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1 Introduction

In a quantum field theory, scalar fields typically have unprotected masses and are naturally

heavy due to quantum corrections. Current LHC results pose challenges to supersymme-

try (SUSY) as the solution of this hierarchy problem. Although model building or hidden

experimental signatures1 may rescue SUSY, it is both interesting and well motivated to

study the possibility of novel SUSY breaking mechanisms that keep the Higgs mass pro-

tected. In this paper, motivated by the AdS/CFT correspondence, we propose a mecha-

nism to preserve light scalar fields using a special form of explicit SUSY breaking. In fact,

we show that there are moduli — scalar fields with exactly flat potentials — in a non-

supersymmetric theory. This is surprising, and we will explain how quantum corrections

cancel for these moduli.

Our model is a three-dimensional supergravity theory in anti-de Sitter (AdS) space-

time, which is dual to a two-dimensional conformal field theory (CFT) on the asymptotic

boundary. It incorporates a boundary deformation, so that the full action is

S = S0 +
h

2

∫

bdy
A ∧ Ã . (1.1)

S0 is the action of the undeformed theory in the AdS3 bulk, h is the coupling con-

stant governing the strength of the deformation, and Aµ, Ãµ are Chern-Simons gauge

fields that respectively satisfy self-dual and anti-self-dual boundary conditions in the un-

deformed theory.

The undeformed supergravity theory has at least N = 2 supersymmetry and a gauged

U(1)L×U(1)R R-symmetry group. If we choose Aµ and Ãµ to be the vector potentials cou-

pled to the R-symmetry currents, the deformation (1.1) explicitly breaks all supersymme-

tries present in the undeformed theory. As a physical demonstration of the supersymmetry

breaking effect, we calculate the mass shifts of fields in a supermultiplet due to (1.1) and

show that they are incompatible with a supersymmetric spectrum. Bulk coupling constants

also shift.

Although supersymmetry is completely broken by the deformation (1.1), scalar fields

that are moduli in the undeformed theory continue to have exactly flat potentials after

the deformation. In particular, this means that these scalar fields remain exactly massless

even after all supersymmetries are broken in the theory.

The key to our mechanism is the Chern-Simons field which has no bulk degrees of

freedom. In AdS/CFT this has the immediate consequence that the bulk-to-boundary

propagator is a “pure gauge” Kµi(x, ~w) = ∂µΛi(x, ~w) where xµ and wi indicate bulk and

boundary points, respectively. In Witten diagrams that encode correlation functions, the

bulk derivative may be integrated by parts. Gauge invariance then ensures that insertions of

Aµ on a charged line within the bulk cancel among diagrams leaving boundary contributions

for external charged lines and no contributions for external moduli. We illustrate this by

explicit calculation of several relatively simple diagrams in which the final expression agrees

with the OPE calculation in the dual CFT. We argue that the same mechanism works for

all Witten diagrams.

1For more details, please see [1, 2] and the references therein.
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The existence and number of moduli in the undeformed theory is determined by its

action S0 in AdS3. A natural way to obtain such a theory is through string compactifica-

tions such as AdS3 × S3 × T 4 [3–5]. These compactifications naturally produce moduli; in

the AdS3 × S3 × T 4 model, they could be toroidal fluctuations in T 4.

Alternatively, one can define the undeformed theory in AdS3 by its dual CFT. The

two-dimensional CFT has at least (2, 2) supersymmetry, and the bulk deformation (1.1) is

dual to the CFT deformation

SCFT = SCFT,0 +
h

2

∫

J ∧ J̃ , (1.2)

where Ji and J̃i are the left- and right-moving R-symmetry currents in the CFT. This

double trace deformation is exactly marginal [6], so the deformed theory remains conformal

for arbitrary h. The deformation also breaks SUSY.

A particular model of this type has previously been constructed by taking the near

horizon limit of a stack of fundamental strings and NS5-branes, resulting in an AdS3×S3×
T 4 solution with NS fluxes [3–5]. The deformed theory has motivated the development

of a non-local version of string theory [7], which is then used to analyze the absence of

quantum corrections to the moduli potential [8]. The deformation (1.1) and its dual (1.2)

were introduced in this context.

One of the main goals of this paper is to provide a bulk field theory argument to explain

why moduli in the undeformed theory continue to have flat potentials after the deformation.

This allows us to generalize the particular model of [8] (which has a well-defined string

perturbation theory) to virtually any consistent bulk theory that is a deformation (1.1) of an

N = 2 supergravity theory (with gauged R-symmetry currents and at least one modulus).

We also explain how the bulk field theory argument agrees with OPE calculations in the

boundary CFT.

2 Basics of our model

Supergravity models in AdS3 with Chern-Simons dynamics for their vector gauge fields

were first constructed by Achucarro and Townsend in 1986 [9]. The N = 4 model with

R-symmetry group SU(2)× SU(2) is frequently discussed in the literature [3–5, 7], but our

model requires only a U(1) × Ũ(1) subgroup with gauge fields Aµ and Ãµ. We focus on

terms in the undeformed action which play a direct role in our calculations, beginning with

the Euclidean Chern-Simons action

S =
1

8π

∫

bulk

[

kA ∧ dA− k̃Ã ∧ dÃ
]

− i

16π

∫

bdy

[

kA ∧ ∗A+ k̃Ã ∧ ∗Ã
]

(2.1)

=
1

8π

∫

bulk
d3x ǫµρν

[

kAµ∂ρAν − k̃(A ↔ Ã)
]

− i

16π

∫

bdy
d2w

[

k(A2
1 +A2

2) + k̃(A ↔ Ã)
]

.

For integer levels k, k̃. the normalization is that of the SU(2) theory (see [10]). As

discussed in [8, 11], the purpose of the boundary action is to enforce the condition that

the anti-holomorphic component of A and the holomorphic component of Ã vanish on the

boundary.
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The bulk theory also contains massive matter multiplets in which the scalar and spinor

carry U(1)× Ũ(1) R-charges (q, q̃) and (q − 1, q̃) or (q, q̃ − 1), respectively. Charged fields

are minimally coupled to Aµ, Ãµ by covariant derivatives, e.g. Dµφ = (∂µ+ iqAµ+ iq̃Ãµ)φ.

In the introduction we stated that the deformation

Ldef = hAwÃw̄ (2.2)

explicitly breaks supersymmetry and is exactly marginal. Both properties are most simply

demonstrated via the dual deformation in the CFT, namely

SCFT-def = h

∫

d2wJ(w)J̃(w̄) , (2.3)

in which the holomorphic U(1) and anti-holomorphic Ũ(1) R-currents appear. The R-

currents are the lowest components of supermultiplets as is their product. It is well known

that the spacetime integral of the lowest component of a supermultiplet is not supersymmet-

ric. The deformation satisfies the necessary and sufficient conditions for exact marginality

established in [6]. We discuss this in more detail in section 8, where we also present cal-

culations within the AdS theory of the O(h) and O(h2) contributions to the two point

function 〈(AxÃx̄)(x0, ~x)(AyÃȳ)(y0, ~y)〉 as the two points approach the boundary. The or-

der h correction vanishes by charge conjugation as do all odd orders h2n+1. The order h2

amplitude has divergences in disconnected diagrams only. They are cancelled either by the

vacuum diagrams or by counterterms for the 1-point function. This situation persists to

all orders in h.

3 Bulk calculations for the mass correction

In our two-dimensional CFT, the double trace deformation explicitly breaks SUSY. The

SUSY breaking effect on which we focus is that the conformal dimensions of boson and

fermion operators in the same supermultiplet shift differently due to the deformation.

However, to all orders in h there is no such shift for scalar fields that are moduli in the

undeformed theory and carry no R-charge. Instead the conformal dimensions of their

superpartners (modulini) are shifted.

In this section, we carry out explicit calculations in AdS3 and study perturbative

effects due to the explicit SUSY breaking boundary term (2.2). In Witten diagrams this

deformation determines an insertion of two bulk-to-boundary gauge field propagators, for

A and Ã respectively, at one point on the AdS3 boundary. The propagators are derived in

appendix A.

We first calculate the leading order correction to the conformal dimension of a charged

scalar which translates to a mass correction of the dual bulk field, at tree level in the bulk

couplings. The result matches the CFT calculation in [8]. We then undertake a detailed

calculation of the leading order deformation for a modulus field at the 1-loop level. We

show how the sum of several diagrams cancels and leaves the modulus mass untouched.

Note that it is equivalent to speak of the conformal dimension of a CFT operator and the

mass of the dual bulk field because they are related by the usual AdS/CFT formula (for a

scalar in D = 3 or d = 2):

∆ = 1 +
√

1 +m2L2 . (3.1)
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3.1 Mass correction of a charged particle

In this subsection, we calculate carefully the leading order correction to the conformal

dimension of the CFT operator dual to a charged scalar field in the AdS3 bulk. The

relevant Witten diagrams are shown in figure 1. The scalar field is assumed to carry

R-charges (q, q̃).

The leading order correction to the two-point correlation function from the first two

diagrams is given by the first expression below and then partially integrated using the pure

gauge structure of the bulk-to-boundary propagator Kµ,w(x, ~w) = ∂µΛ(x, ~w):

δh〈O†
c(~y)Oc(~z)〉 = hqq̃

∫

d2wd3xd3x′
√

g(x)
√

g(x′)Kµ,w(x, ~w)K̃ν,w̄(x
′, ~w)×

×
[

K∆(x, ~y)
↔

∂µ
(

G∆(x, x
′)

↔

∂′νK∆(x
′, ~z)

)]

+ (~y ↔ ~z)

= − hqq̃

∫

d2w
d3x′

x′0
d3x

√

g(x)Λw(x, ~w)K̃ν,w̄(x
′, ~w)×

×
[

K∆(x, ~y)
↔

�

(

G∆(x, x
′)

↔

∂′
νK∆(x

′, ~z)
)]

+ (~y ↔ ~z)

− hqq̃

∫

d2w
d3x′

x′0
lim
x0→0

d2x

x0
Λw(x, ~w)K̃ν,w̄(x

′, ~w)×

×
[

K∆(x, ~y)
↔

∂ 0

(

G∆(x, x
′)

↔

∂′
νK∆(x

′, ~z)
)]

+ (~y ↔ ~z) . (3.2)

Here K∆ and G∆ are the bulk-to-boundary and bulk propagators of a scalar field, for which

we will need only the form (A.2).

From eq. (3.2) we see that the corrections to the two-point correlation function of

a charged scalar field break into two parts: one is the bulk contribution after partial

integration, and the other is the contribution from the boundary. Let us first focus on the

bulk part:

δh〈O†
c(~y)Oc(~z)〉bulk

= hqq̃

∫

d2w
d3x′

x′0
d3x

√

g(x)Λw(x, ~w)K̃ν,w̄(x
′, ~w)×

×
[

K∆(x, ~y)
(

δ3(x, x′)
↔

∂′
νK∆(x

′, ~z)
)]

+ (~y ↔ ~z)

= hqq̃

∫

d2w
d3x′

x′0
Λw(x

′, ~w)
[

K∆(x
′, ~y)

↔

∂′
νK∆(x

′, ~z)
]

K̃ν,w̄(x
′, ~w) + (~y ↔ ~z)

− hqq̃

∫

d2w
d3x′

x′0
[∂′

νΛw(x
′, ~w)]K∆(x

′, ~y)K∆(x
′, ~z)K̃ν,w̄(x

′, ~w) + (~y ↔ ~z)

= −2hqq̃

∫

d2wd3x′
√

g(x′)gρν(x′)Kρ,w(x
′, ~w)K∆(x

′, ~y)K∆(x
′, ~z)K̃ν,w̄(x

′, ~w) . (3.3)

In the first step of the calculation, we used the following properties of scalar bulk and

bulk-to-boundary propagators:

(�−m2)G∆(x, x
′) = −δ3(x, x′)/

√
g

(�−m2)K∆(x, ~y) = 0 . (3.4)

– 5 –
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Figure 1. The relevant diagrams for the leading order mass deformation of a charged scalar field.

We then find that the bulk part of the correction cancels precisely with the contribution

from the seagull diagram in figure 1. Thus the only correction to the 2-point correlation

function comes from the boundary terms:

δh〈O†
c(~y)Oc(~z)〉bdy = −hqq̃

∫

d2w
d3x′

x′0
lim
x0→0

d2x

x0
Λw(x, ~w)K̃ν,w̄(x

′, ~w)×

×
[

K∆(x, ~y)
↔

∂ 0

(

G∆(x, x
′)

↔

∂′
νK∆(x

′, ~z)
)]

+ (~y ↔ ~z) . (3.5)

To proceed with the calculation, the following equations are useful:

lim
x0→0

x∆−d
0 K∆(x, ~y) = δ2(~x, ~y) ,

lim
x′
0
→0

(2∆− d)x′−∆
0 G∆(x, x

′) = K∆(x, ~x
′) ,

∂x0
K∆(x, ~y) =

∆

x0
K∆(x, ~y)− 2∆

C∆

C∆+1
K∆+1(x, ~y) , (3.6)

where the explicit form of C∆ is given in (A.2). Then (3.5) can be written as

δh〈O†
c(~y)Oc(~z)〉bdy (3.7)

=

[

− ∆

2(∆− 1)
+

(

∆− 2∆C∆

C∆+1

)

1

2(∆− 1)

]

hqq̃×

×
∫

d2wΛw(0, ~y, ~w)

∫

d3x′

x′0

[

K∆(x
′, ~y)

↔

∂′
νK∆(x

′, ~z)
]

K̃ν,w̄(x
′, ~w) + (~y ↔ ~z)

= −hqq̃

∫

d2wΛw(0, ~y, ~w)

∫

d3x′

x′0

[

K∆(x
′, ~y)

↔

∂′
νK∆(x

′, ~z)
]

∂′
νΛ̃w̄(x

′, ~w) + (~y ↔ ~z)

= hqq̃

∫

d2wΛw(0, ~y, ~w)

∫

d3x′
√

g(x′)
[

K∆(x
′, ~y)

↔

�
′K∆(x

′, ~z)
]

Λ̃w̄(x
′, ~w) + (~y ↔ ~z)

+ hqq̃

∫

d2wΛw(0, ~y, ~w) lim
x′
0
→0

∫

d2x′

x′0

[

K∆(x
′, ~y)

↔

∂′
0K∆(x

′, ~z)
]

Λ̃w̄(x
′, ~w) + (~y ↔ ~z) .

Note that the first line in the final equality vanishes due to eq. (3.4). Again only boundary

– 6 –
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contributions survive. Applying the last equation in eq. (3.6), one finds

δh〈O†
c(~y)Oc(~z)〉bdy

= hqq̃

∫

d2wΛw(0, ~y, ~w) lim
x′
0
→0

∫

d2x′

x′0
Λ̃w̄(x

′, ~w)×

×
[

−2∆
C∆

C∆+1
K∆(x

′, ~y)K∆+1(x
′, ~z) + 2∆

C∆

C∆+1
K∆+1(x

′, ~y)K∆(x
′, ~z)

]

+ (~y ↔ ~z)

= hqq̃

∫

d2wΛw(0, ~y, ~w)

∫

d2x′Λ̃w̄(0, ~x
′, ~w) 2∆

C2
∆

C∆+1

[

δ2(~x′, ~y)

|~x′−~z|2∆ − δ2(~x′, ~z)

|~x′ − ~y|2∆
]

+(~y ↔ ~z)

=
2(∆− 1)2

π

hqq̃

|~y − ~z|2∆
∫

d2w

[

1

|y − w|2 − 1

(y − w)

1

(z̄ − w̄)

]

+ (~y ↔ ~z)

=

(

2πhqq̃ log
|y − z|2
|a|2

)

2(∆− 1)2

π

1

|~y − ~z|2∆

=

(

2πhqq̃ log
|y − z|2
|a|2

)

〈O†
c(~y)Oc(~z)〉0 , (3.8)

where a is the short-distance regulator for the integral. There is a subtlety in the boundary

limit of the product K∆K∆+1. One can either take the δ function limit of K∆ and study

the boundary limit of K∆+1 or vice versa, depending on the position of ~x′ when we take

the limit x′0 → 0. However, the first choice vanishes in the limit. Thus only the latter

choice contributes and gives the fourth line of eq. (3.8).

Note that the two-point function of the undeformed theory appears as a factor. From

the coefficient of the logarithm, one can identify the shift in ∆

δh∆ = −2πhqq̃ . (3.9)

This result agrees perfectly with the dimension shift obtained in [8].

At this point we can see without repeating the calculation that the leading correction

to the 2-point function of the spinor superpartner Ψc of Oc must be

δh〈Ψc(~y)Ψ̄c(~z)〉 =
(

2πh(q − 1)(q̃) log
|y − z|2
|a|2

)

〈Ψc(~y)Ψ̄c(~z)〉0 . (3.10)

The last factor is the undeformed spinor two-point function. To justify this claim we note

that the calculation proceeds by the same steps of partial integration and use of the Ward

identity. The spinor case is even simpler than the scalar case because there are no seagull

diagrams and it is not necessary to differentiate (with ∂x0
) the spinor bulk-to-boundary

propagator. The result (3.10) differs from eq. (3.9) for the scalar only via the change in

the R-charges, i.e. the scalar charges (q, q̃) are replaced by (q − 1, q̃) for the fermion.

3.2 Mass correction for moduli fields

In this subsection, we focus on bulk moduli fields which are neutral under R-symmetry. We

show that the shift δh∆ of such a field vanishes at 1-loop order. To simplify the calculation,

– 7 –
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Figure 2. The relevant diagrams for calculating the leading order deformation of the 1-loop self-

energy correction. Here we fix the position of x′ while moving x around the loop of the charged field.

we assume that the moduli couple to charged scalar particles through the 3-point vertex2

L ⊃ yφmφ†
cφc (3.11)

where φm is an R-neutral modulus field and φc has non-zero R-charges (q, q̃). As we

have shown in the previous section, the mass of φc is modified by the SUSY breaking

deformation according to eq. (3.9). One might expect that moduli masses will also shift

due to SUSY breaking effects in loop diagrams. However we will show that when all

contributing diagrams are included, SUSY breaking effects cancel and leave the moduli

untouched.

In figure 2, we list the relevant diagrams. To exhibit the cancellation, we fix the position

of the Ã propagator and add the amplitudes for diagrams in which the A propagator is

attached at all possible positions on the charged φc loop. Since moduli fields are neutral,

A and Ã cannot couple to the external lines of figure 2. The last diagram of the figure is

determined by the seagull vertex 2qq̃
√
gAµÃ

µφ†
cφc.

In our calculation, we focus first on the integration of the end point position x of Aµ in

each diagram. Thus we temporarily ignore factors in the amplitude which do not depend

on the bulk 3-vector x. Those factors are denoted by (. . . ). We start from the simplest

case, i.e. the first diagram in figure 2:

δh〈OmOm〉1 = hqq̃

∫

d2wd3xd3x′
√

g(x)
√

g(x′)Kµ,w(x, ~w)G∆(x1, x)
↔

∂µG∆(x, x2)(. . .)

= −hqq̃

∫

d2wd3xd3x′
√

g(x)
√

g(x′)Λw(x, ~w)G∆(x1, x)
↔

�G∆(x, x2)(. . .)

−hqq̃

∫

d2wd3x′
√

g(x′) lim
x0→0

d2x

x0
Λω(0, ~x, ~w)G∆(x1, x)

↔

∂0G∆(x, x2)(. . .)

= hqq̃

∫

d2wd3xd3x′
√

g(x)
√

g(x′)Λw(x, ~w)[G∆(x1, x)δ
3(x, x2)−(x1↔x2)](. . .)

= hqq̃

∫

d2wd3x′
√

g(x′)[Λw(x2, ~w)− Λw(x1, ~w)]G∆(x1, x2)(. . .) . (3.12)

On the second line, we have used the pure gauge structure Kµ,w(x, ~w) = ∂µΛw(x, ~w) and

integrated by parts. If ∆ ≥ 0, which is satisfied automatically in a unitary CFT, the

2The U(1) Ward identity implies that the result is also valid for derivative vertices such as L′ ∼

φmDµφ
†
cD

µφc, although the diagrammatic analysis is more complicated.
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boundary term on the third line vanishes due to cancellations in the boundary limit of

G∆(x1, x)
↔

∂0G∆(x, x2). On the fourth line, we have used the equation for G∆ indicated

in (3.4). We see how the calculation is greatly simplified due to the pure gauge feature of

Kµ,w and the Ward identity. In the final result the gauge field insertion is pinned at the

end points of the charged particle’s propagators.

Now we move on to calculate more complicated cases, i.e. the second and third diagrams

of figure 2.

δh〈OmOm〉2 = −hqq̃

∫

d2wd3xd3x′
√

g(x)
√

g(x′)×

×Kµ,w(x, ~w)G∆(x1, x)
↔

∂µ
[

G∆(x, x
′)

↔

∂′νG∆(x
′, x2)

]

(. . .)

= hqq̃

∫

d2wd3xd3x′
√

g(x)
√

g(x′)×

× Λw(x, ~w)G∆(x1, x)
↔

�

[

G∆(x, x
′)

↔

∂′νG∆(x
′, x2)

]

(. . .)

= −hqq̃

∫

d2wd3x′
√

g(x′)
[

Λw(x
′, ~w)G∆(x1, x

′)
] ↔

∂′νG∆(x
′, x2)(. . .)

+ hqq̃

∫

d2wd3x′
√

g(x′)Λw(x1, ~w)G∆(x1, x
′)

↔

∂′νG∆(x
′, x2)(. . .) . (3.13)

Similar calculations give

δh〈OmOm〉3 = − hqq̃

∫

d2wd3x′
√

g(x′)
[

Λw(x
′, ~w)G∆(x2, x

′)
] ↔

∂′νG∆(x
′, x1)(. . .)

+ hqq̃

∫

d2wd3x′
√

g(x′)Λw(x2, ~w)G∆(x2, x
′)

↔

∂′νG∆(x
′, x1)(. . .) . (3.14)

After carefully putting back the non-x dependent parts of the equations, the sum of last

terms in eq. (3.13) and eq. (3.14) precisely cancels eq. (3.12). Thus

3
∑

i=1

δh〈OmOm〉i = − hqq̃

∫

d2wd3x′
√

g(x′)[Λw(x
′, ~w)G∆(x1, x

′)]
↔

∂′νG∆(x
′, x2)(. . .)

− hqq̃

∫

d2wd3x′
√

g(x′)[Λw(x
′, ~w)G∆(x2, x

′)]
↔

∂′νG∆(x
′, x1)(. . .)

= 2hqq̃

∫

d2wd3x′
√

g(x′)∂′νΛw(x
′, ~w)G∆(x1, x

′)G∆(x
′, x2)(. . .) . (3.15)

Interestingly, this is precisely the opposite contribution from the seagull vertex, i.e. the last

diagram in figure 2. Thus adding up all the contributions, we clearly see the cancellation

of SUSY breaking effects in the mass shift of moduli fields.

Similar arguments can be applied to fermionic charged particles in the loop, where

the calculation is easier due to the lack of the seagull vertex. Furthermore, the sum of

diagrams for any n-point correlation function of moduli is unaffected by the SUSY breaking

term of (1.1).

The modulino partner of a modulus field carries R-charges (−1, 0) or (0,−1). Since

qq̃ = 0, its mass shift vanishes to order h, but there are mass corrections of order h2n for

all n as we argue in section 5 below. The modulus mass remains zero to all orders.
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Figure 3. Some additional diagrams needed to calculate the order h deformation of the 1-loop

self-energy correction for a scalar with R-charge (q, q̃). Diagrams with seagull vertices on external

lines are also needed.

3.3 General structure of the mass correction

Let us now consider the mass correction of a bulk field with R-charge (q, q̃). We now argue

that the order h correction to any Witten diagram with R-charge conserving bulk vertices

has the same structure as the simple result eq. (3.8). This structure is

δh〈O†
c(~y)Oc(~z)〉= 〈O†

c(~y)Oc(~z)〉0
{
∫

d2wΛw(0, ~y, ~w)
[

Λ̃w̄(0, ~y, ~w)−Λ̃w̄(0, ~z, ~w)
]

+(~y ↔ ~z)

}

= 〈O†
c(~y)Oc(~z)〉0

(

2πhqq̃ log
|y − z|2
|a|2

)

. (3.16)

Here 〈O†
c(~y)Oc(~z)〉0 is the contribution to the 2-point function from the Witten diagram in

the undeformed theory. Thus the shift in the conformal dimension due to the deformation

is again

δh∆ = −2πhqq̃ . (3.17)

The essential principles of the argument are: 1) the pure gauge structure of the bulk-

to-boundary propagator Kµ,w(x, ~w) = ∂µΛw(x, ~w), 2) partial integration of ∂µ and the

Ward identity, 3) the use of (3.4), and 4) R-charge conservation at each vertex. These

principles work quite generally, but it is useful to visualize it in the following specific

example. Let us choose a bulk theory with a cubic coupling of three charged scalars

Lcubic ∼ φ(q,q̃)φ(q1,q̃1)φ(q2,q̃2) + h.c. with q + q1 + q2 = q̃ + q̃1 + q̃2 = 0. We work with the

order h deformation of the 1-loop self-energy diagram for the field φ(q,q̃). The diagrams

that we need are those of figure 2 combined with those of figure 3 in which one or two

gauge bosons are coupled to the external lines.

We first consider the subset of diagrams in which the Ãν vertex is fixed, and Aµ is

attached at all possible positions. We have already seen in section 3.1 and 3.2 how principles

1)–3) operate. When applied at a given insertion point of Aµ(x) they allow us to integrate

over the bulk position x. The result is a sum of two terms in which the factor Λw(x, ~w) is

pinned either at the adjacent bulk vertices if the insertion is on an internal line, or at the

boundary and the adjacent vertex if the insertion is on an external line. After applying

this procedure to all insertion points of Aµ, one finds that each bulk vertex acquires the

numerical factor q + q1 + q2 which vanishes! Therefore, only diagrams where Λw is pinned

at the boundary points of the two external lines survive. There remains a smaller set of
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diagrams in which Ãν is inserted at all possible positions. When the procedure 1)–3) is

applied to these, one is left with the boundary factors in the ~w integral in (3.16) times

the value of the undeformed diagram. It is clear that this argument applies to all loop

orders in the bulk. Furthermore, we may generalize the calculation to higher orders in h

by repeating this procedure.

4 Boundary CFT calculation for the conformal dimension

In this section, we use the operator product expansion (OPE) to calculate the shift of the

conformal dimension of operators in the CFT. We show that such shifts are induced by

the SUSY breaking deformation

δSCFT = h

∫

d2zJ(z)J̃(z̄) . (4.1)

This deformation involves the currents of the U(1)× Ũ(1) R-symmetry group. Conformal

dimensions of operators that are charged under both U(1)’s receive a leading order correc-

tion in h. If an operator is charged only under one of the U(1)s, its conformal dimension

is modified at the next order h2.

Many effects of the deformation can be calculated exactly because J(x) and J̃(x̄) can

be bosonized, i.e.3

J(z) = i
√
k∂zη(z) ,

J̃(z̄) = i
√

k̃∂z̄ η̃(z̄) , (4.2)

where η and η̃ are canonically normalized scalar fields with the OPEs

η(z)η(0) ∼ −1

2
log z , η̃(z̄)η̃(0) ∼ −1

2
log z̄ . (4.3)

Furthermore, any operator in the CFT with R-charges (q, q̃) = (
√
kp/2,

√

k̃p̃/2) can be

written in the form [8]

O = ei(pη+p̃η̃)P (∂nη, ∂̄ñη̃)Ô , (4.4)

where P (∂nη, ∂̄ñη̃) is a polynomial in any derivatives of η and η̃, while Ô is an operator

independent of η and η̃. The exponential factor ei(pη+p̃η̃) has a non-trivial OPE with J

and J̃ , which induces the shift of conformal dimensions when we deform the theory. In

the following discussion, we focus on the scalar operators Yp,p̃ ≡ ei(pη+p̃η̃) which carry

holomorphic and anti-holomorphic dimensions

∆ = p2/4 = q2/k, ∆̄ = p̃2/4 = q̃2/k̃ . (4.5)

3Note that our normalization of the current J (and J̃) is consistent with it being a component of an

SU(2) current, and may differ from conventions used elsewhere in the literature such as [8].
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The relevant OPEs are

J(z)J(0) ∼ k

2z2
,

J(z)eipη(0) ∼
√
k
p

2z
eipη(0) =

q

z
eipη(0) . (4.6)

Let us warm up by reviewing the calculation in [8] for the lowest correction to the

conformal dimension from the SUSY breaking deformation

δh〈Yp,p̃(z, z̄)Y−p,−p̃(0)〉 = h

∫

d2w〈eipη(z)J(w)e−ipη(0)〉〈eip̃η̃(z̄)J̃(w̄)e−ip̃η̃(0)〉

=
hqq̃

zp2/2z̄p̃2/2

∫

d2w

∣

∣

∣

∣

1

w − z
− 1

w

∣

∣

∣

∣

2

=
2πhqq̃

zp2/2z̄p̃2/2
log

|z|2
|a|2 , (4.7)

where a is the short-distance cutoff for the integral, which is absorbed by a rescaling of the

operator Yp,p̃. The correction to the conformal dimension can be read from eq. (4.7) as

(−πhqq̃,−πhqq̃) . (4.8)

The result agrees with the bulk calculation in eq. (3.8). Here we see that the change of the

conformal dimension at the leading order in h is proportional to the product of both U(1)

R-charges. Note that the shifts of holomorphic and anti-holomorphic scale dimensions are

equal, so SUSY breaking does not change the spin of the operator.

As we will now show, the conformal dimension is modified at the second order in h

even if one of the U(1) R-charges of the operator vanishes. Without loss of generality, let

us take q̃ = 0. We find

δh̃2〈Yp,0(z, z̄)Y−p,0(0)〉 =
h2

2

∫

d2w1d
2w2〈eipη(z)J(w1)J(w2)e

−ipη(0)〉〈J̃(w̄1)J̃(w̄2)〉

=
k̃h2q2

4zp2/2

∫

d2w1d
2w2

(

1

w1 − z
− 1

w1

)(

1

w2 − z
− 1

w2

)

1

(w̄1 − w̄2)2

+ 〈Yp,0(z, z̄)Y−p,0(0)〉0 δh,2〈1〉

= −πk̃h2q2

4zp2/2

∫

d2w1d
2w2

(

1

w1 − z
− 1

w1

)

δ2(~w2 − ~z)− δ2(~w2)

w̄1 − w̄2

+ 〈Yp,0(z, z̄)Y−p,0(0)〉0 δh,2〈1〉

= −π2k̃h2q2

2zp2/2
log

|z|2
|a|2 + 〈Yp,0(z, z̄)Y−p,0(0)〉0 δh,2〈1〉 . (4.9)

Here the last term, 〈Yp,0(z, z̄)Y−p,0(0)〉0 δh2〈1〉, indicates disconnected diagrams which are

canceled by vacuum corrections. Therefore we find that the correction to the total confor-

mal dimension, ∆Tot = ∆+ ∆̄, of Yp,0 at the second order is π2k̃h2q2/2, again with equal

shifts in ∆ and ∆̄.
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Figure 4. Higher order SUSY breaking corrections to the two-point correlation functions of R-

charged particles. The expansion is done for both h and q. One first sums the higher order h

expansion with a fixed order q, as shown on the left. Then one can further sum the contributions

on higher order q expansion as shown on the right.

5 SUSY breaking to all orders in h

The SUSY breaking shift of the scale dimension of an operator Oc due to interactions with

the Chern-Simons fields was calculated to first order in h for general U(1)×U(1) R-charges

(q, q̃) in section 2. The result was confirmed by CFT methods in section 4 and extended

to second order. In this section we return to the bulk theory and show that effects of the

SUSY breaking can be summed to all orders in h. We proceed in two stages:

i.) The sum of boundary insertions which “Wick contract” along the boundary (see

figure 4) gives a “necklace” structure which leads to a corrected correlator of the form

〈O†
cOc〉 = 〈O†

cOc〉0
{

1 +
2πhqq̃ − π2h2(k̃q2 + kq̃2)/2

1− π2h2kk̃/4
log

|y − z|2
a2

}

. (5.1)

ii.) Further insertions of entire necklaces can be summed to reveal that the single power

of log(|y − z|2/a2) is the beginning of an exponential series. The final form of the

correlator is then the power law

〈O†
c(y)Oc(z)〉 = C0

1

|y − z|2∆ , (5.2)

with

∆ = ∆0 −
πhqq̃ − π2h2(k̃q2 + kq̃2)/2

1− π2h2kk̃/4
. (5.3)

We now show that the corrections to the holomorphic and anti-holomorphic parts of

∆Tot are positive for any operator of the form given in (4.4) as required by unitarity. We

note that the undeformed ∆0 and ∆̄0 are bounded below by q2/k and q̃2/k̃, respectively.

The bounds are saturated for the scalar operator Yp,p̃. Thus we can write

∆ ≥ q2/k + δ , ∆̄ ≥ q̃2/k̃ + δ , δ =
−πhqq̃ + π2h2(k̃q2 + kq̃2)/4

1− π2h2kk̃/4
. (5.4)
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It is easy to see that the right sides of these inequalities are perfect squares, namely

q2/k + δ =
(q − πhkq̃/2)2/k

1− π2h2kk̃/4
, (5.5)

q̃2/k̃ + δ =
(q̃ − πhk̃q/2)2/k̃

1− π2h2kk̃/4
. (5.6)

Therefore after the deformation ∆ and ∆̄ are manifestly non-negative. This satisfies the

2d unitarity bound (total dimension ≥ spin).

We now provide further details of the calculations that lead to the results above. In the

diagrams to be evaluated, the bulk-to-boundary propagators of the gauge field A(x), Ã(x)

are inserted are initially attached to the internal line of the bulk scalar field φc(x), and the

Ward identity methods are applied with the result that the gauge fields are pinned at the

boundary points ~y, ~z. We do not repeat these now-familiar arguments.

Feynman rules for the elements of the necklace diagrams in figure 4 may be obtained

from (2.2) and the information in appendix A.4. We use the boundary limits of (A.30) and

the limits recorded in (A.34).

internal vertex : h (5.7)

endpoint attachment of Ai :
q

(y − w)
(5.8)

endpoint attachment of Ãi :
q̃

(ȳ − w̄)
(5.9)

internal Ai line :
k

2(w − w′)2
(5.10)

internal Ãi line :
k̃

2(w̄ − w̄′)2
(5.11)

Using the Feynman rules above, we can compare the bulk calculation of the SUSY

breaking correction for a field of charge (q, 0) with the OPE calculation in (4.9):

h2q2k̃

4|y − z|2∆C

∫

d2w1d
2w2

(

1

y − w1
− 1

z − w1

)

1

(w̄1 − w̄2)2

(

1

y − w2
− 1

z − w2

)

(5.12)

Comparing with eq. (4.9), this agrees well with the OPE calculation.

The summation of the beads of the necklace is facilitated by the observation that the

basic “unit” to be inserted in the transition from order h2(n−1) to order h2n is the integral

h2kk̃2

8

∫

d2ud2u′
1

(w̄n−1 − ū)2
1

(u− u′)2
1

(ū− w̄n)2
= (5.13)

h2kk̃2

8

∫

d2ud2u′
∂

∂u

1

(ū− w̄n−1)

∂

∂ū

1

(u− u′)

1

(ū− w̄n)2
= (5.14)

h2kk̃2

8

∫

d2ud2u′π2δ(2)(u− wn−1)δ
(2)(u− u′)

1

(ū− w̄n)2
= (5.15)

π2h2kk̃2

8

1

(w̄n−1 − w̄n)2
. (5.16)

– 14 –



J
H
E
P
0
6
(
2
0
1
6
)
0
9
0

The result is the insertion factor for an internal Ãi line multiplied by the factor π2h2kk̃/4.

This leads to the geometric series that is summed in (5.1).

For general charges (q, q̃) one proceeds by similar methods. It is clear that the order

h2n necklace diagrams are proportional to the factor k̃q2+kq̃2 and that order h2n+1 contain

the factor qq̃. The necklace produces the same geometric series in both cases. The result

is given in (5.1) above.

It is straightforward to understand the exponentiation that leads to (5.3). On the right

in figure 4 we indicate the contribution of two complete necklace insertions. Initially, the

bulk-boundary propagators are coupled along the charged line in the bulk. Ward identity

arguments apply to each photon independently, so that each photon becomes pinned at

the boundary points y, z after all orders of attachment along the charged line are added.

The result is the square of the single necklace term in (5.1) multiplied by the combinatoric

factor of 1/2. Additional necklace insertions complete the exponential series.

6 Marginal deformation of n-point correlators

The diagrammatic calculations discussed in sections 3.1, 3.2, and 5 can be extended in a

straightforward manner to n-point correlation functions. The Ward identity ensures that

gauge fields that propagate from the boundary to each R-charged bulk line become pinned

at the boundary points of that line. This results in a simple all orders formula for the

SUSY deformation of a general correlation function.

To discuss this formula it is useful to rewrite formula (5.3) for the exact deformed scale

dimension of an operator with R-charges (q, q̃):

∆ = ∆0 +A(h)q2 +B(h)q̃2 + C(h)qq̃ (6.1)

A(h) =
π2h2k̃/2

1− π2h2kk̃/4
B(h) =

π2h2k/2

1− π2h2kk̃/4
C(h) =

2πh

1− π2h2kk̃/4
(6.2)

We now consider an n-point correlator of operators O(qi,q̃i). Ward identity arguments

imply that the exact relation between the deformed and undeformed correlators is (with

~yij = ~yi − ~yj)

〈O(q1,q̃1)(~y1) . . . O(qn,q̃n)(~yn)〉∼〈O(q1,q̃1)(~y1) . . . O(qn,q̃n)(~yn)〉0
∏

i 6=j

|~yij |A(h)qiqj+B(h)q̃iq̃j−C(h)qiq̃j

(6.3)

where ∼ indicates that the formula holds up to a dimensionful constant. Since the formula

emerges from an exactly marginal deformation of a CFT, we know in advance that the

deformed correlator transforms properly under conformal transformations. Nevertheless,

it is curious and satisfying to check that the right side transforms with appropriate weights

under inversion, ~yi = ~y′i/(~y
′
ij)

2. One finds that it does transform with deformed weights

for all operators, provided that R-charge is conserved, i.e.
∑

i qi =
∑

i q̃i = 0. Thus charge

conservation is linked to conformal invariance.

There are further, equally simple formulas for correlators involving R-charged operators

together with currents or the stress tensor. For example, with one additional R-current
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added, we have the formula

〈Ji(~x)O(q1,q̃1)(~y1) . . . O(qn,q̃n)(~yn)〉

∼ 〈Ji(~x)O(q1,q̃1)(~y1) . . . O(qn,q̃n)(~yn)〉0
∏

i 6=j

|~yij |(A(h)qiqj+B(h)q̃iq̃j−C(h)qiq̃j) . (6.4)

Note that the Ward identity is satisfied by the deformed correlator simply because the

deformation does not change the dependence on ~x.

7 Correction to bulk coupling constants

In this section, we show that the coupling constants in the bulk generally shift once we turn

on the deformation (1.1). For concreteness let us focus on the cubic coupling λ3φ
†
cφcφm,

where φc denotes a scalar field with R-charges (q, q̃) and φm denotes a neutral scalar field

such as a modulus. We will use the change of the 3-point function 〈O†
cOcOm〉 to determine

the correction to the cubic coupling.

7.1 Correction to the 3-point function

In this subsection we calculate the correction to the 3-point function 〈O†
cOcOm〉. By

conformal invariance it must have the following structure in the undeformed theory:

〈O†
c(~y)Oc(~z)Om(~w)〉 = c3

|~y − ~z|2∆c−∆m |~y − ~w|∆m |~z − ~w|∆m
. (7.1)

When we turn on h, both c3 and ∆c change, but we also need to correctly normalize the

2-point function of Oc. According to (3.8), the 2-point function to the first order in h is

〈O†
c(~y)Oc(~z)〉h =

2(∆c − 1)2

π

a−2βh

|~y − ~z|2(∆c−βh)
, (7.2)

where we have defined β = 2πqq̃, and a is the short distance cutoff. Therefore, the correc-

tion to ∆c is −βh, and we define

Õc = Oca
βh

(

1− βh

∆c − 1

)

, (7.3)

so that the 2-point function for Õc is properly normalized:

〈Õ†
c(~y)Õc(~z)〉h =

2(∆c − βh− 1)2

π

1

|~y − ~z|2(∆c−βh)
. (7.4)

We recall that proper normalization of the 2-point function corresponds to canonical nor-

malization of the dual scalar field in the bulk.

By essentially the same calculation (performed either in the bulk or using OPE tech-

niques in the CFT) that led to (7.2), we find that the 3-point function 〈O†
cOcOm〉 to first

order in h is

〈O†
c(~y)Oc(~z)Om(~w)〉h =

c3a
−2βh

|~y − ~z|2(∆c−βh)−∆m |~y − ~w|∆m |~z − ~w|∆m
, (7.5)
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where c3 and ∆c are defined in the undeformed theory, and we have indicated the correction

of order h explicitly. Therefore, written in the properly normalized Õh, we have

〈Õ†
c(x1)Õc(x2)Om(x3)〉h =

c3

(

1− 2βh
∆c−1

)

|~y − ~z|2(∆c−βh)−∆m |~y − ~w|∆m |~z − ~w|∆m
. (7.6)

From this we can extract the first-order correction to the coefficient of the properly nor-

malized 3-point function:

δc3 = − 2βh

∆c − 1
c3 . (7.7)

In an AdS/CFT calculation, the 3-point function is determined in terms of the bulk

cubic coupling λ3 and the integral of a product of three bulk-to-boundary propagators:

〈O†
c(~y)Oc(~z)Om(~w)〉 = −λ3

∫

d3x

x30
K∆c(x, ~y)K∆c(x, ~z)K∆m(x, ~w) . (7.8)

As we turn on the h deformation, both the cubic coupling λ3 and the bulk-to-boundary

propagator K∆c change. In order to determine the correction to λ3, we next calculate how

K∆c changes.

7.2 Correction to the bulk-to-boundary propagator

We now calculate the correction to the bulk-to-boundary propagator K∆c by first comput-

ing the corrected bulk propagator to the first order in h. After using the same argument

that involves integration by parts and led to section 3.1, we find the first-order correction

to the bulk propagator is

δhG∆c(x, x
′) = hqq̃G∆c(x, x

′)

∫

d2w
[

Λz(x, ~w)− Λz(x
′, ~w)

]

[

Λ̃z̄(x, ~w)− Λ̃w̄(x
′, ~w)

]

.

(7.9)

Performing the integrals, we find

δhG∆c(x, x
′) = βhG∆c(x, x

′)

{

u+ 1
√

u(u+ 2)
log

[

u+ 1 +
√

u(u+ 2)
]

− 1

}

, (7.10)

where u is the bi-invariant variable defined in (A.10). Let us also recall the D = 3 bulk

propagator in the undeformed theory

G∆c(x, x
′) =

2∆c−2

π

(√
u+

√
u+ 2

)−2∆c

[

1 +
u+ 1

√

u(u+ 2)

]

. (7.11)

We find the corrected bulk-to-boundary propagator K∆c,h by taking a limit of the

corrected bulk propagator G∆c,h = G∆c + δhG∆c :

K∆c,h(x, ~x
′) ∼ lim

x′
0
→0

x
′−(∆c−βh)
0 G∆c,h(x, x

′) , (7.12)

where we have used the fact that the corrected dimension is ∆c − βh. The normalization

for K∆c,h is not specified above, but is easily determined by the usual boundary condition

lim
x0→0

x∆c−βh−2
0 K∆c,h(x, ~x

′) = δ2(~x, ~x′) . (7.13)

– 17 –



J
H
E
P
0
6
(
2
0
1
6
)
0
9
0

Plugging (7.10) and (7.11) into (7.12), we find

K∆c,h(x, ~x
′) = K∆c−βh(x, ~x

′) =
∆c − βh− 1

π

(

x0
x20 + (~x− ~x′)2

)∆c−βh

. (7.14)

In other words, the correction to the bulk-to-boundary propagator is exactly accounted for

by replacing ∆c with the corrected dimension ∆c−βh in the bulk-to-boundary propagator

of the undeformed theory.

7.3 Correction to the cubic coupling

Now that we understand the correction to both the 3-point function and the bulk-to-

boundary propagator, we can calculate the correction to the cubic coupling λ3. Assuming

that the 3-point function 〈O†
cOcOm〉 is completely determined from (7.8), we can evaluate

the integrals there and find [12]

c3 = −λ3
Γ
(

∆c − ∆m

2

)

Γ
(

∆m

2

)2
Γ
(

∆c +
∆m

2 − 1
)

2π2Γ (∆c − 1)2 Γ (∆m − 1)
. (7.15)

As we turn on the h deformation, c3, λ3, and ∆c all receive corrections but continue to

satisfy the above equation. Using δhc3 = − 2βh
∆c−1c3 and δh∆c = −βh, we find

δhλ3

λ3
= − 2βh

∆c − 1
+ βh

∂

∂∆c
log

Γ
(

∆c − ∆m

2

)

Γ
(

∆c +
∆m

2 − 1
)

Γ (∆c − 1)2
(7.16)

= βh
∂

∂∆c
log

Γ
(

∆c − ∆m

2

)

Γ
(

∆c +
∆m

2 − 1
)

Γ (∆c)
2 . (7.17)

Our calculation applies to any Om that is neutral under the R-symmetry group. However,

we are perhaps most interested in the case where Om is a modulus. This means ∆m = 2,

and the above formula simplifies to

δhλ3

λ3

∣

∣

∣

∣

∆m=2

= − βh

∆c − 1
= − 2πhqq̃

∆c − 1
. (7.18)

where we have used β = 2πqq̃. This is an interesting result that depends on the R-

charges (q, q̃) and the dimension ∆c of the scalar field φc. In particular, this means that

the supersymmetric relations between coupling constants in the undeformed theory are

generally broken by the deformation.

In general, the 3-point function 〈O†
cOcOm〉 might not be completely determined by the

single cubic coupling λ3φ
†
cφcφm via the AdS/CFT calculation (7.8); for example, higher-

derivative bulk couplings such as λ′
3∂

µφ†
c∂µφcφm also contribute to the same 3-point func-

tion if they exist in the theory. Therefore, the change of the 3-point function coefficient (7.7)

may be attributed to corrections to both λ3 and its higher-derivative cousins such as λ′
3.

We expect that a careful analysis of 4-point functions may unambiguously determine the

corrections to all these coupling constants separately, and leave this to future work. For our

current purposes, it is sufficient to show that the coupling constants in the bulk generally

receive corrections from our deformation, and the supersymmetric relations between them

in the undeformed theory are generally broken.
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8 The deformation is exactly marginal

Our main purpose in this section is to exhibit the marginal property in terms of bulk

calculations, but we begin with a brief summary of the CFT result of [6]. The authors

consider a set of holomorphic currents Ja(z) of conformal dimension (1, 0) which enjoy the

usual OPE of a current algebra, namely

Ja(z)Jb(w) ∼ kab

(z − w)2
+ i

fabc

z − w
Jc(w) , (8.1)

together with a similar set of anti-holomorphic J̃a(z̄). They then prove that an operator

of the bilinear form

O(z, z̄) = cabJ
a(z)J̃b(z̄) (8.2)

is exactly marginal if and only if it can be rewritten in the form

O(z, z̄) = c′abV
a(z)Ṽ b(z̄) (8.3)

where the V a (or Ṽ b) operators are linear combinations of the Ja (or J̃b) currents and there

is no simple pole in the OPE among the V a (and Ṽ b) operators. Since our deformation is

a product of two abelian currents, i.e. O(z, z̄) = J(z)J̃(z̄), it satisfies this condition quite

trivially.

Let us now turn to the bulk theory and exhibit the exact marginality of our deformation

O(z, z̄) = J(z)J̃(z̄) there. We evaluate the Witten diagrams that contribute to the 2-point

function 〈OO〉 using Wick contractions. Let y, z be the boundary points. The basic Wick

contractions are obtained from an argument similar to the one leading to (B.4):

[AyAz] =
k

2(y − z)2
, [ÃȳÃz̄] =

k

2(ȳ − z̄)2
. (8.4)

We use [. . .] to indicate Wick contractions. Then the undeformed correlator is given by the

Wick contraction:

〈O(y, ȳ)O(z, z̄)〉0 = [AyÃȳAzÃz̄] =
k2

4|y − z|4 . (8.5)

We now test whether corrections due to the boundary deformation contain logarithmic

terms that indicate a shift of the conformal dimension. At the first order in h we encounter

the contractions in

〈O(y, ȳ)O(z, z̄)〉1 = h

∫

d2w[AyÃȳAwÃw̄AzÃz̄] . (8.6)

But the net contraction among three (or any odd number of) A’s vanishes. Hence there is

no correction at order h. At the next order we need to consider

〈O(y, ȳ)O(z, z̄)〉2 =
h2

2

∫

d2w1 d
2w2[AyÃȳAw1

Ãw̄1
Aw2

Ãw̄2
AzÃz̄] . (8.7)

There are several inequivalent products of four contractions each, and each product corre-

sponds to a distinct Witten diagram as shown in figure 5.

We will not present details, but simply note that the Wick contractions are purely

holomorphic or anti-holomorphic. Thus standard CFT techniques can be used to evaluate

the d2w1d
2w2 integrals. Below is the result for each of the diagrams.
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(c)
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z

w

w1

2

(d)

y

z

ww1
2

(e)

Figure 5. Diagrams relevant to the exactly marginal property of the deformation.

• Figure 5a: this gives a contact term of no interest since we are concerned with the

correlator for x 6= y.

• Figure 5b: this gives finite term proportional to 1/|y − z|4 which corrects the nor-

malization of the correlator but not the conformal dimension of O.

• Figure 5c: this gives the product of two divergent one-point functions. The divergence

can be cancelled by counterterms.

• Figure 5d: this disconnected diagram gives a divergent result, but as usual it cancels

with vacuum corrections and does not contribute to the correction of the 2-point

function.

• Figure 5e: this is one of several diagrams that contain a charged particle loop. These

diagrams vanish by the argument applied to moduli fields in section 3.2.

This argument shows that the conformal dimension (and hence the marginality) of

our deformation operator O(z, z̄) = J(z)J̃(z̄) is not modified when we turn on the h

deformation, through cubic order in h. The argument can be extended to all orders in h

as in section 5.

9 Global SUSY in the undeformed theory

Supersymmetry of the undeformed bulk theory is an important element of our work, but

it has not been explored directly in any of the calculations described above. Suppose for

example that φ and χ are the scalar and spinor components of a chiral multiplet in AdS3.

In this section we show that these quantities and their masses are properly related by AdS
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supersymmetry. The argument will clarify the nature of the mass term required in the

supergravity theory that underlies our work.

It is reasonably well known that the mass parameters for scalars and spinors in a chiral

multiplet are not equal in a supersymmetric field theory in AdS. The conventional mass

term in Euclidean AdS3 is

Lµ =
1

L2

[(

−3

4
+ µ2

)

φ†φ+ µ
(

φ2 + φ†2
)

− µL

2

(

χ2 + χ̄2
)

]

. (9.1)

The µ parameter here is supersymmetric, but measured in units of 1/L. It can be thought of

as descending from the superpotential W = µφ2/(2L) in D = 4. This mass term obviously

does not conserve the R-charge, so it is inadmissible in our present theory in which the

R-charge is gauged by Chern-Simons fields.

Fortunately there is an alternative mass term, called the “real mass,” which is special

to three-dimensional SUSY. The key feature is that the mass parameters are related to

the R-charge of the multiplet. For simplicity we assume that the scalar φ carries R-charges

(q, 0). We obtain the real mass term for Euclidean AdS3 from the S3 version of Jafferis [13]

by the replacement a → iL, where a is the radius of the sphere:

Lq =
1

L2

[(

−3

4
+

(

q − 1

2

)(

q − 3

2

))

φ†φ− i

(

q − 1

2

)

Lχ̄χ

]

. (9.2)

This conserves the R-charge! It is admissible in our framework and indeed required by

SUSY as we now show.

We see that mass parameters m2
B and mF of the scalar φ and fermion χ in a chiral

supermultiplet are related to the R-charge q by

(mBL)
2 = −3

4
+

(

q − 1

2

)(

q − 3

2

)

, mFL = q − 1

2
. (9.3)

It follows from the AdS3 supersymmetry algebra that φ and χ have conformal dimensions

∆B and ∆F related by ∆F = ∆B + 1/2. Finally we write the AdS/CFT formulas that

relate conformal dimensions to Lagrangian mass parameters by

∆B = 1 +
√

1 + (mBL)2 , ∆F = 1 + |mFL| . (9.4)

We want to show that the effect of a small supersymmetric variation of these quantities

is consistent with the mass relations of (9.3). Therefore we compute the variations

δ(mBL)
2 = 2(q − 1)δq , δ(mFL) = δq . (9.5)

To maintain the supersymmetry relation ∆F = ∆B + 1/2, we require δ∆F = δ∆B. Hence

we test this:

δ∆F = δq , (9.6)

δ∆B =
δ(mBL)

2

2
√

1 + (mBL)2
=

(q − 1)δq
√

(q − 1)2
= δq . (9.7)

We pass this test and thus verify that the mass parameters of (9.2) are consistent

with SUSY.
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10 Hierarchy and little hierarchy problem in 3d

Many physicists favor supersymmetry as the solution to the hierarchy problem in particle

physics. The introduction of superpartners of all standard model (SM) particles cancels

quadratically divergent quantum corrections to the Higgs mass. When SUSY is sponta-

neously broken, mass differences between SM particles and their superpartners are gener-

ated. Consequently, the mass of the Higgs boson will be corrected due to the mismatch of

particle spectra and the running of coupling constants below the SUSY breaking scale. The

lack of evidence for superpartners in the LHC data below its present limit of order TeV

implies that a sizable fine tuning is needed in the MSSM to account for the low electroweak

scale. This is the little hierarchy problem.

Our aim in this paper is to find a SUSY breaking mechanism which can induce sizable

mass splitting in supermultiplets while still protecting light scalar masses from quantum

corrections. Our toy model is a field theory living in the AdS3 spacetime. Thus we would

like to show that there is a hierarchy problem in a generic D = 3 theory, and a little

hierarchy problem after SUSY breaking in a SUSY theory. Since this question concerns

UV physics, we work in flat D = 3 spacetime for simplicity.

Let us start with a simple four dimensional SUSYmodel, and write the superpotential as

W4D =
y

3
Φ3 +

y′

3M
Φ3Φ′ (10.1)

where the R-charge for Φ is 2
3 and R-charge for Φ′ is 0. y′

3MΦ3Φ′ is an irrelevant operator,

and M is its suppression scale. The couplings y, y′ are dimensionless. The Lagrangian

induced by this superpotential is

L4D ⊃
(

y∗φ†2 +
y′∗

M
φ†2φ′†

)(

yφ2 +
y′

M
φ2φ′

)

+
y′∗y′

9M2
(φ†φ)3

+2yφψ2 +
2y′

M
φφ′ψ2 +

y′

M
φ2ψψ′ + h.c. (10.2)

We compactify this model on a circle of circumference R to obtain a 3-dimensional super-

symmetric theory. Only zero modes contribute to the low energy effective theory. Com-

pactification introduces an overall factor of R in the D = 3 Lagrangian, and the Lagrangian

can be properly normalized by scaling both scalar and fermion fields by a factor of
√
R.

We take R = 1/M for simplicity and write the D = 3 interaction Lagrangian as

L3D ⊃
(
√
My∗φ†2 + y′∗φ†2φ′†

)(
√
Myφ2 + y′φ2φ′

)

+
(

y′∗y′/9
)(

φ†φ
)3

+2
√
Myφψ2 + 2y′φφ′ψ2 + y′φ2ψψ′ + h.c. (10.3)

Note that the dimensions of φ and ψ are 1
2 and 1 respectively, as appropriate for D = 3.

Furthermore, L3D contains only marginal and relevant operators.

There are several ways to generate quantum corrections to the scalar mass. For

example, at the 2-loop order the self-contractions of the marginal operator φ6 produce

quadratic divergences, and the contractions between a pair of quartic φ4 give log diver-

gences. When SUSY is not broken, the corresponding fermionic diagrams precisely cancel
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these divergences. The cancellations require both the matches of particle spectra and cou-

pling constants. If SUSY is spontaneously broken, then below the SUSY breaking scale,

the mismatch of boson/fermion spectra as well as the running of coupling constant induce

uncancelled contributions to the scalar mass. This is precisely the 3d analogue of the little

hierarchy problem in the standard model.

11 Discussion

In this paper, we find a novel SUSY breaking mechanism which may shed some light on the

solution of the (little) hierarchy problem in the MSSM. We start from a supergravity theory

with Chern-Simons gauge fields in AdS3. These fields gauge a U(1) × Ũ(1) R-symmetry.

Then we introduce an explicit SUSY breaking boundary term quadratic in these gauge

fields. The SUSY breaking effects propagate to the bulk through gauge couplings. As a

result, the SUSY relation between masses of bosons and fermions in each supermultiplet is

violated. The coupling constants of interaction vertices are also modified. However, moduli

fields, which are neutral under Chern-Simons gauge transformations, maintain their flat

potential to all orders in perturbation theory.

This is a surprising result because one generically expects SUSY breaking effects to

migrate to gauge neutral fields through quantum loop corrections. We provide a compre-

hensive analysis to show that such SUSY breaking effects are blocked. It relies on the fact

that the bulk-to-boundary propagator of the Chern-Simons gauge fields is a total derivative

with respect to the bulk coordinates. Using integration by parts and the Ward identity, one

can easily prove that SUSY breaking effects precisely cancel within charged loop diagrams

when calculating the quantum corrections to the potentials of the moduli fields. From the

effective field theory point of view, there are two kinds of changes in the quantum loop

corrections. Internal propagators of charged particles are modified by the SUSY breaking

deformation and coupling constants of interaction vertices are also changed. The effects

from these two kinds of changes precisely cancel and leave the potential of the moduli

fields flat.

In the MSSM, a conventional way to estimate the amount of fine tuning is first to

calculate the stop particle’s loop corrections to the soft SUSY breaking mass m2
Hu

, i.e.

δm2
Hu

= − 3y2t
4π2

m2
t̃
log

(

ΛUV

mt̃

)

. (11.1)

Then one compares the soft mass corrections with the electroweak scale to obtain the

fine tuning [1, 14]. However, our toy model shows that this conventional estimate of fine

tuning may not provide the correct intuition when the complete UV physics is unknown.

Specifically, a mismatch of the masses within a supermultiplet does not always imply a

mass correction to other fields.

The primary “observables” in AdS/CFT are the correlation functions of the boundary

CFT. In this viewpoint the AdS3 analogue of the hierarchy problem is solved in the model

that we present here. It is, however, worth exploring the bulk physics in more detail. Is

bulk locality preserved by the SUSY breaking boundary term? Is there a well-defined flat

spacetime limit in which SUSY breaking effects persist? Further investigation is needed to

answer these open questions.
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A Chern-Simons propagators in AdS/CFT

The “pure gauge” structure of the bulk-to-boundary propagator, i.e. Kµi′(x, ~x
′) =

∂µΛi′(x, ~x
′), is crucial to our work. Therefore we obtain this structure carefully start-

ing from the bulk propagator Gµν′(x, x
′) which we derive. We begin with a brief discussion

of scalar fields.

A.1 Scalar propagators

For a scalar field in Euclidean AdSd+1, its bulk-to-boundary propagator K∆(x, ~x
′) can be

obtained from the bulk propagator G∆(x, x
′) in the following limit:

K∆(x, ~x
′) = lim

x′
0
→0

(2∆− d)x′−∆
0 G∆(x, x

′) . (A.1)

Explicitly, the scalar bulk-to-boundary propagator is

K∆(x, ~x
′) = C∆

[

x0
x20 + (~x− ~x′)2

]∆

, C∆ =
Γ(∆)

πd/2Γ(∆− d/2)
. (A.2)

It satisfies the equation of motion (�−m2)K∆(x, ~x
′) = 0, and the boundary condition:

lim
x0→0

x∆−d
0 K∆(x, ~x

′) = δ(d)(~x− ~x′) . (A.3)

The two-point function of the dual CFT operator is [12]:

〈O∆(~x)O∆(~x
′)〉 = lim

x0→0
(2∆− d)x−∆

0 K∆(x, ~x
′) =

(2∆− d)C∆

(~x− ~x′)2∆
. (A.4)

A.2 Bulk propagator for the Chern-Simons gauge field

The bulk propagator Gµν′(x, x
′) of an abelian Chern-Simons gauge field must produce

solutions of the inhomogeneous equation

ǫρµν∂ρAµ = −√
gJν (A.5)

with a conserved source current Jν(x) in the bulk. The solution

Aµ =

∫

d3x′
√

g(x′)Gµν′J
ν′(x′) (A.6)

suggests the naive equation of motion

ǫρµν∂ρGµν′(x, x
′) = −δνν′δ(x, x

′) , (A.7)
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in which ǫρµν and δ(x, x′) transform as tensor densities and Gµν′ is a bi-vector. How-

ever, this equation is inconsistent because the gauge invariant differential operator is not

invertible. Therefore we follow [15] and use the modified equation

ǫρµν∂ρGµν′(x, x
′) = −δνν′δ(x, x

′) +
√
g∂ν′Ω

ν(x, x′) . (A.8)

The solution (A.6) remains valid since the current is conserved.

The most general SO(3, 1) invariant ansatz for Gµν′ is

Gµν′ = −(∂µ∂ν′u)F (u) + ∂µ∂ν′S(u) +
√
gǫµρσ(∂

ρ∂ν′u)(∂
σu)T (u) , (A.9)

in which u is the bi-invariant variable

u ≡ (x− x′)2

2x0x′0
. (A.10)

Similarly the most general ansatz for Ων is

Ων = (∂νu)Ω(u) . (A.11)

We substitute this ansatz in (A.8) and use (2.9)-(2.15) of [15]. For x 6= x′, the coefficients

of the independent bi-vectors Dµ∂ν′u and Dµu∂ν′u give the differential equations

F ′ = 0 , (A.12)

u(u+ 2)T ′ + 2(u+ 1)T = Ω , (A.13)

−(u+ 1)T ′ − 2T = Ω′ . (A.14)

Therefore F is a constant and can be absorbed into S. The last two equations give

u(u+ 2)T ′′ + 5(u+ 1)T ′ + 4T = 0 , (A.15)

from which we find

T (u) =
u+ 1

[u(u+ 2)]3/2
(A.16)

up to an overall constant. Setting S = 0, we find the bulk propagator

Gµν′ =
√

g(x)ǫµρσ(∂
ρ∂ν′u)(∂

σu)T (u) . (A.17)

This propagator satisfies the Lorentz gauge condition in both variables, i.e.DµGµν′ = 0

and Dν′Gµν′ = 0. As written above the propagator is not normalized. It can be shown

that Gµν′/(4π) satisfies (A.8) with the correct coefficient of the δ-function. The normalized

form is not needed in this paper.

A.3 Bulk-to-boundary propagator

We define the bulk-to-boundary propagator (up to an overall constant) as

Kµi′(x, ~x
′) = lim

x′
0
→0

Gµi′(x, x
′) , (A.18)
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from which we find

K0i′ = − 4x0ǫ0i′j(x− x′)j
[

x20 + (~x− ~x′)2
]2 = ∂0

[

2ǫ0i′j(x− x′)j

x20 + (~x− ~x′)2

]

, (A.19)

and

Kii′ =
4

[

x20 + (~x− ~x′)2
]2

[ǫ0i′i
2

[

x20 − (~x− ~x′)2
]

− ǫ0ij(x− x′)i′(x− x′)j
]

. (A.20)

Using the identity

ǫ0ijVi′V
j = ǫ0i′jViV

j − ǫ0i′i~V
2 (A.21)

which may be verified explicitly for an arbitrary vector ~V , we can rewrite Kii′ as

Kii′ =
4

[

x20 + (~x− ~x′)2
]2

[ǫ0i′i
2

[

x20 + (~x− ~x′)2
]

− ǫ0i′j(x− x′)i(x− x′)j
]

(A.22)

= ∂i

[

2ǫ0i′j(x− x′)j

x20 + (~x− ~x′)2

]

. (A.23)

Thus Kµi′ is a “pure gauge,” specifically

Kµi′(x, ~x
′) =

∂

∂xµ
Λi′ , Λi′ =

2ǫ0i′j(x− x′)j

x20 + (~x− ~x′)2
. (A.24)

This is not surprising since Fµν = 0 when there is no bulk current source.

It is curious to observe, from (48) of [12], that the (normalized) bulk-to-boundary

propagator for a Maxwell gauge field in AdS3 is also a pure gauge, namely

KMaxwell
µi′ (x, ~x′) =

1

2π
∂µ

[

(x− x′)i′

x20 + (~x− ~x′)2

]

. (A.25)

A.4 Bulk-to-boundary propagator in holomorphic components

We briefly state conventions for holomorphic components in the 2-plane initially described

by Cartesian coordinates z1, z2 with metric δij .

z = z1 + i z2 , z̄ = z1 − i z2 , (A.26)

gzz̄ = gz̄z = 1/2 , gzz = gz̄z̄ = 0 , (A.27)

gzz̄ = gz̄z = 2 , gzz = gz̄z̄ = 0 , (A.28)

ǫzz̄ = −ǫz̄z = i/2 , ǫzz̄ = −ǫz̄z = −2i . (A.29)

Note that the alternating symbol is defined by ǫ12 = ǫ12 = 1 in Cartesian coordinates and

transformed as a tensor to holomorphic coordinates. Note also that
∑

i zizi = zz̄ = |z|2.
The holomorphic components of 1-forms are given by Az = (A1−iA2)/2, Az̄ = (A1+iA2)/2.

Similarly ∂z = (∂1 − i∂2)/2, ∂z̄ = (∂1 + i∂2)/2.
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In many calculations it is convenient to use holomorphic and anti-holomorphic com-

ponents of the bulk-to-boundary propagator. We use x0, x, x̄ for the bulk point and z, z̄

for the boundary point. In the conventions of (A.26), we have

Λz = i
x̄− z̄

x20 + |x− z|2 , Λz̄ = −i
x− z

x20 + |x− z|2 , (A.30)

and the holomorphic and anti-holomorphic components of (A.24) are

Kxz = i∂x

[

x̄− z̄

x20 + |x− z|2
]

, Kx̄z̄ = −i∂x̄

[

x− z

x20 + |x− z|2
]

, (A.31)

Kx̄z = i∂x̄

[

x̄− z̄

x20 + |x− z|2
]

, Kxz̄ = −i∂x

[

x− z

x20 + |x− z|2
]

, (A.32)

K0z = i∂0

[

x̄− z̄

x20 + |x− z|2
]

, K0z̄ = −i∂0

[

x− z

x20 + |x− z|2
]

. (A.33)

We write the formal limit x0 → 0 of these propagators as

Kxz → −i
1

(x− z)2
, Kx̄z → iπδ(2)(~x− ~z) , (A.34)

Kx̄z̄ → i
1

(x̄− z̄)2
, Kxz̄ → −iπδ(2)(~x− ~z) . (A.35)

Note that these are indeed the desired boundary conditions for the bulk-to-boundary prop-

agators of Chern-Simons gauge fields A and Ã. In order to see this, we recall that the

Chern-Simons gauge fields satisfy first-order equations of motion in the bulk. Therefore,

a consistent boundary condition can only be imposed on half of the two boundary com-

ponents of A or Ã. Since A is dual to a holomorphic current Jz in the CFT, we should

impose a Dirichlet boundary condition on Az, i.e. we specify the value Az → Az
∂ on the

boundary. The correct normalization is given by the Euclidean AdS/CFT dictionary

Zbulk[A
z
∂ ] = ZCFT[A

z
∂ ] ≡ 〈e2πi

∫
Az

∂Jz〉CFT , (A.36)

where Az
∂ is the boundary value of Az, and the prefactor of 2πi is consistent with the

conventional normalization for a holomorphic current in a two-dimensional CFT. The

bulk-to-boundary propagator Kx
z = 2Kx̄z is responsible for constructing a bulk solution

Aµ from the source of the boundary current Jz (which is 2πiAz
∂), and the normalization

in (A.34) is precisely what we need. A similar argument holds for Ã.

B Holomorphic 〈JJ〉 and 〈JJJ〉 in the undeformed CFT

The purpose of this appendix is to describe the use of the bulk-to-boundary propagators

to calculate the correlation functions 〈J(y)J(z)〉 and 〈J(y)J(z)J(w)〉 in which the holo-

morphic components of conserved currents appear. For non-abelian currents, the bulk

calculations can be compared with the result of OPE methods in the dual CFT. This

provides a test of the normalization of the bulk-to-boundary propagator.
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B.1 SU(2) Chern-Simons action

The normalized Euclidean Chern-Simons action for the group SU(2) and level k is4

S =
k

8π

∫

bulk

(

Aa ∧ dAa +
1

3
ǫabcAa ∧Ab ∧Ac

)

− ik

16π

∫

bdy
Aa ∧ ∗Aa (B.1)

=
k

8π

∫

bulk
d3x ǫµρνAa

µ

(

∂ρA
a
ν +

1

3
ǫabcAb

ρA
c
ν

)

− ik

16π

∫

bdy
d2w

[

(Aa
1)

2 + (Aa
2)

2
]

. (B.2)

The purpose of the boundary term is to enforce the condition that Aw̄ vanishes on the

boundary. We will achieve this by the dropping the propagatorsKµw̄ with anti-holomorphic

boundary index. Note that all three components of Kµw̄ are non-vanishing in the bulk. The

generator of AdS/CFT correlators is actually eiS (instead of the usual e−S in the Euclidean

signature) because the Chern-Simons action does not change by the factor i under Wick

rotation. We will therefore insert an extra factor of i in the results for the two-point and

three-point functions below.

B.2 〈J(y)J(z)〉

To calculate 〈Ja(y)Jb(z)〉 we reexpress the boundary action as Sbdy = − ik
4π

∫

bdyA
a
wA

a
w̄ .

We regulate the resulting Witten diagram by assuming initially that the boundary integral

is evaluated at the small radial coordinate value w0 with subsequent limit w0 → 0. The

diagram contains two “Wick contractions” and thus produces

〈Ja(y)Jb(z)〉 = −iδab
ik

4π

∫

d2w

[

Kwy(w0, ~w − ~y)Kw̄z(w0, ~w − ~z) + (y ↔ z)

]

, (B.3)

where we have inserted an extra factor of i as mentioned above. Using (A.34) we see that

the formal limit w0 → 0 of the integral gives the holomorphic correlator5

〈Ja(y)Jb(z)〉 = k

2

δab

(y − z)2
. (B.4)

This agrees with the result for the N = 4 CFT containing 2k complex scalars and 2k

Dirac spinors.

B.3 〈Ja(y)Jb(z)Jc(w)〉

The 3-point function is given by the Witten diagram with the cubic vertex from (2.1) with

three bulk-to-boundary propagators. Counting 6 Wick contractions, the 3-point function

is given by the integral:

〈Ja(y)Jb(z)Jc(w)〉 = ik

4π
ǫabc

∫

d3xǫµνρ
[

∂µΛy(x, y)∂νΛz(x, z)∂ρΛw(x,w)

]

, (B.5)

4The bulk term agrees with [10] and the boundary term is taken from [8, 16].
5The limit w0 → 0 of an analytic evaluation of the regulated integral using Feynman parameters gives

the same result.

– 28 –



J
H
E
P
0
6
(
2
0
1
6
)
0
9
0

where we have inserted an extra factor of i, and y, z, w denote holomorphic components of

Λi. We integrate ∂µ by parts. It is immediately obvious that the resulting bulk integral

vanishes, but it leaves the boundary integral

〈Ja(y)Jb(z)Jc(w)〉 = ik

4π
ǫabc lim

x0→0

∫

d2xǫ0νρΛy(x, y)∂νΛz(x, z)∂ρΛw(x,w) (B.6)

We now substitute the appropriate Λ factors from (A.30), and use ǫ0ww̄ = −2i to write

〈Ja(y)Jb(z)Jc(w)〉 = − ik

2π
ǫabc lim

x0→0

∫

d2x
x̄− ȳ

x20 + |x− y|2
(

∂x

[

x̄− z̄

x20 + |x− z|2
]

× ∂x̄

[

x̄− w̄

x20 + |x− w|2
]

− z ↔ w

)

(B.7)

The formal limit of this expression, obtained from (A.34), is

〈Ja(y)Jb(z)Jc(w)〉 = ik

2

ǫabc

(w − z)2

(

1

w − y
− 1

z − y

)

= − ik

2

ǫabc

(y − z)(z − w)(w − y)
. (B.8)

This is the correct form of the 3-point function. The result should be multiplied by i as

discussed above.

B.4 Compatibility with the OPE

In the free CFT with k complex scalars and k Dirac fermions transforming in the funda-

mental representation of SU(2), the SU(2) R-current is Ja =
∑k

i=1(ψ̄iτ
aψi)/2 where τa are

the three Pauli matrices. The basic OPEs are

ψ̄i(z)ψj(0) ∼
δij
z

, Ja(z)Jb(0) ∼ k

2z2
δab +

i

z
ǫabcJc(0) . (B.9)

From this one can quickly write the 2-point correlator as 〈Ja(y)Jb(z)〉 = k
2

δab

(y−z)2
which

agrees with (B.4). To check (B.8) we take the limit y → z. In this limit (B.9) requires

〈Ja(y)Jb(z)Jc(w)〉 → iǫabd

y − z
〈Jd(z)Jc(w)〉 = ik

2

ǫabc

(y − z)(z − w)2
, (B.10)

which is indeed satisfied by (B.8).

C Existence of cubic coupling

In this paper, several calculations are based on the existence of cubic coupling. Although

our results can be generalized to higher derivative vertices, it would be nice if there is a

concrete example to show that the existence of cubic coupling is consistent with supergrav-

ity in AdS3. In the following, we are going to show that the cubic coupling can be very

naturally generated from Kahler potential.

Let us start from the Kahler potential,

K = Φ†Φ+ Z†Z

(

1 +
λ

M
(Φ + Φ†)

)

. (C.1)
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Here Z is the chiral supermultiplet with non-zero R-charge, and Φ is taken to be neutral

under R-symmetry, and its scalar component is the moduli field. M is the suppression

scale of the irrelevant operator. One can write the scalar part of the Lagrangian induced

by the Kahler potential as

L ⊃ ∂µφ
†∂µφ+Dµz

†Dµz + λ(φDµz
†Dµz + φ†Dµz

†Dµz)

+λ(∂µφD
µz† z + ∂µφ

†z†Dµz) + . . . (C.2)

where (. . .) denotes the rest of the Lagrangian. Integrating by parts on the last two

terms gives

L ⊃ ∂µφ
†∂µφ+ ∂µz

†∂µz − λφ�z†z − λφ†z†�z + . . . (C.3)

Now let us prove −λφ†z†�z can be replaced by a simple cubic term using the equation of

motion of z. According to [17], a coupling constant is redundant if the variation of such

coupling constant vanishes when we use field equation of motion. The field equation for z

can be written as

�z −m2z + f(z, φ) = 0 (C.4)

where m is the mass of z. f(z, φ) is the nonlinear terms from the interactions of the

Lagrangian. Since we only focus on cubic vertices, the explicit forms of those terms are not

important. Then we can add an additional term to Lagrangian with an arbitrary coupling

λ′ to eq. (C.3), and get

L ⊃ ∂µφ
†∂µφ+Dµz

†Dµz − λφ�z†z − λφ†z†�z + λ′φz†(�z −m2z + f(z, φ)) + . . .

(C.5)

Taking λ′ = λ, we see (−λφ†z†�z) is replaced by mass term of z plus vertices with higher

order of fields, i.e.

L ⊃ ∂µφ
†∂µφ+Dµz

†Dµz − λφ�z† z + λφz†(−m2z + f(z, φ)) + . . . (C.6)

Similarly, one can apply the equation of motion for z† to replace (−λφ�z† z) by (λm2φz†z)

plus vertices with higher order field dependence. Now we see the existence of cubic couplings

is quite generic.
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