating phases δCP , α21, α31 in terms of a group theoretical phase factor and

the atmospheric mixing angle θ23. The phenomenologically interesting scenario of residual

generalized µ-τ symmetry, which predicts maximal sin 2θ23 and δCP , is obtained as a special

case here. Detailed predictions of ∆(6n2) groups for n = 2, 4, 6 are numerically studied

taking into account constraints on neutrino masses and mixing parameters from the latest

global fits to neutrino oscillation data. The smallest group S4 predicts sin2 θ23 = 1/2 and

δCP = ±π/2, even in the presence of CP invariant perturbations. The same predictions

can also be obtained by any of the groups in ∆(6n2) series with even n. The groups with

higher order can lead to progressively smaller values of sin δCP as well. For all the cases

studied here, it is found that the smallness of the size of perturbations puts lower bound

on the mass of the lightest neutrino. Therefore, the predictions made here can be tested

not only from the precise measurements of atmospheric angle and Dirac CP phase but also

from the experiments sensitive to the absolute scale of the neutrino masses.
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