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1 Introduction

Logarithmic conformal field theories (log CFTs) [1] are conformal field theories in which the

Hamiltonian is non-diagonalizable but where instead the operator spectrum decomposes in

non-trivial Jordan cells. Certain operators are thus accompanied by so-called ‘logarithmic

partner’ operators, with which they form a Jordan cell. Log CFTs are typically non-unitary

and hence they can be used to describe systems where non-unitarity is a feature, such as

open quantum systems or systems with (quenched) disorder. Indeed, log CFTs have been

considered in condensed matter physics and statistical mechanics in a variety of contexts,

such as e.g. two-dimensional turbulence, critical polymers, abelian sandpile models, per-

colation, the fractional quantum Hall effect and systems with (quenched) disorder (see

e.g. [2, 3] for references).

Jordan cells can also be found in gravitational theories in anti-de Sitter (AdS) space-

times that include higher-derivative terms for the metric field. This was remarked for

the first time in [4] in the context of so-called Topologically Massive Gravity (TMG),

a three-dimensional gravity theory that includes a parity-violating three-derivative term

for the metric. TMG is a specific instance of so-called ‘General Massive Gravity’ (GMG)

theories [5, 6], that extend TMG with higher-derivative terms for the metric with up to four

derivatives. Upon linearizing GMG theories, one ordinarily finds that their spectrum of

linearized modes can be organized in eigenstates of the AdS Hamiltonian that correspond to
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2 massless graviton modes (that are pure gauge in three dimensions) and 2 massive graviton

modes. For particular tunings of the GMG coupling constants however, one finds that some

of the linearized modes become degenerate (e.g. some massive modes become massless) and

that new so-called ‘logarithmic modes’ appear in the spectrum. The spectrum of linearized

modes then organizes itself in non-trivial Jordan cells of the AdS Hamiltonian. Points in

the parameter space of GMG for which this phenomenon happens are often called ‘critical

points’ and GMG at such a point is then referred to as a ‘critical gravity’ theory. The

parameter space of GMG allows for several such points, where different modes become

degenerate and different logarithmic modes appear. Critical gravity theories can also be

found in higher dimensions with similar properties [7–9]. For other approaches to massive

supergravity in four dimensions, see e.g. [10–14].

The appearance of Jordan cells in critical gravity led to the conjecture that critical

gravity theories can provide gravitational duals of log CFTs, where e.g. the energy mo-

mentum tensor acquires logarithmic partner operators. This duality is often called the

AdS/log CFT correspondence and it conjectures that the logarithmic gravity modes are

dual to sources and vevs for logarithmic partner operators in the CFT spectrum. The non-

diagonalizability of the AdS Hamiltonian is thus translated into the non-diagonalizability

of the CFT Hamiltonian. As there are various critical points in the parameter space of

GMG, various versions of the AdS/log CFT correspondence have been proposed, within

the context of GMG alone. The AdS/log CFT correspondence has been checked rather

extensively during recent years. In particular, holographic techniques, such as holographic

renormalization have been extended to take the presence of logarithmic modes into account

and two- and three-point functions have been calculated on the gravity side and were found

to be compatible with those of log CFTs. Similarly, one-loop partition functions of critical

gravity theories were found to agree with the partition functions of log CFTs, to the extent

that the latter are known. We refer to the review [3] for details and references.

In contrast to the purely bosonic case, supersymmetric versions of the AdS/log CFT

correspondence have not been studied much in the literature yet. In order to do that,

a better understanding of the supermultiplet structure of the various linearized modes

at a critical point of the dual gravity theory is required. This has been investigated in

four-dimensional N = 1 critical supergravity models in [15]. For the purpose of studying

the AdS/log CFT correspondence, the three-dimensional case is however more interesting,

as the conjectured two-dimensional log CFTs are better understood than their higher-

dimensional counterparts and the conjecture might thus be checked in more specific detail.

Furthermore, the parameter space of three-dimensional critical gravity models is typically

richer than that of higher-dimensional models. In this paper, we will therefore consider

supersymmetric three-dimensional GMG models at various critical points and study how

the various linearized modes form supermultiplets.

Various supersymmetric extensions of GMG exist in the literature. In particular, su-

persymmetric TMG has been constructed in [16] and N = 1 versions of full GMG have

been constructed in [17–19]. The bosonic Lagrangian and supersymmetry transformation

rules of off-shell N = (2, 0) and N = (1, 1) GMG have been obtained using the method

of superconformal tensor calculus in [20], while a full superspace construction is given

in [21–23]. Some exact supersymmetric solutions of N = (2, 0) and N = (1, 1) GMG have
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been found in [24–26]. In this paper, we are going to consider the N = (1, 1) supersym-

metrization of GMG. We prefer to consider N = 2 models over N = 1 models, since the

supermultiplet structure is richer. The N = (1, 1) multiplet e.g. contains a vector, that is

dynamical in the GMG theory. We do not consider the N = (2, 0) models in this paper,

since unlike N = (1, 1) models these do not seem to have supersymmetric AdS vacua with

ghost-free spectrum, when higher-derivative terms are present [20]. We will thus start

from the N = (1, 1) theories of [20] and perform a linearization of the theory around its

maximally supersymmetric AdS vacuum, to study the spectrum of linearized modes and

their linearized supersymmetry transformation rules. This will allow us to identify various

critical points where logarithmic modes appear and to study the structure of the supermul-

tiplets to which these logaritmic modes belong. In particular, we will show that there are

four classes of critical points. One class is characterized by the fact that there is one super-

multiplet containing logarithmic modes, along with massless and massive modes. A second

class contains two such supermultiplets. A third class contains a supermultiplet with log-

arithmic and doubly logarithmic modes, along with massless and massive modes. Finally,

the fourth class contains a supermultiplet of massive and logarithmic massive modes. We

will devote special attention to the supersymmetry transformation rules that connect the

various modes in the supermultiplets at critical points. In particular, we will see that for

the first three classes of critical points, some of the supersymmetry transformations are not

invertible. This is similar to what has been observed in four-dimensional N = 1 critical

supergravity [15].

The outline of this paper is as follows. In section 2, we review the bosonic Lagrangian

and off-shell supersymmetry transformation rules of N = (1, 1) GMG. The fermionic terms

of the Lagrangians of N = (1, 1) GMG are not given in [20]. Since our analysis requires

the linearized fermionic equations of motion, we will here also construct the full linearized

Lagrangian, including fermionic terms, starting from the linearized bosonic Lagrangian and

supersymmetry transformation rules. The spectrum of linearized modes, along with their

linearized supersymmetry transformation rules for generic non-critical points in parameter

space, is then studied in section 3. These results are then used as a starting point for sec-

tion 4, where the various critical points are discussed and the supermultiplets of logarithmic

modes are identified and discussed. We end with conclusions and an outlook for future

work in section 5. Finally, appendix A contains some useful notation and conventions.

2 Linearized N = (1, 1) general massive supergravity

In this section, we will consider N = (1, 1) General Massive Supergravity and its lineariza-

tion around the maximally supersymmetric AdS3 vacuum. Special attention will be given

to the fermionic terms in the linearized action, that have not appeared in the literature

before and that will be derived here by supersymmetrizing the linearized bosonic action.

2.1 N = (1, 1) general massive supergravity

The field content of the off-shell N = (1, 1) supergravity multiplet is given by the vielbein

eµ
a, a vector field Vµ, a complex scalar S and two Majorana gravitini, that we will combine
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in a complex Dirac spinor Ψµ. The off-shell supersymmetry transformation rules were

derived in [20, 27–29]

δeµ
a =

1

2
ε̄γaΨµ + h.c. ,

δΨµ = Dµ(ω) ε− 1

2
iVν γ

νγµ ε−
1

2
Sγµ (Bε)∗ ,

δVµ =
1

8
iε̄ γνργµ (Ψνρ − iVσγ

σγν Ψρ − Sγν (BΨρ)
∗) + h.c. ,

δS = −1

4
ε̃ γµν (Ψµν − iVσ γ

σγµΨν − Sγµ (BΨν)∗) , (2.1)

where

Dµ(ω)ε =

(
∂µ +

1

4
ωµ

abγab

)
ε , Ψµν = 2D[µ(ω)Ψν] . (2.2)

We refer to appendix A for our notation and conventions regarding complex spinors.

The bosonic part of the most general N = (1, 1) supergravity action that includes up

to four derivatives has been derived in [20]. This in particular includes the bosonic part of

an N = (1, 1) supergravity version of General Massive Gravity, which will be the focus of

this paper and whose bosonic Lagrangian is given by

e−1L = σ
(
R+ 2V 2 − 2|S|2

)
+MA

− 1

4µ

[
εµνρ

(
Rµν

abωρab +
2

3
ωµ

abωνb
cωρca

)
− 8εµνρVµ∂νVρ

]
+

1

m2

[
RµνR

µν − 3

8
R2 −RµνV µV ν − FµνFµν +

1

4
R(V 2 −B2)

+
1

6
|S|2(A2 − 4B2)− 1

2
V 2(3A2 + 4B2)− 2V µB∂µA

]
, (2.3)

where Fµν denotes the field strength of Vµ and A and B are the real and imaginary parts

of the auxiliary field S:

S = A+ iB . (2.4)

The bosonic part of ordinary N = (1, 1) supergravity, in the presence of a cosmological

constant is obtained from (2.3) by sending (µ, m2) → ∞. Similarly, the limit m2 → ∞
leads to N = (1, 1) Topologically Massive Supergravity and the limit µ→∞ corresponds

to the N = (1, 1) supergravity version of New Massive Gravity (NMG) [5]. The bosonic

part of (off-shell) N = (1, 0) Topologically Massive Supergravity studied in [30] can be

found from (2.3) by sending m2 → ∞, truncating the vector field Vµ, putting the scalar

field B = 0 and restricting all spinors to be Majorana instead of Dirac.

This theory admits a maximally supersymmetric AdS3 background given by

R̄µν = − 2

`2
ḡµν , Ā = −1

`
, B̄ = 0 , V̄µ = 0 , (2.5)

where here and in the following, we will denote background quantities with a bar and `

is the AdS length. It is related to the cosmological constant Λ via Λ = −1/`2 and to the

parameters appearing in (2.3) via

4σ + `M +
2

3`2m2
= 0 . (2.6)
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The fermionic terms of the N = (1, 1) General Massive Supergravity were not given

explicitly in [20].1 The complete action for N = (1, 1) General Massive Supergravity was

obtained in superspace for the first time using superfield techniques in [23], building on

earlier results in [21, 22]. Reference [23] moreover also contains superspace results for the

action and equations of motion of N = (1, 1) General Massive Supergravity, linearized

around the maximally supersymmetric AdS3 background (2.5). Since in this paper we will

be concerned with studying solutions of all equations of motion, linearized around (2.5), we

are particularly interested in the linearization of the fermionic completion of (2.3), as well

as the linearized supersymmetry transformation rules. These terms and transformation

rules are contained in the superspace results of [23] and can be obtained by adopting ade-

quate gauge fixings and expanding the superspace expressions in components. But instead

of following this route we prefer to obtain the full linearized action directly by supersym-

metrizing the linearization of the bosonic action (2.3). It would however be interesting to

compare the results of our section 2.2 with the analysis of [23] and in particular see how

the results of section 4 can be encoded in superspace.

2.2 Linearized N = (1, 1) general massive supergravity

In this section, we will construct linearized N = (1, 1) General Massive Supergravity,

starting from the linearization of the action (2.3). We therefore split all bosonic fields in

their background values (2.5) and small fluctuations

gµν = ḡµν + κhµν , Vµ = κvµ ,

S = −1

`
+ κs = −1

`
+ κ (a+ ib) , (2.7)

where κ is the gravitational coupling constant. Using this ansatz, we find the following

Lagrangian for the bosonic part of linearized N = (1, 1) General Massive Supergravity

ē−1Lbos =

(
−σ

2
+

1

4m2`2

)
hµνGµν(h)− 1

2µ
hµνCµν(h)− 1

2m2
hµνKµν(h) +

2

µ
εµνρvµ∂νvρ

+

(
1

m2`2
− 2σ

)(
a2 + b2

)
− 1

m2
fµνf

µν −
(

1

m2`2
− 2σ

)
v2 . (2.8)

In this Lagrangian, we have introduced the linearized Einstein tensor Gµν(h), Cotton tensor

Cµν(h) and a tensor Kµν(h). The first two are defined as

Gµν(h) = R(1)
µν −

1

2
ḡµν ḡ

ρσR(1)
ρσ − 2Λhµν + Λḡµνh ,

Cµν(h) = εµ
τρ∇̄τ

(
R(1)
ρν −

1

4
ḡρν ḡ

αβR
(1)
αβ − 2Λhρν +

Λ

2
ḡρνh

)
, (2.9)

where

R(1)
µν = −1

2

(
∇̄ρ∇̄ρhµν − ∇̄ρ∇̄µhρν − ∇̄ρ∇̄νhρµ + ∇̄µ∇̄νh

)
, (2.10)

1For N = 1 TMG, these terms were worked out in [30].
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h = ḡµνhµν and ∇̄µ denotes a derivative that is covariantized with respect to the back-

ground Levi-Civita connection. The tensor Kµν(h) is then defined in terms of the Cotton

tensor via

Kµν(h) = εµ
τρ∇̄τCρν(h) . (2.11)

The field strength fµν of vµ is defined in the usual way

fµν = ∇̄µvν − ∇̄νvµ . (2.12)

The linearized action (2.8) is invariant under the following linearized diffeomorphisms

δhµν = ∇̄µξν + ∇̄νξµ . (2.13)

In particular, Gµν(h), Cµν(h) and Kµν(h) are invariant under this gauge transformation.

Using the ansatz (2.7), supplemented with

Ψµ = κψµ , (2.14)

one can linearize the transformation rules (2.1). The result is

δhµν = ε̄γ(µψν) + h.c. ,

δvµ =
i

8
ε̄γνργµψνρ +

i

4`
ε̄(Bψµ)∗ + h.c. ,

δs = −1

4
ε̃γµνψµν +

1

2`
ε̃γµ(Bψµ)∗ ,

δψµ = −1

4
γρσ∇̄ρhµσε−

i

2
vνγ

νγµε+
1

4`
hµνγ

ν(Bε)∗ − 1

2
sγµ(Bε)∗ , (2.15)

where ψµν = 2D̄[µψν] (with D̄µ the spinor derivative that is covariantized with respect to

the background spin connection) and the supersymmetry parameter ε satisfies the Killing

spinor equation:

D̄µε+
1

2`
γµ(Bε)∗ = 0 , D̄µ(Bε)∗ +

1

2`
γµε = 0 . (2.16)

In order to find the supersymmetric completion of the linearized action (2.8), we define the

following tensors

R̃µ ≡ Rµ −
1

2`
γµ

ν(Bψν)∗ ≡ εµνρD̄νψρ −
1

2`
γµ

ν(Bψν)∗ ,

Cµ ≡ εµνρD̄νRρ + γνD̄νRµ −
1

2`2
ψµ ,

Kµ ≡ γνD̄νCµ . (2.17)

These tensors are the fermionic equivalents of the bosonic tensors (2.9) and (2.11) that

are defined in terms of the metric perturbation. They are invariant under the following

fermionic symmetry:

δψµ = D̄µζ +
1

2`
γµ(Bζ)∗ , (2.18)
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that is a remnant of local supersymmetry transformations. One can use them to construct

the fermionic terms in the supersymmetric completion of (2.8). In order to do so, one needs

their variations under the linearized supersymmetries (2.15). We find:

δR̃µ =
1

2
γνGνµ(h)ε− i

2
γσγµ

ρ∇̄ρvσε+
i

`
vµ(Bε)∗ − i

2`
γµ

νvν(Bε)∗

− 1

2
γµ

ν∂νs(Bε)
∗ +

1

2`
(s+ s̄)γµε ,

δCµ = γνCνµ(h)ε− i∇̄νfνµε−
i

2
εµ
νργσ∇̄σfνρε+

i

`
εµ
νρfνρ(Bε)

∗

+
i

`
γνfνµ(Bε)∗ ,

δKµ = γνKνµ(h)ε+
1

2`
γνCνµ(h)(Bε)∗ − iγν∇̄ν∇̄ρfρµε−

i

2
εµ
αβ∇̄ρ∇̄ρfαβε

+
5i

2`
∇̄νfνµ(Bε)∗ +

3i

4`
εµ
αβγρ∇̄ρfαβ(Bε)∗ +

i

`
ερ
αβγρ∇̄αfβµ(Bε)∗

− 3i

2`2
εµ
αβfαβε−

i

2`2
γνfνµε . (2.19)

Using the above transformation rules, it can be checked that the following three expressions

are supersymmetric invariants:

ē−1LEinst = −σ
2
hµνGµν(h)− 2σ|s|2 + 2σvµv

µ − σ
(
ψ̄µ
(
Rµ −

1

2`
γµ

ν(Bψν)∗
)

+ h.c.

)
,

ē−1LTMG = − 1

2µ
hµνCµν(h) +

2

µ
εµνρvµ∂νvρ −

1

2µ

(
ψ̄µCµ + h.c.

)
,

ē−1LNMG = − 1

2m2
hµνKµν(h)− 1

m2
fµνf

µν − 1

2m2

(
ψ̄µ
(
Kµ −

1

2`
(BCµ)∗

))
+ h.c.

)
,

(2.20)

and the supersymmetrization of (2.8) is therefore

ē−1L = ē−1
((

1− 1

2m2`2σ

)
LEinst + LTMG + LNMG

)
,

=

(
−σ

2
+

1

4m2`2

)
hµνGµν(h)− 1

2µ
hµνCµν(h)− 1

2m2
hµνKµν(h)

−
(

2σ − 1

m2`2

)
|s|2 +

(
2σ − 1

m2`2

)
v2 +

2

µ
εµνρvµ∂νvρ −

1

m2
fµνf

µν

+

[(
−σ +

1

2m2`2

)
ψ̄µ
(
Rµ −

1

2`
γµ

ν(Bψν)∗
)
− 1

2µ
ψ̄µCµ

− 1

2m2
ψ̄µ
(
Kµ −

1

2`
(BCµ)∗

)
+ h.c.

]
(2.21)

3 The non-critical spectrum

In this section, we will study the spectrum of linearized modes propagated by the La-

grangian (2.21), for generic values of its parameters. The equations of motion derived
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from (2.21) are:

Ω

`2m2
Gµν(h) +

1

µ
Cµν(h) +

1

m2
Kµν(h) = 0 , (3.1)

Ω

`2m2
s = 0 , (3.2)

Ω

`2m2
vµ +

1

µ
εµ
νρ∂νvρ +

1

m2
∇̄νfνµ = 0 , (3.3)

Ω

`2m2
R̃µ +

1

2µ
Cµ +

1

2m2

(
Kµ −

1

2`
(BCµ)∗

)
= 0 , (3.4)

where we have defined

Ω = σ`2m2 − 1

2
. (3.5)

For Ω = 0, the scalar field s does not appear in the Lagrangian (2.21), while for Ω 6= 0 one

finds that s = 0. In either case, there are no propagating modes associated to s. The modes

propagated by the other equations are best analyzed by adopting certain gauge choices that

fix the residual linearized diffeomorphisms (2.13) and local fermionic symmetry (2.18). We

will now discuss each of these in turn.

3.1 Graviton spectrum

In order to discuss the physical modes described by (3.1)–(3.4), we will choose the

transverse-traceless gauge that fixes the linearized diffeomorphisms (2.13):

∇̄νhµν = 0 , h = 0 . (3.6)

This gauge choice is always possible. In particular, one can always consider a family of

gauges, parametrized by a constant c [15]:

∇̄νhµν = c ∇̄µh . (3.7)

Using this gauge choice in the trace of (3.1), one gets

(1− c)∇̄µ∇̄µh−
2

`2
h = 0 . (3.8)

For c = 1, one sees that (3.7) reduces to the transverse-traceless gauge as a consequence of

the equation of motion. For c 6= 1, one can easily see that linearized diffeomorphisms with

parameter ξµ = ∂µξ, where ξ obeys

(1− c)∇̄µ∇̄µξ −
2

`2
ξ = 0 , (3.9)

preserve the gauge choice (3.7). This residual gauge transformation acts on h as δh =

2∇̄µ∇̄µξ ∼ ξ and can thus be fixed by setting h = 0, showing that one can again adopt a

transverse-traceless gauge.

Adopting the gauge choice (3.6), the equation of motion (3.1) simplifies and can be

most easily written down using the differential operators

D(η)µ
ν =

1

`
δνµ +

η√
|ḡ|
εµ
τν∇̄τ . (3.10)

– 8 –
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In terms of these, the gauge fixed field equation for hµν can be written as

(D(1)D(−1)D(η1)D(η2)h)µν = 0 , (3.11)

where η1,2 obey

η1η2 =
1

Ω
, η1 + η2 =

`m2

µΩ
. (3.12)

For generic parameter values, η1 and η2 will be different from each other and from ±1.

If this is the case, we see from (3.11) that the solution spectrum generically contains 2

‘massless’ graviton modes hLµν , hRµν obeying(
D(1)hL

)
µν

= 0 ,
(
D(−1)hR

)
µν

= 0 . (3.13)

These modes are non-propagating in the AdS3 bulk, but can lead to interesting dynamics

on the boundary of AdS3. For this reason, they are often called ‘boundary gravitons’. In

addition to these, the equation (3.11) also propagates two massive graviton modes hµν(η1,2)

that obey

(D(η1,2)h(η1,2))µν = 0 . (3.14)

We will discuss what happens for specific parameter values for which {1,−1, η1, η2} are

not all different in section 4.

3.2 Gravitino spectrum

In order to discuss the gravitino spectrum, we have to fix the fermionic symmetry (2.18).

This can be done by adopting the gauge choice

γµψµ = 0 . (3.15)

Contracting the gravitino equation of motion (3.4) with γµ, one finds(
−σ +

3

2m2`2

)
/̄D(γµψµ) +

1

`

(
σ − 1

2m2`2

)
(Bγµψµ)∗ −

(
−σ +

3

2m2`2

)
D̄µψµ = 0 ,

(3.16)

so that, generically, the gauge choice (3.15) together with the gravitino equation of motion

implies that

D̄µψµ = 0 . (3.17)

Upon using (3.15) and (3.17), the gravitino equation of motion simplifies to

− Ω

`2m2

(
/̄Dψµ +

1

2`
(Bψµ)∗

)
− 1

µ

(
/̄D /̄D − 1

4`2

)
ψµ

− 1

m2
/̄D

(
/̄D /̄D − 1

4`2

)
ψµ +

1

2m2`

(
/̄D /̄D − 1

4`2

)
(Bψµ)∗ = 0 . (3.18)
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It is useful to split the Dirac gravitino ψµ in two Majorana gravitini ψµ 1,2, with ψµ =

ψµ 1 + iψµ 2 as in (A.5). The gravitino equation of motion (3.18) can then be factorized as(
/̄D +

1

2`

)(
/̄D − 1

2`
+

1

η1`

)(
/̄D − 1

2`
+

1

η2`

)
ψµ 1 = 0 ,(

/̄D − 1

2`

)(
/̄D +

1

2`
+

1

η1`

)(
/̄D +

1

2`
+

1

η2`

)
ψµ 2 = 0 . (3.19)

Generically, the spectrum thus contains 2 ‘massless’ boundary gravitino modes ψLµ , ψRµ
that obey (

/̄D +
1

2`

)
ψLµ = 0 ,

(
/̄D − 1

2`

)
ψRµ = 0 . (3.20)

Similar to the graviton case, these modes are non-propagating in the AdS3 bulk but can

nevertheless have non-trivial boundary dynamics. In addition to these, one finds four

propagating massive Majorana modes ψ−µ (η1,2), ψ
+
µ (η1,2) that are solutions of the equations(

/̄D − 1

2`
+

1

η1,2`

)
ψ−µ (η1,2) = 0 ,

(
/̄D +

1

2`
+

1

η1,2`

)
ψ+
µ (η1,2) = 0 . (3.21)

Note that the modes ψLµ and ψ−µ (η1,2) are solutions for the real part ψµ 1 of the Dirac

gravitino ψµ, while the modes ψRµ and ψ+
µ (η1,2) are solutions for the imaginary part ψµ 2.

The massless mode ψLµ can be obtained from the massive modes ψ−µ (η1,2) by putting η1,2 =

1: ψ−µ (1) = ψLµ . Similarly, the massless mode ψRµ is obtained from the massive modes

ψ+
µ (η1,2) by putting η1,2 = −1: ψ+

µ (−1) = ψRµ . For generic parameter values however, all

the above gravitino modes are distinct. We will discuss what happens at special parameter

values for which some of these modes seemingly coincide in section 4.

3.3 Vector spectrum

The equation of motion (3.3) for vµ can be simplified for generic parameter values. For

Ω 6= 0, contracting (3.3) with ∇̄µ leads to

Ω

`2m2
∇̄µvµ = 0 , (3.22)

so that vµ is divergence-less

∇̄µvµ = 0 , (3.23)

as a consequence of its equation of motion. If Ω = 0, the equation (3.3) becomes invariant

under an accidental U(1) gauge symmetry δvµ = ∂µΛ and one can still impose (3.23) as a

gauge fixing condition. Using this, one finds that (3.3) simplifies to(
Ω + 2

`2m2

)
vµ +

1

µ
εµ
νρ∂νvρ +

1

m2
∇̄ν∇̄νvµ = 0 . (3.24)

This can be rewritten as

1

m2η1η2
(D(η1)D(η2)v)µ = 0 . (3.25)
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Summarizing, we find that the original vector equation of motion generically is equivalent to

(D(η1)D(η2)v)µ = 0 , ∇̄µvµ = 0 . (3.26)

One can thus see that the physical spectrum contains 2 massive vector modes vµ(η1,2),

that obey

(D(η1,2)v(η1,2))µ = 0 . (3.27)

Note that there are no massless vector modes, unlike for the graviton and gravitino.

3.4 Supersymmetry properties

The linearized modes of the previous subsection naturally organize themselves in two mass-

less supermultiplets {hL/Rµν , ψ
L/R
µ } and two massive supermultiplets {hµν(η1,2), ψ

−
µ (η1,2),

ψ+
µ (η1,2), vµ(η1,2)}. We will now calculate the supersymmetry transformation rules that

connect the various modes in each supermultiplet. Note that the gauge fixing conditions

that were imposed in the previous subsections are generically not left invariant under the

linearized supersymmetry transformations of (2.15). These transformation rules therefore

have to be modified with compensating linearized diffeomorphisms (2.13) and fermionic

symmetries (2.18), such that the modified transformations preserve all gauge choices. In

this subsection, we will first obtain the required compensating transformations. We will

then show how the linearized modes transform into each other under the modified super-

symmetry transformations.

3.4.1 Compensating transformations

Since the analysis of physical modes of section 3.2 was done using Majorana spinors instead

of Dirac spinors, we will similarly study their supersymmetry properties in terms of real

Majorana spinors. Splitting the Dirac spinors into real and imaginary parts as in eq. (A.5),

one finds that the supersymmetry transformation of the metric perturbation given in (2.15)

can be rewritten as:

δhµν = 2ε̄1γ(µψν)1 + 2ε̄2γ(µψν)2 . (3.28)

One then immediately sees that the gauge condition h = 0 is invariant under supersym-

metry, by virtue of the gauge conditions γµψµ 1,2 = 0. The gauge condition ∇̄νhµν = 0 is

however not preserved by supersymmetry. In order to maintain its invariance under super-

symmetry, the rule (3.28) thus needs to be modified with a compensating diffeomorphism.

The transformation rules of the massless multiplets can be obtained as a special case of

those of the massive ones. In order to calculate the required compensating transforma-

tions, we will thus first focus on the massive multiplets. In that case, hµν corresponds to

the modes hµν(η1,2) and the gravitini ψµ 1, ψµ 2 correspond to modes ψ−µ (η1,2), ψ
+
µ (η1,2)

respectively. The following does not depend on which of the η1,2 is considered, so we will

for simplicity denote η1,2 by η below. One finds that under supersymmetry

δ
(
∇̄νhµν(η)

)
=

1

`

(
3− 1

η

)
ε̄1ψ
−
µ (η)− 1

`

(
3 +

1

η

)
ε̄2ψ

+
µ (η)

+ ε̄1

(
/̄D − 1

2`
+

1

η`

)
ψ−µ (η) + ε̄2

(
/̄D +

1

2`
+

1

η`

)
ψ+
µ (η) . (3.29)
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This transformation rule is obtained without using the linearized equations of motion. Note

that the last two terms of (3.29) are zero on-shell, according to equation (3.21). In the

next section we will be interested in critical points in parameter space, where the gravitini

no longer obey a first order equation and these terms can then no longer be assumed to

be zero. As we will explain later, the supersymmetry transformation rules of the modes at

these critical points can be obtained from those away from the critical points via a limiting

procedure. This procedure requires that one keeps track of terms (up to a certain order

in derivatives) in the compensating transformations that are zero on-shell away from the

critical points. In order to simplify the discussion later, we will in this section already keep

track of such terms. One can then propose the following ansatz for the parameter ξµ of

compensating diffeomorphisms

ξµ(η) = a1ε̄1ψ
−
µ (η) + b1ε̄1

(
/̄D − 1

2`
+

1

η`

)
ψ−µ (η) + c1ε̄1

(
/̄D − 1

2`
+

1

η`

)2

ψ−µ (η)

+ a2ε̄2ψ
+
µ (η) + b2ε̄2

(
/̄D +

1

2`
+

1

η`

)
ψ+
µ (η) + c2ε̄2

(
/̄D +

1

2`
+

1

η`

)2

ψ+
µ (η) ,

(3.30)

where we have included terms that are zero on-shell, for the reason explained above. As will

be outlined in section 4, for the calculation of the transformation rules at the critical points,

it will be sufficient to keep such terms up to second order in derivatives and assume that(
/̄D − 1

2`
+

1

η`

)3

ψ−µ (η) = 0 ,

(
/̄D +

1

2`
+

1

η`

)3

ψ+
µ (η) = 0 . (3.31)

The coefficients a1, · · · , c2 appearing in (3.30) depend on η and can be found by requir-

ing that

δ
(
∇̄νhµν(η)

)
+ 2∇̄ν

(
∇̄(µξν)(η)

)
= 0 , (3.32)

upon using (3.31). The resulting diffeomorphism parameter is given by

ξµ(η) = f(η)ε̄1ψ
−
µ (η) + f(η)2ε̄1

(
/̄D − 1

2`
+

1

η`

)
ψ−µ (η)

+ f(η)3ε̄1

(
/̄D − 1

2`
+

1

η`

)2

ψ−µ (η)− g(η)ε̄2ψ
+
µ (η)

+ g(η)2ε̄2

(
/̄D +

1

2`
+

1

η`

)
ψ+
µ (η)− g(η)3ε̄2

(
/̄D +

1

2`
+

1

η`

)2

ψ+
µ (η) (3.33)

where we have introduced the notation

f(η) ≡ `η

η + 1
, g(η) ≡ `η

η − 1
. (3.34)

One can discuss compensating transformations for the gravitini in a similar way. The

transformation rule for the real and imaginary parts of the Dirac gravitino ψµ is given in
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terms of Majorana spinors by

δψµ 1 = −1

4
γρσ∇̄ρhµσε1 +

1

2
vνγ

νγµε2 +
1

4`
hµνγ

νε1 ,

δψµ 2 = −1

4
γρσ∇̄ρhµσε2 −

1

2
vνγ

νγµε1 −
1

4`
hµνγ

νε2 , (3.35)

while the fermionic symmetry (2.18) is given by

δψµ 1 = D̄µζ1 +
1

2`
γµζ1 , δψµ 2 = D̄µζ2 −

1

2`
γµζ2 . (3.36)

We will again focus on the massive multiplets first, for which hµν is given by hµν(η), ψµ 1,

ψµ 2 correspond to ψ−µ (η), ψ+
µ (η) and vµ to vµ(η). One finds that

δ
(
γµψ−µ (η)

)
= −1

2
vµ(η)γµε2 , δ

(
γµψ+

µ (η)
)

=
1

2
vµ(η)γµε1 ,

δ
(
D̄µψ−µ (η)

)
=

1

2`

(
1

η
+

3

2

)
vµ(η)γµε2 −

1

2η
γµ (D(η)v(η))µ ε2 ,

δ
(
D̄µψ+

µ (η)
)

=
1

2`

(
3

2
− 1

η

)
vµ(η)γµε1 +

1

2η
γµ (D(η)v(η))µ ε1 . (3.37)

Note that away from critical points the last terms in δ
(
D̄µψ±µ (η)

)
are zero on-shell but

we keep them for the upcoming analysis. We then make the following ansatz for the

compensating ζ1,2-parameters:

ζ1(η) = a1vµ(η)γµε2 + b1γ
µ (D(η)v(η))µ ε2 ,

ζ2(η) = a2vµ(η)γµε1 + b2γ
µ (D(η)v(η))µ ε1 , (3.38)

where we again kept terms that are zero on-shell, up to the order of derivatives that will

be sufficient for the discussion in section 4. The coefficients a1, · · · , b2 depend on η and are

fixed by requiring that

γµδψ−µ (η) + γµ
(
D̄µζ1(η) +

1

2`
γµζ1(η)

)
= 0 ,

δ
(
D̄µψ−µ (η)

)
+ D̄µ

(
D̄µζ1(η) +

1

2`
γµζ1(η)

)
= 0 ,

γµδψ+
µ (η) + γµ

(
D̄µζ2(η)− 1

2`
γµζ2(η)

)
= 0 ,

δ
(
D̄µψ+

µ (η)
)

+ D̄µ

(
D̄µζ2(η)− 1

2`
γµζ2(η)

)
= 0 , (3.39)

with (D(η)2v)µ = 0. One finds

ζ1(η) =
`

2

η

(η − 1)
vµ(η)γµε2 −

`2

2

η

(η − 1)2
γµ (D(η)v(η))µ ε2 ,

ζ2(η) =
`

2

η

(η + 1)
vµ(η)γµε1 +

`2

2

η

(η + 1)2
γµ (D(η)v(η))µ ε1 . (3.40)

Finally, we note that the condition ∇̄µvµ = 0 is preserved by the gauge fixed supersymmetry

transformation rules of (2.15), so no compensating transformation is required for δvµ(η).
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3.4.2 Multiplet structure

The supersymmetry transformation rules of the modes of the massive multiplets can now

be obtained, by adding the compensating diffeomorphisms and fermionic ζ-symmetry of

the previous subsection to the rules of equations (2.15). One obtains

δhµν(η1,2) =

(
2 +

η1,2
η1,2 + 1

)
ε̄1γ(µψ

−
ν)(η1,2) + 2`

η1,2
η1,2 + 1

ε̄1∇̄(µψ
−
ν)(η1,2)

+

(
2 +

η1,2
η1,2 − 1

)
ε̄2γ(µψ

+
ν)(η1,2)− 2`

η1,2
η1,2 − 1

ε̄2∇̄(µψ
+
ν)(η1,2) ,

δψ−µ (η1,2) = −1

4
γρσ∇̄ρhµσ(η1,2)ε1 +

1

4`
hµν(η1,2)γ

νε1 −
1

2

η1,2`

(1− η1,2)
(
D̄µvν(η1,2)

)
γνε2

− 1

2

η1,2
(1− η1,2)

vµ(η1,2)ε2 +
1

2
vν(η1,2)γ

νγµε2 ,

δψ+
µ (η1,2) = −1

4
γρσ∇̄ρhµσ(η1,2)ε2 −

1

4`
hµν(η1,2)γ

νε2 +
1

2

η1,2`

(1 + η1,2)

(
D̄µvν(η1,2)

)
γνε1

− 1

2

η1,2
(1 + η1,2)

vµ(η1,2)ε1 −
1

2
vν(η1,2)γ

νγµε1 ,

δvµ(η1,2) = −ε̄1 /̄Dψ+
µ (η1,2) +

1

2`
ε̄1ψ

+
µ (η1,2) + ε̄2 /̄Dψ

−
µ (η1,2) +

1

2`
ε̄2ψ
−
µ (η1,2) . (3.41)

Note that in order to obtain these transformation rules, we have assumed that we are work-

ing away from any critical points, i.e. that all modes obey first order equations of motion.

The above transformation rules should be viewed as solution generating transformations,

in the sense that plugging in solutions of the linearized field equations in them, leads to

new solutions. One can indeed check that δhµν(η1,2), δψ
±
µ (η1,2), δvµ(η1,2) obey the correct

linearized field equations.

Since hµν(1) = hLµν and ψ−µ (1) = ψLµ , one can find the supersymmetry transformations

of the massless {hLµν , ψLµ} multiplet by setting η1,2 = 1 in (3.41). Some of the terms in the

above transformation rules diverge when setting η1,2 = 1. These terms however involve the

modes vµ(1) and ψ+
µ (1) and these can be consistently truncated by virtue of the equations

of motion of hLµν and ψLµ . One then finds that hLµν and ψLµ only transform into each other

via the ε1-supersymmetry according to

δhLµν =
5

2
ε̄1γ(µψ

L
ν) + `ε̄1∇̄(µψ

L
ν) ,

δψLµ = −1

4
γρσ∇̄ρhLµσε1 +

1

4`
hLµνγ

νε1 . (3.42)

The transformations of the other massless multiplet {hRµν , ψRµ } are then found in a similar

way by setting η1,2 = −1 and truncating ψ−µ (−1) and vµ(−1):

δhRµν =
5

2
ε̄2γ(µψ

R
ν) − `ε̄2∇̄(µψ

R
ν) ,

δψRµ = −1

4
γρσ∇̄ρhRµσε2 −

1

4`
hRµνγ

νε2 . (3.43)
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The modes in these multiplets transform into each other via the two supersymmetries ε1,2
in a way that can be summarized in the following diagrams:

hLµν

ε1
��

ψLµ

OO
hRµν

ε2
��

ψRµ

OO
hµν(η1,2)

ε1ww
ε2 ''

ψ−µ (η1,2)

ε2

''

77

ψ+
µ (η1,2)

ww

gg

vµ(η1,2)

ε1
77

gg

4 Spectra at critical points

There are 4 separate special cases for which the parameters are such that some of the modes

discussed in the previous section coincide. At these critical points in parameter space new

logarithmic modes appear. We will now list these 4 cases and discuss the spectrum for

each of them in turn.

• Case 1 : η1 = ±1, |η2| 6= 1 or η2 = ±1, |η1| 6= 1. Let us consider the case η1 = 1,

|η2| 6= 1. This corresponds to a choice of parameters obeying

σ =
1

`µ
− 1

2`2m2
or 2µσ`2m2 = 2`m2 − µ . (4.1)

Here, the gauge fixed equations of motion assume the form(
D(1)2D(−1)D(η2)h

)
µν

= 0 ,(
/̄D +

1

2`

)2(
/̄D − 1

2`
+

1

η2`

)
ψµ 1 = 0 ,(

/̄D − 1

2`

)(
/̄D +

3

2`

)(
/̄D +

1

2`
+

1

η2`

)
ψµ 2 = 0 ,

(D(1)D(η2)v)µ = 0 . (4.2)

From this one infers that the spectrum consists of one massless multiplet {hRµν , ψRµ },
one massive multiplet {hµν(η2), ψ

±
µ (η2), vµ(η2)} and one ‘log multiplet’ {hlogLµν , ψlogL

µ ,

ψ+
µ (1), vµ(1), hLµν , ψLµ}. The modes of the log multiplet obey the following equations:(

D(1)2hlogL
)
µν

= 0 but
(
D(1)hlogL

)
µν
6= 0 ,(

/̄D +
1

2`

)2

ψlogL
µ = 0 but

(
/̄D +

1

2`

)
ψlogL
µ 6= 0 ,(

/̄D +
3

2`

)
ψ+
µ (1) = 0 , (D(1)v(1))µ = 0 . (4.3)

The log modes hlogLµν , ψlogL
µ defined in this way are only determined up to the addi-

tion of massless modes hLµν , ψLµ . This is why we include them in the log multiplet,
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even though hLµν and ψLµ transform into each other under the ε1-supersymmetry.

That these massless modes belong to the ‘log’ multiplet is also evident from the

fact that (hlogLµν , hLµν) and (ψlogL
µ , ψLµ ) taken together form an indecomposable, non-

diagonalizable representation of the Hamiltonian, that takes the form of a rank-2

Jordan cell [3, 4, 9, 30–33].

In order to get solution generating supersymmetry transformation rules, we again

have to take into account compensating transformations. These can however be

easily derived from the η → 1 limits of the compensating diffeomorphism and ζ-

transformation parameters given in equations (3.33), (3.40). Adding for instance

a compensating diffeomorphism with parameter ξµ(η) given in (3.33), we get the

following rule

δhµν(η) =

(
2 +

f(η)

`

)
ε̄1γ(µψ

−
ν)(η) +

f(η)2

`
ε̄1γ(µ

(
/̄D − 1

2`
+

1

η`

)
ψ−ν)(η)

+ 2f(η)ε̄1∇̄(µψ
−
ν)(η) + 2f(η)2ε̄1∇̄(µ

(
/̄D − 1

2`
+

1

η`

)
ψ−ν)(η) + · · · , (4.4)

where the · · · contain terms that involve
(
/̄D − 1

2` + 1
η`

)2
ψ−µ (η) and an ε2 transforma-

tion 2ε̄2γ(µψ
+
µ)(η) together with compensator terms for this ε2 transformation that

involve g(η) defined in (3.34). We can then consider this rule in the η → 1 limit

and see what happens when one plugs in ψLν or ψlogL
ν for the gravitino mode ψ−ν (η).

Since g(η) diverges in the η → 1 limit, one finds that there exists no compensator

for the ε2 supersymmetry. The latter can thus not be used as a solution generating

symmetry. In the η → 1 limit, the terms involving
(
/̄D − 1

2` + 1
η`

)2
ψ−µ (η) always

vanish, regardless of whether ψ−µ (η) corresponds to ψLµ or ψlogL
µ . Equation (4.4) then

reduces to

δ

(
lim
η→1

hµν(η)

)
=

5

2
ε̄1γ(µ

(
lim
η→1

ψ−ν)(η)

)
+ `ε̄1∇̄(µ

(
lim
η→1

ψ−ν)(η)

)
+
`

4
ε̄1γ(µ

(
/̄D +

1

2`

)(
lim
η→1

ψ−ν)(η)

)
+
`2

2
ε̄1∇̄(µ

(
/̄D +

1

2`

)(
lim
η→1

ψ−ν)(η)

)
. (4.5)

This transformation rule obeys the gauge fixing conditions for the metric perturba-

tion and thus indeed contains the correct compensating transformations. Replacing

limη→1 ψ
−
µ (η) by ψLµ , we find that the last two terms of (4.5) vanish, while the first

two are annihilated by D(1). We can thus conclude that an ε1 transformation can be

used to generate a massless graviton solution from a massless gravitino one:

δhLµν =
5

2
ε̄1γ(µψ

L
ν) + `ε̄1∇̄(µψ

L
ν) . (4.6)

If one replaces limη→1 ψ
−
µ (η) in (4.5) by ψlogL

µ , one finds that the right hand side

is annihilated by D(1)2. In this way, an ε1 transformation generates a graviton log
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mode from a gravitino one:

δhlogLµν =
5

2
ε̄1γ(µψ

logL
ν) + `ε̄1∇̄(µψ

logL
ν) +

`

4
ε̄1γ(µ

(
/̄D +

1

2`

)
ψlogL
ν)

+
`2

2
ε̄1∇̄(µ

(
/̄D +

1

2`

)
ψlogL
ν) . (4.7)

A similar discussion holds for δψ−µ (η). In this case, we found in subsection 3.4.1

that only the ε2 transformation needed a ζ1-compensator. The compensator derived

in (3.40) however diverges in the η → 1 limit, implying that the ε2-supersymmetry

cannot be used as a solution generating symmetry. In the limit η → 1, δψ−µ (η) thus

only contains the ε1-supersymmetry

δ

(
lim
η→1

ψ−µ (η)

)
= −1

4
γρσ∇̄ρ

(
lim
η→1

hµσ(η)

)
ε1 +

1

4`

(
lim
η→1

hµν(η)

)
γνε1 , (4.8)

Replacing limη→1 hµν(η) by hLµν , one finds that the right-hand-side is annihilated by

( /̄D + 1
2`) and hence that a massless gravitino mode is generated from a massless

graviton one

δψLµ = −1

4
γρσ∇̄ρhLµσε1 +

1

4`
hLµνγ

νε1 . (4.9)

Replacing limη→1 hµν(η) by hlogLµν , one finds that the right-hand-side of (4.8) is anni-

hilated by ( /̄D + 1
2`)

2 and hence that a logarithmic gravitino mode is generated from

a logarithmic graviton one

δε1ψ
logL
µ = −1

4
γρσ∇̄ρhlogLµσ ε1 +

1

4`
hlogLµν γνε1 . (4.10)

Finally, for the massive modes ψ+
µ (1) and vµ(1) one similarly reasons to obtain the

following solution generating supersymmetry transformation rules

δψ+
µ (1) = −1

4
γρσ∇̄ρhlogLµσ ε2 −

1

4`
hlogLµν γνε2 +

`

4

(
D̄µvν(1)

)
γνε1 −

1

4
vµ(1)ε1

− 1

2
vν(1)γνγµε1 ,

δvµ(1) = −ε̄1 /̄Dψ+
µ (1) +

1

2`
ε̄1ψ

+
µ (1) + ε̄2

(
/̄D +

1

2`

)
ψlogL
µ . (4.11)

The transformation properties of the various modes in the log multiplet can be sum-

marized in the following diagram:

{hlogLµν , hLµν}

ww
ε2

&&
{ψlogL

µ , ψLµ}
ε2

''

ε1

77

ψ+
µ (1)

ww
vµ(1)

ε1
77
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• Case 2 : η1 = ±1, η2 = ∓1. Let us consider the case η1 = 1, η2 = −1 without loss of

generality. This corresponds to a choice of parameters for which

µ−1 = 0 . (4.12)

Here, the gravitational Chern-Simons term and its supersymmetrization are thus

absent and one recovers the N = (1, 1) supersymmetrization of NMG [5]. The four-

dimensional counterpart of this case was studied in [15]. Here, the equations of

motion take the form: (
D(1)2D(−1)2h

)
µν

= 0 ,(
/̄D +

1

2`

)2(
/̄D − 3

2`

)
ψµ 1 = 0 ,(

/̄D − 1

2`

)2(
/̄D +

3

2`

)
ψµ 2 = 0 ,

(D(1)D(−1)v)µ = 0 . (4.13)

In this case, there are two log multiplets of the type we encoun-

tered in the previous case: {hlogLµν , ψlogL
µ , ψ+

µ (1), vµ(1), hLµν , ψ
L
µ} and

{hlogRµν , ψlogR
µ , ψ−µ (−1), vµ(−1), hRµν , ψ

R
µ }. Their supersymmetry transformation

rules can be determined as in the previous case. They can be summarized in the

following diagrams:

{hlogLµν , hLµν}

ww
ε2

&&
{ψlogL

µ , ψLµ}
ε2

''

ε1

77

ψ+
µ (1)

ww
vµ(1)

ε1
77

{hlogRµν , hRµν}

ww
ε1

''
{ψlogR

µ , ψRµ }
ε1

((

ε2

77

ψ−µ (−1)

ww
vµ(−1)

ε2
77

• Case 3 : η1 = ±1, η2 = ±1. Let us choose η1 = η2 = 1 without loss of generality. In

this case, the parameters have to obey

σ`2m2 =
3

2
and m2` = 2µ . (4.14)
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Here, the equations of motion become:(
D(1)3D(−1)h

)
µν

= 0 ,(
/̄D +

1

2`

)3

ψµ 1 = 0 ,(
/̄D − 1

2`

)(
/̄D +

3

2`

)2

ψµ 2 = 0 ,(
D(1)2v

)
µ

= 0 . (4.15)

The spectrum thus consists of one massless multiplet {hRµν , ψRµ } and one ‘log2 multi-

plet’ {hlog
2 L

µν , hlogLµν , ψlog2 L
µ , ψlogL

µ , ψlog +
µ (1), ψ+

µ (1), vlogµ (1), vµ(1), hLµν , ψ
L
µ}. This mul-

tiplet thus consists of log modes that are defined as previously, as well as log2 modes

that obey (
D(1)3hlog

2 L
)
µν

= 0 but
(
D(1)2hlog

2 L
)
µν
6= 0 ,(

/̄D +
1

2`

)3

ψlog2 L
µ = 0 but

(
/̄D +

1

2`

)2

ψlog2 L
µ 6= 0 ,(

/̄D +
3

2`

)2

ψlog +
µ (1) = 0 but

(
/̄D +

3

2`

)
ψlog +
µ (1) 6= 0 ,(

D(1)2vlog(1)
)
µ

= 0 but
(
D(1)vlog(1)

)
µ
6= 0 . (4.16)

The log2 modes are only defined up to the addition of massless modes hLµν , ψLµ and log

modes hlogLµν , ψlogL
µ . In this case, (hlog

2 L
µν , hlogLµν , hLµν) and (ψlog2 L

µ , ψlogL
µ , ψLµ ) taken

together form an indecomposable, non-diagonalizable representation of the Hamilto-

nian, that takes the form of a rank-3 Jordan cell [33]. Solution generating supersym-

metry transformation rules can be obtained as before. As in the previous two cases

one finds that some of the supersymmetry transformations are not invertible, due to

the fact that the necessary compensating transformations diverge for η = 1.

Solution generating supersymmetry transformations can be obtained using the com-

pensating diffeomorphisms (3.33) and fermionic symmetry (3.40), following the rea-

soning outlined in case 1. Here, all higher derivative terms given in (3.33) and (3.40)

contribute to the compensating transformations. The transformation properties of

the various modes in the log multiplet can be summarized in the following diagram:

{hlog
2L

µν , hlogLµν , hLµν}

uu
ε2 ))

{ψlog2L
µ , ψlogL

µ , ψLµ}
ε2

))

ε1

55

{ψlog+
µ (1), ψ+

µ (1)}

uu

{vlogµ (1), vµ(1)}

ε1
55
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• Case 4 : η1 = η2 = η, |η| 6= 1. This case is obtained when the parameters obey the

following constraint

µ2 =
m4`2

4σ`2m2 − 2
. (4.17)

In this case, the equations of motion are:(
D(1)D(−1)D(η)2h

)
µν

= 0 ,(
/̄D +

1

2`

)(
/̄D − 1

2`
+

1

η`

)2

ψµ 1 = 0 ,(
/̄D − 1

2`

)(
/̄D +

1

2`
+

1

η`

)2

ψµ 2 = 0 ,(
D(η)2v

)
µ

= 0 . (4.18)

The spectrum consists of 2 massless multiplets {hL/Rµν , ψ
L/R
µ } and one ‘massive log’

multiplet {hlogµν (η), hµν(η), ψlog +
µ (η), ψlog −

µ (η), ψ+
µ (η), ψ−µ (η), vlogµ (η), vµ(η)}. The log

modes obey: (
D(η)2hlog(η)

)
µν

= 0 but
(
D(η)hlog(η)

)
µν
6= 0 ,(

/̄D ± 1

2`
+

1

η`

)2

ψlog ±
µ (η) = 0 but

(
/̄D ± 1

2`
+

1

η`

)
ψlog ±
µ (η) 6= 0 ,(

D(η)2vlog(η)
)
µ

= 0 but
(
D(η)vlog(η)

)
µ
6= 0 . (4.19)

Since none of the compensating transformations diverge for these critical points, one

finds that all supersymmetry transformations are invertible and the transformation

properties can be summarized in the following diagram

{hlogµν (η), hµν(η)}

ε1uu
ε2 ))

{ψlog −
µ (η), ψ−µ (η)}

ε2

))

55

{ψlog +
µ (η), ψ+

µ (η)}

uu

ii

{vlogµ (η), vµ(η)}

ε1
55

ii

5 Conclusions and outlook

Motivated by obtaining supersymmetric generalizations of the AdS/log CFT correspon-

dence, we have considered three-dimensional N = (1, 1) supersymmetric GMG models.

First, we have obtained the linearized supersymmetry transformation rules and linearized

action, including fermionic terms of N = (1, 1) GMG and studied the spectrum of linearized

fluctuations and how they assemble themselves in massless and massive spin-2 supermul-

tiplets for generic points in parameter space. We have then looked at critical points in
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parameter space, where some of the massive modes become degenerate with massless or

other massive modes and where so-called logarithmic modes appear. In particular, we have

argued that there are four classes of critical points: one class where there is one super-

multiplet containing logarithmic modes, along with massless and massive modes, a second

class with two such supermultiplets, a third class that contains a supermultiplet with loga-

rithmic and doubly logarithmic modes, along with massless and massive modes and finally,

a fourth class with a supermultiplet of massive and logarithmic massive modes. For each

of these classes, we have described the multiplet structure and given the supersymmetry

transformation rules that connect the various modes.

The results of this paper can be used as a starting point for several interesting research

directions and extensions. For applications to the AdS/log CFT correspondence, it would

be desirable to have a better understanding of representations of AdS superalgebras, where

the AdS Hamiltonian acts in an indecomposable, non-diagonalizable fashion on the states.

Since such representations are non-unitary, standard classification theorems for unitary

representations no longer apply. In this paper, we have encountered several examples, that

could be used to better develop the theory of such indecomposable representations of AdS

superalgebras. As we have seen in this paper and as was observed in [15], some of the

supersymmetry transformations can be realized in a non-invertible manner in such multi-

plets. It could then for instance be interesting to study such representations in a superfield

context, starting from the results of [23]. Another interesting direction concerns the ap-

plication of the holographic dictionary to calculate two- and three-point correlators of the

boundary stress-energy tensor in critical N = (1, 1) GMG. The results obtained in this way

could then be compared with results for stress-energy correlators in supersymmetric log

CFTs [34–36]. In order to calculate these correlators on the gravitational side, the strategy

of [31] could be followed. One then needs explicit solutions for the non-normalizable modes,

that arise as solutions of the linearized field equations. For the graviton modes, such so-

lutions have been considered in the context of critical TMG in [31]. It would therefore be

interesting to extend this analysis to the gravitino sector as well. Note that to be able to

properly apply the holographic dictionary, the action typically needs to be supplemented

with boundary terms in order to render the variational principle well-defined. Such bound-

ary terms have typically been ignored in the construction of supersymmetric GMG models

and their inclusion therefore gives a novel direction for further research. Let us note that

in the case of three-dimensional Einstein gravity the boundary term that is required for a

well-defined variational principle coincides with the boundary term obtained by requiring

supersymmetry in the presence of a boundary, without imposing boundary conditions on

the fields [37]. It would be interesting to see whether the reasoning of [37] can be applied

to (supersymmetric) GMG as well.
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A Notation and conventions

When dealing with complex Dirac spinors, we have adopted the conventions of [20].

The Minkowski metric is taken to have mostly plus signature: ηab = diag(−1, 1, 1)

and the gamma matrices are taken such that they satisfy the Clifford algebra relation

{γa, γb} = 2ηab 1. Given an irreducible (2× 2)-dimensional Clifford algebra representation,

the matrices (γa)
†, −(γa)

T and (γa)
∗ are similar to the gamma matrices γa. The similarity

matrices are γ0, the charge conjugation matrix C and a matrix B respectively:

(γa)
† = γ0γaγ

0 , (γa)
T = −CγaC−1 , (γa)

∗ = BγaB
−1 . (A.1)

The charge conjugation matrix C and the matrix B satisfy the following properties:

CC† = 1 , CC∗ = −1 , CT = −C , (A.2)

and

C = iBγ0 , BB† = 1 , BB∗ = 1 , BT = B . (A.3)

For Dirac spinors, we use two different definitions of the conjugate spinors:

ε̄ = iε†γ0 , ε̃ = (Bε)∗ . (A.4)

Majorana spinors are defined as spinors that satisfy the Majorana condition ε∗ = Bε. For

Majorana spinors, one then has that ε̄ = ε̃. A Dirac spinor ε can then be split up in real

and imaginary parts:

ε = ε1 + iε2 , with ε1 =
1

2
(ε+ (Bε)∗) , ε2 = − i

2
(ε− (Bε)∗) . (A.5)

Here, the real and imaginary parts ε1 and ε2 are Majorana spinors. In this paper, we will

denote the real and imaginary parts of a Dirac spinor with a subindex 1 and 2 respectively.

We refer to [20] for further properties and useful calculational tips.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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