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1 Introduction

The study of D3-branes at threefold singularities is by now a venerable subject, dating back

at least to [1–3]. The worldvolume theory can be inferred to be a four-dimensional N = 1

quiver gauge theory describing the fractional branes that probe the singularity of a Calabi-

Yau threefold, on which one has defined a type IIB background. Powerful mathematics has

been developed to extract a quiver with superpotential describing the field theory directly

from the singularity. These techniques are greatly simplified in favorable situations, namely

when the singularity is an orbifold or toric [4–6]. The quintessential example of the latter

class is the conifold C,
P ≡ x2 − y2 − z t = 0 ⊂ C4 ,

about which a great deal is known both in field theory [7, 8] and in singularity theory [9].
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Singularities in string theory can also be viewed from a fundamentally different per-

spective, namely the geometric engineering paradigm [10, 11]: one defines type IIA on the

singularity, and considers the effective field theory arising from the supergravity zero modes

on this space, supplemented by the light degrees of freedom created by D2-branes wrapping

the vanishing cycles. The case of the conifold produces a four-dimensional N = 2 SQED

with one charged hypermultiplet. The U(1) gauge group comes from the reduction of the

type IIA Ramond-Ramond C3 form,1 and the charged hyper from a D2 and an anti-D2

wrapped on the exceptional sphere.

However, when the singularity does not belong to either class mentioned above, it is

in general more difficult to “read off” the field theory from it. One has to resort to the

description of so-called B-type (topological) D-branes as objects in the bounded derived

category of coherent sheaves on the resolution, pioneered in [12, 13]. In that context, a

practical way of extracting the field theory quiver is to study the noncommutative crepant

resolution (NCCR henceforth) of the singularity, as discovered in physics in [14] and in

mathematics in [15]. A key result by Bondal and Orlov [16] states in fact that the resolved

geometry and the NCCR have equivalent (bounded) derived categories. In other words,

we can define D-branes on the resolved space by defining modules on the NCCR.

Knowledge of the singular coordinate ring R = C[x, y, z, t]/(P ) together with a set of

special R-modules, known as maximal Cohen-Macaulay modules (MCM henceforth),2 is

enough to write down a quiver. In the hypersurface case, the task of finding the quiver and

its corresponding superpotential is simplified significantly by harnessing a rather abstract

mathematical equivalence of categories introduced by [17]: the category of MCM R-modules

is equivalent to that of matrix factorizations (MF henceforth) of the singular hypersurface.

Suppose P = 0 is the hypersurface singularity on which we define type IIB with a D3-

probe; then an MF of it is a pair of square matrices (Φ,Ψ) of appropriate dimensionality

n such that

Φ ·Ψ = Ψ · Φ = P 1n×n .

These matrices can be thought of as maps between R⊕n and itself. Then each MF defines

concretely an MCM R-module via M := coker Ψ; in other words we have an exact sequence

0 R⊕n R⊕n M 0 .Ψ

The NCCR can now be constructed rather explicitly: one essentially “replaces” the coor-

dinate ring R of the singularity with the noncommutative ring [15, 18]

A = EndR(R⊕M1 ⊕ . . .⊕Mr) ,

where the summands are a specially selected subset of MCM modules over R.3 (A can

indeed be understood as a noncommutative enhancement of R = EndRR.)

1Although throughout the paper we will work on noncompact threefolds, one always expects that there

be a normalizable harmonic two-form on which to reduce C3. Alternatively, one can consider the singularity

as a patch of a compact threefold.
2We also require that the singularity be isolated, and that its coordinate ring R be Gorenstein. In physics

language, the latter condition guarantees that the resolved space of the singularity SpecR be a Calabi-Yau

threefold, which is necessary to preserve supersymmetry in four dimensions.
3In the conifold, for instance, there are two such possible modules, and only one of them is chosen.
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The advantage of the MF description is that, once appriopriate MF’s of the hypersur-

face are known, the task of computing a quiver with relations (i.e. the cyclic derivatives

of the superpotential, or F-terms) is completely algorithmic. This approach has been put

forward in [19], where many examples of singularities (well-known in the mathematical lit-

erature) were used as string theory backgrounds and tackled from the NCCR/MF point of

view. The authors of that paper focused in particular on so-called three-dimensional simple

flops. These are singular algebraic varieties that admit two crepant resolutions which are

birationally isomorphic. The conifold, which is moreover toric, is the simplest example of

threefold flop, and can be labeled by an integer ` = 1 known as length. For our purposes

it is enough to characterize this integer as half the size of the matrices in an MF of the

singularity.4 Indeed the conifold hypersurface equation admits a 2`× 2` = 2× 2 MF.

When ` = 2 the singularity is no longer toric, which renders the extensive techniques

pioneered and developed in [4–6] (among many other works) powerless. However, nontoric

singularities are quite generic and moreover higher-length flops make up a much richer

class of threefolds [22]. Thus, providing examples of D3-brane probe theories on such

singularities appears as a very interesting challenge in its own right. In this paper, we will

focus on a simple flop of length ` = 2 known as Laufer’s example [23]. It is defined as the

following hypersurface in C4:

x2 + y3 + wz2 + w2n+1y = 0 , n ∈ N>0 .

We will study it thoroughly from the D3-probe perspective, i.e. by exploiting the NCCR

technique, which will give us a quiver description of the threefold. However, we will also

analyze the field theory that arises from the type IIA geometric engineering point of view.

The novelty will be that, in contrast to more familiar singularities with exceptional cycles

with normal bundle OP1(−1) ⊕ OP1(−1) (such as the conifold), this class of singularities

is characterized by OP1(−3) ⊕ OP1(1). In field theory, we will see that this translates to

having hypers of charge one and also of charge two.

The goal of this paper is two-fold: firstly, it is meant to be an exposition of the powerful

tools from NCCR’s to study nontoric, non-orbifold singularities. We will see that we can

not only derive the appropriate quiver with relations for the aforementioned length-two flop,

but we can also recover the resolved threefold as the moduli space of stable representations

of the quiver. The peculiarity of this type of threefold is that the associated quiver gauge

theory is nonabelian even for a single probe brane.

Secondly, this will be a first example where a flop of length two is described contin-

uously. In [19] the flop transition could only be seen as a Z2 symmetry that exchanges

two MF’s of the singular hypersurface, akin to the case of the conifold which admits two

(small) resolutions via two-by-two MF’s. However, the question as to how one can see this

from the Kähler geometry perspective remained unanswered. How should one describe the

exceptional P1 of the resolution? Can we track it all the way to zero volume, and then see

how the flopped curve starts to grow in the other Kähler cone? We will accomplish this

task explicitly.

4See [20, 21] for a formal definition.
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Finally, by relying on the NCCR/MF techniques we will also study Weil divisors of the

singular geometry, by regarding them as flavor nodes in the quiver, in the spirit of [24, 25].

This is of particular interest in the context of F-theory or geometric engineering in IIA/M-

theory, where such divisors induce extra U(1) gauge symmetries.

This paper is organized as follows. In section 2 we introduce the NCCR and MF

techniques and apply them to the well-studied conifold singularity, i.e. the simplest example

of length-one flop. In section 3 we introduce our main case-study, i.e. Laufer’s length-two

flop, whose NCCR we present in section 4. (In appendix A we present yet another example

of a length-two flop.) In section 5 we study classes of Weil divisors defined on Laufer’s

singularity, and we also provide an alternative perspective on them leveraging the M/F-

theory duality. In section 6 we show that, in the geometric engineering context, these

geometries admit higher-charge hypers. We briefly present our conclusions in section 7.

2 Warm-up: the conifold threefold

To set the stage, we shall first study the well-known conifold singularity by relying on the

powerful NCCR techniques, which we will introduce as we go along in the presentation.

Given the general familiarity with the conifold example, the use of the NCCR might seem

like an overkill. However, it is instructive to revisit this old example in the less familiar

NCCR language, as a warm-up for our main case-study, Laufer’s geometry.

2.1 The singularity and its matrix factorization

Consider the well-known Calabi-Yau (CY henceforth) threefold C defined by the follow-

ing equation:

Wconifold : x2 − y2 − tz = 0 ⊂ C4 . (2.1)

It has a pointlike singularity at the vanishing locus of the ideal (x, y, z, t) of the coordinate

ring R := C[x, y, z, t]/(x2 − y2 − tz). A threefold will admit a small, Kähler, crepant

resolution provided there is a Weil (but non-Cartier) divisor. In the conifold case there are

two independent Weil divisors, given by the (zero locus of the) following ideals:

(x+ y, z) and (x− y, z) . (2.2)

Each of them produces, upon blow-up, a nonsingular threefold. We thus obtain two three-

folds X± related by a simple flop X+ 99K X−. This means the two nonsingular varieties are

birationally isomorphic away from a subvariety. In the case of simple flops, such subvariety

is an irreducible, smooth, rational curve, namely the exceptional P1 locus of the resolutions.

As explained in the introduction, given a hypersurface with defining equation P =

0, a matrix factorization (MF) of it is a pair of square matrices (Φ,Ψ) of appropriate

dimensionality n such that

Φ ·Ψ = Ψ · Φ = P 1n×n , (2.3)

where 1n×n is the n×n identity matrix. The conifold admits two inequivalent, irreducible,

nontrivial MF’s, namely (Φ,Ψ) and (Ψ,Φ) with

Φ =

[
x− y −z
−t x+ y

]
, Ψ =

[
x+ y z

t x− y

]
. (2.4)
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The two pairs are ordered and inequivalent, i.e. they are not related by similarity trans-

formations. The two Weil divisors (2.2) are related to the two MF’s, as we now explain.

First, notice that these matrices can be seen as maps from R⊕2 to R⊕2. This allows to

construct two modules over R as follows [17]:

M := coker
(
R⊕2 Ψ−→ R⊕2

)
, M∨ := coker

(
R⊕2 Φ−→ R⊕2

)
. (2.5)

For the conifold, these are all the nontrivial irreducible MCM modules up to isomor-

phism [26]. They are rank-one over the whole conifold threefold except at the singular

point, where they are rank-two. As we will see, in the resolved space these pull-back to

O(1) and O(−1), i.e they become line bundles. The associated divisors are given by the

locus where a generic section of the bundle vanishes. These loci can be detected already

in the singular space. Consider for instance the map Ψ. The locus we are looking for is

where a given element of R⊕2 is inside im Ψ. Given a generic section

s =

(
s1

s2

)
(2.6)

in R⊕2, the vanishing locus is where s becomes parallel to the generators of (the rank-one)

im Ψ (i.e. the columns of Ψ). This happens for

det

[
s1 x+ y

s2 t

]
= 0 , det

[
s1 z

s2 x− y

]
= 0 , (2.7)

or in other words when

Φ · s = 0 . (2.8)

Hence we have a whole family |D+| of non-Cartier divisors parametrized by (s1, s2). Notice

that for the special choice s1 = 0, we obtain the locus (x + y, z), that is one of the Weil

divisors mentioned in (2.2). On the other hand, the divisor (x− y, z) belongs to the family

|D−| defined by

Ψ · s′ = 0 , (2.9)

associated with the second MCM module (M∨). One can check that the union of |D+| and

|D−| is in the class of a Cartier divisor.

2.2 Noncommutative crepant resolution and the quiver

We will now put this knowledge of MCM modules over the conifold to use, by constructing

the NCCR of the singularity, and subsequently obtaining its (commutative) small resolution

as a quiver moduli space.

It is well-known that one can associate a quiver with relations to the conifold singu-

larity. In string theory this can be seen as follows: one considers a stack of N D3-branes

at the singular point. The probe theory is described by the quiver in figure 1 and comes

equipped with the (Klebanov-Witten) superpotential [7]:

WKW = α1β1α2β2 − α1β2α2β1 . (2.10)
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U(N) U(N)

αi

βi

Figure 1. Quiver gauge theory of N D3-branes probing the conifold C.

The nodes of the quiver are the fractional brane gauge groups, and the arrows the chiral

multiplets charged under such groups. On the other hand, consider a crepant resolution X
of the conifold (either among X±). Then the bounded derived category of X is equivalent

to the bounded derived category of representations of the quiver described above. One can

extract the quiver with superpotential of a given three-dimensional singularity by using Van

den Bergh’s NCCR’s [19]. These resolutions require the knowledge of the MCM modules

Mi of the singular ring R, whose category was shown be equivalent [17] to a particular

category of MF’s of the equation defining the singular threefold. Namely, once an MF of

the singularity equation Wconifold is known, we can construct for free its MCM modules

via (2.5).

As already mentioned, the basic idea [27] behind the NCCR is to replace the co-

ordinate ring R = EndRR describing the singular space with the noncommutative ring

A = EndR(R ⊕M1 ⊕ . . . ⊕Mr) made out of a special subset of the MCM modules. One

requires that A be Cohen-Macaulay, which is the homological counterpart of crepancy,

and that it have finite global projective dimension, which essentially means that all pro-

jective modules over A admit a finite resolution. That is the homological counterpart of

smoothness. (We refer to [28] for a pedagogical introduction to these notions.)

Moreover the ring A, which is also an algebra over R, can be thought of as the (non-

commutative) path algebra of a quiver with relations. Hence, to each summand in A is

associated a vertex in the quiver, while the number of arrows from one vertex to another

is given by dim HomR(Mi,Mj) (where Mi can be R too). Once a presentation of the sin-

gularity as quiver with relations is known, one can construct a geometric resolution of the

singular threefold via the geometric invariant theory of King [29].

We now apply this procedure to the conifold singularity (2.1) as a first case-study. The

NCCR can be characterized by a single MCM module defined by choosing one of the two

MF’s. Let us take M = coker Ψ in (2.5) for concreteness. The pair (Φ,Ψ) is a MF of the

singular space, i.e.

Φ ·Ψ = Ψ · Φ = (x2 − y2 − tz)12`×2` , (2.11)

with ` = 1. As we have already mentioned elsewhere, we can define the integer ` to be the

length of the flop, which is a numerical invariant that characterizes it [20, 21].

In this case the noncommutative ring is simply A = EndR(R⊕M). It can be decom-

posed in four pieces as follows:

A = HomR(R,R) ⊕ HomR(M,M) ⊕ HomR(R,M) ⊕ HomR(M,R)
∼= R ∼= R ∼= M ∼= M∨

eR eM αi βi

(2.12)
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R M

αi

βi

eMeR

Figure 2. The conifold quiver. ei is the idempotent of node i = R,M in the path algebra of

the quiver.

C C

αi

βi

11

Figure 3. ~d = (1, 1) quiver representation of the conifold.

where in the last line we have written down the corresponding generators. The relevant

morphisms are αi and βi, which satisfy the relations

α1βiα2 = α2βiα1 , β1αiβ2 = β2αiβ1 , i = 1, 2 . (2.13)

These can be derived by checking the definition of M in terms of the MF [19]. However,

the result can be repackaged as F-terms by defining a formal superpotential, which in this

case happens to be (through no coincidence) the Klebanov-Witten one (2.10). eR and

eM are the multiplicative identities (actually idempotents) of the ring at node R and M

respectively. The quiver is depicted in figure 2. In this language, D-branes on the singular

space are described as complexes of right A-modules, i.e. objects in the bounded derived

category Db(mod-A). This makes sense because the bounded derived category of these

modules is equivalent to the bounded derived category of coherent sheaves Db(X ) on the

resolved space [16]. Moreover A-modules are equivalent to representations of the quiver.

In particular, by studying the moduli space of the quiver representations corresponding to

fractional D3-branes, we can recover the conifold variety C.
A (finite-dimensional) quiver representation is defined by associating a (complex) vec-

tor space with each node of the quiver and a linear map with each arrow.5 eR and eM
are set to the identity matrix 1. The representation corresponding to a single D3-brane

is shown in figure 3, and is characterized by ~d = (1, 1), collecting in a dimension vector
~d the dimensions of the vector spaces at the two nodes. The D3-brane splits into two

fractional branes, one on each node. αi and βi are complex scalar fields that transform

in the bifundamental (and anti-bifundamental) of the product gauge group U(1) × U(1).

Neglecting the decoupled diagonal U(1), we can say that these fields have charges ±1 under

the relative U(1).

5We will also encounter infinite-dimensional, but finitely-generated, quiver representations. These cor-

respond to noncompact, or flavor, branes.
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The moduli space is parametrized by all the possible values of the maps αi, βi modulo

the action of the relative U(1) gauge group. This naturally leads to the toric variety

α1 α2 β1 β2

1 1 −1 −1
with |α1|2 + |α2|2 − |β1|2 − |β2|2 = ξ , (2.14)

where the last condition is the D-term of the U(1) gauge theory. We recognize this to be the

toric description of the conifold space. When the parameter ξ is zero, we have the singular

conifold, while for ξ 6= 0 the space is resolved. The resolved phases correspond to ξ > 0

and ξ < 0. We also see that in the first phase we will have the irrelevant ideal condition

(α1, α2) 6= (0, 0), while in the second phase we have (β1, β2) 6= (0, 0). By irrelevant ideal

we mean the ideal associated with the excised locus, much like in the construction of P1

from C2 by excising its origin.

Stability. Let us see here how to obtain the irrelevant ideal, when we consider the (re-

solved) space as the moduli space of a quiver representation. The quiver representation of

interest here has dimension vector ~d = (1, 1). In order to define the resolved ambient space,

we first need to impose so-called stability conditions. The first step requires assigning a

vector ~θ to this quiver such that ~θ · ~d = 0, i.e. ~θ = (−ξ, ξ). This gives us two choices up to

rescaling: ~θ+ := (−1, 1) and ~θ− := (1,−1).

Before we can proceed, we should define the notion of subrepresentations, and what

it means for a representation to be destabilized by a subrepresentation. Physically this

corresponds to our brane system decaying into a non-supersymmetric configuration. King’s

work [29] then tells us how to insure that our ~d = (1, 1) representation is stable in the

appropriate way, and guarantees that stability is equivalent to satisfying D-term conditions

in the gauge theory.

One can show in detail how to exclude destabilizing subrepresentations for each of

the phases ~θ±. However, there is an easier and cleaner way of getting the answer [30–

32]. Given our two-node quiver with a chosen ~θ = (−ξ, ξ), one of the two nodes, say

the left one, will have a negative ~θ-component, and the other one will have a positive

component. Then, calling Vleft and Vright the vector spaces associated to the two nodes,

the semistable representations are defined by the requirement that the space of paths from

the “negative” to the “positive” node, i.e. from Vleft to Vright, must fully generate the space

Hom(Vleft, Vright) of the underlying vector spaces. For the phase ~θ+ = (−1, 1), this means

that the αi generate the right C, i.e. that they are not both zero. For the opposite phase,
~θ− = (1,−1), we must impose analogously that β1 and β2 are not both zero, so that they

generate Hom(Vright, Vleft). We have then found the two irrelevant ideal conditions for the

two phases mentioned above. This trick will be used extensively in further sections.

The exceptional curve. The exceptional locus is a single, irreducible P1 curve. Let us

explicitly see this. Given a choice of ~θ = ~θ±, the moduli space of ~d = (1, 1) representations

corresponds to a resolution X± of the singularity C we started with. Therefore, there exists

a blow-down map

π± : X± −→ C : (α1, α2, β1, β2) 7→ (x, y, z, t) , (2.15)

– 8 –
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where the coordinates of C4 are functions of the quiver variables that are invariant under

the toric C∗ corresponding to the complexification of the relative U(1) ⊂ U(1) × U(1) of

the quiver. Namely:

x+ y = α1β1 , x− y = α2β2 , z = α1β2 , t = α2β1 . (2.16)

These four paths generate all gauge-invariant functions of αi, βi.

Here we are interested in the fiber over the origin, π−1
± (0). This means that we want

the locus in X± such that all gauge-invariants vanish. In the ~θ+ phase this means that

β1 = β2 = 0, and α1, α2 parametrize a P1. In the ~θ− phase, the roles of αi and βi
are exchanged.

Following the length-one flop. Let us briefly see how the relative U(1) gauge theory

D-term in (2.14) allows us to follow continuously the flop transition undergone by the

exceptional P1.

For ξ > 0 we see that |β1|2 = |β2|2 = 0 and |α1|2 + |α2|2 = ξ gives a finite Kähler

size two-sphere. As we let ξ → 0, the size also goes to zero. Then, when ξ < 0 we

have |α1|2 = |α2|2 = 0, and |β1|2 + |β2|2 = −ξ gives the size of a different sphere with

opposite orientation.

3 Laufer’s example

In this section we shall consider a class of pointlike threefold singularities that generalize

the conifold studied before.6 The generalization stems from the fact that such singularities

are examples of length-two flops, as opposed to the length-one case.7

3.1 The threefold flop

Consider the following equation in C7 [21]:

Wuniv : x2 + uy2 + 2vyz + wz2 + (uw − v2)t2 = 0 . (3.1)

It describes a singular hypersurface with two small resolutions W±univ. This sixfold is called

the universal flop of length two. By definition, any threefold singularity Wthreefold that

has a crepant resolution with a length-two curve as exceptional locus admits a morphism

into (3.1). More precisely, given the map Wthreefold → Wuniv, the resolution W±threefold →
Wthreefold is the pullback of W±univ →Wuniv (with W+

univ 99KW−univ).

Old examples of length-two flops were provided by Laufer [23] and Morrison-

Pinkham [34]; these were later put into standard form by Reid [22]. In [21] it is described

how to derive all length-two examples from the universal flop, and a 2`× 2` = 4× 4 MF of

the latter is given.

6This has no relation to the so-called generalized conifold, often seen in the topological string literature.
7Just as the length-one conifold threefold can be seen as a family of complex deformations of the A1

twofold singularity over a complex plane [33], the length-two Laufer’s case can be seen as a family of

deformed D4 singularities over C [21].
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Let us now describe in more detail the class of singular flopping geometries studied

by Laufer. Let X be a rational, singular CY threefold. Let X → X be a small resolution

and C ∼= P1 the exceptional locus; let us call N the normal bundle to C in X . Then N
must be a sum of line bundles N ∼= L1 ⊕ L2, with c(detN ) = c1(L1) + c1(L2). By the

adjunction formula, TX = TC ⊕ N , one deduces that c1(L1) + c1(L2) = −c1(C), where∫
C c1(C) = 2. Defining the Chern numbers (n1, n2) :=

( ∫
C c1(L1

)
,
∫
C c1(L2)

)
, we see that

n1 + n2 = −2. In order to have an isolated singularity, it turns out that we can only have

(n1, n2) = (−1,−1), (−2, 0), and (−3, 1), and this exhausts all possibilities [23]. (−1,−1)

corresponds to the conifold flop, (−2, 0) to the so-called Reid’s pagoda (i.e. x2n−y2− tz =

0 ⊂ C4 with n ≥ 2), and (−3, 1) is the case of interest to this paper.

Indeed Laufer showed [23] that, in the (−3, 1) case, X can be written as a hypersurface

inside C4, and moreover we have a family of such singularities labeled by an odd integer

k = 2n + 1 ≥ 3 (that is n ∈ N>0). The hypersurface has an isolated singularity at the

origin of C4, and its defining equation reads

WLaufer : x2 + y3 + wz2 + w2n+1y = 0 ⊂ C4 . (3.2)

As predicted in [19, 21] explicitly showed that the above hypersurface is a specialization

of (3.1), obtained via the restriction

t→ wn , u→ y , v → 0 . (3.3)

3.2 Matrix factorization and singular divisors

Like in the conifold case, with each resolved phase is associated an MF of Laufer’s three-

fold (3.2), i.e. the pairs (ΦL,ΨL) and (ΨL,ΦL) satisfying

ΦL ·ΨL = ΨL · ΦL = WLaufer 14×4 . (3.4)

Since the corresponding MF is known for the universal flop of length two, the restric-

tion (3.3) can be used to produce the two matrices for Laufer [19]:

ΦL :=


x −y −z −wn

y2 x wny −z
wz −wn+1 x y

wn+1y wz −y2 x

 , ΨL :=


x y z wn

−y2 x −wny z

−wz wn+1 x −y
−wn+1y −wz y2 x

 . (3.5)

Notice that ΦL = 2x14×4−ΨL. The matrix ΨL defines an MCM R-module M = coker ΨL

through the exact sequence

0 R⊕4 R⊕4 M 0 .
ΨL (3.6)

As done for the conifold case in (2.7), we can extract families of Weil divisors directly

from the MF (3.4). In the resolved space the rank-two module M = coker ΨL becomes

a rank-two vector bundle. The divisors we are looking for are then Poincaré dual to the

first Chern class of the bundle. The class can be determined as the locus where two of
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the bundle’s (generic) sections become parallel. This locus can be identified already in the

singular space, by requiring that two sections of M be proportional to each other. To do

this we use the isomorphism between coker ΨL and im ΦL: when the domain of the map

ΦL is restricted to be coker ΨL, the map is bijective (this is valid on generic points of the

Laufer threefold).8 Hence, the locus where two sections of coker ΨL are parallel is the same

as the locus where two sections of im ΦL are parallel. Since the image im ΦL is generated

by the columns of ΦL, we can choose two columns of ΦL and find the locus where these

become parallel. Take e.g. the last two columns of ΦL. The locus we are looking for is

given by

rank


−z −wn

wny −z
x y

−y2 x

 ≤ 1 . (3.7)

When all the two-by-two minors vanish we obtain the vanishing locus of the following ideal:(
z2 + w2ny , −yz + wnx , xz + wny2 , (3.2)

)
. (3.8)

On the other hand, one can make a different choice, e.g. the second and last columns give(
yz + xwn , −xy + wn+1z , y2 + w2n+1 , (3.2)

)
, (3.9)

while the first and last give(
−xz + wny2 , xy + zwn+1 , x2 + w2n+1y , (3.2)

)
. (3.10)

In fact, taking generic combinations of columns and requiring them to be parallel gives a

whole family of Weil divisors. We will explore this further at the end of section 5.

Interestingly, notice that Laufer’s geometry (3.2) can also be thought of as (a patch of)

an elliptic fibration over a noncompact C2
(w,z) base. It is in fact described by the Weierstrass

model (after a trivial redefinition y 7→ −y)

x2 = y3 + f(w, z) y + g(w, z) , f := w2n+1 , g := −wz2 . (3.11)

The discriminant is ∆ ≡ 4f3 + 27g2 = w2(4w6n+1 + 27z4). We notice that the 7-brane

locus splits into one with fiber type II and one with fiber type I1. At the intersection of

the two loci, where the elliptic fibration is singular, the fiber type is I∗0 . This would näıvely

correspond to a D4 enhancement. However, we know that the resolved fiber over this locus

only has one P1. This can be blamed on the fact that the Kodaira classification is only

reliable for elliptically fibered K3’s.

However, this might be a hint that there is a T-brane effect at play, that is breaking

this D4 enhancement in a non-conventional way. An analogous situation was observed in

an SU(5) F-theory setting in [35]: there, the Kodaira table näıvely predicted an E6-type

8The space im ΦL is two-dimensional (when ΦL is applied on R⊕4); moreover when ΦL acts on elements

of the two-dimensional space im ΨL it gives zero, hence im ΨL ⊂ ker ΦL, which is also two-dimensional.

Therefore im ΨL
∼= ker ΦL. Hence, inside coker ΨL, the kernel of ΦL is empty and the map is invertible.
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fiber enhancement over a codimension three locus, but the fiber type turned out to be

entirely different (not even of ADE type). The puzzle was resolved by [36] who realized

that the E6 was partially broken due to a T-brane, or monodromic effect.

This elliptic fibration has an extra (rational) section given, in the patch w 6= 0, by

x =
z3

w3n
, y =

z2

w2n
. (3.12)

In F-theory compactifications, extra sections of the elliptic fibration correspond to massless

U(1) gauge symmetries in the lower-dimensional effective theory. The class of elliptic

fibrations with one rational section has been studied by Morrison and Park in [37]. Laufer’s

threefold belongs to this class. Hence, F-theory on Laufer has a massless U(1) gauge boson.

Locally, we can see that the extra section (3.12) is equivalent to the divisor (3.8).9 It is

then just one of the possible Weil divisors associated with the MF (3.5). We thus see how

the MF is related to the massless U(1)’s in F-theory. This observation, as well as the study

of the local F-theory model provided by (3.2) and its generalizations, will be the subject

of a companion paper [38].

4 Noncommutative crepant resolution

In this section we will use the NCCR technique to extract the exceptional length-two

P1 locus of Laufer’s singular threefold. Moreover, we will identify the class of divisors

mentioned above in terms of quiver variables. We will use the generalization to three

dimensions [27] of classic results by Artin-Verdier [39] on ADE twofold singularities to

characterize the divisors as first Chern class of a vector bundle associated with an MCM

module. Like in the conifold example, there are two inequivalent resolutions, associated

with the two inequivalent MF’s of Laufer’s threefold and correspondingly with two MCM

modules. For the NCCR we pick up one of the two MCM modules and we construct the

noncommutative ring A as follows:

M = coker ΨL , A = EndR(R⊕M) . (4.1)

Without loss of generality, let us consider Laufer’s example (3.2) with n = 1:

WLaufer : x2 + y3 + wz2 + w3y = 0 ⊂ C4 . (4.2)

This geometry will be our main case-study throughout the rest of the paper. The noncom-

mutative resolution is described by the two-node quiver depicted in figure 4. The quiver

has a path algebra, whereby linear combinations of arrows can be taken, and the product of

two arrows is given by their concatenation, reading from right to left.10 The path algebra

must be supplemented with the following relations:

RL : (b2 + dc)d = 0 , c(b2 + dc) = 0 , ab+ ba = 0 , a2 + bdc+ dcb+ b3 = 0 . (4.3)

9Modulo a sign due to the redefinition of y.
10If the product does not correspond to a logical concatenation, then it is zero. For instance, in this case,

d ◦ a = 0, whereas a ◦ d 6= 0.

– 12 –



J
H
E
P
0
4
(
2
0
1
8
)
0
9
0

R M

d

c

a b

Figure 4. Quiver for the NCCR of Laufer’s example with n = 1 [19]. For n > 1 one must add an

extra loop at R.

Like for the conifold, this data can be physically interpreted as the algebra of open strings

attached to fractional branes that wrap the vanishing cycle of the geometry.

The maps (arrows of the quiver) a, b, c, d can be expressed in terms of the MF data, as

explained in [19]. In particular, any homomorphism α : R → M lifts to a homomorphism

α̂ : R→ R⊕4 as follows:

R R

R⊕4 R⊕4 M

q
α̂ α

ΨL

(4.4)

where α̂ ∼ α̂+ ΨL · q, for any q : R→ R⊕4.

Conversely, any map β : M → R is expressible via its uplift to a map β̂ : R⊕4 → R as

follows:

R⊕4 R⊕4 M

R R

ΨL

β̂ β (4.5)

where we must impose the condition β ·ΨL = 0.

We can then follow [19] and give the morphisms a, b, c, d in terms of maps whose domain

and codomain are either R or R⊕4:11

a =


0 1 0 0

−y 0 0 0

0 0 0 1

0 0 −y 0

 , b =


0 0 1 0

0 0 0 −1

−w 0 0 0

0 w 0 0

 , (4.6)

c =
(
x −y −z −w

)
, d =

(
0 0 0 1

)t
. (4.7)

From this, we can deduce relations between quiver loops (i.e. gauge-invariants) and affine

C4 coordinates. First, note that the following paths from left to right generate a vector

11We always consider cases where the quiver has two nodes, with the nontrivial node given by an MCM

module M = coker Ψ, with Ψ an n × n matrix that factorizes the hypersurface equation, i.e. (Φ,Ψ) is a

MF. The arrow from R to M are the morphisms from R to M : these are generated by n× 1 matrices with

one entry equal to 1 and the other to 0. The morphisms from M to R are generated by the rows of Φ [19].

There are also additional endomorphisms of R and M which sometimes need to be added. Typically, there

are relations among these morphisms that allow to reduce the number of generators, leaving a smaller set

of relations (this is what happens in Laufer’s case).
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space:

d =
(

0 0 0 1
)t
, ad =

(
0 0 1 0

)t
, (4.8)

bd =
(

0 −1 0 0
)t
, abd =

(
−1 0 0 0

)t
. (4.9)

The affine ambient C4 coordinates can be recovered in terms of loops on the left-hand

side node:12

− cabd = x , cbd = y , −cad = z , −cd = w . (4.10)

Other useful relations also hold, e.g.

ca2d = yw , cb2d = w2 . (4.11)

Their usefulness will become clear in section 5.3.

4.1 Laufer as 4d N = 1 quiver gauge theory

Having described the NCCR, which amounts to the path algebra of a quiver with relations,

we will now extract the geometrically-resolved space from that data. In principle, we could

already extract the hypersurface equation (4.2) from the path algebra: the coordinate

ring of the hypersurface is simply the center of the noncommutative ring (path algebra)

A = EndR(R⊕M).

However, we will now use a more powerful technique that will not only allow us to

reproduce the singular geometry, but will also give us its explicit resolutions in both its

phases, and show us the flop transition. Mathematically, we will define a finite-dimensional

representation of the quiver. This means that we replace the nodes with complex vector

spaces, the arrows become linear maps between them, and the relations in (4.3) must still be

imposed. In our case, the appropriate representation will have dimension vector ~d = (1, 2),

that is dR = 1, dM = 2 on the left-hand side and right-hand side nodes, respectively. These

dimensions correspond to the ranks of the MCM modules, respectively.

Physically, we are studying the N = 1 quiver gauge theory that arises from probing

the singularity with a spacetime-filling D3-brane. The theory has gauge group U(1)×U(2),

and is depicted again in figure 5. The superpotential has been derived in [19], and reads:

WL = dcb2 +
1

2
cdcd+ a2b+

1

4
b4 . (4.12)

The corresponding F-term relations are the following:

∂cWL = (b2 + dc)d , (4.13a)

∂dWL = c(b2 + dc) , (4.13b)

∂aWL = ab+ ba , (4.13c)

∂bWL = a2 + bdc+ dcb+ b3 . (4.13d)

12Alternatively, (x, y, z, w) can also be expressed as right-hand side loops [19]. This is because

HomR(R,R) ∼= HomR(M,M) ∼= R.
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U(1) U(2)

d

c

a b

Figure 5. Four-dimensional N = 1 quiver gauge theory for Laufer’s example with n = 1.

For this theory, a and b are adjoint U(2) fields, i.e. two-by-two matrices. d and c are

bifundamentals, s.t. d is a two-by-one matrix, and c a one-by-two matrix. The theory has

a (classical) moduli space parametrized by the gauge-invariant combinations of these four

fields. However, it can also be described by using coordinates of the quotient space

C12 〈a, b, c, d〉 / (C∗ ×GL2(C)) , (4.14)

where C∗ is the complexified U(1) gauge group, and GL2(C) is the complexified U(2)

gauge group. Note though, that just as projective spaces are quotients of an appropriately

punctured complex vector space, so must this C12 be punctured. More precisely, we must

exclude some algebraically closed subspaces before we can define the quotient. This per se

does not insure that the result be nonsingular, but it at least enforces that the resulting

space be Hausdorff. In gauge theory terms, this amounts to imposing D-term constraints

of the following form: ∑
a:∗→v

φaφa† −
∑
a:v→∗

φa†φa = θv 1Nv×Nv , (4.15)

for each node v, whereby one must also impose∑
v

θv dimVv = 0 , (4.16)

dimVv being the dimension of the vector space at the v-node (i.e. the entry dv of ~d).

Labeling our nodes v = R,M , this translates to the following conditions:

cc† − d†d = θR , (4.17a)

dd† − c†c+ [a, a†] + [b, b†] = θM 12×2 . (4.17b)

Here, we must impose θR+2θM = 0. Once we have properly excised the bad loci, and taken

the quotient by the gauge group action, the moduli space we are left with (after imposing

the relations (4.13a)–(4.13d)) is expected to be the CY threefold probed by the D3-brane.

A nonzero choice for the ~θ = (θR, θM ) vector corresponds to resolving the singular space.

Let us apply the same trick used to determine the stability of the ~d = (1, 1) quiver

representation of the conifold. In Laufer’s case, the quiver representation of interest will

have dimension vector ~d = (1, 2). Again there are two choices of a ~θ-vector satisfying
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~θ · ~d = 0 up to rescaling: ~θ+ := (−2, 1) and ~θ− := (2,−1). We will study both separately,

and then see how to make a smooth flop transition from one to the other. Like for the

conifold, the semistable representations are defined by the requirement that the space of

paths from Vleft to Vright must fully generate the space Hom(Vleft, Vright) of the underlying

vector spaces. For the phase ~θ+ = (−2, 1), we must then impose that

Paths(R,M) = 〈d, ad, bd, abd〉 ∼= C2 . (4.18)

In order for this to be true, we must require that (d, ad, bd) not all be collinear, when viewed

as column two-vectors. For the opposite stability condition, ~θ− = (2,−1), we must impose

Paths(M,R) = 〈c, ca, cb, cab〉 ∼= Hom(C2,C) ∼= C2 . (4.19)

This means that (c, ca, cb) should not all be collinear as row two-vectors.

We can summarize the situation by constructing the two following irrelevant ideals

corresponding to the two resolution phases:

~θ+ = (−2, 1) : I+ := (ad ∧ d, bd ∧ d) ; (4.20)

~θ− = (2,−1) : I− := (ca ∧ c, cb ∧ c) . (4.21)

In the phase ~θ+ (~θ−), the elements of I+ (I−) cannot vanish simultaneously. We will later

see that these ideals are made of the homogeneous coordinates of the exceptional P1 in

each phase.

4.2 Finding the exceptional curve

In this section, we will find the fiber of the resolution in either phase, and see that it

corresponds to a P1. Before doing so, let us briefly explain some generalities.

Given a choice of ~θ = ~θ±, the moduli space of ~d = (1, 2) representations corresponds

to a resolution X± of the singular hypersurface WLaufer we started with (with n = 1), i.e.

WLaufer : x2 + y3 + wz2 + w3y = 0 ⊂ C4 . (4.22)

Therefore, there exists a blow-down map

π± : X± −→WLaufer : (a, b, c, d) 7→ (x, y, z, w) (4.23)

where the coordinates of C4 are functions of the quiver variables that are invariant under

the C∗ ×GL2(C) group. Put compactly:

(x, y, z, w) ∈ R[a, b, c, d]C
∗×GL2(C) . (4.24)

These invariants were derived in [19] and are reported in (4.10). The important point is

that they are made as traces of gauge-invariant loops. Now, we are interested in the fiber of

the origin π−1
± (0). This means that we want the locus in X± such that gauge-invariants are

traceless. These are traces of either numbers or two-by-two matrices, and all their positive

powers. Therefore, all loops must correspond to nilpotent maps, respecting the stability

conditions [31, 32].
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Phase ~θ+ = (−2, 1). Let us start with the phase ~θ+ = (−2, 1). The most basic loops

based on the left-hand node are:

R : cd , canbmd ∀n,m , and products thereof , (4.25)

where anbm means any combination of (integer) powers of those arrows. Requiring their

nilpotency means setting them to zero, since they are given by one-by-one matrices. On

the right-hand node we have:

M : dc , danbmc , anbm , ∀n,m , and products thereof . (4.26)

Note that the first two sets of loops are automatically nilpotent if we set cd = 0, as required

by the nilpotency of the left-hand side loops.

Taking both sets of variables together, we see that the fiber is given by the follow-

ing ideal: (
cd, a2, b2, cad, cbd, cabd

)
. (4.27)

Remember that, in this phase, ad, bd and d cannot be collinear. Hence the ideal

(cd, cad, cbd) immediately implies c = 0. All in all, we can simplify the answer to

IP1
+

:=
(
c, a2, b2, ab+ ba

)
. (4.28)

Given this ideal, and the irrelevant ideal I+ = (ad ∧ d, bd ∧ d), we can choose a convenient

basis that allows us to “see” the P1 more directly. Let us illustrate this.

From the irrelevant ideal, we have that a and b cannot vanish simultaneously. First,

we would like to prove that a and b are proportional. Say, without loss of generality, that

a 6= 0 (the considerations we will make are symmetric in a ↔ b). Then it must have a

nontrivial one-dimensional kernel, generated by a vector va. The relation ab + ba tells us

then that ab va = 0. From this we deduce one of two possibilities:

bva ∝ va. This is impossible, since a nilpotent matrix cannot have nonzero eigenvalues.

bva = 0. This implies that ker a ⊆ ker b.

Similarly, we can prove that ker b ⊆ ker a, which implies that ker a ∼= ker b. Now, the

nilpotency of a and b gives us the following picture

im a ⊆ ker a

∼= (4.29)

im b ⊆ ker b

from which we infer that either im a ∼= im b, or one of the two variables is zero. In either

case, the conclusion is that a ∝ b. Now we can use the SL2(C) ⊂ GL2(C) symmetry to fix

a basis for C2 such that ad and bd ∝ (1, 0)t and d ∝ (0, 1)t. Using a combination of the

left C∗ and the two C∗ inside GL2(C), we can fix d = (0, 1). This leaves one C∗ that acts
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on the pair (ad, bd) via rescaling. Summarizing, we have the following Ansatz for the most

general solution to F and D-terms:

a =

[
0 α

0 0

]
, b =

[
0 β

0 0

]
, d =

(
0

1

)
, c = 0 , (4.30)

with an action of the following C∗ subgroup of GL2(C):

C∗ : (a, b) 7→

[
λ 0

0 1

]
(a, b)

[
λ−1 0

0 1

]
, (4.31)

d 7→ d . (4.32)

Clearly, this turns (ad, bd) ∧ d into homogeneous coordinates:

(ad, bd) ∧ d = (α, β) 7→ (λα, λβ) . (4.33)

The fact that this pair is exactly the irrelevant ideal makes this into an actual P1[α : β].

Phase ~θ− = (2,−1). In this phase, c, ca and cb cannot all be collinear. Hence, the ideal

(cd, cad, cbd) implies d = 0. The curve is given by

IP1
−

:=
(
d, a2, b2, ab+ ba

)
. (4.34)

On this side, the Ansatz for the P1 is equally simple to find, and turns out to be the

following:

a =

[
0 α

0 0

]
, b =

[
0 β

0 0

]
, c =

(
1 0
)
, d = 0 . (4.35)

The gauge group is broken to the following C∗:

C∗ : (a, b) 7→

[
1 0

0 λ−1

]
(a, b)

[
1 0

0 λ

]
, (4.36)

c 7→ c . (4.37)

The homogeneous coordinates of the P1 are then

(ca, cb) ∧ c = (α, β) , (4.38)

which constitute the irrelevant ideal for this phase, and transform as expected.

4.3 Following the flop transition

In the previous two sections we showed how the resolved space looks by imposing two

opposite stability conditions, ~θ = (−2, 1) and (2,−1). In both cases, we see a P1. Hence,

the flop transition has to do with negating the stability parameter. However, we would like

to follow this transition continuously through the singularity, see a two-sphere shrink to

zero size, and a new one grow. In order to do this it is best to use the D-term constraints
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instead of ~θ-stability. For reading convenience, we repeat these here. Taking ~θ = (−2ξ, ξ),

we have:

d†d− cc† = 2ξ , (4.39)

dd† − c†c+ [a, a†] + [b, b†] = ξ12×2 . (4.40)

Let us make the following overarching Ansatz, which interpolates between (4.30) and (4.35):

a =

[
0 α

0 0

]
, b =

[
0 β

0 0

]
, c =

(√
2γ 0

)
, d =

(
0√
2δ

)
, γδ = 0 . (4.41)

It satisfies the F-term constraints (4.3). Plugging the above Ansatz into the D-term con-

straints, we get the following equations:

|δ|2 − |γ|2 = ξ , (4.42)[
|α|2 + |β|2 − 2|γ|2 0

0 2|δ|2 − |α|2 − |β|2

]
= ξ12×2 , (4.43)

with δ = 0 when ξ < 0 and γ = 0 when ξ > 0. We can rewrite this system as follows:

|δ|2 − |γ|2 = ξ , (4.44)

|α|2 + |β|2 = |δ|2 + |γ|2 . (4.45)

Now we see the transition continuously. Starting at ξ > 0, our solution at the level of

F-terms for the two-sphere dictates γ = 0. Hence, we see that |δ|2 = ξ, which implies

that |α|2 + |β|2 = ξ, signaling a finite Kähler size for the exceptional sphere. As we send

ξ → 0, the size goes to zero. After transitioning to ξ < 0, our solution for the sphere

imposes δ = 0. Now we have |γ|2 = −ξ, and hence |α|2 + |β|2 = −ξ, which corresponds to

a different sphere of finite size.

5 Weil divisors

In this section we will analyze in detail the Weil divisors associated with the small resolu-

tions. Already for the conifold, we may see that they can be detected both in the singular

phase and in the resolved phase.

In M-theory geometric engineering, these divisors play an important role. The singular-

ities we are studying can be obtained from a smooth hypersurface CY space by restricting

its complex structure (specializing the defining equation). In this process, the threefold can

gain new codimension-one submanifolds. In the singular space these are Weil divisors, that

in the resolved phase become honest Cartier divisors. In M-theory, abelian gauge symme-

tries emanate from the reduction of the supergravity C3-form along harmonic, normalizable

two-forms that are Poincaré dual to the new divisors. In F-theory compactifications not

all the divisors will correspond to abelian gauge symmetries. However, these extra divisors

are the natural objects to use in order to produce massless abelian gauge bosons in the

effective theory. As we have seen in (3.12), in this case the elliptic fibration develops an
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extra (rational) section that belongs to the family of Weil divisors; this is the condition for

the F-theory to have an abelian gauge symmetry [37, 40].

In this section, we will introduce a new way of detecting such divisors in algebraic

varieties that admit small resolutions. The conifold is an obvious case: it admits two

families of Weil divisors |D±| whose union |D+ + D−| is in the class of a Cartier divisor,

but that are separately only Weil. In either resolution phase ~θ±, the divisor D± will

intersect the exceptional P1 at a point, and D∓ will actually contain it as the total space

of O(−1)P1 over it.

We will explore how to carry out this analysis for Laufer’s example with n = 1 in this

section. We will find that, here too, there are two divisors D± such that one intersects the

P1 and the other contains it in one phase, and vice versa in the other phase. From the

quiver perspective, we will actually recover the extra divisor, and the whole linear system

in which it moves, as opposed to only the representative corresponding to the extra section.

5.1 Divisors from the quiver

Divisor in phase ~θ = (−2, 1). Let us start by finding the family of divisors |D+|,
which is the one that intersects the exceptional P1 at a point in the phase ~θ+ = (−2, 1).

The idea is to construct a line bundle such that the zero locus of its sections intersects the

exceptional P1 once. In M-theory, this will mean that we have a U(1) gauge group, and

matter with charge one under it, given by a membrane wrapping the sphere.

The construction is straightforward. First, note that our resolved space X+ comes

equipped with a tautological bundle of the form

Vtaut = LR ⊕ VM , (5.1)

where LR is a line bundle whose structure group is the left C∗, and VM is a rank-two vector

bundle with structure group identified with GL2(C). The arrows in the quiver correspond

to sections of these bundles as follows:

d ∈ Γ(L∨R ⊗ VM ) , c ∈ Γ(LR ⊗ V∨M ) , a, b ∈ Γ(End(VM )) . (5.2)

There is an ambiguity that allows us to twist Vtaut into Vtaut ⊗ L̃, where L̃ is any line

bundle. This is equivalent to the statement that an overall U(1) gauge group decouples

from the quiver theory. We can gauge fix this by tensoring with L∨R, such that now

Vtaut = O ⊕ V , (5.3)

where the first summand is the trivial bundle (i.e. the structure sheaf of X+), and the second

a rank-two vector bundle. Now, we have the following assignments to the various arrows:

d ∈ Γ(V) , c ∈ Γ(V∨) , a, b ∈ Γ(End(V)) . (5.4)

Artin-Verdier theory [39], and its generalization to small-resolved threefolds by Van Den

Bergh [18, 27], tells us how to construct a line bundle L such that c1(L) = c1(Vtaut). In
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those references it is proven that the vector bundle V in (5.3) must occur in an exact

sequence of the form

0 O V L 0 , (5.5)

where the divisor associated to L intersect the exceptional P1 once. To see that such a

sequence must exist is simple. Pick a generic section of V, say d. This defines the first map

d : O → V . Since d is nowhere vanishing, the rank of this map is always one. Therefore,

the cokernel of the map must be a line bundle. Define L to be that cokernel. The exterior

product ∧ d defines an explicit map ∧ d : V → L such that (5.5) is an exact sequence:

0 O V L 0 .· d ∧ d (5.6)

This line bundle clearly satisfies c1(L) = c1(V). From here, we see that we can generate all

sections of L as

Γ(L) = 〈ad ∧ d, bd ∧ d, abd ∧ d〉 . (5.7)

Note that, on the locus (4.28) of the P1, the third generator abd∧d is identically vanishing.

Comparing the remaining sections with the irrelevant ideal I+ in (4.20), we conclude that

L ∼= OP1(1) . (5.8)

The irrelevant ideal we have excised imposes that V be generated by its sections. This

means that its restriction to the P1 must decompose into a sum of line bundles of non-

negative degree: V|P1
∼= O(a)⊕O(b). The line bundle of equal first Chern class must then

be Λ2V|P1
∼= O(a+ b). Therefore,

V|P1
∼= O(1)⊕O . (5.9)

This is easily confirmed by looking at our Ansatz (4.30), which we repeat for convenience:

a =

[
0 α

0 0

]
, b =

[
0 β

0 0

]
, d =

(
0

1

)
, c = 0 . (5.10)

Since ab = 0 on the P1, V|P1 is generated by the sections 〈d, ad, bd〉. Given our Ansatz,

these take the following form:

ad =

(
α

0

)
, bd =

(
β

0

)
, d =

(
0

1

)
. (5.11)

These are clearly sections of O(1)⊕O.

Finally, given the generators (5.7) of the line bundle L, our claim is that the U(1)

corresponds to a family of divisors of the form

σD+ = c1(ad ∧ d) + c2(bd ∧ d) + c3(abd ∧ d) . (5.12)
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Figure 6. Flavored version of Laufer’s n = 1 quiver.

Divisor in phase ~θ = (2,−1). Now we would like to describe the family of divisors

|D−|, intersecting the P1 at a point in the θ− phase. The logic is the same. We start by

listing the sections of the dual bundle V∨:

Γ(V∨) = 〈c, ca, cb, cab〉 . (5.13)

Pick a particular section, say c, and construct the exact sequence:

0 O V∨ L∨ 0 .c · ∧ c (5.14)

In the phase ~θ−, c is nowhere vanishing, so the cokernel is a bona fide line bundle. From

this, we can construct the generic D− divisor:

σD− = c1(ca ∧ c) + c2(cb ∧ c) + c3(cab ∧ c) . (5.15)

To understand the fact that |D+ + D−| is a family of Cartier divisors, simply note that

the product σD+σD− is a section of L ⊗ L∨ ∼= O. Hence, such a section can be deformed

by an arbitrary constant, thereby making the corresponding divisor miss the exceptional

locus completely. This means that, under the blow-down map π± in (4.23), this divisor

can escape the singularity, and is therefore Cartier.

5.2 Divisors as flavor branes

We now show how to obtain the divisor (5.12) by relying exclusively on the quiver gauge

description of the singularity. We will add flavor nodes to the quiver, which will correspond

to non-compact D7-branes along either Weil divisor. Naturally, the point-like D3-brane

(obtained from the (1, 2)-representation of the quiver), will have a flavor D3-D7 spectrum.

We will then define the Weil divisors as the loci in the moduli space of the quiver where

some of this matter becomes massless.
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Consider the flavored version of Laufer’s quiver depicted in figure 6. The squares

correspond to flavor D7-branes, whereas round nodes to fractional D3-branes. The arrows

connecting color to flavor branes are D3-D7 states. Note, that we must have two q-fields

and two p̃-fields in order to make the flavor branes anomaly free.

The arrows connecting the boxes are D7-D7 states. The superpotential (4.12) will be

modified by additional terms describing the interaction of these new states. Let us call

si the sections (4.18) of the vector bundle V: Γ(V) = {si}4i=1 := {d, ad, bd, abd, }, and s̃i
those of the dual bundle V∨ (i.e. (5.13)). The flavored superpotential can be schematically

written as follows:

Wflv
L =WL +Mα

n pα p̃n + M̃mαq̃
α qm +K ΦUpαq̃

α +Dmnqmp̃nΦD , (5.16)

where

Mα
n ≡ Cinsαi and M̃mα ≡ C̃im s̃i α (5.17)

and where α = 1, 2 is a U(2) index, m,n = 1, 2, i = 1, . . . , 4, and Cin, C̃
i
m,K,D

mn are

numerical coefficients. The fields ΦU,D describe the states between the two D7-branes. Let

us consider the situation when their vev vanish, that means no recombination between the

two D7-branes.

We want to see what happens to the D3-D7 states when we move the D3-brane away

from the singularity, that means when we give a generic vev to the sections si and s̃i
(satisfying the F-terms (4.13a)–(4.13d)). The masses of these states are described by the

2× 2 matrices M and M̃ in (5.17). At a generic point away from the singularity, both M
and M̃ have maximal rank and all the D3-D7 states become massive. This means that the

D3-brane is not on top of the D7-brane. On the other hand, when one of the two matrices

has rank one (i.e. either detM = 0 or detM̃ = 0), a vector like pair becomes massless: we

interpret these states as the D3-D7 states that become massless when the D3-brane is on

top of one of the two D7-branes.

Notice that the columns of M (M̃) are two generic sections of the bundle V (V∨).

Hence detM = 0 (detM̃ = 0) happens exactly when two sections of the bundle V (V∨)

become parallel, i.e. on top of the Weil divisors studied in section 5.1.

We have then proven that the Weil divisors correspond to the locus where a D3-D7

state becomes massless. To see this more concretely, take the locus detM = 0. By field

redefinition one can set Ci1si = d (and the second column of M is a linear combination

ad, bd, abd). The determinant of M then gives exactly the locus (5.12) obtained before.

Analogous considerations hold for the locus det M̃ = 0.

5.3 Singular description

Having described the two families of divisors |D+| and |D−| in the resolved geometries,

we would like to describe the image of this family under the blow-down map (4.23), in

order to gain direct access to it in the singular space. In M-theory compactified on the

CY threefold, the U(1) gauge group associated with these divisors exists, whether we

resolve the singularity or not. Hence, the divisors we found must exist on the singular

space as Weil divisors. Our strategy is to construct singlets out of sections σD+ and
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σD− described in section 5.1, so that we can gain a description in terms of the affine C4

coordinates (x, y, z, w).

Our strategy will be slightly counterintuitive. In order to describe the family |D+|,
which are the divisors that intersect the P1 at a point in the ~θ+ phase, we will actually

first describe it in the ~θ− phase, and vice versa for the other divisor family. Here is why. In

the ~θ− phase, we have an irrelevant ideal I− = (ca ∧ c, cb ∧ c). Incidentally, the generators

of this ideal are sections of L∨, which is exactly what we need to create singlets from

σD+ ∈ Γ(L). The fact that they form an irrelevant ideal means that, if we create the ideal

of products (σD+I−), we will get an ideal whose zero locus must correspond to the zero

locus Z(σD+) of σD+ . For technical reasons, we will find it more convenient to throw in

the singlets made by multiplying also by (cab∧c). The ideal in the resolved space will have

the same zero locus; however, in the singular space, we will obtain a cleaner description of

the Weil divisor family. Explicitly, define the following singlet matrix:

Z(σD+) = Z
(
σD+ca ∧ c, σD+cb ∧ c, σD+cab ∧ c

)
. (5.18)

The ideal I+ can now be written entirely in terms of affine C4 coordinates by using the

relations in (4.10). First, let us use the general fact that, given sections si of V and s̃i of

V∨, we have the following identity:

(s ∧ r)(s̃ ∧ r̃) = (s · s̃)(r · r̃)− (s · r̃)(r · s̃) . (5.19)

For instance, we would have identities like

(ca ∧ c)(ad ∧ d) = (ca2d)(cd)− (cad)2 = −yw2 − z2 . (5.20)

Let us setup a matrix of such relations:

Z(σD+) =


 ca

cb

cab

 ∧ c
⊗ [(ad bd abd) ∧ d]

= (cd)

 ca2d cabd ca2bd

cbad cb2d cbabd

−ca2bd cab2d −ca2b2d

−
 cad

cbd

cabd

⊗ (cad cbd cabd) . (5.21)

Plugging in (4.10) and (4.11), one obtains

Z(σD+) = −w

yw −x −y2

x w2 −zw
y2 zw yw2

−
−zy
−x

⊗ (−z y −x) . (5.22)

Therefore, a generic section σD+ will have the following description as a Weil divisor:

Z(σD+) · ~k =

−yw2 − z2 xw + yz wy2 − xz
−xw + zy −w3 − y2 zw2 + xy

−y2w − xz −zw2 + xy −yw3 − x2

 ·
k1

k2

k3

 = 0 . (5.23)
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We recover the locus (3.8) (with n = 1) by taking ~k = (1, 0, 0)t. Notice that this coincides

with the extra section (3.12) of the elliptic fibration given by the local F-theory model

WLaufer = 0 ⊂ P231[−y : x : 1]× C2
(w,z). By setting ~k = (0, 1, 0)t or ~k = (0, 0, 1)t we obtain

respectively the loci (3.9) or (3.10).

Let us write down the singular description of the Weil divisor corresponding to σD−

by going to the θ+ phase, multiplying by a matrix made from the irrelevant ideal in that

phase. There is nothing to calculate, we simply transpose the three-by-three matrix we

just constructed. Therefore, a generic section σD− will have the following description as a

Weil divisor:

Z(σD−) · ~k =

−yw2 − z2 −xw + yz −wy2 − xz
xw + zy −w3 − y2 −zw2 + xy

y2w − xz zw2 + xy −yw3 − x2

 ·
k1

k2

k3

 = 0 . (5.24)

This is the same family one would obtain from the MF (ΨL,ΦL) and the corresponding

MCM module M∨ = coker ΦL, following the computations of section 3.2.

6 Higher-charge states

Throughout the paper we have used the branes at singularities paradigm, whereby we de-

scribe the quiver gauge theory arising from a spacetime-filling D3-brane that is pointlike

in the internal space. We will now switch to the so-called geometric engineering picture

in IIA, whereby we study the effective field theory that arises by reducing type IIA super-

gravity on our threefold, supplemented by the D-particles arising from various D2-branes

wrapping the exceptional P1.

So far, Laufer’s geometry seems to behave in perfect analogy with the conifold: it has

a vanishing P1 that can be blown-up crepantly; the curve can be flopped; the threefold

admits two Weil divisors, one of which cuts the curve at one point in one resolution phase,

and the other one cuts the curve in the other phase. It seems then that the only novelty

of this geometry is simply that it is more complicated to describe.

In this section, we will discover an important qualitative difference: IIA on Laufer’s

example admits hypers of higher charge under the U(1) generated by the Weil divisors.

This is in stark contrast to the conifold, which only admits a hyper of charge one.

Once again we will use the example of the conifold as a familiar reference, in order to set

the stage. In that case the two simple representations ~d = (1, 0) and ~d = (0, 1) correspond

to the objects OC (a D2-brane) and OC(−1)[1] (an anti-D2 with flux) respectively, in the

category Db(X ). In the case of Laufer’s example, it was explained in [19] that ~d = (0, 1)

corresponds to OC(−1)[1], whereas ~d = (1, 0) corresponds to some different (not locally

free) object S with support over the curve C. The following simple equation

~d = (1, 2) = (1, 0) + 2 (0, 1) (6.1)

shows us that, at the K-theory level, the class of a point p ∈ X (i.e. a pointlike D0-brane)

is given by

[Op] = [S] + 2 [OC(−1)[1]] = [S]− 2 [OC(−1)] ⇔ [S] = [Op] + 2 [OC(−1)] . (6.2)
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From this, we can conclude that the ~d = (1, 0) representation must correspond to some

bound state of two D2-branes. Hence, if we construct a hyper in the effective theory by

taking a ~d = (0, 1) D-particle (i.e. the anti-D2 with flux wrapped on P1) and its corre-

sponding anti-particle (i.e. the oppositely-oriented membrane corresponding to the object

shifted by [1]), and normalize its charge to one, then we can also build a hyper of charge

two from the ~d = (1, 0) representation and its corresponding anti-brane. To summarize in

a succinct language: (
(0, 1) , (0, 1)[1]

)
←→ hyper of charge one , (6.3)(

(1, 0) , (1, 0)[1]
)
←→ hyper of charge two . (6.4)

Constructing the anti-branes of a given representation can be done either by passing to the

derived category of quiver representations Db(mod-A) or, in the resolved geometry, to the

derived category of coherent sheaves Db(X ).

Now, these two hypers are never simultaneously massless. Depending on the value of

the B-field, only one of them can be made massless at a time. The mass formula for a

D-particle is given by the modulus |Z| of its central charge in four-dimensional N = 1

language. In turn, the central charge is a function Z(Γ, B + iJ) of its Ramond-Ramond

charge vector Γ, and of the complexified Kähler modulus of the threefold. It gets worldsheet

instanton corrections that are subleading at large volume, where the formula reduces to

the following:

Z(Γ, B + iJ) = −
∫
X3

Γ ∧ e−(B+iJ) + worldsheet instanton corrections . (6.5)

In the case where the CY has no compact four-cycles (our case), the formula receives no

α′ corrections (as we will show momentarily), and simplifies to the following integral:

Z =

∫
P1

B + iJ − F , (6.6)

where F is the worldvolume DBI flux on the membrane. Now, our (1, 0) and (0, 1) hypers

are branes that differ in rank, and in their DBI flux, by one unit of induced D0 charge.

Hence, by shifting the B-field accordingly, either one can be made massless.

As promised, let us briefly argue that this formula for the central charge is indeed

uncorrected. (This is a recurring folk theorem that we have been aware of for a long time.)

The line of reasoning goes as follows. In general for, say, a one-modulus CY there are four

periods of the Ω3-form of the mirror CY which, in some basis, would take the following

form (see [41] for an introduction):

Φ0 = P0(z) , (6.7)

Φ1 =
1

2πi
Φ0 log(z) + P1(z) , (6.8)

Φ2 = P2(z) log2(z) + P ′2(z) , (6.9)

Φ3 = P3(z) log3(z) + P ′3(z) , (6.10)
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where z is the complex structure modulus of the mirror CY, and the Pi(z) are polynomials

in z. Now, Φ0 can be argued to be the central charge of the mirror to the D0-brane. The

quotient Q = Φ1/Φ0 has a monodromy Q → Q + 1 around z = 0. At large volume, with

complex Kähler modulus t = B + iJ , one makes the following match with the mirror side

as follows: ∫
two-cycle

t = Φ1/Φ0 ,∫
four-cycle

t2 = Φ2/Φ0 , (6.11)∫
six-cycle

t3 = Φ3/Φ0 .

The monodromy above is mapped to the monodromy around the large volume point as

B → B + 1.

If we had nontrivial four and six-cycles, then it would be nontrivial to solve for t in

terms of z. However given that in our case there is only a two-cycle, the only relation to

satisfy is the following: ∫
P1

t =
1

2πi
log(z) +

P1(z)

P0(z)
, (6.12)

which allows one to define a mirror map z(t), which would typically be a nonperturbative

series in α′. We can reabsorb the disturbing P1(z) piece by redefining z → z̃ such that∫
P1

t =
1

2πi
log(z̃) . (6.13)

From this, we conclude that the exact central charge for a (B-type) D-brane is given by

Z(Γ, B + iJ) = −
∫
X3

Γ ∧ e−t , (6.14)

which reduces to

Z =

∫
P1

t− F (6.15)

in the case of a membrane. Clearly, given a value for F , there will be a point in moduli

space where Z = 0, giving rise to a massless state.

7 Conclusions

In this paper we have studied in full detail a prototype CY threefold singularity that admits

a flop of length two. Such geometries were of course previously known in mathematics, but

only in terms of their algebraic properties.

The approach we used here is to examine the worldvolume theory of a D3-brane prob-

ing Laufer’s singularity in type IIB string theory. We have studied the resolution of the

singular geometry by using its noncommutative crepant resolution, and subsequently its

presentation as a quiver representation, i.e. by using the quiver geometric invariant the-

ory method.
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We have shown how to extract the exceptional P1 locus from the quiver representation,

and how to follow continuously the flop transition the P1 undergoes by looking at the four-

dimensional N = 1 gauge theory D-terms. Moreover we have defined and studied (both in

the singular and resolved phase) two families of Weil divisors of the geometry, which can

be given a natural interpretation as U(1) divisors if we define a local F-theory model on

Laufer’s example.

By relying on the geometric engineering perspective, we also showed that IIA com-

pactified on this class of geometries consists in a four-dimensional N = 2 U(1) gauge

theory with at least one hypermultiplet of charge one, and one hypermultiplet of charge

two. Both hypers can become massless, but at different points in the complexified Kähler

moduli space.

We would now like to speculate on the possibility of having states of charge higher than

two. These could be created if several fractional branes form appropriate bound states.

In geometries like the conifold, these are usually ruled out. The main reason is the fact

that the normal bundle N to the exceptional P1 curve is strictly negative, and, since any

bound state requires giving a vev to its sections, the states are not supported. However,

flops of length two have N = O(−3) ⊕ O(1), which means it is definitely conceivable to

form bound states. We leave this interesting question for future work.

Finally, let us briefly comment on the F-theory interpretation of Laufer’s example. We

have seen that the latter geometry is already in Weierstrass form. The family of noncompact

divisors we have found by our methods includes one divisor that can be regarded as an

extra section to that fibration, implying the rank of the Mordell-Weil group is one. The

exceptional P1 represents a fiber enhancement over a codimension-two locus in the base of

the fibration, giving rise to a charged hyper in six dimensions.
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A Morrison-Pinkham’s example

Another example of threefold flop of length two was constructed by Morrison-Pinkham [34].

The hypersurface singularity in C4 is given by:

WMP : x2 + y3 + wz2 + w3y − λwy2 − λw4 = 0 , λ ∈ C . (A.1)
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This is not a one-parameter family of singularities. There are only two distinct classes

thereof, for λ = 0 and λ 6= 0 [19]. In particular it is easy to notice that the λ = 0 class

is equivalent to the n = 1 case (4.2) of Laufer’s example. The above threefold is a special

case of the universal threefold flop (3.1), obtained via the restriction [19]

t→ −w , u→ y − λw , v → 0 , (A.2)

as one can easily check. We also obtain an MF of (A.1) by applying (A.2) to the MF of

Wuniv provided in [19]. Explicitly:

ΦMP =


x −y −z w

(y − λw)y x −(y − λw)w −z
wz w x y

−(y − λw)w2 wz −(y − λw)y x

 , (A.3a)

ΨMP =


x y z −w

−(y − λw)y x (y − λw)w z

−wz −w x −y
(y − λw)w2 −wz (y − λw)y x

 , (A.3b)

satisfying

ΦMP ·ΨMP = ΨMP · ΦMP = WMP 14×4 . (A.4)

The quiver with relations producing an NCCR of (A.1) was obtained in [19], and is equiv-

alent to Laufer’s one (depicted in figure 4). The relations in the path algebra read instead

RMP : (b2 + dc)d = 0 , c(b2 + dc) = 0 , ab+ ba = 0 , a2 + bdc+ dcb+ λb2 + b3 = 0 , (A.5)

and can be obtained as the F-terms (i.e. cyclic derivatives) of the following superpoten-

tial [19]:

WMP = dcb2 + 1
2cdcd+ a2b+ 1

3λb
3 + 1

4b
4 . (A.6)

We will now show that the Ansatz (4.30) also holds in the Morrison-Pinkham case, and

can be obtained directly from the ideal(
cd, a2, b2, cad, cbd, cabd, (ab)2

)
, (A.7)

where we just added the last relation with respect to the ideal (4.27) (which is appropriate

for Laufer’s example). In that case, this relation was implied by the F-terms once one

assumed the others. With the F-terms (A.5), we need to impose it by hand.

We will now show that the ideal (A.7) implies that the nilpotent matrices a and b are

proportional to each other. This is surely true if a or b are equal to zero. So we need

to prove it for a 6= 0 and b 6= 0. We first show that if a nilpotent two-by-two matrix is

nonzero, then its kernel and its image are isomorphic. In fact, if the matrix m is nonzero

(m 6= 0) and nilpotent (m2 = 0), the dimension of kerm and imm are equal to one.

Moreover, since it is nilpotent, imm ⊆ kerm, implying imm ∼= kerm as the two subspaces

are one-dimensional.

Now, we take a, b two-by-two nonzero, nilpotent matrices. ab must also be nilpotent,

because of (A.7). It can be either zero or not.
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If ab = 0, then im b ⊆ ker a, that again means im b ∼= ker a. But im b ∼= ker b and

im a ∼= ker a. So, a and b have the same image and kernel. Hence a ∝ b.

If ab 6= 0, then dim im(ab) = dim ker(ab) = 1. Moreover ker(ab) ⊇ ker b, that means

ker(ab) ∼= ker b, and im(ab) ⊆ im a, that means im(ab) ∼= im a. This implies that a

and b have the same image and kernel and then are proportional to each other.

This proves that we can always bring a, b, c, d in the form (4.30) (in the phase ~θ = ~θ+)

or (4.35) (in the phase ~θ = ~θ−). Just as in Laufer’s case, we could now set up an overarching

Ansatz interpolating between the two phases, and allowing us to follow the simple length-

two flop continuously.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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