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1 Introduction

Standard Feynman diagram techniques often obscure the underlying simplicity of on-shell

scattering amplitudes. One reason for this is that individual Feynman diagrams are not

gauge invariant and contain unphysical degrees of freedom. This difficulty can be overcome

by working with on-shell diagrams [1], which are built out of 3-point vertices using BCFW

recursion [2, 3] and do not contain virtual particles. Moreover, scattering amplitudes often

exhibit symmetries which are hidden from the point of view of the spacetime Lagrangian.

In the case of N = 4 super-Yang-Mills (SYM) [4], on-shell diagrams make the Yangian sym-

metry of the amplitudes manifest and reveal an underlying Grassmannian structure [5–7].

The Yangian symmetry arises from combining ordinary superconformal symmetry with

dual superconformal symmetry [9–11], which provides a canonical definition for the loop

integrand of the planar N = 4 SYM S-matrix, ultimately making it possible to extend

BCFW recursion to loop-level [12]. BCFW recursion for loop amplitudes was also studied

in [13–15]. On-shell diagrams also reveal an underlying cluster algebra structure in N = 4

SYM amplitudes which is encoded in the dlog form of loop integrands (this form was simul-

taneously derived using the Wilson loop in twistor space [16, 17]). There is also evidence

that the dlog form of loop integrands persists in the non-planar sector [18–20]. Ultimately,
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on-shell diagrams and their correspondence to positive cells of the Grassmannian suggest

a geometric interpretation of scattering amplitudes as the volume of a new object known

as the Amplituhedron [21–23].

An important question is how to generalize these ideas beyond planar N = 4 SYM.

Although there has been some work on non-planar on-shell diagrams [18, 24–27], on-shell

diagrams for form factors in N = 4 SYM [28], and amplitudes in N < 4 SYM [29], on-

shell diagrams for gravitational amplitudes have so far not been explored. Since gravity

amplitudes are intrinsically non-planar, any new results in this direction may also suggest

new techniques for computing non-planar YM amplitudes. In this paper, we take the first

steps in this direction by developing an on-shell diagram formalism for N = 8 supergavity

(SUGRA), which is the natural starting point since it is maximally supersymmetric and

its amplitudes also exhibit a great deal of simplicity [30].

We develop on-shell diagrams for tree-level amplitudes in N = 8 SUGRA using BCFW

recursion. Our diagrammatic recursion relation is similar to that of N = 4 SYM but has

some important differences. For example, the BCFW bridge used to combine lower-point

on-shell diagrams is modified with respect to the one in N = 4 SYM (we will soon see that

this simply amounts to adding a decoration to the BCFW bridge of N = 4 SYM). Moreover,

since gravity amplitudes are permutation invariant — and there is no concept of colour

ordering — the on-shell diagrams which arise from the recursion relation will generically be

non-planar. Nevertheless, we show that it is possible to restrict the recursion relation to a

planar sector of on-shell diagrams, from which the full scattering amplitudes are obtained

simply by summing over permutations of the external legs. If one chooses to work outside

of the planar sector, this gives rise to remarkable new identities for non-planar on-shell

diagrams. The on-shell diagrams of N = 8 SUGRA also exhibit equivalence relations

analogous to those ofN = 4 SYM such as square moves and mergers. We also show that on-

shell diagrams can be easily computed by assigning variables and arrows to the edges of the

diagrams, and reading off expressions directly from the diagrams using a simple set of rules.

Ultimately, this approach gives rise to new Grassmannian integral formulae for the

scattering amplitudes, which further imply a form of positivity in the planar sector from

which the amplitudes can be derived. Grassmannian integral formulae for N = 8 super-

gravity amplitudes have previously been deduced from twistor string theory [31, 32], and it

would be interesting to see how they are related to our formulae. Finally, we show that the

1-loop 4-point amplitude of N = 8 SUGRA can be obtained from on-shell diagrams, which

suggests the possiblity of formulating loop-level BCFW recursion in this theory as well.

2 Tree-level recursion

As mentioned in the introduction, the difficulties of Feynman diagrams can be overcome

by using BCFW recursion relations to express higher-point on-shell amplitudes in terms of

lower-point on-shell amplitudes. In four dimensions, an on-shell momentum for a massless

particle can be written in the following bispinor form:

pαα̇ = λαλ̃α̇,
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where α = 0, 1 and α̇ = 0̇, 1̇ are chiral and antichiral spinor indices. For supersymmetric

theories, the particles also have supermomentum:

qαa = λαηa,

where η is Grassman odd and a = 1, . . . ,N and N denotes the amount of supersymmetry.

The BCFW recursion relations are natrually encoded by on-shell diagrams, which differ

from standard Feynman diagrams in that they do not contain virtual particles. The build-

ing blocks for on-shell diagrams are 3-point MHV and anti-MHV amplitudes, which encode

the scattering of three gluons or gravitons with helicity {− −+} and {+ +−}, respectively.

More generally, n-point NkMHV amplitudes encode the scattering of k+2 particles of neg-

ative helicity and n− k − 2 particles of positive helicity. The 3-point MHV amplitudes of

N = 8 SUGRA are essentially the square of their N = 4 SYM counterparts and are given by

AMHV
3 =

δ8 ([12] η3 + [23] η1 + [31] η2)

[12]2 [23]2 [31]2
δ4
(
λ1λ̃1 + λ2λ̃2 + λ3λ̃3

)
, λ1 ∝ λ2 ∝ λ3

AMHV
3 =

δ16 (λ1η1 + λ2η2 + λ3η3)

〈12〉2 〈23〉2 〈31〉2
δ4
(
λ1λ̃1 + λ2λ̃2 + λ3λ̃3

)
, λ̃1 ∝ λ̃2 ∝ λ̃3. (2.1)

We denote these building blocks with on-shell diagrams using black and white vertices,

respectively:

(2.2)

More general on-shell diagrams are constructed by connecting 3-point vertices and integrat-

ing over the on-shell supermomenta associated with the internal edges between two vertices:∫
dµ =

∫
dN η d2λ d2λ̃

Vol GL(1)
, (2.3)

where the measure is over λ, λ̃, η modulo the little group phase λ → cλ, λ̃ → c−1λ̃, which

we denote by quotienting by Vol GL(1).

In order to construct on-shell diagrams corresponding to higher-point amplitudes, one

uses the BCFW bridge:

(2.4)
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Figure 1. Construction of amplitudes via recursion using the BCFW bridge. For N = 8 SUGRA,

the bridge is decorated and the sum is over all ways of partitioning particles {2, . . . , n− 1} into two

sets L,R.

which is essentially a decorated version of the one for N = 4 SYM. Parameterizing the

momentum through the internal edge by αλ1λ̃n, one finds that

λ1̂λ̃1̂ = λ1

(
λ̃1 − αλ̃n

)
λn̂λ̃n̂ = (λn + αλ1) λ̃n.

Hence, this diagram corresponds to BCFW shifting legs (1, n). In addition to this, we must

multiply the diagram by the factor 1/p1 · pn, which we indicate by making the central line

dashed. Since p1 · pn = p̂1 · pn = p1 · p̂n = p̂1 · p̂n, it doesn’t matter which two momenta we

choose for the decoration, as long as there is one on either side of the decoration. We will

derive this decoration in the next subsection.

Using the above rules, on-shell diagrams for higher-point tree-level scattering ampli-

tudes can be constructed by connecting on-shell diagrams for lower-point amplitudes with

a BCFW bridge and summing over all permutations of the unshifted legs, as depicted in

figure 1.

2.1 Derivation of the decorated BCFW bridge

The basic idea underlying BCFW recursion is to deform the momenta of two legs of an on-

shell amplitude by a complex parameter. After doing so, the amplitude develops poles in

the deformation parameter and the residues correspond to products of lower-point on-shell

amplitudes, allowing one to compute higher-point amplitudes from lower-point amplitudes.

The BCFW recursion relations can be applied to a very broad range of theories such as

Yang-Mills [2] and gravity [33, 34] in d ≥ 4 dimensions, and can also be adapted to

d = 3 [35]. The supersymmetric form of the BCFW recursion relation [2, 3, 11, 30] takes

the form

Atree(P) =
∑

PL(i),PR(j)

∫
d4pdNη

p2
Atree
L (P̂ , {P̂(i)})Atree

R (−P̂ , {P̂(j)}) . (2.5)
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Here P = {P1, . . . , Pn} is the set of all external supermomenta Pi = (pi, ηi). There are two

special particles, i, j and the sum on the r.h.s. is over all bipartitions of the particle numbers

such that i is in one partition and j in the other, with PL(i) and PR(j) the corresponding

sets of supermomenta. The hats over the external (massless) supermomenta on the r.h.s.

indicate the following deformations (in spinor helicity form)

λ̂i = λi + zpλj
ˆ̃
λj = λ̃j − zpλ̃i (2.6)

with all other λk, λ̃k remaining undeformed. Finally the hatted internal supermomenta are

defined as

p̂ = p− zpλj λ̃i, (2.7)

with p̂2 = 0 which fixes

zp = p2/(2〈j|p|i]) . (2.8)

A remarkable feature of the BCFW recursion is that the result is independent of the choice

of special points i, j. The above formula is valid for both SYM and SUGRA.

We now compare the terms in this BCFW resursion (2.5) with its form as a BCFW

bridge. The idea is that each term in the sum on the r.h.s. of (2.5) has the interpretation of

an on-shell diagram consisting of two on-shell amplitudes AL andAR (which will themselves

can be recursively described via on-shell diagrams) together with a three-point MHV and

a three-point MHV amplitude connected with four internal lines, as depicted in the picture

below. Each internal line yields an integration over the on-shell supermomentum flowing

through it (2.3).

Hence, this on-shell diagram simply represents

diagram =

∫
dµadµbdµcdµPA3Ā3ALAR . (2.9)

Let us first consider consider integrating the bosonic parts of the measures dµadµbdµc
against the bosonic delta functions associated with the 3-point amplitudes. There are nine

bosonic integrations and eight bosonic delta functions, so we have one left over integration

which when combined with the integral over the on-shell momentum P gives rise to an

integral over and off-shell momentum p. Writing

A3(1, 2, 3) = δ(p1 + p2 + p3)A3(1, 2, 3) Ā3(1, 2, 3) = δ(p1 + p2 + p3)Ā3(1, 2, 3) (2.10)
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we find that

diagram =

∫
dµadµbdµcdµP δ

4(pi − pa − pb)δ4(pj + pb − pc)A3Ā3ALAR

=

∫
dNηad

Nηbd
Nηc

∫
dNηp

d4p

p2
× 1

pi.pj
× (A3Ā3ALAR)| (2.11)

The 1/pi ·pj arises from Jacobians and is a key point when considering N = 8 supergravity.

On the r.h.s. , internal momenta have been integrated out against delta functions and

so must be replaced by the result of this, indicated by the vertical line. The explicit

replacements are

λa = λ̂i λ̃a = λ̃i

λb = λj λ̃b = −zpλ̃i

λc = λj λ̃c =
ˆ̃
λj

p = λpλ̃p + zpλj λ̃i (2.12)

where zp is defined in (2.8). Finally we need to do the integration over internal fermionic

degrees of freedom and consider the explicit form of the three-point amplitudes. This is

where the dependence on N comes into the computations for the first time. The three-point

amplitudes are given as:

A3(1, 2, 3) =
δ2N (η1λ1 + η2λ2 + η3λ3)

(〈12〉〈23〉〈31〉)N/4
Ā3(1, 2, 3) =

δN (η1[23] + η2[31] + η3[12])

([12][23][31])N/4
(2.13)

where N = 4, 8 describe N = 4 SYM and N = 8 SUGRA, respectively. Integrating

dNηad
Nηbd

Nηc against the 3N fermionic delta functions from the three-point amplitudes

in (2.11) and inputting the replacements (2.12), we obtain

diagram =

∫
dNηp

d4p

p2
× 1

pi.pj
× (pi · pj)N/4 × (ALAR)| . (2.14)

This is the main formula of this section and should be compared with terms in the recursion

relation (2.5). We conclude that forN = 4 SYM, the on-shell diagram precisely corresponds

to a term in the BCFW expansion, but for N = 8 we have an additional power of pi · pj in

the numerator. Hence, in both cases we can rephrase BCFW recursion in terms of a sum

over on-shell diagrams, but for N = 8 SUGRA the bridge needs to be supplemented by an

additional 1
pi·pj . This is the decoration in (2.4). Hence, the recursion relation in terms of

on-shell diagrams depicted in figure 1 holds for any number of legs, since it is equivalent

to standard BCFW recursion whose validity for N = 8 SUGRA was proven in [36].

2.2 Tree-level SUGRA amplitudes from planar on-shell diagrams

Since the recursion relation involves summing over permutations of the unshifted legs in

SUGRA, one generally obtains non-planar on-shell diagrams. However in the recursion

relation there are two special adjacent legs which are held fixed. If we always choose these

two legs to be the ones which we insert into the recursion relation to obtain higher-point
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Figure 2. BCFW recursion in terms of planar on-shell diagrams.

amplitudes, the result will always be a sum of planar planar graphs. This can be proved

via a simple induction argument. Assume that all n′-point amplitudes for n′ < n can be

expressed as a sum over planar on-shell diagrams with two fixed adjacent external momenta.

Then an n-point amplitude can be obtained via the recursion relation (as in figure 1), by

inserting these lower-point diagrams into a larger one. By insisting that we always use the

fixed adjacent legs in each subdiagram as the ones we attach to either the bridge or the

other subdiagram, we obtain the n-point amplitude as a sum over planar on-shell diagrams

with two fixed adjacent external momenta and we have completed the induction argument.

The structure is illustrated in the following picture which then repeats recursively:

Thus any tree-level scattering amplitude can be obtained by summing planar on-shell

diagrams over permutations of unshifted external legs. In this way, the amplitudes of tree-

level N = 8 SUGRA can be associated with planar on-shell diagrams. Indeed the diagrams

are precisely the same as those which would appear in N = 4 SYM by recursing in a similar

way. The main difference is that in SUGRA we sum over all permutations of the unfixed

legs. A structure very reminiscent of this relation between tree-level SUGRA and SYM

was found previously in [37]. It is then interesting to examine what other properties of

planar N = 4 amplitudes such as a Grassmannian representation and positivity can be

generalized to N = 8 supergravity. We will consider this in the next section.

As an example, consider the 5-point MHV amplitude. If we restrict the recursion

relation to a planar sector as described above, the result is given by a sum over six planar

diagrams:

On the other hand, if we apply a recursion in a different way, we will generically get a sum

– 7 –
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of non-planar diagrams:

This implies nontrivial relations for non-planar diagrams of N = 8 SUGRA. For example,

it is straightforward to check the equivalence of the diagrams in the above two figures using

the techniques we describe in the next section.

3 Grassmannian representation

In the previous section, we developed a recursion relation for tree-level N = 8 SUGRA

amplitudes in terms of on-shell diagrams. In this section, we will describe a systematic

method for evaluating the on-shell diagrams, closely following similar methods in N = 4

developed in [1]. In particular we will develop an algorithm for reading off formulae directly

from the diagrams in the form of integrals over k-dimensional planes in n-dimensions,

where n and k are the number of external legs and MHV degree, respectively. The space

of k planes in n dimensions is known as the Grassmannian Gr(k, n), which also plays a

prominent role in the scattering amplitudes of N = 4 SYM.

Our strategy will be to first write the 3-point amplitudes as Grassmannian integrals

and make a special choice of coordinates on the Grassmannian which allow us to read

off the integrands directly from the on-shell diagrams by assigning variables and arrows

to the edges of the diagram. We then generalize these expressions to higher-point on-

shell diagrams by gluing together 3-point vertices and deduce an algorithm for writing

down formulae for general on-shell diagrams in terms of their edge variables, which can

ultimately be lifted to covariant Grassmannian integral formulae.

3.1 3-point amplitudes

The Grassmanian Gr(k, n) can be thought of as the set of k × n matrices Cai modulo the

left-action of GL(k)

Gr(k, n) =
{
Cai ∈Mk×n : Cai ∼ gabCbi, ∀ gba ∈ GL(k)

}
. (3.1)

Equivalently this is the set of k-planes through the origin in n dimensions, with the

GL(k) equivalence simply corresponding to the freedom of the choice of basis for

the k-plane. We can then define C⊥ is the orthogonal n − k plane whose minors

(ij . . . k)⊥ = C⊥aiC
⊥
bj . . . C

⊥
ckε

ab...c are determined in terms of the minors of C (ij . . . k) =

CaiCbj . . . Cckε
ab...c via

(ik+1 . . . in)⊥ = (i1i2 . . . ik)ε
i1i2...ik

ik+1...in . (3.2)
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The natural Grassmanian invariant measure can be written explicitly as

dk×nC

GL(k)
= (i1 . . . ik)dC1ik+1

. . . dC1inεi1...in . . . (j1 . . . jk)dCkjk+1
. . . dCkjnεj1...jn . (3.3)

With this measure one can choose any k(n− k) independent coordinates for Gr(k, n) and

simply plug into the above k(n− k)-form.

One can write the 3-point MHV amplitude in supergravity as an integral over the

Grassmannian Gr(2, 3) as follows:

A3(1, 2, 3) =

∫
d2×3C

GL(2)

δ4|16
(
Ca · λ̃|Ca · η̃

)
δ2
(
λ · C⊥

)
(12)2 (23)2 (31)2

〈ij〉
(ij)

, (3.4)

where i, j are any pair of external legs and (ij) is the minor obtained from columns i and j

of the 2× 3 C-matrix. Note that the delta functions (which imply that λi is perpendicular

to C⊥ and hence parallel to C) imply that Cai = Habλ
b
i , where H ∈ GL(2). It follows that

〈ij〉
(ij)

= detH (3.5)

so this ratio is the same for any pair of legs i, j. One can verify directly that this expression

is GL(2) invariant, permutation invariant (thanks to (3.5)), and gives the correct result (2.1)

on making any coordinate choice for the Grassmannian, which we will see shortly. As we

show in appendix A, (3.4) can also be derived by Fourier transforming the 3-point MHV

amplitude in (2.1) to twistor space, which gives rise to a “link representation” and makes

manifest the fact that the amplitude does not have conformal symmetry, since the angle

bracket 〈ij〉 in (3.4) is expressed in terms of an infinity twistor.

Performing similar manipulations, we obtain the following Grassmannian Gr(1, 3) in-

tegral formula for the 3-point anti-MHV amplitude:

Ā3 =

∫
d1×3C

GL(1)

δ2|8
(
C · λ̃|C · η̃

)
δ4
(
λ · C⊥

)
(1)2 (2)2 (3)2

[ij]

(ij)⊥
(3.6)

where i, j are once again any pair of external legs and (ij)⊥ is the minor obtained from rows

i and j of the 3 × 2 C⊥ matrix. In this case, the delta functions imply that C⊥ia = λ̃biGba,

where G ∈ GL(2), so
[ij]

(ij)⊥
= detG (3.7)

so this ratio is the same for any pair of external legs.

3.2 Edge variables and perfect orientations

When gluing together 3-point amplitudes to form higher-point on-shell diagrams it is useful

to make a particular coordinate choice for the 3-point Grassmanians which allows us to

interpret the integrands in terms of “edge variables” and provides a systematic way to

write down formulae for higher-point on-shell diagrams [1].

– 9 –
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For the black (MHV) vertex we choose coordinates

CMHV =

(
1 0 −α1α3

0 1 −α2α3

)
C⊥MHV =

(
−α1α3 −α2α3 1

)
. (3.8)

whereas for the white (MHV) vertices we choose

CMHV =
(
−α1α3 −α2α3 1

)
C⊥
MHV

=

(
1 0 −α1α3

0 1 −α2α3

)
. (3.9)

and we display this choice of coordinates via arrows as:

(3.10)

The relations among the λ’s and λ̃’s implied by the delta functions in (3.4) and (3.6) can

now be read off directly by following paths in the oriented diagrams. For the black node,

the delta functions with this choice of C imply that λ̃1 = α1α3λ̃3 and λ̃2 = α2α3λ̃3, whereas

for the white node we have λ̃3 = α1α3λ̃1 +α2α3λ̃2.
1 These equations relate a λ̃ associated

with an ingoing arrow to λ̃’s associated with outgoing arrows by summing over all paths

originating from the ingoing arrow in question:

λ̃i =
∑
paths
i→j

( ∏
edges

in path:e

αe

)
λ̃j . (3.11)

and similar relations hold for the η’s. Similarly, the relations among the λ’s which arise

from the delta functions involving C⊥ arise from summing over the reverse paths:

λi =
∑
paths
i←j

( ∏
edges

in path:e

αe

)
λj . (3.12)

We can thus read off C and C⊥ directly from the arrows in the on-shell diagrams.

With the above choices for C and C⊥, the Grassmannian formulae (3.4) and (3.6)

become

A3 = 〈12〉
∫
d(α1α3)d(α2α3)

∏2
i=1 δ

2|8
(

(λ̃i|ηi)− αiα3(λ̃3|η3)
)
δ2 (λ3 + α1α3λ1 + α2α3λ2)

α2
1α

2
2α

4
3

. (3.13)

Ā3 = [12]

∫
d(α1α3)d(α2α3)

δ2|8
(

(λ̃3|η3)− α1α3(λ̃1|η1)− α2α3(λ̃2|η2)
)∏2

i=1 δ
2 (λi + αiα3λ3)

α2
1α

2
2α

4
3

. (3.14)

1The reader may notice that C⊥ is not in fact perpendicular to C (in the Euclidean sense) with this choice.

Indeed we choose momentum flow to follow the arrows, thus momentum conservation reads p1 + p2 − p3 =

λiη
ij λ̃j = 0 for the black node, leading to the non-Euclidean metric ηij = diag(+,+,−). C and C⊥ are

orthogonal with respect to this metric.
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We can easily recover the original expressions for the amplitudes in (2.1). For example,

if we choose α1, α2 as our integration variables and integrate them against the final delta

function in (3.13), this gives α1 = 〈23〉/α3〈12〉 and α2 = 〈31〉/α3〈12〉 along with the

Jacobian factor 1/α2
3〈12〉. One finds that α3 drops out and using

δ2|8
(

(λ̃1|η1)− 〈23〉/〈12〉(λ̃3|η3)
)
δ2|8
(

(λ̃2|η2)− 〈31〉/〈12〉(λ̃3|η3)
)

= 〈12〉−6δ4|16
(∑

i

(λiλ̃i|λiηi)
)

(3.15)

one indeed obtains the 3-point MHV amplitude in (2.1).

These formulae can be generalized to any on-shell diagram. In particular, one can

always put arrows on an on-shell graph such that each white node has one incoming and

two outgoing arrows, and each black node has two incoming and one outgoing, known as

a “perfect orientation” [1]. One can then associate α’s with edges of the graph and read

off a formula for the graph in terms of these edge variables which can then be lifted to a

Grassmannian integral formula. We will illustrate this for a few simple examples and then

spell out a general algorithm.

3.3 On-shell diagrams with two vertices

Let us consider the next simplest examples, notably on-shell diagrams involving two 3-

point vertices. Working out these examples in detail will help us deduce an algorithm

for evaluating general on-shell diagrams. First consider a two-node diagram in which the

vertices have the same color:

Abbs =

In N = 4 SYM, such diagrams obey certain identities which allow one to define a four-

point vertex from merging two three-point vertices. We will derive analogous identities for

N = 8 SUGRA.

Using the formulae for 3-point vertices in (3.13) and (3.14), this diagram is given by

Abbs =

∫
d2λ5d

2λ̃5d
8η5

GL(1)
AL3AR3 (3.16)

where

AL3 =

∫
d(α1α5)d(α2α5)

α2
1α

2
2α

4
5

〈12〉δ2|8
(
λ̃1 − α1α5λ̃5

)
δ2|8

(
λ̃2 − α2α5λ̃5

)
δ2 (λ5 − α5 (α1λ1 + α2λ2))

AR3 =

∫
d(α4α3)d(α5′α3)

α4
3α

2
4α

2
5′

〈54〉 δ2|8
(
λ̃5′−α3α5′ λ̃3

)
δ2|8

(
λ̃4−α3α4λ̃3

)
δ2 (λ3−α3 (α5′λ5′ +α4λ4))

and we define λ5′ = λ5, λ̃5′ = λ̃5. Note that a factor of α4
5 appears in AL3 because it is

associated with an outgoing line on a black vertex. Although we can fix one edge variable

for each vertex, we will keep them all unfixed for now in order to be as general as possible.

Noting that

〈54〉 =
〈34〉
α′5α3
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Eq. (3.16) becomes

Abbs = 〈12〉 〈34〉
∫
d(α1α5)d(α2α5)d(α4α3)d(α5′α3)

α2
1α

2
2α

5
3α

2
4α

4
5α

3
5′

d2λ5d
2λ̃5d

8η5
GL(1)

× δ2|8
(
λ̃5 − α3α5′ λ̃3

)
δ2 (λ5 − α5 (α1λ1 + α2λ2))

× δ2|8
(
λ̃1 − α1α3α5α5′ λ̃3

)
δ2|8

(
λ̃2 − α2α3α5α5′ λ̃3

)
δ2|8

(
λ̃4 − α3α4λ̃3

)
× δ2 (λ3 − α3 (α5α5′ (α1λ1 + α2λ2)− α4λ4))

where we plugged the arguments of the delta functions from the second line into the

remaining delta functions in order to remove their dependence on λ5 and λ̃5. The integrals

over λ5, η5 can then be trivially performed against the delta functions in the first line. For

the remaining integral over λ̃5, we choose as integration variables, the second component

λ̃25 so that the measure d2λ̃5/GL(1) = λ15dλ
2
5 together with α′5. We thus get∫

dα′5
(α′5)

3

∫
d2λ̃5

GL(1)
δ2
(
λ̃5 − α3α5′ λ̃3

)
= 1/(α′5)

2 α′5 =
λ̃15
α3λ̃13

.

Defining αnew
5 = α5α

′
5 (and then dropping the “new”, we see that (3.16) finally reduces to

Abbs=〈12〉 〈34〉
∫
d(α1α5α3)d(α2α5α3)d(α4α3)

α2
1α

2
2α

6
3α

2
4α

4
5

δ2|8
(
λ̃1−α1α5α3λ̃3

)
δ2|8

(
λ̃2−α2α5α3λ̃3

)
× δ2|8

(
λ̃4 − α3α4λ̃3

)
δ2 (λ3 − α1α5α3λ1 − α2α5α3λ2 − α4α3λ4) .

In the next section we will give a simple algorithm which will allow us to read off this

formula directly from the corresponding graph.

The equation above can be uplifted to the following Grassmannian invariant integral:

Abbs = 〈12〉 〈34〉
∫

d3C

(123)2(234)2(341)2(124)2
Π3
α=1δ

2|8
(
Cα · λ̃

)
δ2
(
λ · C⊥

)
(3.17)

where we recover the previous expression using the coordinates

C =

 1 0 −α1α3α5 0

0 1 −α2α3α5 0

0 0 −α4α3 1

 , C⊥ =


−α1α3α5

−α2α3α5

1

−α4α3

 .

Using a similar analysis, the two-node diagram:

Abbt =
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Figure 3. The merger of like nodes in on-shell diagrams appears together with a factor of spinor

brackets in SUGRA. Alternatively, the merger occurs without a factor if two opposite edges appear

with the bridge decoration.

is given by:

Abbt = 〈14〉 〈23〉
∫

d3C

(123)2(234)2(341)2(124)2
Π3
α=1δ

2|8
(
Cα · λ̃

)
δ2
(
λ · C⊥

)
. (3.18)

We see that the expressions in (3.17) and (3.18) are the same up to a prefactor, and

analogous relations hold for two-node diagrams with white vertices. In summary, we have

shown how to glue to like nodes together using edge variables and that such diagrams obey

the identities in figure 3. Furthermore, if two non-adjacent edges are decorated then the

prefactors in the identity are canceled out and it is possible to define a 4-point vertex by

merging together the two 3-point vertices, also depicted in figure 3.

Next, let’s consider a two-node diagram with vertices of opposite color,

Abw =

Since we can set an edge variable to one for each vertex, we will choose α2 = α3 = 1. Using

the explicit expressions for 3-point vertices given in the previous subsection, we find that

the diagram is then given by

Abw =

∫
d2λ5d

2λ̃5d
8η5

GL(1)
AL3AR3 (3.19)

where

AL3 =

∫
dα1

α2
1

dα5

α2
5

[15] δ2|8
(
λ̃2 − α1λ̃1 − α5λ̃5

)
δ2 (λ1 − α1λ2) δ

2 (λ5 − α5λ2)

AR3 =

∫
dα4

α2
4

dα5′

α2
5′

〈
5′4
〉
δ2|8

(
λ̃5′ − α5′ λ̃3

)
δ2|8

(
λ̃4 − α4λ̃3

)
δ2 (λ3 − α5′λ5′ − α4λ4)

and we once again define λ5′ = λ5, λ̃5′ = λ̃5. Noting that

[15] = α5′ [13] , 〈54〉 = α5 〈24〉 ,
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Eq. (3.19) can be written as

Abw = [13] 〈24〉
∫
dα1

α2
1

dα2

α2
4

dα5

α5

dα5′

α5′

d2λ5d
2λ̃5d

8η5
GL(1)

δ2 (λ5 − α5λ2) δ
2|8
(
λ̃5 − α5′ λ̃3

)
× δ2|8

(
λ̃2 − α1λ̃1 − α5α5′ λ̃3

)
δ2|8

(
λ̃4 − α4λ̃3

)
δ2 (λ1 − α1λ2) δ

2 (λ3 − α5α5′λ2 − α4λ4)

where we removed the dependence on λ5 and λ̃5 in the delta functions in second line using

delta functions in first line. The integrals over λ5 and η5 are trivial to carry out and one

obtains the constraints λ5 = α5λ2, η5 = α5′η3. Using GL(1) symmetry to set λ̃15 = λ̃13, λ̃

we then obtain ∫
d2λ̃5

GL(1)
δ2
(
λ̃5 − α5′ λ̃3

)
= δ (1− α5′) .

After performing the integral over α5′ , (3.19) finally reduces to

Abw = [13] 〈24〉
∫
dα1

α2
1

dα4

α2
4

dα5

α5
δ2|8

(
λ̃2 − α1λ̃1 − α5λ̃3

)
δ2|8

(
λ̃4 − α4λ̃3

)
× δ2 (λ1 − α1λ2) δ

2 (λ3 − α5λ2 − α4λ4) ,

This can in turn be can be expressed as the residue of a Grassmannian integral as follows:

Abw=Res(12)=0

∫
d4C

(12)(13)(14)(23)(24)(34)

〈24〉
(24)

[13]

(13)⊥
Π2
α=1δ

2|8
(
Cα · λ̃

)
Π2
β=1δ

2
(
λ · C⊥β

)
,

(3.20)

where the explicit coordinates above correspond to

C =

(
−α1 1 −α5 0

−α 0 −α4 1

)
, C⊥ =


1 0

−α1 −α5

0 1

−α −α4


and the residue is at α = 0.

In summary, we have found that although there are initially two edge variables as-

sociated with a given internal line (one associated to each end of the line), we can use

the GL(1) symmetry of the on-shell variables of the internal line to set one of the edge

variables to one, so that in the end there is only one edge variable associated with each

internal line. Moreover, we see the emergence of Grassmannian structure at the level of

two-node diagrams. All of these features continue to hold for more complicated diagrams.

3.4 Algorithm

As we have seen from the simple examples in the previous subsection, it is possible to

derive Grassmannian integral formulae for higher point on-shell diagrams by combining

the 3-point Grassmannians in (3.4) and (3.6). Moreover, the canonical coordinates — edge

variables — for these Grassmannians can be read off directly from the on-shell diagrams

together with a perfect orientation. Scattering amplitudes are then obtained by decorating

planar on-shell diagrams with BCFW bridge factors and summing over permutations of
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the external legs. After doing so, one obtains Grassmannian integral formulae for the

scattering amplitudes.

The general algorithm for obtaining a Grassmannian integral formula corresponding

to any on-shell diagram is as follows:

1. Choose a perfect orientation for the diagram by drawing arrows on each edge such

that there are two arrows entering/one arrow leaving every black node and two arrows

leaving/one arrow entering every white node.

2. To begin with, label every half-edge with an edge variable α so that there are initially

two variables for each internal edge (one associated with each of the two vertices

attached to the edge). Then a) set one of the two edge variables on each internal

edge to unity, and b) set one of the remaining variables associated with each vertex

to unity.2 We are thus left with e− v independent edge variables.3

3. Associate dα/α2 with each edge variable leaving a white vertex or entering a black

vertex and dα/α3 with each edge variable entering a white vertex or leaving a black

vertex.

4. For each black vertex associate the bracket 〈ij〉 where i,j are the two edges with

ingoing arrows. For each white vertex associate the bracket [ij] where i,j are the two

edges with outgoing arrows.

5. All spinor variables (external and internal) are related to each other via formulae

similar to (3.11) and (3.12):

λ̃i =
∑
paths
i→j

( ∏
edges
in path

α
)
λ̃j

λi =
∑
paths
i←j

( ∏
edges
in path

α
)
λj (3.21)

Hence, for λ̃’s (as well as η’s) we sum over all paths from edge i to edge j, taking the

product of all the edge variables encountered along each path, and for λ’s we consider

reverse paths. If one encounters a closed loop when summing over paths, simply sum

the geometric series.

These relations allow one rewrite the internal spinors in terms of external ones.4

Using these relations, write down δk×(2|8)(C · (λ̃|η))δ2(n−k)(λ · C⊥) where C can be

2The choices made in a) and b) are arbitrary and final answer should not depend on this choice. Indeed

after a) we are tempted to say there is just a single edge variable for each edge. However in order to

implement the intermediate steps of the algorithm below we need to think of it as being associated with

one of the two vertices at the end of the edge.
3From Euler’s formula e− v = f − 1 and as shown in [1] one can equivalently use face variables. In this

context, the edge variables are easier to deal with.
4A canonical way to do this is to simply follow the paths to the end, however one can sometimes obtain

simpler expressions by making more judicious choices, as we will see in the examples in the next section.
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read off by writing all incoming external λ̃’s in terms of outgoing ones and C⊥ can

be read off by writing all outgoing external λ’s in terms of ingoing ones.

6. The above procedure gives an expression for the on-shell diagram as a Grassmannian

integral in terms of specific coordinates. This can be uplifted to a covariant expression

by computing the minors of C in terms of edge variables as described in the previous

step, and expressing the rest of the integrand in terms of minors whilst ensuring

the overall GL(k) weight is correct (where k is the MHV degree). Note that it is

always possible to express the edge variables as monomials of the minors, as was

first seen in the context of N = 4 SYM [1]. For on-shell diagrams contributing to

non-MHV amplitudes, this lift will specify a nontrivial contour in the Grassmannian.

We describe this in more detail in the end of section 4.

Although the above algorithm will work in general, there are often shortcuts one can

take to simplify the calculation. Indeed, if an edge of the diagram corresponds to a BCFW

bridge, then the spinor brackets associated with the two vertices of this edge will be canceled

by the bridge decoration (which has the form 1/p · p), leaving only α variables. We can

therefore add the following rules to the above algorithm:

• There is a simple rule for BCFW bridges:

In particular, if α is the edge variable of the bridge and all the adjacent edges have

trivial edge variables, then the bridge contributes dα/α.

• If one uses the planar recursion relation illustrated in figure 2, one can see that

nearly all vertices are attached to bridges. Indeed, for tree-level on-shell diagrams,

the only vertices which are not attached to bridges are those directly attached to

the n − 2 unfixed external momenta, so we only need to include spinor brackets for

these vertices when implementing step 4 of the algorithm. This observation also has

important implications for on-shell diagrams containing bubbles, which should be

relevant for loop-level amplitudes. As pointed out in [38], an undecorated bubble like

the one depicted in figure 4 must vanish because the spinor brackets associated with

each vertex vanish. On the other hand, if one of the internal lines is decorated then

the bubble will not vanish because the decoration precisely cancels out the spinor

brackets. Hence, if it is possible to extend BCFW recursion for N = 8 supergravity

to loop-level, we expect this to be a general feature.

In the next section, we illustrate this algorithm in a number of examples.
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Figure 4. An undecorated bubble diagram (left) vanishes in supergravity, whereas the bridge

decoration needed for BCFW renders it finite (right diagram).

4 Examples

In section 2 we described how to recursively compute tree-level amplitudes of N = 8

SUGRA in terms of on-shell diagrams, and in section 3 we proposed an algorithm for

computing the on-shell diagrams in terms of Grassmannian integral formulae. In this

section, we will put everything together and illustrate these techniques by computing four

and five point amplitudes. In the end of this section, we briefly comment on how these

calculations extend to higher-point and in particular non-MHV amplitudes.

4.1 Four points

First we consider the following diagram contributing to the four-point tree-level amplitude:

Here we have already performed the first two steps by orienting and labeling the diagram.

Following steps 3,4 we then have the expression∫
dα5dα6dα7dα8

α2
5α

2
6α

2
7α

2
8

〈67〉〈58〉[56][78] . (4.1)

We then use the path prescription (3.21) to rewrite the internal brackets as external ones

λ̃5 = λ̃2 λ̃6 = λ̃2 λ̃7 = λ̃4 λ̃8 = λ̃4

λ5 = α5λ1 λ6 = α6λ3 λ7 = α7λ3 λ8 = α8λ4 , (4.2)

as well as to write all ingoing external λ̃s in terms of outgoing ones (and vice versa for the

λ’s) yielding the C-matrix and C⊥ matrix

λ̃1 = α5λ2 + α8λ̃4 λ̃3 = α7λ4 + α6λ̃2

λ2 = α5λ1 + α6λ3 λ4 = α7λ3 + α8λ1 . (4.3)
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Thus after step 5 we have∫
dα5dα6dα7dα8

α5α6α7α8
〈13〉2[24]2δk(2|8)(C · (λ̃|η))δ2(n−k)(λ · C⊥)δ2×(2|8)(C · (λ̃|η))δ2×2(λ · C⊥)

(4.4)

with

C =

(
1 −α5 0 −α8

0 −α6 1 −α7

)
C⊥ =

(
−α5 1 −α6 0

−α8 0 −α7 1

)
. (4.5)

We thus obtain an expression as an integral over the Grassmannian with specific coordi-

nates. To uplift this to a covariant expression, compute all minors of C. From (4.1) we

have

(12) = −α6 (13) = 1 (14) = −α7

(23) = −α5 (24) = α5α7 − α6α8 (34) = α8 (4.6)

from which we rewrite (4.5) as

A4 =

∫
d2×4C

GL(2)

δ4|16
(
C · λ̃|C · η̃

)
δ4
(
λ · C⊥

)
(12) (23) (34) (41)

〈13〉2 [24]2

(13)4
. (4.7)

Note that this expression gives the previous expression in the above coordinates (using

that here the measure d2×4C/GL(2) = dα5dα6dα7dα8) and it is invariant under the local

GL(2) of the Grassmanian, and so it is the unique Grassman invariant uplift of the previous

expression.5

Before continuing, it is useful to look at what we would get from a different choice of

perfect orientation. Following the steps above for the following perfect orientation

we obtain the expression

A4 =

∫
d2×4C

GL(2)

δ4|16
(
C · λ̃|C · η̃

)
δ4
(
λ · C⊥

)
(12) (23) (34) (41)

〈12〉2 [34]2

(12)4
. (4.8)

5Under the GL(2) transformation C → GC, the measure transforms with det(G)4 and the delta functions

with det(G)4, so we need 8 minors in the denominator in order to have GL(2) invariance, and hence to have

a true Grassmannian integral.
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This is clearly very similar to the expression we found using the previous perfect orienta-

tion (4.7), but for the last factor. Following similar arguments to those leading to (3.5)

and (3.7) we have that

〈13〉
(13)

=
〈ij〉
(ij)

and
[24]

(13)
=

[ij]

(ij)⊥
for any i, j , (4.9)

showing that the two expressions found using different perfect orientations are in fact

equivalent.

Finally, to obtain the 4-point amplitude itself, we multiply by the bridge factor

(〈12〉 [12])−1 and sum over the permutation of legs 3 and 4. Using (4.9) to choose the

last factor in (4.8) to be
〈12〉2

(12)2
[12]2

(34)2
, (4.10)

dividing through by (〈12〉 [12])−1, and summing over the permutation of legs 3 and 4 we

obtain

M4 =

∫
d2×4C

GL(2)

δ4|16
(
C · λ̃|C · η̃

)
δ4
(
λ · C⊥

)
((13)(24)− (14)(23))∏

i<j (ij)

〈12〉 [12]

(12)2 (34)2

=

∫
d2×4C

GL(2)

δ4|16
(
C · λ̃|C · η̃

)
δ4
(
λ · C⊥

)∏
i<j (ij)

〈12〉 [12]

(12) (34)
. (4.11)

To obtain the second line, we used the Plucker identity (13)(24)−(14)(23) = (12)(34). Once

again, the last factor can be written in many ways, so we write the four-point amplitude

more generally as

M4 =

∫
d2×4C

GL(2)

δ4|16
(
C · λ̃|C · η̃

)
δ4
(
λ · C⊥

)
Πi<j(ij)

〈kl〉
(kl)

[pq]

(p⊥q⊥)

where k, l, p, q are any external legs.

The Grassmannian integrals in equations (4.8) and (4.11) are completely localized by

the delta functions. In particular, it is not difficult to see that they are solved by

C =

(
λ11 λ

1
2 λ

1
3 λ

1
4

λ21 λ
2
2 λ

2
3 λ

2
4

)
, C⊥ =

(
〈34〉 0 〈41〉 〈13〉

0 〈34〉 〈42〉 〈23〉

)
.

Evaluating the integrands on these solutions gives the explicit expressions

A4(1, 2, 3, 4) =

(
[34]

〈12〉

)2 δ4|16(P )

〈12〉 〈23〉 〈34〉 〈41〉
(4.12)

M4 =
[24]

〈24〉 〈13〉2
δ4|16(P )

〈12〉 〈23〉 〈34〉 〈41〉
. (4.13)

From the above expressions, one easily sees that the full amplitude M4 can be obtained

from the undecorated partial amplitude A4 by decorating a bridge and summing over

permutations:

M4 =
1

〈12〉 [12]
A(1, 2, 3, 4) + 3↔ 4.
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Figure 5. Square move for on-shell diagrams.

Furthermore, one sees that the on-shell diagrams of N = 8 SUGRA are invariant under

the square move depicted in figure 5. Note that the edge variables of the two diagrams in

figure 5 are nontrivially related, but the integrands are the same because of the invariance

of the dlog form of the measure Π8
i=5

dαi
αi

appearing in (4.4).

4.2 Five points

We now move on to the next simplest example, namely five points, and apply the algorithm

to read off an expression for the planar MHV on-shell diagram. We choose a perfect

orientation and use the edge variables according to the diagram

We have seven internal spinor brackets (one for each vertex) which we rewrite in terms of

external spinors as

[6 12] = [21] [5 10] = [54] [13 9] = α11[54] [78] = [32]

〈67〉 = α6α7〈13〉 〈12 13〉 = α13〈13〉 〈9 10〉 = α9α10α11〈31〉 . (4.14)

Inserting these we can thus write down the expression for the diagram as

A5 =

∫
dα6dα7dα9dα10dα11dα13

α6α7α9α10α13
δ4|16

(
C · λ̃|C · η̃

)
δ6
(
λ · C⊥

)
〈13〉3[45]2 [12] [23]. (4.15)

We also read off the C matrix from the diagram

C =

(
1 −α6 0 −α10α11 −α11

0 −α7 1 −α9 − α13α11α10 −α13α11

)
(4.16)
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from which we obtain the minors (we only list those which are monomials in the α’s)

(12) = −α7 (13) = 1 (15) = −α11α13 (23) = −α6

(34) = α10α11 (35) = α11 (45) = −α9α11.
(4.17)

Using the formula for the measure

d2×5C

GL(2)
= α3

11dα6dα7dα9dα10dα11dα13, (4.18)

we can then uplift the above expression directly to the covariant form

A5 =

∫
d2×5C

GL(2)

δ4|16
(
C · λ̃|C · η̃

)
δ6
(
λ · C⊥

)
(12) (23) (34) (45)(51)

〈13〉3 [45]2 [12] [23]

(13)4
. (4.19)

(here we need 9 minors in the denominator to get GL(2) invariance).

From the recursion relation in figure 1, we see that the 5-point amplitude can

be obtained by dressing the on-shell diagram with the two BCFW bridge factors,

1/p9.p11, 1/p2.p3, as indicated by the dashed edges:

and summing over permutations of legs (1, 4, 5). The bridge factors are most naturally

incorporated in combination with the spinor brackets associated with the two vertices

attached to each bridges. So we have

[9 13]〈12 13〉
p9.p11

=
α13

α9

[78]〈67〉
p2.p3

= α7 (4.20)

with the remaining three spinor brackets of (4.14) left untouched. So (4.15) becomes∫
dα6dα7dα9dα10dα11dα13

α2
6α7α2

9α10α11α13
δ4|16

(
C · λ̃|C · η̃

)
δ6
(
λ · C⊥

)
[12][45]〈13〉. (4.21)

which uplifts to

Adecorated
5 (1, 2, 3, 4, 5) =

∫
d2×5C

GL(2)

δ4|16
(
C · λ̃|C · η̃

)
δ6
(
λ · C⊥

)
(12) (23)2 (34) (45)2(51)

[12][45]〈13〉
(13)2

. (4.22)
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To obtain the full 5-point amplitude, we must sum the above expression over permutations

of (1, 4, 5). If we first sum over permutations of 4 and 5 and apply a Plucker identity, we

obtain

Adecorated
5 (1, 2, 3, 4, 5) + 4↔ 5 = [12][45]

∫
d2×5C

GL(2)

δ4|16
(
C · λ̃|C · η̃

)
δ6
(
λ · C⊥

)
(12) (23)2 (34) (45)(51)(14)(35)

〈kl〉
(kl)

,

where k and l are any external legs. Summing the above expression over cyclic permutations

of (1, 4, 5) then gives the following expression for the 5-point amplitude:

M5 =

∫
d2×5C

GL(2)

δ4|16
(
C · λ̃|C · η̃

)
δ6
(
λ · C⊥

)
Πi<j(ij)

〈kl〉
(kl)

N

(23)

where the numerator factor N is

N = ([12] [45] (13) (24)(25) + [15] [24] (12) (25)(34) + [25] [41] (12) (24)(35)) .

The numerator factor can be simplified by writing it purely in terms of spinor brackets

using (ij) = 〈ij〉
detH and applying momentum conservation and the Schouten identity:

N = (23) ([12] (23)[34](41)− (12)[23](34)[41]) .

Hence, we obtain the following Grassmannian integral formula for the 5-point amplitude:

M5 =

∫
d2×5C

GL(2)

δ4|16
(
C · λ̃|C · η̃

)
δ6
(
λ · C⊥

)
Πi<j(ij)

〈kl〉
(kl)

([12] (23)[34](41)− (12)[23](34)[41])

where k, l are any external legs. Solving the delta functions and extracting the gravi-

ton component of the superamplitude reproduces the five graviton amplitude in the form

originally obtained by Berends, Giele, and Kuijf [39].

Let us conclude this section with some general remarks. Using induction, it is not

difficult to show that an on-shell diagram contributing to an n-point tree-level amplitude

will have nI = 4(n − 3) internal edges and nV = 3n − 8 vertices, regardless of the MHV

degree. From this, it is easy to see that the on-shell diagram will have n+nI−nV = 2n−4

independent edge variables. On the other hand, a tree-level n-point NkMHV amplitude can

be expressed as an integral over the Grassmannian Gr(n, k). Since an element of Gr(n, k)

has k× (n−k) independent components but an n-point on-shell diagram obtained by tree-

level BCFW recursion has (2n−4) independent edge variables, this means that when we lift

the expression for the on-shell diagram in terms of edge variables into the Grassmannian,

this will specify a contour in the Grassmannian of dimension (k − 2)× (n− k − 2).

5 Conclusion

In this paper, we develop on-shell diagrams for N = 8 SUGRA. These are built up from

3-point black and white vertices corresponding to 3-point MHV and anti-MHV amplitudes,

respectively. In contrast to N = 4 SYM, when computing scattering amplitudes in N = 8
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SUGRA using BCFW recursion in terms of on-shell diagrams, the BCFW bridge must be

decorated and we must sum over permutations of the unshifted external legs. Nevertheless,

it is possible to define the recursion in terms of planar on-shell diagrams, implying remark-

able new identities for non-planar on-shell diagrams. Moreover, the on-shell diagrams of

N = 8 SUGRA exhibit equivalence relations analogous to those of N = 4 SYM, such as

mergers and square moves.

We have also developed an algorithm for computing on-shell diagrams by assigning

variables and arrows to the edges in such a way that they form a perfect orientation. This

approach is rather appealing because it is very simple and is easy to automate. Further-

more, it leads to a new representation of N = 8 SUGRA scattering amplitudes in terms

of Grassmannian integral formulae. Other Grassmannian representations were previously

deduced using twistor string theory and it would interesting to understand how they are

related to our formulae.

For planar N = 4 SYM, the on-shell diagrams were shown to be in one-to-one cor-

respondence with cells of the positive Grassmannian, leading to a new interpretation of

scattering amplitudes as the volume of a geometrical object known as the Amplituhedron.

We observe hints of similar structure in the undecorated planar on-shell diagrams of N = 8

SUGRA from which the amplitudes can be derived after decorating the BCFW bridges and

summing over permutations of the external legs. It would therefore be very interesting to

explore the existence of an Amplituhedron for N = 8 SUGRA. In context of planar N = 4

SYM, the Amplituhedron implied the emergence of locality and unitarity from more primi-

tive geometrical principles. If analogous statements can be made for gravitational scattering

amplitudes, this may have profound implications for quantum gravity.

Perhaps the most urgent question we face is whether the on-shell diagram formalism

we have developed can be extended to loop-level. Whereas dual conformal symmetry

provides a canonical definition for the loop integrands of the planar N = 4 SYM S-matrix,

it is not yet clear how to define a canonical integrand for non-planar (and in particular

gravitational) scattering amplitudes, although recent results based on ambitwistor string

theory [40, 41] and Q-cuts [42] suggest that it is possible to do so. Moreover, BCFW

recursion has been used to compute the rational contributions to loop amplitudes in gauge

theory [43, 44] and supergravity [45, 46].

For now, let us simply observe that the one-loop 4-point amplitude of N = 8 SUGRA

can be obtained from the on-shell diagram depicted in figure 6 after summing over permuta-

tions of the external legs. Indeed, using the rules described in section 3.4, one immediately

finds that this on-shell diagram is given by

A1
4 =

∫
Π4
i=1

dαi
αi
Â4

where the the dlogs come from the four decorated BCFW bridges, and the integrand simply

corresponds to the undecorated planar 4-point on-shell diagram computed in (4.12):

Â4 =

[
2̂4̂
]2〈

1̂3̂
〉2 δ4|16(P )〈

1̂2̂
〉 〈

2̂3̂
〉 〈

3̂4̂
〉 〈

4̂1̂
〉 .
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Figure 6. On-shell diagram contributing to the 4-point 1-loop amplitude.

Although the on-shell diagram has eight edge variables, only half of them are independent

since the C-matrix for this diagram implies the constraints

λ1 = (α1 + α2)λ2 + (α4 + α5)λ4,

λ3 = (α2 + α7)λ2 + (α3 + α4)λ4,

which in turn imply that

α5 =
〈12〉
〈42〉

− α4, α6 =
〈14〉
〈24〉

− α1, α7 =
〈34〉
〈24〉

− α2, α8 =
〈32〉
〈42〉

− α3.

Hence, the integrand can be written as a function {α1, α2, α3, α4}, as claimed. Noting that[
2̂4̂
]

= [24] and
〈
1̂3̂
〉

= 〈13〉 and dividing by the tree-level 4-point amplitude in (4.13) then

gives

A1
4/M4 = stu I14 (s, t)

where I14 is the scalar box integral and we have used the following identity (which was also

used in the context of planar N = 4 SYM [1]):∫
Π4
i=1

dαi
αi

〈12〉 〈23〉 〈34〉 〈41〉〈
1̂2̂
〉 〈

2̂3̂
〉 〈

3̂4̂
〉 〈

4̂1̂
〉 = st I14 (s, t).

Summing over cyclic permutations of the external legs finally gives the 1-loop 4-point

amplitude [47]:

M1
4 = stuM0

4

(
I14 (s, t) + I14 (t, u) + I14 (u, s)

)
.

Note that the on-shell diagram in figure 6 is just a decorated version of the one corre-

sponding to the 1-loop 4-point amplitude of planar N = 4 SYM, which was derived using

loop-level BCFW recursion [1]. Our results therefore suggest that a similar recursion re-

lation should exist for N = 8 SUGRA, although we leave a detailed derivation for future
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work. Another interesting feature of the supergravity calculation is the dlog form of the

integrand, which is made manifest by the rules described in section 3.4. The dlog form was

also observed in various other loop amplitudes of N = 8 SUGRA [19]. If it is possible to

generalize our on-shell diagram formalism to loop-level, it should make this structure man-

ifest. We also hope that the methods developed in this paper will lead to new techniques

for computing non-planar Yang-Mills amplitudes.
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A Grassmannian formulae via the link representation

In this appendix, we will derive a link representation for the 3-point amplitudes of N = 8

SUGRA from which Grassmannian integral formulae can be easily deduced. The link

representation for three-point supergravity amplitudes was first considered in [5]. Consider

the 3-point MHV superamplitude:

AMHV
3 (p1, p2, p3) =

δ4
(
λ · λ̃

)
δ16 (λ · η)

〈12〉2 〈23〉2 〈31〉2

where λ · λ̃ = λ1λ̃1 + λ2λ̃2 + λ3λ̃3 and λ · η = λ1η1 + λ2η2 + λ3η3. To obtain a link

representation, we first Fourier transform to twistor space whose coordinates are given by

ZA =
(
λα, µ

α̇, η̃a
)
, WA =

(
µ̃α, λ̃α̇, η

a
)
.

For an NkMHV amplitude, one can associate (k+2) legs with Z twistors and the remaining

legs with W twistors. Without loss of generality, let’s associate legs 1 and 2 with Z twistors

and leg 3 with a W twistor. Then

AMHV
3 (Z1, Z2,W3) =

∫
d2λ̃1d

2λ̃2d
2λ3e

i(µ1·λ̃1+µ2·λ̃2+µ̃3·λ3)AMHV
3 (p1, p2, p3) .

Writing the momentum delta function as

δ4
(
λ · λ̃

)
=

∫
d4xeix·(λ1λ̃1+λ2λ̃2+λ3λ̃3),

the integrals over λ̃1 and λ̃2 give rise to delta functions and we are left with

AMHV
3 (Z1, Z2,W3) =

1

〈12〉2
∫
d4xδ2 (µ1 + x · λ1) δ2 (µ2 + x · λ2)

∫
d2λ3

δ16 (λ · η)

〈23〉2 〈31〉2
ei(µ̃3+x·λ̃3)·λ3 .

(A.1)
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Next, we express λ3 as a linear combination of λ1 and λ2

λ3 = c13λ1 + c23λ2

where the coefficients are called link variables We then find that d2λ3 = 〈12〉 dc13dc23 and

δ16 (λ · η) = 〈12〉4 δ4 (η1 + c13η3) δ
4 (η2 + c23η3) .

Furthermore, on the support of the delta functions in (A.1), the argument of the exponential

can be expressed in terms of link variables as follows:(
µ̃3 + x · λ̃3

)
· λ3 = c13Z1 ·W3 + c23Z2 ·W3.

Expressing everything in terms of link variables then makes the integral over x trivial giving

a factor of 〈12〉−2, leaving us with

AMHV
3 (Z1, Z2,W3) = 〈12〉

∫
dc13dc23
c213c

2
23

ei(c13Z1·W3+c23Z2·W3)δ4 (η1 + c13η3) δ
4 (η2 + c23η3) .

Fourier transforming this expression back to momentum space finally gives

AMHV
3 (p1, p2, p3) =

∫
dc13dc23

δ4|8 (C · λ|C · η̃) δ2
(
λ · C⊥

)
(12)2 (23)2 (31)2

〈12〉
(12)

(A.2)

where

C =

(
1 0 c13
0 1 c23

)
, C⊥ =

−c13−c23
1

 ,

and (ij) denotes the minor of columns i and j of C.

Remarkably, (A.2) corresponds to an integral over the Grassmannian Gr(3, 2). It can

be expressed more generally as

AMHV
3 =

∫
d2×3C

GL(2)

δ4|16
(
Cα · λ̃|Cα · η̃

)
δ2
(
λ · C⊥

)
(12)2 (23)2 (31)2

〈ij〉
(ij)

(A.3)

where i, j are any pair of external legs. As explained in section 3.1, the ratio 〈ij〉(ij) is the

same for any pair of legs i, j. Equation (A.2) corresponds to a particular gauge fixing of

the GL(2) symmetry, which arose from our choice to associate legs 1 and 2 with Z twistors

when deriving the link representation. Had we made a different choice, we would have

obtained a different gauge fixing of (A.3). Performing similar manipulations, we obtain

the Grassmannian integral formula for 3-point anti-MHV amplitude in (3.6).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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