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Abstract: The Hubeny-Rangamani causal holographic information (CHI) defined by a

region R of a holographic quantum field theory (QFT) is a modern version of the idea

that the area of event horizons might be related to an entropy. Here the event horizon

lives in a dual gravitational bulk theory with Newton’s constant Gbulk, and the relation

involves a factor of 4Gbulk. The fact that CHI is bounded below by the von Neumann

entropy S suggests that CHI is coarse-grained. Its properties could thus differ markedly

from those of S. In particular, recent results imply that when d ≤ 4 holographic QFTs are

perturbatively coupled to d-dimensional gravity, the combined system satisfies the so-called

quantum focusing condition (QFC) at leading order in the new gravitational coupling Gd
when the QFT entropy is taken to be that of von Neumann. However, by studying states

dual to spherical bulk (anti-de Sitter) Schwarschild black holes in the conformal frame for

which the boundary is a (2 + 1)-dimensional de Sitter space, we find the QFC defined

by CHI is violated even when perturbing about a Killing horizon and using a single null

congruence. Since it is known that a generalized second law (GSL) holds in this context, our

work demonstrates that the QFC is not required in order for an entropy, or an entropy-like

quantity, to satisfy such a GSL.
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1 Introduction

The Hubeny-Rangamani causal holographic information (CHI) [1] is a modern version of

the idea that event horizons carry an entropy A/4Gbulk. For any region R in a holographic

quantum field theory (QFT), the domain of dependence D(R) in the QFT defines future

and past sets I±[D(R)] in the bulk gravitational dual with associated past and future bulk

horizons ∂I±[D(R)]. Taking the causal surface C(R) to be the intersection

C(R) := ∂I+[D(R)] ∩ ∂I−[D(R)], (1.1)

with area A[C(R)], CHI(R) is A[C(R)]/(4Gbulk). We will explore whether CHI satisfies a

particular condition known as the linearized quantum focusing condition, about which we

will say more below.

CHI is already known to satisfy several other interesting properties. First, CHI(R) is

bounded below by the Hubeny-Rangamani-Takayanagi (HRT) entropy SHRT(R) [2, 3]. As

a result, it has been proposed (see e.g. ref. [4], though see also ref. [5]) that CHI might

quantify some coarse-grained entropy in the holographic QFT. Second, though CHI is

generally infinitely greater than SHRT [6], when the intersection of ∂I+(R) or ∂I−(R) with

the asymptotically locally anti-de Sitter (AlAdS) boundary is a Killing horizon, it was

shown in ref. [7] that1 CHI can be at most finitely greater.

Subject to the same footnote, ref. [7] also explored the coupling of the d-dimensional

holographic QFT to Einstein-Hilbert gravity via some small d-dimensional Newton constant

Gd. (Note that this Gd has nothing to do with the Newton constant Gbulk that controls

the bulk dual.) In classical general relativity the second law of black hole mechanics states

that the area of black holes cannot decrease. But in the context of semiclassical gravity,

Bekenstein [8] proposed it to be replaced by the generalized second law (GSL), requiring

the non-decrease of the generalized entropy. This quantity is the sum

Sgen = SBH + SQFT (1.2)

1At least in the so-called universal sector, dual to pure Einstein-Hilbert gravity in the bulk.
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of black hole entropy (taken to be SBH = A/(4Gd)) and the entropy of quantum fields

outside. Sgen can be evaluated on codimension-2 surfaces that cut through every generator

of the horizon, and the GSL requires Sgen to be non-decreasing when the cut is deformed

toward the future. At least to first order in Gd in perturbation theory about Killing

horizons, ref. [7] showed the GSL to hold when one takes SQFT to be CHI.

Now, the GSL and related ideas involving gravity and entropy were used in ref. [9] to

motivate a so-called quantum focusing condition (QFC) for semi-classical theories of grav-

ity. This condition again involves the generalized entropy Sgen, and in particular considers

second variations defined by a pair of (say, outgoing) null congruences orthogonal to a (now

arbitrary) codimension-2 surface σ. We shall test this condition at first order in Gd for

perturbations about Killing horizons, in which case the constancy along each generator of

the area element
√
h defined by the cut allows the first-order QFC to be written as

0 ≥ d

dλ1

d

dλ2
Sgen =

d

dλ1

d

dλ2
SQFT −

∫
σ
dd−2y

√
h2πTαβk

α
1 k

β
2 , (1.3)

in terms of the stress tensor Tαβ of the holographic quantum field theory (i.e., in terms

of the boundary stress tensor of the bulk dual). In eq. (1.3), λ1 and λ2 are affine pa-

rameters along the Killing horizon associated with null generators kα1 ∂α = d/(dλ1) and

kα2 ∂α = d/(dλ2), and yi for i = 1, · · · , d − 2 are coordinates on the codimension-2 surface

σ. The derivatives act on Sgen by moving the cut on which it is evaluated. The equality

in eq. (1.3) uses the Raychaudhuri equation and the gravitational equation of motion at

first order in Gd, which together relate derivatives of SBH = A/(4Gd) to the flux of QFT

energy-stress tensor Tαβ across the horizon.

We will further specialize below to the “single-flow” case2 λ1 = λ2 = λ, which is most

closely related to the GSL. But the QFC in principle allows λ1 and λ2 to be associated with

distinct k1 and k2 respectively. Of course, since both sets of generators must be outgoing,

wherever kα2 is non-vanishing we must have kα1 = f(g)kα2 for some function f of the null

horizon generators g. However, this nevertheless allows one to discuss separately the “off-

diagonal” contributions where the supports of k1 and k2 do not overlap and the single-flow

contributions to eq. (1.3) where k1 = k2. As described in ref. [9], the off-diagonal QFC is

directly related to strong subadditivity (SSA) of SQFT. In contrast, the single-flow terms

where k1 and k2 are supported on a single generator lead to the so-called quantum null

energy condition (QNEC).3

Now, while SSA is a well-known property of the von Neumann entropy, this property

does not hold for CHI [1]. One would thus expect the off-diagonal QFC to fail as well.

But it is less clear what to expect in the single-flow case which would be used to prove

2It would be natural to call this the “diagonal” case. But that term was used in ref. [9] to refer to those

single-flow cases where k = d/dλ has delta-function-like support on a single generator of the congruence;

i.e., its use of the term “diagonal” implicitly implied “diagonal in a local basis.” We thus use “single-flow”

to avoid confusion.
3Recently, the fine-grained QNEC has been proved for free QFTs on Killing horizons [10], for QFTs in

flat spacetime that flow to non-trivial conformal field theories in the ultraviolet [11], and for holographic

QFTs in d ≤ 5 dimensions under certain circumstances [12, 13].
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the GSL. We therefore test the single-flow case below, using CFT4 states on 2+1 dS space

whose bulk dual is described by global AdS-Schwarzschild black holes. In contrast to an

analogous successful test of the d = 2 CHI QNEC in ref. [14], we find that the single-flow

linearized CHI QFC fails for d = 3. In particular, a violation occurs in a time interval that

includes the moment when the bulk causal surface C(R) changes topology. We work at

leading order in Gd and perturb about a Killing horizon. Since this is precisely the context

where ref. [7] showed a CHI GSL to hold, our work demonstrates that the QFC is not

required in order for an entropy-like quantity to satisfy such a GSL at this order in Gd.

As a useful aside, we comment that the success or failure of the linearized single-flow

CHI QFC is intimately connected to the behavior of the bulk horizon area at caustics. To

see this connection, we remind the reader that from ref. [7] we know that changes in CHI

along a boundary horizon can be separated into two parts as follows:

d

dλ
SCHI =

1

4Gbulk

(
d

dλ
Abulk + F

)
, (1.4)

where (dAbulk)/(dλ) is the change in area of the associated bulk horizon when a bulk cut

is displaced toward the future along the generators and the remainder F is the flux of such

generators through a cut-off surface near the AlAdS boundary. The connection to caustics

comes through the further observation of ref. [7] that on boundary Killing horizons we have

1

4Gbulk

d

dλ
F =

∫
σ
dd−2y

√
h2πTαβk

αkβ . (1.5)

Thus, CHI satisfies eq. (1.3) if and only if

d2

dλ2
Abulk ≤ 0. (1.6)

When there is no caustic on the bulk horizon, the bulk focusing theorem (a direct conse-

quence of the Raychaudhuri equation) guarantees that eq. (1.6) holds. Failures of eq. (1.3)

can thus arise only from the behavior of Abulk at caustics. Said differently, if eq. (1.3) were

to hold generally, it would imply a surprising constraint on the effect of caustics on areas

of bulk horizon slices.

We begin below in section 2 with some preliminary comments on our setting the

propagation of null geodesics in AdS4-Schwarzschild, and the associated effect on CHI.

The direct test of the linearized single-flow QFC is then performed in section 3. We close

with some final discussion in section 4.

2 Setting the stage

We consider d = 3 CFT states dual to the AdS4-Schwarzschild spacetime

ds2 = −
(

1− µ

r
+
r2

`2

)
dt2 +

dr2

1− µ
r + r2

`2

+ r2
(
dθ2 + sin2 θdφ2

)
, (2.1)

4Throughout the text, we adopt standard acronyms including CFT (conformal field theory), dS (de

Sitter), and AdS (anti-de Sitter).
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where ` is the AdS length scale. Introducing a new coordinate z := `2/r, the line element

becomes

ds2 =
`2

z2

[
−f (z) dt2 +

dz2

f (z)
+ `2

(
dθ2 + sin2 θdφ2

)]
, (2.2)

where f (z) ≡ 1− (µz3)/`4 + z2/`2. The boundary of this spacetime (located at z = 0) is

an Einstein static universe (ESU) R× S2, with the metric

ds2ESU = −dt2 + `2
(
dθ2 + sin2 θdφ2

)
. (2.3)

However, by a change of conformal frame we may instead take the boundary metric to be

ds2dS = Ω2ds2ESU, (2.4)

where Ω = −1/[sin(t/`)]. We shall use this representation below. In particular, the future

and past dS boundaries occur at t = −π` and t = 0.

For a given region R on a boundary Cauchy surface, the causal surface C(R) in the

bulk is given by eq. (1.1). In general, for d ≥ 3, the shape of C(R) can be complicated.

But we consider here only cases where D(R) consists of points in dS3 to the past of some

point p+ that are also to the future of some point p−, so that the bulk pasts and futures

I±[D(R)] are just I−(p+) and I+(p−). As a result, eq. (1.1) becomes

C(R) = ∂I−[p+] ∩ ∂I+[p−]. (2.5)

Below, we take p+ = (t+, θ+) = (0, 0) and p− = (t−, θ−) = (t−, 0) with t− < 0, so

that we may choose R to be the interval t−/(2`) < θ < −t−/(2`) at t = t−/2. This case

is not generic, as p+ and p− are related by an ESU time-translation. But we will see that

it suffices to show the counterexample mentioned above. Since p+ lies on the future dS

boundary, its past light cone is a dS Killing horizon Hbndy.

Before performing our test, we must address the fact that CHI is infinite because the

causal surface extends to the boundary. In doing so, we note that (without renormaliza-

tion), the holographic stress tensor Tαβ also diverges. Indeed, when R ends on a boundary

Killing horizon like Hbndy and k1 = k2, the results of ref. [7] imply that these divergences

cancel and the right-hand side of eq. (1.3) is in fact finite. To be specific, in this context

ref. [7] showed that CHI may be rendered finite by using a Fefferman-Graham regulator

and the same counterterms as for the HRT entropy. But it is also known [9] that the HRT

counterterm cancels that required to renormalize the stress tensor in this context. Thus

the right-hand side of eq. (1.3) is finite, and may be computed by separately renormalizing

each term in this way.

This property makes the dS conformal frame useful conceptually. But in practice it is

convenient to work in the ESU conformal frame. We thus note that, since d = 3 requires

only a single entropy counterterm proportional to the area of ∂R, there is no conformal

anomaly and the renormalized CHI entropy in the dS conformal frame is exactly the same

as that in the original ESU conformal frame; i.e.,

SCHI, ren =
1

4Gbulk
lim
z0→0

[
Aread=2 (Cz>z0 [R])− `2

z0
Aread=1 (Hbndy)

]
. (2.6)
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Indeed, we could compute the entire quantity on the right-hand side of eq. (1.3) in the

ESU conformal frame so long as we use parameters λ1 = λ2 that are affine with respect

to the dS conformal frame.5 But rather than keep track of this last restriction, we instead

simply use the ESU conformal frame as an intermediate step in computing the right-hand

side of eq. (1.3) as defined by the dS conformal frame.

To study eq. (1.3) we must first locate the past bulk light cone of p+ = (t = 0, θ =

0, z = 0). This is a bulk Rindler horizon from the point of view of the ESU conformal

frame. Since p+ is at the north pole of the sphere, the azimuthal coordinate φ is undefined

at p+. But the corresponding rotational symmetry means that each null generator of the

horizon has a fixed value of φ. The remaining equations for these geodesics are given by

energy conservation, angular momentum conservation, and the null condition:

E =
`2

z2
f (z)

dt

dλ̄
, (2.7)

L =
`4

z2
dθ

dλ̄
, (2.8)

0 = −f (z)

(
dt

dλ̄

)2

+
1

f (z)

(
dz

dλ̄

)2

+ `2
(
dθ

dλ̄

)2

, (2.9)

where λ̄ is a null affine parameter for each geodesic. Defining a dimensionless parameter

η := L/(`E), the above equations become

dθ

dt
=
η

`
f (z) , (2.10)(

dz

dt

)2

= f2 (z)− η2f3 (z) . (2.11)

Generally, z is not a monotonic function of t. To avoid the associated sign ambiguity, we

differentiate eq. (2.11) once more to obtain

d2z

dt2
=

[
f (z)− 3

2
η2f2 (z)

]
df (z)

dz
. (2.12)

Numerically solving this equation with initial conditions z|t=0 = 0 and [(dz)/(dt)]|t=0 =

−
√

1− η2 yields z = z (t), from which one may further numerically integrate eq. (2.10) to

find θ (t).

This information can be used to compute CHI. In particular, we consider the family

of boundary regions R defined above, such that at each t ∈ (−π`, 0) we have R to be

t/` < θ < −t/`. By time-reflection symmetry, the causal surface C(R) also occurs at the

same time t. It is just the intersection of the bulk past light cone ∂I−(p+) and with the

surface of constant time coordinate t. For simplicity, we refer to this surface as C(t) below.

5Failing to do so would introduce extra terms related to the expansion ϑ and its derivative ϑ̇ of Hbndy

in the ESU conformal frame so that the equality in eq. (1.3) would no longer hold. Thus we can no longer

use the right-hand side of eq. (1.3) to argue that the result is identical in the two conformal frames and,

indeed, we would not expect it to be so.

– 5 –
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-3

-2

-1

0

Figure 1. Our surfaces C(R) projected onto a common constant-time hypersurface and drawn by

taking standard polar coordinates ρ, θ on the plane to represent ρ ≡ arctan(r/`) and θ in AdS4-

Schwarzschild. The azimuthal φ is suppressed. The outer circle denotes the boundary, the inner

circle is the horizon, and the point p+ is located on the right hand side of the diagram. The surfaces

do not penetrate the interior of the black hole. At some finite time t = t∗, the causal surface forms

a cusp and disconnects. In the figure we have chosen rEH/` = 1/5, for which t∗ ≈ −2.5.

The other ingredient in eq. (1.3) is the stress tensor, which for our bulk spacetime

takes the form [15]

Tαβ =
µ

16πGbulk`2
(
3δ0αδ

0
β + gαβ

)
, (2.13)

where gαβ denotes the boundary metric. Since the stress tensor is defined as Tαβ :=

[−2/(
√
|g|)](δS)/(δgαβ), a Weyl rescaling g̃αβ = Ω2gαβ of the boundary metric yields

T̃αβ = Ω−d+2Tαβ . Combining this with the fact that the dS affine parameters are related

by d/(dλ) = Ω−2[d/(dt)], we obtain(
Tαβk

αkβ
)
dS

=
(
Tαβk

αkβ
)
ESU

Ω−5. (2.14)

Finally note that, on the Killing horizon where we evaluate the right-hand side of

eq. (1.3), since θ = −t/` the volume element on any cut satisfies
√
hdy = Ω sin θ`dφ = `dφ.

To test our first-order single-flow QFC (eq. (1.3)), we thus need only check positivity of

the quantity

Q ≡ − 1

2π

d2Sgen
dλ2

=
3µ

8Gbulk`
sin5

(
t

`

)
− 1

2π
sin2

(
t

`

)
d

dt

[
sin2

(
t

`

)
dSCHI, ren (t)

dt

]
. (2.15)

3 Testing the CHI QFC

To compute Q in eq. (2.15) we now locate the causal surfaces C(t) and compute their area.

As noted above, C(t) is just the cut of the bulk past light cone ∂I−(p+) at time coordinate

t. Each C(t) is thus a codimension-2 surface described by t = const, θ = θ (z), where z

– 6 –



J
H
E
P
0
4
(
2
0
1
8
)
0
8
6

-π - 3 π

4
-π

2
-π

4

-150

-100

-50

Figure 2. The renormalized area as a function of time t. Both in the far past and in the far future,

the renormalized area is a decreasing function of time. In a small neighborhood of the moment t∗
when the topology of the CHI surface changes, the renormalized area increases with time. In the

figure we have chosen rEH/` = 1/5, for which t∗ ≈ −2.5 and is indicated by the dashed vertical line.

ranges from 0 to some maximal value zmax. The projections of such cuts onto a common

constant-t surface are shown in figure 1. The metric induced on a causal surface is

ds2 =
`2

z2

[(
1

f (z)
+ `2

(
dθ (z)

dz

)2
)
dz2 + `2 sin2 (θ (z)) dφ2

]
, (3.1)

and the area of each causal surfaces is given by

Aread=2 (Cz>z0 [R]) = 2π

∫ zmax

z0

`3 sin (θ (z))

z2

√
1

f (z)
+ `2

(
dθ (z)

dz

)2

dz. (3.2)

The renormalized area Aren = 4GbulkSCHI, ren is shown in figure 2 as a function of the

time t. Note that (dAren)/(dt) changes sign twice. Both in the far past and in the far

future, the renormalized area is a decreasing function of time. But the renormalized area

increases with time in a small neighborhood of the time t∗ when the topology of C changes.

We may now compute Q in eq. (2.15). Each of the terms in eq. (2.15) is plotted

separately in figure 3 (left). As one can see, the Tkk term is smooth but the S′′ term

diverges (to positive infinity) at t∗. Thus S′′/(2π) near t∗ fails to be bounded above by∫
dy
√
hTkk and eq. (1.3) is violated.

As a check on our results, recall that ref. [7] showed the GSL defined by CHI to

be satisfied at this order in G3 whenever R ends on a Killing horizon (such as Hbndy).

Thus (dSgen)/(dλ) ≥ 0. Our example respects this result, as many be seen by noting (see

figure 2) that Sgen is finite at t = 0 (λ = ∞), so that (dSgen)/(dλ) → 0 as λ → ∞. One

may therefore integrate Q to obtain

dSgen
dλ

= 2π

∫ +∞

λ
Qdλ. (3.3)

Changing the time parameter from λ to t, this becomes

dSgen
dλ

= 2π

∫ 0

t
Q (t)

1

sin2 t
`

dt. (3.4)

Plotting this quantity in figure 3 (right), we find that it is always positive. Thus our

example shows that the linearized (single-flow) QFC is not required for an entropy to

satisfy the (linearized) GSL.
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Figure 3. Left: our test of the linearized QFC. Note that S′′ diverges when the topology of

the causal surface changes. The time t = t∗ of the transition is indicated by the vertical dashed

line. The linearized QFC is violated in the neighborhood of this phase transition where S′′/(2π)

exceeds
∫
dy
√
hTkk. In the figure we have chosen rEH/` = 1/5, for which t∗ ≈ −2.5. Right: the

corresponding test of the GSL shows that the GSL is not violated.

4 Discussion

Our work above found that the linearized single-flow QFC defined by CHI is violated

for d = 3 holographic CFTs states on a dS background that are dual to global AdS4-

Schwarzschild black hole spacetimes. Here the adjective “linearized” refers to the term

of order zero in the coupling G3 of our d = 3 holographic CFT to d = 3 Einstein-Hilbert

gravity. (The term of order G−13 vanishes because we evaluate the GSL on a Killing horizon

of the dS3 background geometry.) The violation occurs near the point at which the bulk

causal surface changes topology and is associated with the formation of bulk caustics. In

contrast, an otherwise similar test was performed in ref. [14] for d = 2 in which the topology

of C(R) did not change and no violation was observed.

Despite our violation of the CHI QFC, the linearized GSL defined by CHI holds in

our example. We thus conclude that an entropy, or an entropy-like quantity, need not

necessarily respect a QFC in order to satisfy a GSL at this order in G3. One would, of

course, like to better understand just what CHI represents in the dual QFT and, especially

in light of ref. [5], the extent to which it acts like an entropy. While the first order GSL

result of ref. [7] is non-trivial, it remains to see what other useful properties CHI might

satisfy. It would also be interesting to investigate the QFCs defined by other entropy-like

quantities associated regions of holographic QFTs, and in particular for those defined in

ref. [16] by the area of marginally trapped surfaces in the dual bulk spacetime. Since these

latter quantities are analogous to that discussed in ref. [17] for the global QFT, we may

expect the arguments of ref. [17] to apply to them as well. If so, then in contrast to CHI,

such quantities would indeed represent coarse-grained entropies for the dual QFT.
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