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1 Introduction

Over the last 25 years, since the first dilaton black-hole and p-brane solutions were found,

there has been a continuous effort in finding and studying solutions of supergravity theories

in diverse dimensions, specially if the supergravity theories describe the low-energy effective

field theory limit of a superstring theory. This continuous effort has been rewarded with

the discovery of many interesting solutions, some of which have revolutionized the field.

To a large extent, however, solutions with non-trivial non-Abelian fields have been left

out of this research effort. This was probably due to several different reasons: the vast

number of interesting Abelian solutions one could work with, the expected complexity of

the non-Abelian ones (all the solutions of Einstein-Yang-Mills (EYM) theories which are

not Abelian embeddings are only known numerically), the expected violation of the no-

hair theorems in non-Abelian black holes, the loss of nice properties such as the attractor

mechanism in extremal black holes [1–5], and our general lack of understanding of this

kind of solutions.

From our viewpoint, the only way to increase our knowledge on the properties of

solutions (black holes, black strings, solitons. . . ) with non-trivial, non-Abelian Yang-Mills

fields (non-Abelian solutions, in short), is to find first many more. Fortunately, although

this task may look extremely difficult a priori, it turns out that, just as in the Abelian
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case, one can use supersymmetry to derive very powerful solution-generating techniques.

Typically, these techniques reduce the problem of finding solutions of supergravity theories

to the problem of solving a reduced number of differential equations for functions, 1-forms

etc. that play the rôle of building blocks of the full solutions.1

Thus, using the solution-generating techniques derived in refs. [8, 26], a large number of

asymptotically-flat non-Abelian solutions of different kinds (black holes, strings and rings,

global monopoles and instantons, multi-center black-hole solutions, microstate geomtries

etc.) have been constructed over the last few years in 4- and 5-dimensional non-Abelian-

gauged supergravities with 8 supercharges which can be called Super-Einstein-Yang-Mills

(SEYM) theories because they are minimal supersymmetrizations of the EYM theories [7–

17]. All these solutions were obtained in fully analytic form, which allows showing, for

instance, how the attractor mechanism works in a covariant fashion in the non-Abelian

context [18] and, more recently, how a puzzle involving an apparent violation of the no-hair

conjecture is solved when the integration constants of the solution are expressed correctly

in terms of the charges of string-theory objects [15].

Extending this work to the asymptotically-AdS case requires important modifications

of the gaugings considered because the scalar potentials that arise in the simplest gauging

of non-Abelian isometries of the scalar manifolds are, necessarily, either positive-definite

(in the d = 4 case) or identically zero (in the d = 5 case). The only way to produce the

scalar potential needed is to gauge a subgroup of the R-symmetry group (U(2)R in d = 4

and SU(2)R in d = 5) via the introduction of Fayet-Iliopoulos (FI) terms. Both in the d = 4

and d = 5 cases the FI terms can be used to gauge either a U(1)R or a SU(2)R subgroup.

The Abelian U(1)R has been studied extensively, but always in absence of any other non-

Abelian gauging. The non-Abelian SU(2)R case has been studied in refs. [19, 39] and turns

out to be, technically, much more complicated because the gauging of SU(2)R requires the

simultaneous gauging of a SU(2) subgroup of the isometry group of the Special-Kähler

(d = 4) or Real-Special (d = 5) scalar manifold. In contrast, the Abelian U(1)R gauging

never involves the gauging of a single U(1) isometry in these theories.2

In this paper we work in the framework of the 5-dimensional theories (N = 1, d = 5

supergravity coupled to vector multiplets) and we are going to consider the first of these

possibilities: an Abelian U(1)R gauging that will produce a scalar potential with AdS vacua

and, at the same time, an independent non-Abelian gauging of a subgroup of the isometry

group of the scalar manifold. The resulting theories can be understood as the natural

non-Abelian extension of those with an Abelian gauging and additional vector multiplets.

They can also be thought of as the simplest supersymmetrization of the cosmological EYM

theories (EYM plus a cosmological constant). Thus, they may be expected to give us a

handle in the search for solutions of this system via the use of the supersymmetric solution-

generating techniques developed over the years in refs. [20–30]. In particular, we will be

able to use the techniques of ref. [38] to construct self-dual SU(2) instantons on Kähler

spaces admitting a holomorphic isometry, which are one of the main ingredients in those

solution-generating techniques.

1A complete review of these techniques with many references can be found in ref. [6].
2These Abelian gaugings are, actually, not possible in these theories.
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There are many possible models of N = 1, d = 5 supergravity coupled to vector super-

multiplets and a good number of them admit the kind of gauging we want to consider here.

We have decided to consider, as a toy model, the simplest of them admitting the gauging

SU(2) × U(1)R and, searching for a possible embedding of the solutions in String Theory,

the so-called “C magic model”, that admits a SU(3)×U(1)R gauging. In its ungauged form,

this model is one of the few N = 1, d = 5 models that can be obtained by consistent trun-

cation of the maximal supergravity in d = 5 and, therefore, can be uplifted to any of the

two maximal supergravities in d = 10, N = 2A and 2B but, precisely with that gauging, it

can be obtained by a consistent truncation of the SO(6)-gauged maximal supergravity in

d = 5, which, in its turn, can be obtained by compactification of the N = 2B, d = 10 on S5.

Thus, in principle, all the solutions of this theory, that we are going to call “cosmological,

gauged, C magic model”, are also solutions of N = 2B, d = 10 supergravity, the low-energy

effective field theory of the Type IIB Superstring, and, in particular, the AdS5 vacuum of

the cosmological, gauged, C magic model corresponds to the maximally supersymmetric

AdS5 × S5 near-horizon limit of the D3-brane.

We have found that some solutions of the cosmological, gauged, C magic model can

also be embedded in N = 2B, d = 10 supergravity via the SU(2)×U(1)-gauge half-maximal

supergravity obtained by Romans [36] following the recipe given by Lu, Pope and Tran in

ref. [37]: there are two consistent truncations (one of the cosmological, gauged, C magic

model and another of the gauged half-maximal supergravity) that lead to exactly the same

theory. This provides two different ways of uplifting these solutions to N = 2B, d = 10

supergravity and an embedding into the Type IIB Superstring effective action to zeroth

order in α′.

This paper is organized as follows: in section 2 we describe the framework we are going

to work in, introducing the formalism of gauged N = 1, d = 5 supergravities coupled to

vector multiplets in section 2.1 and the two particular models we are going to consider in

sections 2.2 and 2.3. In section 3 we describe the general technique we use to construct

timelike supersymmetric solutions of generic gauged N = 1, d = 5 supergravities coupled to

vector multiplets and, in section 3.1 we particularize this technique to the kind of gaugings

considered here. Then, in sections 3.2 and 3.3 we apply the technique to the two models we

have chosen and construct the simplest solutions that have a non-trivial non-Abelian field.

Finally, in section 4 we study the embedding of the solutions of the second model in the

SU(2)×U(1)-gauge half-maximal supergravity showing in section 4.1 the relation between

the two consistent truncations mentioned above. Section 5 contains our conclusions.

2 The setup

In this section we describe the two theories we are going to work with. They are two

different models of gauged N = 1, d = 5 supergravity coupled to vector supermultiplets

with gauge groups consisting in a U(1) factor associated to a Fayet-Iliopopulos term and

second, non-Abelian factor (SU(2) and SU(3)) associated to the gauging of the isometry

group of the (Real Special) scalar manifold. N = 1, d = 5 supergravity coupled to vector
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supermultiplets with a non-Abelian gauging provides the minimal supersymmetrization of

5-dimensional Einstein-Yang-Mills theory.3

Since the structure of these gaugings is somewhat complicated, but essential to our

goals, we start by reviewing gauged N = 1, d = 5 supergravity coupled to vector super-

multiplets in general and, next, we describe in detail the two models.

2.1 Gauged N = 1, d = 5 supergravity coupled to vector multiplets

A model of ungauged N = 1, d = 5 supergravity coupled to n vector multiplets4 is fully

characterized by the constant, completely symmetric tensor CIJK , I, J, . . . = 0, 1, · · · , n
and its bosonic content is: the spacetime metric gµν , n+ 1 vector fields AIµ and n scalars

φx, x, y, · · · = 1, · · · , n. The latter parametrize a n-dimensional space that can be seen

as a codimension-1 hypersurface in a (n + 1)-dimensional space with coordinates hI and

Riemannian metric

aIJ = −2CIJKh
K + 3hIhJ , where hI ≡ CIJKhJhK , ⇒ hIhI = 1 . (2.1)

The codimension-1 hypersurface is defined by the cubic equation

CIJKh
IhJhK = 1 , (2.2)

which will be solved by some parametrization in terms of the physical scalars hI(φ). The

metric induced in this hypersurface (up to a normalization factor) is the σ-model metric

for the physical scalars

gxy ≡ 3aIJ
∂hI

∂φx
∂hI

∂φy
. (2.3)

It is customary to define

hIx ≡ −
√

3hI ,x ≡ −
√

3
∂hI

∂φx
, hIx ≡ +

√
3hI,x , ⇒ hIh

I
x = hIhIx = 0 , (2.4)

which satisfy5

hI = aIJh
I , hIx = aIJh

J
x , (2.5)

3The minimal, N = 1 supersymmetrization of a 5-dimensional Einstein-Yang-Mills (EYM) theory re-

quires (apart from the introduction of fermions, which we set to zero here) the introduction of scalars to have

complete vector supermultiplets. The scalars have to parametrize a Real Special manifold whose isometry

group contains the gauge group. This may not be possible for arbitrary groups because, at the same time,

the scalars must transform under the isometry group in a very precise way, which may demand the intro-

duction of more vector fields. As we are going to see, the supersymmetrization of the SU(3) EYM theory

corresponds to a highly non-trivial “magical model” and has one extra vector field, the graviphoton. Besides

the mere introduction of scalar fields through a σ-model, the supersymmetrized EYM theory (or Super-

EYM (SEYM) theory) contains couplings between the scalar and vector fields and Chern-Simons terms for

the vector fields which typically are absent in EYM theories. It is the contribution of the Chern-Simons

terms gives that rise to very interesting and characteristic supersymmetric solutions of these theories.
4Our conventions are those in refs. [25, 26] and the more recent refs. [11, 29] which are those of ref. [31]

with minor modifications and adaptations.
5These two properties can be seen as the definition of the metric aIJ .
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and the completeness relation

aIJ = hIhJ + gxyh
x
Ih

y
J . (2.6)

The geometry defined by these objects is known as Real Special Geometry.

There are two kinds of global symmetries in these theories: the isometries of the Real

Special manifold and R-symmetry group, which is SU(2). In absence of hypermultiplets,

they can be considered (but not gauged!) independently. The necessary and sufficient

conditions for the gauging of a subgroup of the global isometry group are:

1. The subgroup of the isometry group must act on the vector fields AIµ in the adjoint

representation. This means that we can use the same indices I, J, . . . for the vector

multiplets and for the gauge group’s generators, some of which could be trivial be-

cause the isometry group does not need to act on all the vector fields. It also means

that these isometries must act linearly on the functions hI(φ).

2. It must be a symmetry of the CIJK tensor that defines the theory. This condition

can be expressed in the form

− 3fI(J
MCKL)M = 0 , (2.7)

where fIJ
K are the gauge group’s structure constants,6 and it automatically implies

the invariance of the Riemannian metric aIJ under the linear transformations.

3. The functions hI(φ) must be invariant under those linear transformations up to a

reparametrization (a field redefinition of the scalars). Combined with the above con-

dition, it implies that these reparametrizations are isometries of the induced metric

gxy(φ) and the vectors that generate them are Killing vectors and must necessarily

be of the form

kI
x = −

√
3fIJ

KhxKh
J . (2.8)

This condition eliminates the possiblity of gauging Abelian subgroups of the isom-

etry group and it is the reason why Abelian gauging is a synonym of gauging via

Abelian Fayet-Iliopoulos terms in these theories. One can immediately check using

the properties of Real Special geometry that these vectors satisfy the Lie algebra

[kI , kJ ] = −fIJKkK . (2.9)

This kind of symmetries can be gauged immediately by the standard procedure, giving

rise to what have been called N = 1, d = 5 Super-Einstein-Yang-Mills (SEYM) models,

which are the simplest N = 1 supersymmetrization of the d = 5 Einstein-Yang-Mills

system [11].

An important property of these theories is that their scalar potential vanishes identi-

cally. Thus, they cannot be used as supersymmetrizations of EYM-AdS theories. For this

purpose one must gauge (a subgroup of) R-symmetry.

6These structure constants will be trivial in the direction in which the subgroup to be gauged does

not act.
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R-symmetry (SU(2) in these theories) is always present in any N = 1, d = 5 super-

gravity theory and only acts on the fermions. In order to gauge the full R-symmetry group,

though, we need a triplet of vector fields transforming in the adjoint of SU(2) and their

transformation under this SU(2) must also be a symmetry of the theory. Since vectors

come in vector multiplets, it is clear that there must be an SU(2) subgroup of the isometry

group that satisfies the above criteria for gaugeability. Gauging the full R-symmetry group,

then, involves a deformation of a SEYM model in which new couplings to the fermions are

introduced in the action, as well as fermion shifts in the supersymmetry transformation

rules and a non-vanishing scalar potential (see eq. (2.12) below). Only the latter occurs in

the bosonic action. These new couplings are determined by an object, PI
r, (r, s, . . . = 1, 2, 3

are su(2) indices) with only three of the I components non-vanishing7 satisfying, for some

constant ξ, the property8

PI
r = ξeI

r , εrsteI
seJ

t = fIJ
KeK

r . (2.10)

This object plays the rôle of an embedding tensor, selecting the three gauge vectors among

the set of all vectors of the theory. It can also be seen as a constant triholomorphic

momentum map.

The theories obtained by gauging the whole SU(2) R-symmetry group can be seen

as the supersymmetrizations of SU(2)-EYM-AdS theories, but, how about other gauge

groups? The only possibility would be to combine a Fayet-Iliopoulos gauging with the

gauging of the desired subgroup of the global isometry group G of a theory. The resulting

theory would have the gauge group SU(2)×G, but there is a simpler possibility: combining

the gauging of the desired subgroup of the global isometry group G of a theory with

the gauging of a U(1) subgroup of the R-symmetry group using Fayet-Iliopoulos terms.

Gauging a U(1) subgroup of the R-symmetry group is much simpler, since any vector of

the theory can be used as gauge vector. It will be associated to a PI
r with only one I-

component different from zero. The resulting theory would have the gauge group U(1)×G

and a scalar potential that, potentially, can give rise an AdS cosmological constant. This

is the kind of gauging that we are going to study in this paper.9

It goes without saying that, being completely independent, each of the factors of the

gauge group has its own coupling constant, which we will denote by g for the non-Abelian

factor and g0 for the Abelian one. The latter will not appear explicitly in the action that

we are about to write because we have absorbed it into the PI
r. This is very convenient

in the case we have at hands.

7There is always a basis in which this is true.
8Here the only non-vanishing components of the structure constants fIJ

K are those of the R-symmetry

group SU(2).
9Supersymmetric solutions of theories in which the whole R-symmetry group has been gauged have been

studied in ref. [39].
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The bosonic action of a theory of N = 1, d = 5 supergravity coupled to vector multi-

plets with the two kinds of gaugings that we have discussed above is given by

S =

∫
d5x
√
g
{
R+

1

2
gxyDµφ

xDµφy − V (φ)− 1

4
aIJF

I µνF Jµν

+
1

12
√

3
CIJK

εµνρσα
√
g

[
F IµνF

J
ρσA

K
α −

1

2
gfLM

IF JµνA
K
ρA

L
σA

M
α

+
1

10
g2fLM

IfNP
JAKµA

L
νA

M
ρA

N
σA

P
α

]}
, (2.11)

where V (φ), the scalar potential, is given by

V (φ) = −
(
4hIhJ − 2gxyhIxh

J
y

)
PI

rPJ
r , (2.12)

Dµφ
x are the gauge-covariant derivatives of the scalars

Dµφ
x = ∂µφ

x + gAIµkI
x , (2.13)

and F Iµν are the gauge-covariant vector field strengths

F Iµν = 2∂[µA
I
ν] + gfJK

IAJµA
K
ν . (2.14)

The equations of motion are

Gµν −
1

2
aIJ

(
F Iµ

ρF Jνρ −
1

4
gµνF

I ρσF Jρσ

)
+

1

2
gxy

(
Dµφ

xDνφ
y − 1

2
gµνDρφ

xDρφy
)

+
1

2
gµνV = 0 , (2.15)

DµD
µφx +

1

4
gxy∂yaIJF

I ρσF Jρσ + gxy∂yV = 0 , (2.16)

Dν

(
aIJF

J νµ
)

+
1

4
√

3

εµνρσα
√
g

CIJKF
J
νρF

K
σα + gkI xD

µφx = 0 . (2.17)

In what remains of this section we are going to describe the two models that we are

going to work with and their gaugings.

2.2 A simple model with SU(2)×U(1)R gauge symmetry

As a warm-up exercise one can consider the simplest model that admits a gauging of the

kind we want to consider. It contains a triplet of vector multiplets labeled by x, y, z = 1, 2, 3

and it is defined by the CIJK tensor with components

C000 = 1 , C0xy = −1

2
δxy . (2.18)

The tensor CIJK
10 is obviously invariant under SU(2) rotations which act in the adjoint

representation on the triplet of vector multiplets. Therefore, this group of symmetries can

10And, as a consequence, the whole Real Special structure. For example, using

(h0)3 − 3

2
h0hxhx = 1 , h0 = (h0)2 − 1

2
hxhx =

2

3
(h0)2 +

1

3h0
, hx = −h0hx , (2.19)
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be gauged using the matter vectors fields Axµ as gauge fields. The remaining vector field,

the graviphoton A0
µ can be used to gauge U(1)R ⊂ SU(2)R, which, as we have said, is

always possible. More explicitly, we choose

PI
r ≡ g0δI0δr1 , (2.24)

which includes a choice of the particular specific UR(1) ⊂ SU(2)R to be gauged.

The only manifestation of this gauging in the bosonic action eq. (2.11) is the presence

of the scalar potential, whose explicit form we will not be concerned with. Furthermore,

F 0
µν = 2∂[µA

0
ν] . (2.25)

The covariant derivatives of the scalars and the vector field strengths refer to the SU(2)

gauging and are explicitly given by11

Dµφ
x = ∂µφ

x + gεxyzAzµφ
z ,

F xµν = 2∂[µA
x
ν] + gεxyzAzµA

y
ν .

(2.27)

2.3 The C magic model with SU(3)×U(1)R gauge symmetry

The second model that we are going to consider is the so-called “C magic model”, associated

with the “magic” Jordan algebra JC
3 [32]. This model is one of the possible truncations

of maximal d = 5 supergravity and is one of the symmetric Real Special geometries [33].

Furthermore, in ref. [34] it was shown that the maximal d = 5 supergravity with SO(6)

gauging can be consistenly truncated to this model with an SU(3) × U(1)R gauging (a

model previously constructed in ref. [35]), which belongs to the class we want to consider

in this paper.

the components of the kinetic matrix for the vector fields are given by

a00 =
4

3
(h0)4 − 2

3
h0 +

1

3(h0)2
, a0x = hx[1− 2(h0)3] , axy = h0δxy + 3(h0)2hxhy . (2.20)

Using the coordinates

φx ≡
√

3

2
hx/h0 , ⇒ h0 = (1− φ2)−1/3 , where φ2 ≡ φxφx , (2.21)

these take the form

a00 =
4

3
(h0)4 − 2

3
h0 +

1

3(h0)2
, a0x =

√
2

3
φxh0[1− 2(h0)3] , axy = h0δxy + 2(h0)4φxφy , (2.22)

and the σ-model metric is given by

gxy =
2

1− φ2

[
δxy +

8(3− 2φ2)

9(1− φ2)
φxφy

]
. (2.23)

11The structure constants and Killing vectors are given by

fxy
z = εxyz , kx

y = εxyzφ
z . (2.26)
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The C magic model is determined by the constant symmetric tensor CIJK of non-

vanishing components

C000 = 1 , C0xy = −1

2
δxy , Cxyz =

√
3

8
dxyz , (2.28)

where x, y, z = 1, . . . , 8 and dxyz is the fully symmetric constant tensor associated with

SU(3), given in terms of the Gell-Mann matrices λx as

dxyz =
1

2
Tr [λx{λy, λz}] , (2.29)

and having non-vanishing components

d146 = d157 = d256 = d344 = d355 = 1 ,

d247 = d366 = d377 = −1 ,

d118 = d228 = d338 =
2√
3
,

d448 = d558 = d668 = d778 = − 1√
3
,

d888 = − 2√
3
.

(2.30)

It can be seen that the scalar fields parametrize the symmetric space SL(3,C)/SU(3).

The gauge fields Ax transform in the adjoint representation of SU(3), the maximal compact

subgroup of the scalar group manifold, as do the scalar functions hx and, therefore, they

can be used as SU(3) gauge fields. A0 gauges U(1)R ⊂ SUR(2). Without any loss of

generality, we select this subgroup as in eq. (2.24).

Observe that, being a symmetric model, with the normalization chosen here,

CIJK = CIJK . (2.31)

We will be interested in solutions in which only a subgroup SU(2) ⊂ SU(3) is active.

However, it turns out that an additional U(1) must also remain active.

3 Timelike supersymmetric solutions

The supersymmetric solutions of matter-coupled N = 1, d = 5 supergravity theories with

arbitrary gaugings have been fully characterized in a series of papers in which couplings

of increasing complexity were considered [20–27]. Using these characterizations one can

define procedures to construct, step by step, supersymmetric solutions. These procedures

have become extremely useful solution-generating techiques.

We are going to search for timelike supersymmetric solutions of the two models re-

viewed in sections 2.2 and 2.3. For this case it turns out that we can simply reuse the

procedure described in ref. [30] for Abelian gaugings, conveniently covariantized to include

the non-Abelian gauging. The solution-generating recipe is in full agreement with the gen-

eral recipe obtained in the above-mentioned references and, before we specify the choice of

momentum maps, it can be summarized as follows:
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First of all, the building blocks of the timelike supersymmetric solutions are

1. The 4-dimensional spatial metric hmn, where m,n, p = 1, · · · , 4.12 It does not depend

on the time coordinate and defines a 4-dimensional spatial manifold usually called

“base space” which plays an auxiliary rôle and has no direct physical relevance. All

the building blocks and operators used in what follows are naturally defined in this

4-dimensional space and, hence, they are time-independent. We use hats to denote

them.

2. The antiselfdual almost hypercomplex structure Φ̂(r)
mn, r, s, t = 1, 2, 3. By definition,

the 2-forms satisfy the properties

Φ̂(r)mn = −1

2
εmnpqΦ̂(r)

pq , or Φ̂(r) = −?̂Φ̂(r) , (3.1)

Φ̂(r)m
nΦ̂(s)n

p = −δrsδmp + εrstΦ̂(t)m
p . (3.2)

3. The scalar function f̂ .

4. The 1-form ω̂m.

5. The 1-form potentials ÂIm.

6. The functions of the physical scalars hI(φ). They are time-independent as well.

These building blocks must fulfill the following conditions:

1. The antiselfdual almost hypercomplex structure Φ̂(r)
mn, the 1-form potentials ÂIm

and the base-space metric hmn (through its Levi-Civita connection) must solve the

equation13

∇̂mΦ̂(r)
np + εrstÂImPI

sΦ̂(t)
np = 0 . (3.3)

2. The selfdual part of the spatial vector field strengths F̂ I ≡ dÂI + 1
2gfJK

IÂJ ∧ ÂK is

given by

hI F̂
I+ = 2√

3
(f̂dω̂)+ . (3.4)

3. The antiselfdual part of F̂ I is given by14

F̂ I− = −2f̂−1CIJKhJPK
rΦ̂(r) . (3.7)

12In our conventions, underlined indices are world indices. Tangent-space indices will not be underlined.
13The local SU(2) symmetry of this differential equation is formally that of the full SUR(2) until the

values of the momentum maps PI
s are specified. After the choice eq. (2.24) this differential equation splits

into eqs. (3.13)–(3.15). We are going to discuss the specifics of the models we are considering next.
14In this equation the indices of CIJK have been raised using the inverse metric aIJ . This object satisfies

the relations

CIJKhK = hIhJ − 1

2
gxyhIxh

J
y =

3

2
hIhJ − 1

2
aIJ , (3.5)

the first of which allow us to rewrite the scalar potential in eq. (2.12) in the form

V (φ) = −4CKIJhKPI
rPJ

r . (3.6)
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4. Finally, the following equation relating all the building blocks, where the dots indicate

standard contraction of all the indices of the tensors, has to be satisfied

D̂2
(
hI/f̂

)
− 1

6
CIJK F̂

J · ?̂F̂K + 1
2
√
3

(
aIK − 2CIJKh

J
)
F̂K · (f̂dω̂)− = 0 . (3.8)

Having found building blocks that satisfy the above conditions, the physical 5-dimen-

sional fields are reconstructed as follows:

1. The 5-dimensional metric is given by

ds2 = f̂ 2(dt+ ω̂)2 − f̂ −1hmndxmdxn . (3.9)

2. The complete 5-dimensional vector fields are given by

AI = −
√

3hIe0 + ÂI , where e0 ≡ f̂(dt+ ω̂) . (3.10)

The complete 5-dimensional field strength is given by

F I = −
√

3D̂(hIe0) + F̂ I . (3.11)

3. The scalar fields φx can be obtained by inverting the functions hI(φ) or hI(φ) if the

form of these functions is known. One can always use a parametrization of these

functions such that the scalars are given by

φx = hx/h0 = (hx/f̂)/(h0/f̂) . (3.12)

When we specify the U(1)R ⊂ SU(2)R that we are going to gauge and corresponding

gauge vector as in eq. (2.24) it is possible to extract more information from the equa-

tions satisfied by the building blocks of timelike supersymmetric solutions. We analyze

them next.

3.1 Supersymmetric solutions of cosmological gauged models

With the choice eq. (2.24), eq. (3.3) splits into the following three equations [21, 24]

∇̂mΦ̂(1)
np = 0 , (3.13)

∇̂mΦ̂(2)
np = g0Â

0
mΦ̂(3)

np , (3.14)

∇̂mΦ̂(3)
np = −g0Â0

mΦ̂(2)
np , (3.15)

the first of which implies that the “base space” metric hmn is Kähler with respect to

the complex structure Ĵmn ≡ Φ̂(1)
mn. Then, the integrability condition of the other two

equations leads to a relation between the UR(1) gauge potential and the base space metric

R̂mn = −g0F̂ 0
mn , (3.16)

where R̂mn is the Ricci 2-form of the Kähler base space.
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Eq. (3.5) is not simplified by our choice of gauging, but eq. (3.7) becomes

F̂ I− = −2g0f̂
−1C0IJhJ Ĵ , (3.17)

which implies

F̂ 0− =
1

2g0
f̂−1V (φ)Ĵ , (3.18)

hI F̂
I− = −2g0f̂

−1h0Ĵ . (3.19)

Then, the trace of eq. (3.16) and eq. (3.18) with Ĵmn together lead to

R̂ = −2V (φ)/f̂ . (3.20)

Finally, substituting eq. (3.17) into eq. (3.8) and using in it eqs. (3.5) and (2.6), and

taking into account that h0 is a singlet under the non-Abelian factor of the gauge group,

we get the following two equations

∇̂2(h0/f̂)− 1

6
C0JK F̂

J · [?̂F̂K + 4
√

3hK(f̂dω̂)−]−
√

3g0h0h
0Ĵ · dω̂ = 0 , (3.21)

D̂2(hx/f̂)− 1

6
CxJK F̂

J · [?̂F̂K + 4
√

3hK(f̂dω̂)−]−
√

3g0hxh
0Ĵ · dω̂ = 0 . (3.22)

In order to simplify the construction of solutions of this class, which should start by

judicious choice of the 4-dimensional Kähler metric, we are going to assume that this Kähler

metric admits a holomorphic isometry. Then, it can always be written as15

dŝ24 = hmndx
mdxn = H−1 (dz + χ)2 +H

{
(dx2)2 +W 2(~x)[(dx1)2 + (dx3)2]

}
, (3.23)

with the functions H and W , and the 1-form χ, independent of the coordinate z, which is

adapted to the holomorphic isometry, and satisfying the constraint

?̆3dχ = dH +H∂2 logW 2dx2 , (3.24)

where ?̆3 is the Hodge dual in the 3-dimensional manifold

ds̆23 = (dx2)2 +W 2(~x)[(dx1)2 + (dx3)2] . (3.25)

The integrability condition of the constraint eq. (3.24) is the equation

∂1∂1H + ∂2∂2(W
2H) + ∂3∂3H = 0 . (3.26)

Therefore, the simplifying assumption of the existence of a holomorphic isometry allows

us to construct any Kähler metric within this class by choosing an arbitrary function W ,

solving the integrability condition eq. (3.26) for H and then solving the constraint eq. (3.24)

for χ.

In order to make progress it is necessary to specify the model under consideration. We

start by the simple model described in section 2.2.

15See ref. [28] and references therein.
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3.2 Supersymmetric solutions of the simplest SU(2) ×U(1)R model

Here we are going to label the three vector multiplets with A,B, . . . = 1, . . . , 3 to simplify

the comparison with the C magic model, which will have an SU(2) triplet of vectors active

but has more vector multiplets labeled, according with the general notation, by x, y . . . =

1, . . . , nV .

For the sake of simplicity, we are going to impose

F̂A− = 0 , and hA = 0 . (3.27)

Then, the SU(2) gauge field is a selfdual instanton on the Kähler base space and we can

use the results of ref. [38] to construct it. Also, because of eqs. (2.19) we have that hA = 0

and h0 = h0 = 1 which, because of eq. (2.20), imply in their turn that aIJ = aIJ = δIJ
and CIJK = CIJK .

Then, under these assumptions, eq. (3.17) takes the form

F̂ 0− = −2g0f̂
−1Ĵ , (3.28)

while eq. (3.4) gives

F̂ 0+ =
2√
3

(f̂dω̂)+ . (3.29)

Finally, eqs. (3.21) and (3.22) take the form

∇̂2f̂−1− 1

6
F̂ 0 ·?̂F̂ 0+

1

12
F̂A ·F̂A+

1√
3
g0Ĵ ·dω̂= 0 , (3.30)

F̂A ·?̂F̂ 0 = 0 ⇒ F̂A+ ·(dω̂)+ = 0 , (3.31)

where we have used the previous equations in both equations. The simplest way to solve

the last equation is to require16

(dω̂)+ = F̂ 0+ = 0 . (3.32)

Given that dĴ = dF̂ 0− = 0, eq. (3.28) implies that f̂ is constant, and we can substitute

eq. (3.28) in eq. (3.30) obtaining (Ĵ · Ĵ = 4)

8

3
g20 f̂
−2 +

1

12
F̂A · F̂A +

1√
3
g0Ĵ · dω̂ = 0 , (3.33)

and also in eq. (3.16), which using the results in appendix B of ref. [29] leads to the equations

∂1,3
(
H−1∂% logW 2

)
= 0 , (3.34)

∂%
(
H−1∂% logW 2

)
= 4g20 f̂

−1 , (3.35)

∇̂2 logW 2 = 8g20 f̂
−1 , (3.36)

for the functions H and W that appear in the Kähler metric eq. (3.23).

16Actually, following the treatment in ref. [29] one can show that if one chooses a Kähler metric admitting

a holomorphic isometry, which can be put in the form explained in ref. [28] with H = H(%), W 2 =

Ψ(%)Φ(x1, x3) and f̂ = f̂(%), as we are going to assume here, then F̂ 0+ ∝ V̂ ] ∧ V̂ 2 + V̂ 3 ∧ V̂ 1. It follows

that for eq. (3.31) to be satisfied, either F̂ 0+ = 0 or F̂A+
]2 = 0 ∀A.
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The first of these equations is automatically solved if we consider the usual ansatz

H = H(%) (% ≡ x2) and W 2 = Ψ(%)Φ(k)(x
1, x3). The integrability condition eq. (3.26) is

then satisfied if

H(%) =
ρε

Ψ(%)
, ε = 0, 1 , (3.37)

where we have used the freedom to shift % and to rescale in opposite way the functions Ψ

and Φ(k). From now on we consider the ε = 1 case, which will be the one that will give an

interesting solution (a supersymmetric 1-parameter deformation of AdS5).

The remaining equations are solved if Ψ(%) is of the form

Ψ(%) =
4

3
g20 f̂
−1%3 + k%2 + α , (3.38)

and if Φ(k) is a solution of Liouville’s equation(
∂21 + ∂22

)
log Φ(k) = −2kΦ(k) , (3.39)

with k constant and α is an arbitrary integration constant.

For k = +1 and α = 0 the base space is the Bergman space CP2
.

The only equations left to solve are (3.33) plus the selfduality condition of the non-

Abelian field strength F̂A− = 0. We need to solve the latter first, but we make the following

observation: if we find a selfdual SU(2) instanton such that F̂A+ · F̂A+ ≡ 32g20 f̂
−2λ where

λ is a constant, then eq. (3.33) can be solved by taking dω̂ = − 2√
3
g0(1 +λ)f̂−2Ĵ , or, up to

a closed form,

ω̂ =
2g0√

3
(1 + λ)f̂−2%(dz + χ(k)) . (3.40)

If this solution exists, then it is not difficult to see that the full 5-dimensional metric

is invariant under the rescaling t→ t/σ, %→ σ%, f̂ → σf̂ , α → σ2α, which we can use to

set f̂ = 1.

Then, we now focus on finding a selfdual SU(2) instanton on the Kähler base space

that we have just determined through H and W with constant instanton number density

F̂A+ · F̂A+.

Selfdual SU(2) instantons in 4-dimensional Kähler spaces with one holomorphic isom-

etry have recently been studied in ref. [38], where a Kronheimer-type relation between

those instantons and monopoles satisfying a generalization of the Bogomol’nyi equation

was found and a subsequent generalization of the hedgehog ansatz was used to solve the

latter in the spherically-symmetric case k = +1.

Let us summarize this result:

1. Decomposing the gauge field with respect to the action of the holomorphic isometry as

ÂA = −H−1ΦA(dz + χ(1)) + ĂA , (3.41)

where ΦA and ĂA are independent of z and are defined in the 3-dimensional space

with metric eq. (3.25), and H(%) is one of the functions that occur in the generic

Kähler metric eq. (3.23) and where it is assumed that W = Ψ(%)Φ(1).
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2. Assuming in addition that they have the hedgehog form

ΦA = F (%)
yA

%
, and ĂA = L(%)εABC

yB

%
d

(
yC

%

)
, (3.42)

where yA are Cartesian coordinates related to % by yAyA = %2 and F (%) and L(%)

are two functions to be determined,

the field strength FA will be selfdual in the 4-dimensional Kähler space with metric

eq. (3.23) and H = H(%),W = Ψ(%)Φ(1) if the following two equations are satisfied
K ′ = G− 1 ,

ΨG′ = 2KG ,

where K ≡ gΨF , and G ≡ (1 + gL)2 . (3.43)

These equations depend explicitly on the function Ψ(%), which in our case is given by

eq. (3.38) and, precisely for the k = +1 and α = 0, when the base space is the Bergman

space CP2
, one of the solutions found in ref. [38] has constant instanton number density,

as we were looking for. This solution is

K =
2

3
g20%

2 , G = 1 +
4

3
g20% , (3.44)

and its instanton number density is given by

F̂A · F̂A =
16

3

(
g20
g

)2

, ⇒ λ =
g20
6g2

. (3.45)

Summarizing: we have found a simple solution whose only non-vanishing fields are a

selfdual SU(2) instanton living on the base space CP2
plus an Abelian vector field and the

metric. The last two fields take the form

ds2 =

[
dt+

2√
3
g0(1 + λ)%(dz + cos θdϕ)

]2
− %[1 +

4

3
g20%](dz + cos θdϕ)2 − d%2

%
[
1 + 4

3g
2
0%
] − % dΩ2

(2,1) ,

F 0 = 2λg0Ĵ ,

(3.46)

where dΩ2
(2,1) is the metric of the round 2-sphere. In the g →∞ limit, λ→ 0, the Abelian

and non-Abelian gauge fields vanish and the metric is that of AdS5.

3.3 Supersymmetric solutions of the SU(3) ×U(1)R-gauged C magic model

Let us now consider the model presented in section 2.3. We start by assuming, for the sake

of simplicity,

Axµ = 0 , and hx = 0 , 3 < x < 8 , (3.47)

so that we are effectively considering a theory with only four vector multiplets and gauge

group SU(2)×U(1)R with an extra U(1) which is ungauged (nothing is charged under it). It

– 15 –



J
H
E
P
0
5
(
2
0
1
8
)
1
0
7

should be stressed that this is not a truncation, but an Ansatz that produces an important

simplification to be tried in the equations. As in the previous case, we will use indices

A = 1, 2, 3 for the first three vector multiplets that gauge the SU(2) factor. The U(1)R
factor will be gauged by A0

µ and the other surviving vector multiplet corresponds to A8
µ.

We are also going to look for solutions containing a selfdual SU(2) instanton on the

4-dimensional Kähler space and, therefore, we impose

F̂A− = 0 . (3.48)

The Ansatz, together with eq. (3.17) and eq. (2.31) implies

hA = 0 , (3.49)

which in turn implies that

hx = 0 , ∀x = 1, . . . , 7 , (3.50)

so that the only non-vanishing scalar functions hI are h0, h8 and are related to h0, h8 by

h0 = (h0)
2 − 1

2
(h8)

2 , h8 = −h8
(
h0 +

1√
2
h8

)
. (3.51)

Furthermore, they satisfy the constraint(
h0 −

√
2h8

)(
h0 +

1√
2
h8

)2

=
(
h0 −

√
2h8
)(

h0 +
1√
2
h8
)2

= 1 . (3.52)

It follows that the non-vanishing components of the metric aIJ are

a00 = (h0)
2 + (h8)

2 , a08 = h8

(
2h0 −

1√
2
h8

)
, a88 = (h0)

2 −
√

2h0h8 +
3

2
(h8)

2

aAB = δAB

(
h0 +

1√
2
h8

)2

, ∀A,B = 1, 2, 3 , (3.53)

axy = δxy

[
(h0)

2 − 1√
2
h0h8 − (h8)

2

]
, ∀x, y = 4, . . . , 7 .

From the same equations one has

F̂ 0− = −2g0(h0/f̂) Ĵ , F̂ 8− = g0(h8/f̂) Ĵ . (3.54)

while equation (3.4) gives

h0F̂
0+ + h8F̂

8+ =
2√
3

(f̂dω̂)+ . (3.55)

After using eqs. (3.52) and (3.54), eq. (3.21) takes the form

∇̂2(h0/f̂)− 1

6
(F̂ 0+)2 +

1

12
(F̂ 8+)2 +

1

12
(F̂A+)2

+
1

3
g0

2[8(h0/f̂)2 − (h8/f̂)2] +
1√
3
g0Ĵ · dω̂ = 0 ,

(3.56)
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while the only non-trivial components of eq. (3.22) (x = A, 8) take the form

CAJK F̂
J · ?̂F̂K ∝ FA+ · (F̂ 0+ −

√
2F̂ 8+) = 0 , (3.57)

∇̂2(h8/f̂) +
1

6
F̂ 0+ · F̂ 8+ +

1

6
√

2
(F̂ 8+)2 − 1

6
√

2
(F̂A+)2

+
1

3
g20

[
4(h0/f̂)(h8/f̂)−

√
2(h8/f̂)2

]
= 0 . (3.58)

If one does not want to put additional constraints on the non-Abelian field strengths

F̂A, eq. (3.57) implies

F̂ 8+ =
1√
2
F̂ 0+ , (3.59)

and the closure of F̂ 0, F̂ 8, and Ĵ together with eq. (3.54), leads to

d
(√

2h0/f̂ + h8/f̂
)
∧ Ĵ = 0 , ⇒ h8 =

√
2
(
αf̂ − h0

)
, (3.60)

for some constant α. Substituting in eq. (3.52) we can solve this constraint, finding these

expressions for h0/f̂ and h8/f̂ in terms of f̂ :

h0/f̂ =
1

3
α

(
2 +

1

(αf̂)3

)
, h8/f̂ =

√
2

3
α

(
1− 1

(αf̂)3

)
, (3.61)

and using all these results in eq. (3.55), we get

(dω̂)+ =

√
3

2
αF̂ 0+ . (3.62)

On the other hand, adding eqs. (3.56) and (3.58) divided by
√

2 gives

Ĵ · dω̂ = − 4√
3
g0α

2

(
1 +

1

(αf̂)3

)
, (3.63)

and expanding the anti-selfdual part of dω̂ in the basis of anti-selfdual 2-forms Φ̂1,2,3 (Ĵ =

Φ̂1) we find that

(dω̂)− = − 1√
3
g0α

2

(
1 +

1

(αf̂)3

)
Ĵ + Ω(2)Φ̂

2 + Ω(3)Φ̂
3 ≡ − 1√

3
g0α

2

(
1 +

1

(αf̂)3

)
Ĵ + dω̃ .

(3.64)

In order to make progress, we assume again that the Kähler base space admits a

holomorphic isometry and therefore it can be put in the canonical form eq. (3.23). We also

assume that H = H(%) (% = x2) and W 2 = Ψ(%)Φ(k)(x
1, x3), which leads to the relation

eq. (3.37) between H(%) and Ψ(%). Here we are going to consider the two possible values

of ε = 0, 1.

From eq. (3.16), and using the results in appendix B of ref. [29], one gets

F̂ 0+ = − 1

4g0%ε

(
Ψ′′ − 2ε

Ψ′

%
+ 2k

)[(
dz + χ(k)

)
∧ d%+ %εΦ(k)dx

3 ∧ dx1
]
, (3.65)

F̂ 0− = − 1

4g0%ε
(
Ψ′′ − 2k

) [(
dz + χ(k)

)
∧ d%− %εΦ(k)dx

3 ∧ dx1
]

= − Ĵ

4g0%ε
(
Ψ′′ − 2k

)
,

(3.66)
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and comparing with the expression for F̂ 0− in eq. (3.54) one has

1

(αf̂)3
=

3

8g20α%
ε

(
Ψ′′ − 2k

)
− 2 , (3.67)

so that

h0/f̂ =
Ψ′′ − 2k

8g20%
ε
, (3.68)

h8/f̂ =
√

2

(
α− Ψ′′ − 2k

8g20%
ε

)
. (3.69)

Finally, substituting everything in eq. (3.58) gives a fourth order differential equation

for the function Ψ

3ε(Ψ′)2+6k%2Ψ′′−3%Ψ′(4εk+%Ψ′′′)+3Ψ(4εk−2εΨ′′+2ε%Ψ′′′−%2Ψ′′′′)

−2g20%
2+ε
[
%ε(F̂A ·F̂A+8α2g20)−4α(Ψ′′−2k)

]
= 0 , (3.70)

which can only be solved if we first find a selfdual SU(2) instanton on the Kähler base

space F̂A− = 0. Since we only know solutions of this kind for k = 1 (see ref. [38] and the

discussion in the previous section), we will now carry a case by case analysis of the possible

solutions for different values of ε setting k = 1 and taking into account that, for any given

Ψ(%), there are in general two selfdual SU(2) instanton solutions: a “universal” solution

and a “constrained” solution.

Let us start by considering the ε = 1 case.

3.3.1 The ε = 1 case

Following ref. [38], for this case the “universal” instanton solution is, irrespectively of the

form of Ψ(%), given by

ÂA =− 1

g%2

[(
1

2
gβ−%

)
yA
(
dz+χ(1)

)
+εABCy

BdyC
]
, ⇒ F̂A ·F̂A =β2/%4 , (3.71)

where β is an arbitrary constant and yA are Cartesian coordinates related to % by

yAyA = %2.

Then, using this instanton solution in eq. (3.70) and assuming Ψ(%) to be a polynomial,

we get two distinct solutions, both for Ψ of order 3, Ψ =
∑3

i=0 ψi%
i:

(u1) ψ3 =
4

3
αg20 , and β2 =

3

2g20

[
ψ2
1 − 4ψ0(ψ2 − 1)

]
, (3.72)

(u2) ψ3 =
4

9
αg20 , ψ2 = 1 , and β2 =

3

2

ψ2
1

g20
. (3.73)

The “constrained” instanton solution is obtained by assuming from the start that

Ψ =
∑3

i=0 ψi%
i, and is characterized by the function

K =
ψ3

2
%2 +

ψ2 − 1

3
%+

1

18ψ3
[9ψ1ψ3 − 2(ψ2 + 2)(ψ2 − 1)] , (3.74)
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with the constraint

ψ0 =
ψ2 + 2

27ψ2
3

[9ψ1ψ3 − 2(ψ2 + 2)(ψ2 − 1)] , (3.75)

and leads to the instanton number density

F̂A · F̂A =
4

g2%2

[(
K ′ − K

%

)2

+
2

Ψ
K2(K ′ + 1)

]
. (3.76)

Substituting this expression into eq. (3.70) and taking into account the above con-

straints between the coefficients of the polynomial Ψ we find that, depending on the relative

value of the two coupling constants which we denote with the parameter ξ

ξ ≡ g/g0 . (3.77)

the differential equation admits two different solutions:

(c1) ξ2 6= 2/3 , ψ3 =
4αg20

3

6±
√

9− 6ξ−2

9 + 2ξ−2
, ψ2 = 1 , ψ1 = ψ0 = 0 , (3.78)

(c2) ξ2 = 2/3 , ψ3 =
2αg20

3
, ψ2 = 1 , ψ0 =

3ψ1

2αg20
. (3.79)

In this last case ψ1 remains undetermined.

In the four cases u1,u2, c1, c2,

ω̂ =

√
3α

4g0

{
2 (ψ2 − 1)χ(1) +

[
ψ1

%
+

(
3ψ3 −

4

3
g20α

)
%

]
(dz + χ(1))

}
+ ω̃ , (3.80)

where we remind the reader the definition dω̃ ≡ Ω2Φ̂
(2) + Ω3Φ̂

(3).17 With a constant shift

in the time coordinate t it is possible to bring ω̂ to the simpler form

ω̂ =

√
3α

4g0%

[
ψ1 + 2 (ψ2 − 1) %+

(
3ψ3 −

4

3
g20α

)
%2
]

(dz + χ(1)) + ω̃ . (3.82)

Also, in the four cases the function f̂ is given by(
αf̂
)−3

=
3

4g20α%
(3ψ3%+ ψ2 − 1)− 2 , (3.83)

and this ends the determination of all the building blocks of the solutions, which we now

have to analyze.

From now on we take ω̃ = 0 for the sake of simplicity. Then, it is possible to set

the constant α to an arbitrary value α/δ with the rescaling % → %/δ, t → δt, ψ3 → δψ3,

ψ1 → ψ1/δ, ψ0 → ψ0/δ
2. This will allow us later to normalize the solution in the most

convenient way.

17Under the assumption that the components of ω̂ are independent of z, closure implies

dω̃ = (dz + χ(k)) ∧ Im[H(ζ)dζ] +
%d%

Ψ
∧Re[H(ζ)dζ] , (3.81)

where H is an arbitrary holomorphic function and ζ = x1 + ix3.
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Every solution of this form presents a (naked) curvature singularity in % = 0, except

for ψ2 = 1, ψ1 = ψ0 = 0, in which case the curvature scalars R, RabR
ab and RabcdR

abcd are

constant. This is the case for the solution c1 in (3.78). The solutions u2 and c2 give a

metric with the wrong signature. This leaves us with the only meaningful possibilities:

u1 singular at % = 0 except for ψ2 = 1, ψ1 = ψ0 = 0, in which case β = 0, the matter

fields are trivial and the solution is just AdS5.

c1 regular. Defining the parameter

γ−1 = 2∓
√

1− 2

3
ξ−2 , ⇒ ψ3 =

4

3
αγg20 , and f̂−1 = α(3γ − 2)1/3 , (3.84)

it’s easy to see that for the metric to have the right signature one has to take the

upper sign in the definition of γ and to impose γ > 2/3, or equivalently ξ2 > 8/9.

Then it is possible to use the rescaling mentioned above to adjust the integration

constant α so that f̂ = 1 (α = (3γ − 2)−1/3) and to define g̃ and λ by

g̃20 ≡ αγg20 =
γ

(3γ − 2)1/3
g20 , and 1 + λ ≡ 3γ − 1

2(3γ2 − 2γ)1/2
, (3.85)

so that the metric takes the form of that in the solution eq. (3.46) with the replace-

ment g0 → g̃0. This happens because the scalar potential for these solutions also

takes the same value with the replacement of g0 → g̃0, V (φ) = −4g̃0. The remaining

non-vanishing fields of the solution are

F 0 =
1√
2
F 8 = −g0

γ − 1

(3γ − 2)4/3
Ĵ , (3.86)

φ ≡ h8/h0 =
√

2(γ−1 − 1) , (3.87)

AA = ÂA = −2g̃20
3g

yA(dz + cos θdϕ) +
(1 + 4

3 g̃
2
0%)1/2 − 1

g%2
εABCy

BdyC . (3.88)

The instanton number density is given by

F̂A · F̂A =
16

3

g̃40
g2
. (3.89)

In the limit g → ∞ for fixed g0 then γ goes to 1 and the above solution reduces

to AdS5.

3.3.2 The ε = 0 case

For ε = 0 eq. (3.70) takes the much simpler form

Ψ′Ψ′′′ + ΨΨ′′′′ − 2Ψ′′ +
2

3
g20

[
F̂A · F̂A + 8α2g20 − 4α(Ψ′′ − 2)

]
= 0 . (3.90)

This equation admits no solution for the constrained instanton solution. Let us then

consider the universal solution, for which the instanton number density is always given by

F̂A · F̂A =
4

g2
. (3.91)
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and eq. (3.90) becomes

Ψ′Ψ′′′ + ΨΨ′′′′ − 2Ψ′′ − 8

3
αg20(Ψ′′ − 2− 2αg20) +

8

3
(g0/g)2 = 0 . (3.92)

If, as usual, we assume Ψ to be a polynomial in %, from eq. (3.92) we find that it is at

most of second order, Ψ =
∑2

i=0 ψi%
i. There are two possibilities to solve the differential

equation (3.92):

1. u1 If a ≡ αg20 6= −3
4 , eq. (3.92) is satisfied for

ψ2 =
2ξ−2 + 4a(1 + a)

3 + 4a
, (3.93)

where ξ. ψ0 and ψ1 are left unconstrained.

2. u2 If a = −3
4 eq. (3.92) only admits a solution for a specific value of ξ ≡ g/g0:

ξ−2 =
3

8
. (3.94)

In this case the polynomial Ψ is not constrained by these equations.

In both cases we can, again, impose ω̃ = 0 for simplicity, use eqs. (3.62), (3.63), (3.65),

integrate to obtain ω̂, and write the five-dimensional metric as

ds2 = f̂2 (dt− c1%dz − c2 cos θdϕ)2 − f̂−1
[
Ψdz2 +

d%2

Ψ
+ dΩ2

(2,1)

]
, (3.95)

where the constants c1,2 are given by

c1 =
a√
3g30

(
a− 3

2
ψ2

)
, c2 =

a√
3g30

(
a+

3

2

)
, (3.96)

and f̂ is determined from eq. (3.67) to be constant:

f̂−3 =
3a2 (ψ2 − 1)− 8a3

4g60
. (3.97)

The general structure of the metric is that of a U(1) fibration over the product of

2 2-dimensional spaces: the 2-sphere and the space parametrized by (%, z), which we are

going to study in more detail below.

The complete non-Abelian 1-form field and its 2-form field strength are given by

AA = ÂA =
1

g

(
yAdz − 1

%2
εABCy

BdyC
)
, FA = F̂A =

yA

g%
(d% ∧ dz + sin θdθ ∧ dϕ) ,

(3.98)

thus, the field strength is 1/g times the unit vector yA/% times the sum of the volume

forms of the 2-dimensional spaces that enter in the base space.
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The remaining fields take the form

A0 =
−2a/g0

3(ψ2 − 1)− 8a
[(1 + 2a)%dz + (2a− ψ2) cos θdϕ] , (3.99)

A8 = −
√

2A0 , (3.100)

φ =
g20

af̂
. (3.101)

By shifting and rescaling the coordinates % and z we can reduce the number of inde-

pendent parameters and study in more detail the possible 2- and 5-dimensional metrics

that arise

• If ψ2 6= 0, we can bring the base space metric to the form

dŝ2 =
1

ψ2

[
(%2 − ε)dz2 +

d%2

%2 − ε

]
+ dΩ2

(2,1) , (3.102)

where ε = 0,±1. The Ricci scalar of the two-dimensional space parametrized by

(%, z) is constant and negative for any of the three values of ε and so, it is maximally

symmetric. Therefore this is the metric of the hyperbolic plane that we will denote

by dΩ2
(2,−1),

18 and the base-space metric is that of the product of H2 with radius

squared 1/ψ2 and S2 with radius 1

Denoting by χ(1) ≡ cos θdϕ the Kähler 1-form of the 2-sphere and by χ(−1) ≡ %dz the

Kähler 1-form of the hyperbolic plane, the full five-dimensional metric (after shifting

the time coordinate) and the rest of the fields can be written as

ds2 = f̂2
(
dt− c1

ψ2
χ(−1) − c2χ(1)

)2

− f̂−1
[

1

ψ2
dΩ2

(2,−1) + dΩ2
(2,1)

]
, (3.103)

AA =
1

gψ2

(
yAdz − ψ2

%2
εABCy

BdyC
)
, (3.104)

FA =
yA

g%

(
1

ψ2
d% ∧ dz + sin θdθ ∧ dϕ

)
, (3.105)

A0 =
−2a/g0

3(ψ2 − 1)− 8a

[
(1 + 2a)

ψ2
χ(−1) + (2a− ψ2)χ(1)

]
, (3.106)

A8 = −
√

2A0 , (3.107)

φ =
g20

af̂
. (3.108)

This metric has the same form as the Gödel solutions found in [29]. It is well known

that, generically, these metrics have closed timelike curves (CTCs), but one can

wonder if it is possible to tune the parameter a in such a way as to avoid them.

This would demand setting c2 = 0 (a = −3/2) to avoid Misner string singularities

18Actually, it is easy to see that a simple coordinate change brings the metric to the standard form of the

hyperbolic plane in polar, Lobachevsky and Poincaré half-plane coordinates respectively for ε = 1,−1, 0.
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or having to compactify the time coordinate to avoid them. It is not possible to

set c1 = 0 at the same time (ψ2 must be strictly positive). Then, the condition for

absence of CTCs is

(f̂ c1)
2 < f̂−1/ψ2 , (3.109)

and with a = −3/2, this condition cannot be satisfied for any value of ψ2.

Note also that the metric only has the correct signature if f̂ and ψ2 are both positive,

which means a ∈ (−3
4 , 0).

• If ψ2 = 0 and ψ1 6= 0, we get a 5-dimensional metric of the form

ds2 = f̂2
[
dt− c1%dz − c2χ(1)

]2 − f̂−1 [%dz2 +
d%2

%
+ dΩ2

(2,1)

]
. (3.110)

• If ψ2 = ψ1 = 0 and ψ0 > 0,19 we get a 5-dimensional metric of the form

ds2 = f̂2
[
dt− c1%dz − c2χ(1)

]2 − f̂−1 [dz2 + d%2 + dΩ2
(2,1)

]
. (3.111)

The metric for the last two cases is actually the same one written in different coordi-

nates, and can also be written as

ds2 = f̂2
[
dt− c1χ(0) − c2χ(1)

]2 − f̂−1 [dΩ2
(2,0) + dΩ2

(2,1)

]
, (3.112)

where dΩ2
(2,0) is the metric of the 2-dimensional Euclidean space and χ(0) its Kähler 1-form

and with

c1 =
a2√
3g03

, c2 =
a√
3g30

(
a+

3

2

)
, f̂−3 = −a

2(3 + 8a)

4g60
. (3.113)

The non-Abelian fields are given by the general expressions eqs. (3.98) and the Abelian

ones by

A0 =
2a/g0
3 + 8a

[
(1 + 2a)χ(0) + 2aχ(1)

]
, (3.114)

A8 = −
√

2A0 , (3.115)

while the constant scalar field is still given by eq. (3.108).

Observe that, in this case, a is not a free parameter, since ψ2 = 0 implies from

eqs. (3.93) and (3.94)

a =
−1±

√
1− 2ξ−2

2
. (3.116)

For this condition to make sense one must of course impose ξ2 ≥ 2.

19For ψ0 < 0 one would get the wrong signature for the metric.
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4 Embedding in half-maximal d = 5, SU(2)×U(1)-gauged supergravity

Uplifting the solutions of the cosmological gauged C magic model to 10 dimensions presents

severe practical difficulties, starting with the embedding of the solutions we have obtained

in SO(6)-gauged d = 5 maximal supergravity which requires a definite relation between

the U(1)R and SU(2) coupling constants which is not readily available in the literature.

Then, one would have to face the problem of uplifting the solution to 10 dimensions.

There are not many reduction anstazs that lead from 10-dimensional supergravities

to gauged 5-dimensional supergravities and which permit the automatic uplifting of the

5-dimensional solutions, especially if one is interested in a particular gauge group. There

is, however, a reduction ansatz from N = 2B, d = 10 supergravity to gauged, half-maximal

d = 5 supergravity with, precisely, the gauge group SU(2) × U(1) [37].20 Since the ansatz

corresponds to compactification on a 5-sphere it is natural to expect that the two gauge

coupling constants are not independent and, as we shall see, in fact one gets, in our con-

ventions, ξ2 = (g/g0)
2 = 2/3.

We would like to embed our solutions in this 5-dimensional theory in order to be able

to uplift them to 10 dimensions but the relation ξ2 = 2/3 will only allow us to uplift some of

them. It is, by no means, guaranteed that such an embedding is possible but we are going

to show that indeed it is for some solutions of the cosmological C gauged magic model that

include several of those we have constructed in the previous section. More specifically, we

are going to show that the consistently truncated equations of motion of the cosmological

C gauged magic model (for a truncation that includes the solutions we have constructed)

coincide with the consistently truncated equations of motion of SU(2)×U(1)-gauged, half-

maximal d = 5 supergravity.

4.1 Truncated equations of motion

Let us consider the equations of motion of the cosmological C gauged magic model (2.15)–

(2.17) (where we have replaced the generic objects aIJ , CIJK , gxy, kI
x by their values for

this particular model, evidently). If we set h1,...,7 = h1,...,7 = 0 and A4,...,7 = 0, and define

X ≡
(
h0 +

1√
2
h8

)−1
⇒ h0 −

√
2h8 = X2 , H ≡ F 0 +

1√
2
F 8 , G ≡ F 0 −

√
2F 8 ,

(4.1)

the equations of motion reduce to21

Rµν−
1

6
X4

(
GµρGνρ−

1

6
gµνGρσGρσ

)
− 1

3
X−2

(
HµρHνρ−

1

6
gµνHρσHρσ

)
−1

2
X−2

(
FAµ

ρFAνρ−
1

6
gµνF

AρσFAρσ

)
+3∂µ logX∂ν logX+

4

9
g20gµν

(
X2+2X−1

)
= 0 , (4.2)

∇2 logX− 1

12
X−2FA ·FA− 1

18
X−2H·H+

1

18
X4G·G− 4

9
g20
(
X2−X−1

)
= 0 , (4.3)

20We thank O. Varela for pointing this reference to us.
21We have subtracted the trace of the Einstein equation.
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FA ·H= 0 , (4.4)

∇ν(X−2Hνµ)+
1

4
√

3

εµνρσα
√
g
HνρGσα = 0 , (4.5)

∇ν(X4Gνµ)+
1

4
√

3

εµνρσα
√
g
HνρHσα−

√
3

8

εµνρσα
√
g

FAνρF
A
σα = 0 , (4.6)

Dν(X−2FAνµ)− 1

4
√

3

εµνρσα
√
g

FAνρGσα = 0 . (4.7)

The constraint eq. (4.4) can be solved preserving the non-Abelian gauge fields by

setting H = 0. This also solves the equation for H, leaving no further constraints. The

resulting equations are

Rµν −
1

6
X4

(
GµρGνρ −

1

6
gµνGρσGρσ

)
−1

2
X−2

(
FAµ

ρFAνρ −
1

6
gµνF

AρσFAρσ

)
+3 ∂µ logX ∂ν logX +

4

9
g20gµν

(
X2 + 2X−1

)
= 0 , (4.8)

∇2 logX − 1

12
X−2FA · FA +

1

18
X4G · G − 4

9
g20(X2 −X−1) = 0 , (4.9)

∇ν(X4Gνµ)−
√

3

8

εµνρσα
√
g

FAνρF
A
σα = 0 , (4.10)

Dν(X−2FAνµ)− 1

4
√

3

εµνρσα
√
g

FAνρGσα = 0 , (4.11)

which, if ξ2 = (g/g0)
2 = 2/3 and after a rescaling of G, are identical to those obtained in

ref. [37] when the tensor fields in the latter are set to zero.

Since we have used the constraint H = 0 in the construction of our solutions, we can,

in principle, embed all of them in SU(2) × U(1)-gauged, half-maximal d = 5 supergravity

and, then, using the dimensional reduction ansatz in ref. [37], uplift them to solutions of

N = 2B, d = 10 supergravity. However as we have seen only some of them are compatible

with the constraint ξ2 = 2/3, namely the solutions we have called u1 in the two cases

ε = 1, 0, and for ε = 0 only the subcase ψ2 6= 0, since otherwise it would require ξ2 ≥ 2.

These present some undesirable characteristics (a naked singularity for ε = 1 and closed

timelike curves for ε = 0) which are also present in the uplifted 10-dimensional solutions.

5 Conclusions

By exploiting the supersymmetric solution-generating techniques developed over the years

we have managed to find some of the simplest non-Abelian solutions of two models of

“cosmological, SU(2)-gauged,” N = 1, d = 5 supergravity coupled to vector multiplets

where the term “cosmological” refers to an additional U(1)R gauging that gives rise to a

non-vanishing scalar potential. The non-Abelian gauge field configurations in these solu-

tions is, by construction, that of a self-dual instanton over a 4-dimensional Kähler manifold

admitting a holomorphic isometry.
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We have found a solution that occurs with the same metric eq. (3.46) and slightly

different matter fields in both models. This is an interesting supersymmetric 1-parameter

deformation of AdS5 which, as opposed to the deformation found in ref. [21] and studied in

ref. [40], is not asymptotically-AdS5. It does not have a holographic screen in the %→∞
either because in this limit it is not conformal to any regular metric. In the most obvious

frame, all the components of the Riemann tensor of this metric are constant, which implies

that all its curvature invariants are constant. It might be a homogeneous Riemannian

space, though, although we have not checked completely this possibility.

The rest of the solutions that we have found fall in two types: those which may asymp-

tote to AdS5 but have naked singularities at % = 0, and those which are generalizations of

the Gödel-like solutions found in ref. [29] in the context of pure cosmological supergravity

and whose metrics are timelike U(1) fibrations over products of 2-dimensional maximally

symmetric spaces. All of them seem to have closed timelike curves.

Our second goal was to study the possible embedding of the solutions of the cosmolog-

ical, gauged C magical model in String Theory via maximal or half-maximal gauged d = 5

supergravity. The embedding in maximal supergravity is only possible for the relation

between the U(1)R and SU(3) gauge coupling constants g0 and g, which follows from the

breaking of the SO(6) gauge group. Finding this relation is a very complicated problem

whose solution needs a precise knowledge of the relation between the fields used in the

formalism of N = 1, d = 5 theories and those of the maximal supergravity, which is not

available. This knowledge is also needed for actual embedding and, therefore, although

it is guaranteed that some of the solutions found can be embedded and uplifted to 10

dimensions, the embedding and uplifting cannot be realized in practice.

The embedding in the SU(2)×U(1)-gauged d = 5 half-maximal supergravity of ref. [37]

also requires a precise relation between the coupling constants, but in this case this relation

is known and also satisfied by some of the solutions, although they are the singular ones

and they remain singular after uplifting them to 10 dimensions.

The difficulties in uplifting the solutions to 10 dimensions leave us without an inter-

pretation of the fields in terms of branes although the regular solution eq. (3.46) seems to

be a generalization of the gravitating Yang-Mills instanton of ref. [14] since, also in this

case, in the two models we have studied, the graviphoton field is sourced by the instanton

number density 4-form. The model studied in ref. [14] can be obtained by a toroidal com-

pactification and truncation of 10-dimensional Heterotic Supergravity and the graviphoton

is related to the Kalb-Ramond 2-form. The solution is, therefore, a compactification of the

gauge 5-brane. In the theories that we have considered the graviphoton gauges U(1)R via

a Fayet-Iliopoulos term and the 10-dimensional interpretation is much less transparent.

Although the balance of this work in terms of interesting solutions (especially from

the holographic point of view) may look slightly disappointing, it is fair to say this is just

the beginning of the exploration of a large, unknown, and very complicated territory. We

have put to work all the techniques developed in the field and showed that they work in

these very complicated systems. Just as in the asymptotically-flat case, more interesting

supersymmetric non-Abelian solutions must exist and we expect to be able to find some of

them in forthcoming work.
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