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1 Introduction

Higher-dimensional black holes are markedly different from those in four-dimensions. In

particular, they can be unstable [1–6], violate black hole uniqueness [2, 3, 7, 8] and also

lead to a violation of weak cosmic censorship [9–11].

The prototypical representative of such behaviour is the uniform five-dimensional black

string, which is the product space of a Schwarzschild black hole with a circle. The black

hole therefore has spatial horizon topology S2×S1, and is asymptotically R1,3×S1. When

the mass of the black string is much smaller than the size of the circle, the S2 extent of

the horizon is much smaller than the S1 length. Such a separation of length scales leads

to an instability that was first discovered by Gregory and Laflamme in [1].

What is the endpoint of this instability? When first proposed by [1], there were two

candidates: a nonuniform black string or a localised black hole. Nonuniform blacks strings

have the same horizon topology as uniform black strings, but they no longer respect the

symmetries of the S1. The nonuniform solutions branch off from uniform solutions at

a zero mode located at the critical onset of the Gregory-Laflamme (GL) instability. A

localised black hole has spherical horizon topology S3. They were expected to exist since

it is possible to place a small spherical black hole within R1,3 × S1. The possibility of

evolution towards localised black holes was especially intriguing because the change in

horizon topology implies a violation of weak cosmic censorship.

Later results [12, 13] ruled out the nonuniform strings as an endpoint since they have

lower entropy (horizon area) than the uniform strings, while localised black holes remained

a possibility since they are entropically preferred [14]. The time evolution of the instability

was finally performed in [9], providing the first numerical evidence of a violation of weak

cosmic censorship.
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The Gregory-Laflamme instability is a generic feature of black objects with extended

directions. The instability occurs in asymptotically flat black holes, as well as theories

with compact directions such as those in string theory and AdS/CFT [15–18]. However,

unlike the black string, most of these scenarios contain multiple extended directions. The

situation is therefore more complex since there is a larger space of unstable perturbations,

and consequently a larger space of nonuniform solutions. We wish to shed light on which

of these perturbations lead to the most entropically favourable nonuniform solutions, and

whether these solutions can be dominant over uniform solutions.

Consider then the six-dimensional black brane

ds2 = −
(

1− r0

r

)
dt2 +

dr2

1− r0
r

+ r2dΩ2
2 + dx2

1 + dx2
2 , (1.1)

where r0 is the horizon radius. The linear stability calculation for this system is identical to

the black string [1]. Taking a metric perturbation ansatz gµν = g
(0)
µν + e−iωt+ik1x1+ik2x2hµν ,

one finds that for fixed r0, the frequency ω depends only on the norm k2
1 +k2

2. In particular,

the zero mode ω = 0 occurs at a critical kGL =
√
k2

1 + k2
2. Each frequency, including

the zero mode, therefore contains a circle of degenerate perturbations. Because of this

degeneracy, it is possible for multiple static solutions to appear from the same zero mode.

To restrict some of these possibilities, let us take the x1 and x2 directions to be iden-

tified on an oblique torus with a single length scale L

x1 ∼ x1 + (n1 + γn2)L , x2 ∼ x2 + n2

√
1− γ2L , (1.2)

for any integers n1 and n2 and angle γ ∈ [0, 1).

Our goal is to perform a perturbative analysis of nonuniform black branes with these

toroidal symmetries and compute their thermodynamic quantities. We will find that it is

possible for these solutions to be thermodynamically favoured over uniform solutions.

As an aside, we point out that there is another situation where nonuniform solutions

can be entropically favoured. For D-dimensional black strings consisting of a D − 1 di-

mensional Schwarzschild-Tangherlini black hole and a circle, nonuniform black strings are

favored for D ≥ 14 [19, 20]. Time evolution within a large D expansion finds that evolution

proceeds towards the nonuniform solution, avoiding a violation of cosmic censorship [21].

Black branes on oblique torii were also studied at lowest order in large D [22], but unfor-

tunately different static solutions have the same thermodynamic quantities at this order.

We also mention that related holographic lattice solutions in AdS4 were studied in [23],

where a triangular lattice is thermodynamically preferred.

2 Perturbative and numerical methods

The metric perturbations only depend on the norm k2
1 + k2

2, but the torus boundary con-

ditions do not allow arbitrary wavevectors. Each wavevector ~k = (k1, k2) describes a plane

wave which must fit within the torus. The allowable wavevectors with the longest wave-

lengths can be viewed in figure 1 where the torus has been extended to a periodic lattice

spanning R2. The parallel lines on this lattice allow us to visualise the permissible plane
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Figure 1. The fundamental torus region is given by the solid black parallelogram with side lengths

L, which is angled at θ = arcsin γ. The arrows show the longest wavelength wavevectors 2π~k/|k|2
that generate parallel lines in the lattice.

waves with the longest wavelengths. We see that the torus generates three sets of parallel

lines, corresponding to three different wavevectors. By demanding that the torus has a sin-

gle length scale L, two of these wavevectors must have the same norm. The third wavector

also has this norm only when γ = 1/2.

Let us see this more explicitly in terms of the perturbations. We first move to a set of

coordinates that are adapted to the torus:

x1 =
L

2π
(x+ γy) , x2 =

L

2π

√
1− γ2y , (2.1)

where the torus identifications (1.2) imply that

x ∼ x+ 2πnx , y ∼ y + 2πny . (2.2)

In these coordinates, a static metric perturbation must be of the form gµν = g
(0)
µν +

einxx+inyyhµν , for integers nx and ny. Mapping that back into x1 and x2 coordinates,

we can identify the wavevector components k1 and k2. The norm of the wavevector is

given by

|k| =
√
k2

1 + k2
2 =

1

λ

√
n2
x + n2

y − 2nxnyγ , (2.3)

where we have defined the length scale

λ =

√
1− γ2

2π
L. (2.4)

When L is sufficiently small relative to r0, there is no instability. Now consider increasing

L. Since the uniform black brane is unstable for perturbations with |k| < kGL, the small-

est |k| (longest wavelength) perturbations will be the first to generate static nonuniform

branes. We therefore wish to determine which integers nx and ny generate the smallest |k|
perturbations. These are

nx = ±1 , ny = 0; and nx = 0 , ny = ±1 , (2.5)

– 3 –



J
H
E
P
0
5
(
2
0
1
8
)
1
1
1

which have |k| = 1/λ, and

nx = ny = ±1 , (2.6)

which has |k| = 2(1 − γ)/λ. Both sets of perturbations have the same |k| precisely

at γ = 1/2. Naturally, there are shorter wavelength perturbations than those in (2.5)

and (2.6). These perturbations only become unstable for larger torii, and we do not con-

sider them here.

At this point, we would like to distinguish between two types of perturbations that

generate static nonuniform solutions: those that have a single wavevector, and those that

are a linear combination of different wavevectors. Let us call nonuniform branes generated

by the former as “semi-nonuniform” black branes, and those by the later as “fully nonuni-

form” black branes. Semi-nonuniform black branes preserve translation invariance in one

direction and are therefore equivalent to the product of a 5-dimensional nonuniform black

string and an extra flat direction. Fully nonuniform black branes have no such symmetry.

In this work, we focus on the fully nonuniform black branes. For γ 6= 1/2, such black

branes can be generated by the two perturbations in (2.5). For γ = 1/2, it turns out

that fully nonuniform branes can only come from a perturbation with all three wavevec-

tors in (2.5) and (2.6). These fully nonuniform black branes will compete with both the

uniform black brane and semi-nonuniform black branes. However, we know from previous

results [12, 13] that semi-nonuniform black branes in this dimension are never thermody-

namically preferred over the uniform phases.

Now let us proceed with the gravitational calculation. We will work in the x and y

coordinates as well as a new radial coordinate from the transformation

r =
r0

1− z2
. (2.7)

Our metric ansatz is given by

ds2 = r2
0

{
− z2q1

dt2

r2
0

+
4q2dz2

(1− z2)4
+

q3

(1− z2)2
dΩ2

S2

+ λ
2
[

q4

1− γ2

(
dx+ γq6dy +

q7

λ
dz

)2

+ q5

(
dy +

q8

λ
dz

)2 ]}
, (2.8)

where q’s are functions of {x, y, z}, and we have also defined λ = λ/r0. Note that implicit

in this ansatz is a horizon at z = 0 and asymptotic infinity at z = 1. The uniform black

brane (1.1) can be obtained in these new coordinates by setting qi(z, x, y) = q̄i with

q̄1,2,3,4,5,6 = 1 , q̄7,8 = 0 . (2.9)

The eight functions qi are obtained by solving the vacuum Einstein equation Rµν = 0,

subject to the appropriate boundary conditions. We will do this perturbatively about

the black brane solution stopping at the order where thermodynamic quantities become

corrected.

We use the Einstein-DeTurck formalism [24–27], which is valid non-perturbatively

as well. This method requires a choice of reference metric g, which contains the same
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symmetries and causal structure as the desired solution. The reference metric we choose is

the black brane metric given by (2.9). The DeTurck method modifies the Einstein equation

Rµν = 0 into

Rµν −∇(µξν) = 0 , ξµ ≡ gαβ [Γµαβ − Γ
µ
αβ ] , (2.10)

where Γ and Γ define the Levi-Civita connections for g and ḡ, respectively. Unlike Rµν = 0,

this equation yields a well-posed elliptic boundary value problem. It was proved in [25] that

static solutions to (2.10) necessarily satisfy ξµ = 0, and hence are also solutions to Rµν = 0.

We now discuss the boundary conditions. At z = 1, the solution must be asymptoti-

cally R1,3 × T2 which requires qi
∣∣
z=1

= q̄i. At the horizon z = 0, we require regularity and

impose q1

∣∣
z=0

= q2

∣∣
z=0

, ∂zqi
∣∣
z=0

= 0 for i = 2, . . . , 6, and q7

∣∣
z=0

= 0 = q8

∣∣
z=0

. Finally, we

impose periodic boundary conditions on x and y according to (2.2).

Since r0 is just an overall scale, our ansatz (2.8) is parametrised by λ and γ. However,

it’s more convenient in our perturbative calculation to replace λ by |k|. λ, λ or L can be

recovered via (2.3), (2.4), and λ = λ/r0.

Now expand the metric functions and |k| in powers of ε:

qi = q̄i +
∞∑
n=1

εn q
(n)
i (z, x, y), r0|k| = kGL +

∞∑
n=1

εnk(n), (2.11)

where recall that the instability is critical when r0|k| = kGL. The periodicity of the torus

allows us to express the x and y dependence of q
(n)
i as a sum of Fourier modes. The

expansion (2.11) is placed into the Einstein DeTurck equation (2.10) and expanded order

by order in ε.

At O(ε), we have an eigenvalue problem for {kGL, q
(1)
i }, where all perturbations with

the same r0|k| = kGL give the same eigenvalue problem. We therefore have some freedom

to choose the perturbation, which will affect results at higher order. We are only interested

in perturbations generated by multiple wavevectors with the same |k|.
For γ 6= 1/2, we take perturbations generated by (2.5) which takes the form

q
(1)
1,2,3 = f

(1)
1,2,3(z) [cos(x)− cos(y)] , (2.12)

while for γ = 1/2, we take a perturbation generated by both (2.5) and (2.6), which goes as

q
(1)
1,2,3 = f

(1)
1,2,3(z) [cos(x)− cos(y) + cos(x+ y)] . (2.13)

Up to symmetries, the perturbations above are actually quite general. We have used trans-

lation invariance to fix the phases, and the relative amplitudes (including the amplitude of

the sin(x + y) and cos(x + y) terms in the γ = 1/2 case) are determined at higher orders

in perturbation theory, and we have fixed them retroactively. The remaining functions at

this order vanish due to the gauge condition ξ
(1)
µ = 0.

As expected, the equations of motion at linear order for both of these perturbations

are identical, and independent of γ. They consist of two algebraic relations that can be

used to determine q
(1)
1,3(z) in terms of q

(1)
2 (z) and q

(1)′
2 (z), as well as the following eigenvalue
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problem with k2
GL appearing as an eigenvalue:

q
(1)′′
2 (z) +

3 + 4z2 − 15z4

z − 4z3 + 3z5
q

(1)′
2 (z) + 4

8
(
1− z2

)3 − k2
GL

(
1− 3z2

)
(1− z2)4 (1− 3z2)

q
(1)
2 (z) = 0. (2.14)

Together with the boundary conditions that q
(1)
2 must be regular at the horizon z = 0

and vanish exponentially at the asymptotic boundary z = 1, we can solve this problem

numerically using methods described in detail in [27]. We find that kGL ' 0.87616040.

For concreteness, we now describe the higher order perturbative analysis for the

γ = 1/2 case. The details of the γ 6= 1/2 case can be found in the appendix. At O(ε2), the

Einstein DeTurck equation is sourced by the linear order solution {kGL, q
(1)
i }. Then the

allowed Fourier modes for the n = 2 functions come from squaring the linear combination

of modes we had at linear order. For example, in the γ = 1/2 case, q
(2)
i for i = 1, . . . , 6

take the form

q
(2)
i (z, x, y) = f

(2,0)
i (z) + f

(2,1)
i (z) cos(x)

+ f
(2,2)
i (z) cos(y) + f

(2,3)
i (z) cos(x+ y)

+ f
(2,4)
i (z) cos(x− y) + f

(2,5)
i (z) cos(2x)

+ f
(2,6)
i (z) cos(2y) + f

(2,7)
i (z) cos[2(x+ y)]

+ f
(2,8)
i (z) cos(2x+ y) + f

(2,9)
i (z) cos(x+ 2y), (2.15)

and for i = 7, 8 one has the same with cos → sin and f
(2,0)
7,8 (z) = 0. There are a total of

78 functions f
(2,α)
i (z) which need to determined. Since Fourier coefficient decouple, each

fixed α gives an independent system of differential equations to be solved numerically using

the methods detailed in [27]. Note that three of these systems with α = 1, 2, 3 (i.e. the

three corresponding to Fourier coefficients that were also excited at linear order) depend

upon the correction k(1). The solution to their differential equations will determine both

f
(2,α)
i (z) and k(1) independently. Since k(1) is unique, it is a consistency check to verify that

all three systems yield the same k(1), which they do within machine precision. Numerical

convergence is shown in the appendix.

The computation continues in a similar manner for higher orders in ε. Details can be

found in the appendix. In the end, we stop at O(ε4) and find

kGL ' 0.87616040 , k(1) ' −0.14881243 ,

k(2) ' 0.58519439 , k(3) ' 0.47526091 . (2.16)

At O(ε4), we can compute the first perturbative corrections to various thermodynamic

potentials, and we have decided not continue to higher order.

The calculation for γ 6= 1/2 proceeds in a similar fashion. Some differences in this case

are that k(n) = 0 when n is odd, and that one needs to reach O(ε5) in perturbation theory

to find thermodynamic corrections. To obtain our results, the ODEs are solved numerically

for a number of specific values of γ.
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3 Thermodynamics

We now compute the thermodynamic quantities of the perturbative solutions. The tem-

perature of (2.8) is TH = 1/(4πr0) and the entropy SH is the horizon area divided by

4GN (GN is the six-dimensional Newton’s constant). The energy E is computed from

the asymptotic decay of the gravitational field using the Hamiltonian formalism presented

in [28]. The Helmoltz free energy is then F = E − THSH . We compute the dimensionless

densities in terms of the torus volume VT2 = r2
04π2λ

2
(1− γ2)−1/2:

τH = THV
1/2
T2 , σH = SHGN/V

2
T2 ,

E = EGN/V
3/2
T2 , f = FGN/V

3/2
T2 . (3.1)

As we have mentioned earlier, semi-nonuniform black branes in this scenario are never

thermodynamically preferred over uniform solutions. Therefore, we only need to compare

our fully nonuniform solutions with the uniform ones. To compare these solutions in

the microcanonical ensemble, we take the entropy difference at the same energy ∆σH =

σH(E) − σH(E), where σH and σH are the entropy densities of the fully nonuniform, and

uniform solutions, respectively. For comparisons in the canonical ensemble, we similarly

define the free energy difference ∆f = f(τH)− f(τH).

For lattices with γ = 1/2, to order O
(
ε3
)
, the thermodynamic densities are

∆σH ' 0.00183324 ε3 ,

τH ' 0.61322672 + 0.10415417 ε− 0.39188874 ε2 − 0.46876238 ε3 ,

E ' 0.06488422− 0.01102033 ε+ 0.06319328 ε2 + 0.05646878 ε3 ,

∆f ' −0.00112418 ε3 . (3.2)

The difference in entropy densities between the γ = 1/2 lattice solutions and the uni-

form membrane is shown in figure 2. The green diamond with E=EGL =31/4kGL/(4
√

2π)'
0.06488422 is the critical point of the instability where uniform branes are unstable at

smaller energies. From this plot, we see that fully nonuniform branes have higher en-

tropy where the uniform solutions are unstable, and are thus are a plausible endpoint to

the instability.

The phase diagram of γ = 1/2 in the canonical ensemble can be found in the appendix.

The main conclusion is that solutions that are dominant in the microcanonical ensemble

are also dominant in the canonical ensemble.

The curve in figure 2 extends to both higher and lower energies, which is related to the

fact that ∆σH ∼ ε3 in (3.2). The fact that this power is odd rather than even is equivalent

to the fact that δg and −δg are physically distinct perturbations. This distinction can be

interpreted as the difference between triangular and hexagonal arrangements. We contrast

this with the nonuniform strings, where translation invariance implies that δg and −δg are

physically equivalent [12, 13, 19]. Nonuniform strings therefore only extend towards higher

or lower energies (not both), depending on the dimension.
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Figure 2. Phase diagram in the microcanonical ensemble for γ = 1/2: entropy density difference

∆σH between the triangular (upper blue curve) or hexagonal (lower black curve) nonuniform black

branes and the uniform black brane for a given energy density E . The green dot locates where the

uniform black brane is critically unstable, with lower energies being fully unstable.

Figure 3. Coefficient c∆σH
of the entropy density difference ∆σH ∼ c∆σH

ε4 as a function of the

lattice angle γ = sin θ for γ 6= 1/2. Perturbation theory breaks down at γ = 1/2 and the radius of

convergence of our solutions decreases as this critical value is approached.

Consider now the γ 6= 1/2 solutions. In these cases, the leading correction to the

entropy and free energy differences go as

∆σH = c∆σH ε
4 + . . . , ∆f = c∆f ε

4 + . . . , (3.3)

where the coefficients c∆σH and c∆f depend on γ. Note that we conclude that the even

power of ε in (3.3) implies that each γ yields a single branch of lattice solutions (not

two, like the γ = 1/2 case). In figure 3 we plot the coefficient c∆σH as a function of γ.

Observe that c∆σH < 0 for most values of γ. Therefore, fully nonuniform black branes

with those values of γ do not dominate the microcanonical ensemble near the zero mode.

However, there is a small window 1/2 < γ . 0.538 where c∆σH > 0. In this window,

the fully nonuniform branes are preferred over the uniform phase. Moreover, we also find

that within this window, the fully nonuniform brane solutions extend from the zero mode

towards lower energies E < EGL where the uniform solutions are unstable, but otherwise

extends towards higher energies.
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4 Discussion

To summarise our results thus far, we have found black branes in R1,3 × T2 that are

fully inhomogeneous in the torus directions by perturbing about the zero mode. These

separate into the case where the torus contains triangular/hexagonal symmetry γ = 1/2,

and otherwise γ 6= 1/2. In the γ = 1/2 case, these nonuniform solutions depend upon the

sign of the perturbation, and in the γ 6= 1/2 case they do not. Surprisingly, one branch

of the γ = 1/2 branes and some branes with γ > 1/2 are thermodynamically preferred

over both the uniform brane and semi-nonuniform black branes in both microcanonical

and canonical ensembles. Due to these thermodynamic considerations, it is natural to

conjecture that an unstable uniform black membrane with E < EGL and τH > τGL will

evolve in time towards a fully-nonuniform black membrane.

However, localised solutions are expected to exist that might compete with some of

these nonuniform solutions. In the space of static solutions, nonuniform black strings

are known to eventually connect to localised black holes (which have spatial horizon

topology S3) through a topology-changing conical transition [14]. Likewise in our case,

we expect spherical S4 black holes to exist. However, a direct transition from fully

nonuniform black branes to localised black holes requires a transition where an entire

circle pinches off on the horizon simultaneously in moduli space. We find such a sce-

nario unlikely due to the lack of symmetry. Instead, it is more plausible that the horizon

pinches off on specific points, leading to mesh-shaped black objects resembling connected

black strings. Those might later proceed through a second topology transition towards

localised black holes. Sorting out this phase diagram requires constructing these hy-

pothetical localised solutions, as well as extending our results for nonuniform branes to

nonperturbative regions.

Note that the extra symmetries of the γ = 1/2 case allow for two arrangements of

localised black holes that our fully nonuniform black branes may eventually connect to.

One of these is a hexagonal arrangement, and the other is a triangular arrangement. The

S2 radius of the black brane is shown in figure 4, where it is possible to extrapolate which

arrangement of localised black holes our fully nonuniform black branes are approaching.

We see that the higher-entropy branch of these black branes approaches the triangular

arrangement (left panel), while the lower-entropy branch approaches a hexagonal arrange-

ment (right panel). Because a hexagonal arrangement of localised black holes would contain

two black holes per torus volume, we expect this situation to be unstable.

It is worth considering what happens to these solutions at higher dimensions, where

the Schwarzschild black hole is replaced by Schwarzschild-Tangherlini. In D ≥ 14 dimen-

sions, semi-nonuniform black branes will become preferred over uniform black branes, and

it would be interesting to see how they compete with fully nonuniform branes. Note that

for γ > 1/2, there is an additional semi-nonuniform solution coming from the perturba-

tions (2.6) since they have longer wavelength than those of (2.5) that generated the fully

nonuniform solutions.

We also mention that our methods here are not specific to two brane directions, though

the situation grows in complexity with increasing brane dimension. It is interesting to note
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that for two brane directions, the most entropic nonuniform phase moves towards the

triangular arrangement of black holes, which is also the densest sphere packing in two

dimensions. It is therefore tempting to propose a connection between thermodynamically

preferred Kaluza-Klein black holes and the mathematical problem of sphere packing. How-

ever, we expect the preferred localised black hole phase to contain only one black hole per

torus volume. If there is indeed a connection to sphere packing, it would be the problem

of packing spheres on fundamental lattice sites, and not the more sophisticated general

sphere packing problem.

Our work raises interesting questions for the study of unstable gravitational systems

with multiple extended directions. Although our study was restricted to asymptotically

Kaluza-Klein flat spacetimes, we expect similar physics to be present in the context of

asymptotically locally anti-de Sitter spacetimes. For instance, the analysis of the so called

spinoidal instability performed in [29] and [30] was restricted to co-homogeneity 2 + 1, and

our work raises the possibility of finding interesting new phases with fewer symmetries. It

would also be interesting to pursue the phase structure of the holographic duals of p−branes

compactified on Td torus which was initiated in [31].
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A Details of the perturbation theory for γ = 1/2

Here, we provide details to our perturbative calculation for the γ = 1/2 lattices (i.e.

triangular/hexagonal lattices). Our method is similar to the one used by [12, 13, 19] to

explore the existence of asymptotically R1,4 × S1 non-uniform black strings.

We perturb the metric functions in a power series written as

qi(z, x, y) = q̄i +

∞∑
n=1

εn q
(n)
i (z, x, y), r0|k| = kGL +

∞∑
n=1

εnk(n), (A.1)

where q̄i describes the uniform black membrane. The torus implies that the perturbation

functions q
(n)
i can be expanded in a Fourier series.

But triangular/hexagonal lattice symmetries (as shown in figure 4) limit the number

of Fourier coefficients that are available. As explained in the discussion of (2.5)–(2.6)

of the main text, for γ = 1/2 we have three Fourier modes with the same wavevector

norm: cos(x), cos(y) and cos(x+ y). The equations of motion and boundary conditions at
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Figure 4. Structure of triangular and hexagonal nonuniform black branes (γ = 1/2, ε = ±10−2).

Radius of the S2 at the horizon (which is proportional to the square root of the entropy density) as

a function of the lattice directions x1 and x2 for the black brane with triangular (left) and hexagonal

(right) arrangements. The lighter yellow regions represent the locations of the lattice points where

the entropy density is higher.

O(ε) imply

kGL ' 0.87616040 ;

q
(1)
1 (z, x, y) =

(
5z2 + 1

1− 3z2
q

(1)
2 (z) +

z
(
1− z2

)
1− 3z2

q
(1)′
2 (z)

)[
cos(x)− cos(y) + cos(x+ y)

]
,

q
(1)
2 (z, x, y) = q

(1)
2 (z)

[
cos(x)− cos(y) + cos(x+ y)

]
,

q
(1)
3 (z, x, y) = −

(
z2 + 1

1− 3z2
q

(1)
2 (z) +

z
(
1− z2

)
2 (1− 3z2)

q
(1)′
2 (z)

)[
cos(x)− cos(y) + cos(x+ y)

]
,

q
(1)
i (z, x, y) = 0 , for i = 4, · · · , 8 ; (A.2)

where kGL and q
(1)
2 (z) are the (numerical) solutions of the eigenvalue equation

q
(1)′′
2 (z) +

3 + 4z2 − 15z4

z − 4z3 + 3z5
q

(1)′
2 (z) + 4

8
(
1− z2

)3 − k2
GL

(
1− 3z2

)
(1− z2)4 (1− 3z2)

q
(1)
2 (z) = 0. (A.3)

The linear order solution (A.2)–(A.3) now sources the second order solution at O(ε2).

The Fourier modes that are excited at this order come from squaring the sum of the three

O(ε) modes. In full, they can be written as

q
(2)
i (z,x,y) = f

(2,0)
i (z)+f

(2,1)
i (z)cos(x)+f

(2,2)
i (z)cos(y)+f

(2,3)
i (z)cos(x+y)

+f
(2,4)
i (z)cos(x−y)+f

(2,5)
i (z)cos(2x)+f

(2,6)
i (z)cos(2y)+f

(2,7)
i (z)cos[2(x+y)]

+f
(2,8)
i (z)cos(2x+y)+f

(2,9)
i (z)cos(x+2y), for i= 1, · · · ,6 ,

q
(2)
i (z,x,y) = 0+f

(2,1)
i (z)sin(x)+f

(2,2)
i (z)sin(y)+f

(2,3)
i (z)sin(x+y)

+f
(2,4)
i (z)sin(x−y)+f

(2,5)
i (z)sin(2x)+f

(2,6)
i (z)sin(2y)+f

(2,7)
i (z)sin[2(x+y)]

+f
(2,8)
i (z)sin(2x+y)+f

(2,9)
i (z)sin(x+2y), for i= 7,8 . (A.4)
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We wish to determine the various f
(2,α)
i (z), with α = 0, · · · 9 (a total of 78 functions since

f
(2,0)
7,8 (z) = 0). Since each Fourier mode α decouples from the others, we solve an indepen-

dent coupled ODE system for each α (a second-order system of 6 ODEs for α = 0 and 8

for the others). These ODEs here, and at higher orders in ε take the form

Oijq(n,α)
j = S

(n,α)
i + k(n−1)s

(n,α)
i (A.5)

where Oij is a second order differential operator and S
(n,α)
i , s

(n,α)
i are sourced by the lowest

order solution (A.2)–(A.3). For α = 1, 2, 3, i.e. precisely the modes that were excited at

linear order, one has s
(n,α)
i 6= 0 so we can use each of these systems to determine k(1). We

verify for consistency that we obtain the same k(1) — namely the one given in (2.16) —

from each α = 1, 2, 3.

The calculation at higher orders follows a similar process. At O(ε3), we have a total

of 19 Fourier modes, each of the form cos(A(3,α)), where

A(3,α) ∈ {0, x, y, x+ y, x− y, 2x, 2y, 2(x+ y), 2x+ y, x+ 2y, 3x, 3y, 3(x+ y),

2x− y, x− 2y, 3x+ y, x+ 3y, 3x+ 2y, 2x+ 3y} , (A.6)

which are precisely those that follow from taking the cubic power of the sum of the three

linear-order modes. The perturbation functions therefore take the form

q
(3)
i (z,x,y) = f

(3,0)
i (z)+f

(3,1)
i (z)cos(x)+f

(3,2)
i (z)cos(y)+f

(3,3)
i (z)cos(x+y)

+f
(3,4)
i (z)cos(x−y)+f

(3,5)
i (z)cos(2x)+f

(3,6)
i (z)cos(2y)+f

(3,7)
i (z)cos[2(x+y)]

+f
(3,8)
i (z)cos(2x+y)+f

(3,9)
i (z)cos(x+2y)+f

(3,10)
i (z)cos(3x)+f

(3,11)
i (z)cos(3y)

+f
(3,12)
i (z)cos[3(x+y)]+f

(3,13)
i (z)cos(2x−y)+f

(3,14)
i (z)cos(x−2y)

+f
(3,15)
i (z)cos(3x+y)+f

(3,16)
i (z)cos(x+3y)+f

(3,17)
i (z)cos(3x+2)

+f
(3,18)
i (z)cos(2x+3y), for i= 1, · · · ,6 ,

q
(3)
i (z,x,y) = 0+f

(3,1)
i (z)sin(x)+f

(3,2)
i (z)sin(y)+f

(3,3)
i (z)sin(x+y)

+f
(3,4)
i (z)sin(x−y)+f

(3,5)
i (z)sin(2x)+f

(3,6)
i (z)sin(2y)+f

(3,7)
i (z)sin[2(x+y)]

+f
(3,8)
i (z)sin(2x+y)+f

(3,9)
i (z)sin(x+2y)+f

(3,10)
i (z)sin(6πx)+f

(3,11)
i (z)sin(3y)

+f
(3,12)
i (z)sin[3(x+y)]+f

(3,13)
i (z)sin(2x−y)+f

(3,14)
i (z)sin(x−2y)

+f
(3,15)
i (z)sin(3x+y)+f

(3,16)
i (z)sin(x+3y)+f

(3,17)
i (z)sin(3x+2)

+f
(3,18)
i (z)cos(2x+3y), for i= 7,8 , (A.7)

We now have 150 functions f
(3,α)
i (z) to solve for. As before, each Fourier mode α decouples

from all others, so we have 19 independent systems of ODEs to solve (one for each α).

These ODEs again take the form (A.5). Again, the systems corresponding to α = 1, 2, 3,

and only these, have s
(3,α)
i 6= 0, and hence depend on k(2). Therefore, for each of these

three α’s we solve the equations of motion to find f
(3,α)
i (z) and k(2). These three systems

of equations are independent but k(2) is unique, so we must to get the same k(2) in each of

them. This k(2) is presented in (2.16).
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To find the wavevector correction k(3), which is required to compute the thermody-

namic quantities up to O(ε3), we still need to find the metric solutions at order O(ε4)

since k(3) only appears in the equations of motion at this order (in practice it is enough to

analyse the cos x, cos y and cos(x+ y) Fourier sectors since k(3) only appears in the equa-

tions associated to these modes). At this order, a total of 31 Fourier modes are excited.

Schematically, each of these is of form cos(A(4,α)), with

A(4,α) ∈ {0, x, 2x, 3x, 4x, y, 2y, 3y, 4y, x± y, 2(x± y),

3(x+ y), 4(x+ y), x± 2y, 2x± y, 2(x+ 2y), 2(2x+ y),

x± 3y, 3x± y, 4x+ y, x+ 4y, 3x+ 2y, 2x+ 3y, 4x+ 3y, 3x+ 4y}, (A.8)

which are precisely those that follow from taking the fourth power of the sum of the three

linear-order modes in (A.2). Solving the corresponding ODE system we determine the

associated Fourier coefficients f
(4,α)
i (z) for α = 0, · · · , 30 and k(3) 6= 0 given in (2.16).

We stop our analysis at this order O(ε4), since this is the first order where the leading

contribution to the entropy difference ∆σH , and free energy difference ∆f are obtained.

Namely, the entropy, temperature, energy and free energy densities of the γ = 1/2 black

membrane solutions are given by

σH ' 0.05290394− 0.01797106 ε+ 0.10457659 ε2 + 0.07641519 ε3 ,

τH ' 0.61322672 + 0.10415417 ε− 0.39188874 ε2 − 0.46876238 ε3 ,

E ' 0.06488422− 0.01102033 ε+ 0.06319328 ε2 + 0.05646878 ε3 ,

f ' 0.03244211− 0.00551017 ε+ 0.02166834 ε2 + 0.01647358 ε3 . (A.9)

To determine which phase is thermodynamically preferred in a given ensemble, we must

compare (A.9) with those for the uniform black membrane. In the microcanonical ensemble,

one keeps the energy density fixed and the dominant solution is the one with higher entropy

density. In the canonical ensemble, one keeps the dimensionless temperature fixed and the

dominant solution is the one with lower free energy density. For this analysis, it is thus

important to write the entropy density of the uniform black brane as a function of its

energy density, and its free energy density as a function of its dimensionless temperature:

σH(E)
∣∣
unif

= 4πE2 , f(τH)
∣∣
unif

=
1

16π τH
. (A.10)

For the microcanonical analysis, we can now compute the entropy density difference

∆σH = σH(E)−σH(E) between nonuniform and uniform black branes with the same energy

density E to get the result ∆σH ' 0.00183324 ε3 presented in the main text. Similarly for

the canonical ensemble, we can compute the free energy density difference ∆f = f(τH)−
f(τH) at the same dimensionless temperature τH to get the result ∆f ' −0.00112418 ε3

presented in the main text.

The microcanonical phase diagram was presented in the main text. For completeness,

here we show the canonical phase diagram ∆f vs τH in figure 5.

B Details of the perturbation theory for γ 6= 1/2

Just as we did for γ = 1/2, in the γ 6= 1/2 case, we perturb the metric functions in a power

series as described in (A.1). The lattice symmetries limit the number of Fourier coefficients
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Figure 5. Phase diagram in the canonical ensemble: dimensionless free energy density difference ∆f

between the triangular (lower blue curve) and hexagonal (upper dashed black curve) nonuniform

black membranes and the uniform black membrane for a given dimensionless temperature τH .

Solutions with the lower free energy are preferred. The green dot locates the zero-mode of the

instability of uniform branes, with higher temperatures being unstable.

that are excited. For reason explained in the discussion of (2.5)–(2.6) of the main text,

these excited modes differ from those present in the γ = 1/2 case studied in the previous

section of the appendix. We have know only two Fourier modes with the same wavevector

norm: cos(x) and cos(y). The equations of motion and boundary conditions at O(ε) imply

kGL ' 0.87616040 ;

q
(1)
1 (z, x, y) =

(
5z2 + 1

1− 3z2
q

(1)
2 (z) +

z
(
1− z2

)
1− 3z2

q
(1)′
2 (z)

)[
cos(x)− cos(y)

]
,

q
(1)
2 (z, x, y) = q

(1)
2 (z)

[
cos(x)− cos(y)

]
,

q
(1)
3 (z, x, y) = −

(
z2 + 1

1− 3z2
q

(1)
2 (z) +

z
(
1− z2

)
2 (1− 3z2)

q
(1)′
2 (z)

)[
cos(x)− cos(y)

]
,

q
(1)
i (z, x, y) = 0 , for i = 4, · · · , 8 ; (B.1)

where kGL and q
(1)
2 (z) are the (numerical) solutions of the eigenvalue equation (A.3). Note

that with respect to the γ = 1/2 case, q
(1)
2 (z) satisfies the same eigenvalue equation (A.3)

and q
(1)
i (z) and kGL are the same for all γ’s.

The linear order solution of (A.3) and (B.1) now sources the solution at O(ε2). The

excited Fourier modes at this order come from squaring the sum of the two O(ε) modes.

In total, they can be written as

q
(2)
i (z, x, y) = f

(2,0)
i (z) + f

(2,1)
i (z) cos(2x) + f

(2,2)
i (z) cos(2y)

+ f
(2,3)
i (z) cos(x+ y) + f

(2,4)
i (z) cos(x− y), for i = 1, · · · , 6 ,

q
(2)
i (z, x, y) = 0 + f

(2,1)
i (z) sin(2x) + f

(2,2)
i (z) sin(2y)

+ f
(2,3)
i (z) sin(x+ y) + f

(2,4)
i (z) sin(x− y), for i = 7, 8 . (B.2)
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We need to determine the several f
(2,α)
i (z), with α = 0, · · · 4 (a total of 38 functions since

f
(2,0)
7,8 (z) = 0), for each γ 6= 1/2. Each Fourier mode α decouples from the others, so

the equations reduce to an independent coupled ODE system for each α (a second-order

system of 6 ODEs for α = 0 and 8 for the others) and γ. These ODEs, as well as those

at higher orders in ε, take the form (A.5) where Oij is a second order differential operator

and S
(n,α)
i , s

(n,α)
i are sourced by the lowest order solution (B.1).

At the current order, n = 2, one has s
(n,α)
i = 0 for all the Fourier families (i.e. for the

five α’s). In particular, this implies that k(1) = 0 (which was not the case for γ = 1/2).

To be more precise, note that we can add the Fourier modes cos x and cos y to (B.2).

However, since these modes are not sourced by the two O(ε) modes, we find that the

associated ODE system is of the form (A.5) with S
(n,α)
i = 0. There is nevertheless a source

term proportional to k(1), i.e. s
(n,α)
i 6= 0, which results from the k-expansion in (A.1).

However, the system only has the trivial solution k(1) = 0 and vanishing eigenfunctions.

The structure of the problem is such that k(n) = 0 for odd order n.

The calculation at higher orders follows a similar process. At O(ε3), we have a total

of 8 Fourier modes, each of the form cos(A(3,α)), where

A(3,α) ∈ {x, y, 3x, 3y, 2x+ y, x+ 2y, 2x− y, x− 2y}, (B.3)

which are precisely those that follow from taking the cubic power of the sum of the two

linear-order modes in (B.1). Namely, the perturbation functions take the form

q
(3)
i (z, x, y) = f

(3,1)
i (z) cos(x) + f

(3,2)
i (z) cos(y) + f

(3,3)
i (z) cos(3x) + f

(3,4)
i (z) cos(3y)

+ f
(3,5)
i (z) cos(2x+ y) + f

(3,6)
i (z) cos(x+ 2y) + f

(3,7)
i (z) cos(2x− y)

+ f
(3,8)
i (z) cos(x− 2y), for i = 1, · · · , 6 ,

q
(3)
i (z, x, y) = f

(3,1)
i (z) sin(x) + f

(3,2)
i (z) sin(y) + f

(3,3)
i (z) sin(3x) + f

(3,4)
i (z) sin(3y)

+ f
(3,5)
i (z) sin(2x+ y) + f

(3,6)
i (z) sin(x+ 2y) + f

(3,7)
i (z) sin(2x− y)

+ f
(3,8)
i (z) sin(x− 2y), for i = 7, 8 , (B.4)

For each value of γ, we now have 64 functions f
(3,α)
i (z) to solve. As before, each Fourier

mode α decouples from all others, so we have 8 independent systems of ODEs to solve (one

for each α), for each γ. These ODEs again take the form (A.5). The systems corresponding

to α = 1, 2, and only these, have s
(3,α)
i 6= 0, and hence depend on k(2). Therefore, for each

of these two α’s we solve the equations of motion to find f
(3,α)
i (z) and k(2). These two

systems of equations are independent but k(2) is unique, so we must get the same k(2) in

each of them.

There is an important difference between lattices with γ 6= 1/2 and those with γ = 1/2.

The leading contribution to the entropy difference ∆σH occurs at order O(ε4) for the

γ 6= 1/2 case, instead of O(ε3) as in the γ = 1/2 case. We therefore need to continue our

computation to O(ε4). There are now 13 Fourier modes that are excited. Schematically,

each of these is of form cos(A(4,α)), with

A(4,α) ∈ {0, 2x, 2y, 4x, 4y, x+y, x−y, 2(x+y), 2(x−y), x+3y, x−3y, 3x+y, 3x−y}, (B.5)

– 15 –



J
H
E
P
0
5
(
2
0
1
8
)
1
1
1

Figure 6. Convergence of the O(ε3) coefficient of the entropy difference for γ = 1/2. The conver-

gence is power-law, which is consistent with the non-smooth decay at infinity.

which are precisely those that follow from taking the fourth power of the sum of the two

linear-order modes. Solving the associated system of ODEs we find the corresponding

Fourier coefficients f
(4,α)
i (z) for α = 0, · · · , 12, and k(3) = 0 (for reasons similar to those

that give k(1)=0).

To find the wavevector correction k(4), which is required to compute the thermody-

namic quantities up to O(ε4), we still need to find the metric solutions at order O(ε5) since

k(4) only appears in the equations of motion at this order (in practice it is enough to anal-

yse the cos x and cos y Fourier modes since k(4) only appears in the equations associated

to this sector). At this order, a total of 18 Fourier modes are excited. Schematically, each

of these is of form cos(A(5,α)), with

A(5,α) ∈ {x, y, 3x, 3y, 5x, 5y, x+ 2y, x− 2y, 2x+ y, 2x− y, x+ 4y, x− 4y, 4x+ y, 4x− y,
2x+ 3y, 2x− 3y, 3x+ 2y, 3x− 2y}, (B.6)

which are precisely those that follow from taking the fifth power of the sum of the two

linear-order modes. Solving the corresponding ODE system we determine the associated

Fourier coefficients f
(5,α)
i (z) for α = 1, · · · , 18 and k(4) 6= 0.

Having reached the first corrections to the relevant thermodynamic quantities, we do

not continue the calculation to higher orders.

C Numerical convergence

Here, we show the convergence of our numerical method. We use a Chebyshev spectral

methods which convergences exponentially on smooth functions. However, the expansion

at infinity is not smooth. We instead find a power-law convergence with grid-size 1/N4.91,

which is consistent with this decay. A plot of this convergence is shown in figure 6.
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