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1 Introduction and summary

In a Quantum field theory (QFT), an interesting set of observables are scattering ampli-

tudes. In flat space they are covariant under the Poincare group. In a four-dimensional

QFT on the Minkowski space, the amplitude are usually constructed out of the asymptotic

plane wave solutions to the free wave equation. The plane waves are eigenstates of the

translation operators. As a result energy-momentum conservation is manifest in this basis

and the amplitudes are translationally invariant. Whereas Lorentz transformation proper-

ties of the plane wave states are complicated and hence the whole of SL(2,C) invariance is

more subtle.

Another interesting fact is that the four dimensional Lorentz group SL(2,C) acts as

the group of global conformal transformations on the celestial sphere, denoted by CS2.

This sphere is defined at null infinity where the asymptotic states are specified. As a result

of this, it might be expected that the scattering amplitude of (massive) massless particles

should transform in a representation of the global conformal group, when expressed in

terms of right basis states. In particular for massless particle scattering amplitude, this is

not difficult to understand. As we describe in the next section, in four dimensions, the null

momentum of a massless particle is completely specified by the energy and the direction of

the three-momentum. Thus modulo a scale, the null momentum can be completely specified

by a point on a two dimensional sphere. This two dimensional sphere is a space-like cross-

section of the light-cone in the momentum space. Hence if we think of the light-cone as

embedded in Minkowski space, the two dimensional sphere may be regarded as the celestial

sphere. Thus, when the amplitude is expressed in terms of the coordinates of this sphere,

it is expected to transform covariantly under the global conformal symmetry.
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The transformation properties of scattering amplitudes under SL(2,C) was first con-

sidered by Dirac [1]. During last few years, the subject has gotten new interests, since it

has shed some light on the holographic structure of flat space gravity. We have already said

SL(2,C) acts as the group of global conformal transformations on CS2. In particular when

gravity is coupled, it has been conjectured that this global conformal group gets enhanced

to the infinite dimensional virasoro algebra. Thus the CFT looks a lot like a standard

2-D CFT, although the representation of the conformal group may be different. Related

works on this topics can be found in [2–15]. One important ingredient in this study is

the construction of the proper basis states. Recently in a series of papers [16–19], Sabrina

Pasterski et al. have constructed a very interesting integral transform of the flat space

wave functions and scattering amplitudes of massive and massless particles. In particular

for massless particle, the transformation takes the form of a Mellin transform [17]. Under

this transformation, the momentum-space scattering amplitude maps to a function, namely

the Mellin amplitude, on the Celestial sphere. The Mellin amplitude transforms like the

correlation function of (quasi-) primary operators of a two dimensional CFT defined on the

sphere. The putative CFT has operators with all possible “scaling dimensions” of the form

(1 + iλ) where λ is a real number. The two dimensional spin of an operator is determined

by the helicity of the external particle to which it corresponds to.

So far, the conformal structure of flat space tree level massive scalar amplitudes [18]

and gluon amplitudes [16] have been studied in the literature. In this paper we use the

similar techniques to further explore the Mellin transform of the one and two loop four-

point amplitude of a massless scalar field theory with φ4 interaction. Thus, in a sense,

this is the first attempt to understand the conformal structure of flat space scattering

amplitudes beyond tree level. To summarize our main results, we do see the conformal

structure1 even at loop level Mellin amplitudes. In particular, the on-shell one loop four

point Mellin amplitude looks like,

T̃2 =
iλ2
R

4

(
2

µ

)−iΛ [
6π3δ′(Λ) + π4δ(Λ)

]
δ(|z − z̄|)

 4∏
i<j

|zij |h/3−hi−hj |z̄ij |h̄/3−h̄i−h̄j

 [z(z − 1)]2/3,

where, λR is the renormalized coupling constant of the theory defined at energy scale µ

and zi, i = 1 . . . , 4 are the position of each of the four particles on the celestial sphere

CS2. hi = 1+λi
2 are the conformal dimension of the i-th particle, Λ =

∑
λi and z is the

conformal cross-ratio function. Similar structure holds for two loop amplitude given in

equations (5.2). The unitarity property of the QFT amplitude, or equivalently the Optical

theorem can also be recasted in terms of the Mellin amplitude as in (4.1). The results are

subtle and have some universal structure, that leads us to comment on the form of the

amplitude to any arbitrary order in the perturbation theory for massless φ4 theory.

1Four point function in a CFT has the form

〈φ(z1)φ(z2)φ(z3)φ(z4)〉 = f(z, z̄)

(
4∏
i<j

|zij |h/3−hi−hj |z̄ij |h̄/3−h̄i−h̄j

)
,

where f(z, z̄) is some arbitrary function of the cross ratio (z, z̄) and z = z12z34
z13z24

.

– 2 –



J
H
E
P
0
4
(
2
0
1
8
)
0
3
9

The paper is organized as follows: in section 2, we briefly review the conformal basis

states for the massive and massless scalar fields. In the next section 3, we present our main

result, i.e. the one-loop four point Mellin amplitude of the massless scalar φ4 theory. The

section is self contained. In section 4, we explain how the unitarity of the theory can be

implemented on the Mellin space. Finally, in section 5, we extend the analysis to two-loop

amplitude and also comment on a generic structure for all loop four point amplitude in

this theory. In section 6, we conclude with some possible future directions to follow.

Note: on the day of submission of this draft, another paper [20] appeared on arXiv,

that has also addressed the issue of unitarity in Mellin space.

2 Conformal basis for massless scalar fields

In this section we briefly review how four dimensional scattering amplitudes of a QFT on

a flat space can be recasted with manifest global conformal symmetry. The construction

is given by Sabrina Pasterski et al. in [17] and we refer the readers to their paper for

details. We have already mentioned that to see the conformal structure of the flat space

amplitudes, we need to first find the right basis for the asymptotic states that are defined

on the celestial sphere. In [17], the authors have defined a new basis for scalars (massive

and massless) and spin one gluons, namely the conformal primary wave functions, that

manifests the conformal structure of their corresponding 4D amplitudes. These conformal

primaries are characterized by their conformal dimensions and positions (w, w̄) on a 2-

dimensional space, that refer to the boundary of the on-shell three diemnsional momentum

hyperboloid (H3). The conformal basis for the massless scalars is obtained as a limit of

the corresponding massive one. More precisely, for a massive particle (p0 > 0), the on-shell

momentum hyperboloid looks like

(p0)2 − (p1)2 − (p2)2 − (p3)2 = m2, (2.1)

and the corresponding conformal primary wave function defined on the boundary of this

hyperboloid is given as:

φ∆(xµ;w, w̄) =

∫
H3

dy

y3
dzdz̄ G∆(y, z, z̄;w, w̄)eipµ(y,z,z̄)xµ . (2.2)

Here, (y, z, z̄) are the coordinates on the on-shell momentum hyperboloid and (w, w̄) are the

coordinates on the boundary of this hyperboloid. G∆ is the bulk to boundary propagator

on the hyperboloid and is given as,

G∆(y, z, z̄;w, w̄) =

(
y

y2 + |z − w|2

)∆

. (2.3)

This propagator transforms covariantly under the conformal transformation of the bound-

ary coordinates w → aw+b
cw+d , w̄ →

aw̄+b
cw̄+d ; ad − bc = 1. Here, ∆ is a label that defines the

conformal dimension of the propagator. Hence, by construction, the conformal primary

wave function φ∆(xµ;w, w̄) has right transformation properties under conformal transfor-

mations of (w, w̄).
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p1

p2

p3

p4

+ cross-channel diagrams

Figure 1. Tree level diagram’s. Cross-channel corresponds to two other channel of scattering.

In this paper, we shall be interested in massless scalars. The corresponding conformal

primary can be obtained by appropriately taking the mass m→ 0 limit of the massive one.

For the massless case, the map is direct as the on-shell momenta are null to start with.

Hence, they are already at the boundary of the momentum hyperboloid. A null momenta

can be parametrized as:

p = E
(
1 + |z|2, z + z̄,−i(z − z̄), 1− |z|2

)
, (2.4)

where, E is an overall scaling of the momenta. As shown in [17], with the appropriate

m→ 0 limit of the bulk to boundary propagator, the above definition of conformal primary

wave function (2.2) simply reduces to a Mellin transform. Thus for a massless scalar, the

conformal primary takes the form:

φ(xµ; z, z̄, λ) =

∫ ∞
0

dEEiλeip(E,z,z̄)x. (2.5)

Here, λ is a parameter that labels a particular scalar primary and its implication will be

clear in the later section.

3 4 point one-loop amplitude in massless φ4 theory

In this paper, we are interested in understanding the conformal structure of scattering

amplitudes at the loop level, for massless φ4 theory. To set up our normalizations, the

theory that we are working with is,

S =

∫
d4x

[
1

2
(∂φ)2 − λ̂

4!
φ4

]
. (3.1)

We want to compute the (2 → 2) scattering amplitude in this theory. In this section,

we shall only be interested up to one loop amplitude, although in later sections we shall

comment on higher loop amplitudes. At tree and one loop level, three diagrams (see

figure 1, figure 2) describing three channels s, t and u, contribute to the (2→ 2) scattering

amplitude and the non-trivial contribution to the amplitude is given as,

A = −i(2π)4δ4(Σpi)

[
λR −

iπλ2
R

32π2
+

λR
2

32π2

(
ln

s

µ2
+ ln

|t|
µ2

+ ln
|u|
µ2

)]
. (3.2)
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p1

p2

p3

p4

+ cross-channel diagrams

Figure 2. One loop diagram’s. Cross-channel corresponds to two other channel of scattering.

Here λR is the renormalized coupling constant defined at energy scale µ. p1, p2 are incoming

momenta and p3, p4 are outgoing momenta. We have defined (s, t, u) as,

s = (p1 + p2)2, t = (p1 + p3)2, u = (p1 + p4)2. (3.3)

We want to write the amplitude on the Celestial sphere in an explicit s, t and u channel

symmetric from. For this, we first rewrite the above amplitude A(pi) (3.2) as a function of

the on-shell momentum hyperboloid coordinates (E, z, z̄) defined in equation (2.4). Finally,

using definition (2.5), we Mellin transform this amplitude to the one defined only on the

sphere as,

Ã(λi, zi, z̄i) =

4∏
j=1

∫ ∞
0

dEjE
iλi
j A(Ei, zi, z̄i). (3.4)

Here λi are some labels for the Mellin amplitude. The inverse transform can be readily

obtained as,

A(Ei, zi, z̄i) =

4∏
j=1

∫ ∞
−∞

dλj
2π

E
−1−iλj
i Ã(λj , zi, z̄i). (3.5)

Our construction closely follows [18]. The convention is that all momenta are incoming

with different signs for the energy component. We are now considering the process where

1 and 2 are incoming and 3 and 4 are outgoing. Hence,

p0
1 = −E1(1 + |z1|2), p0

2 = −E2(1 + |z2|2), p0
3 = E3(1 + |z3|2), p0

4 = E4(1 + |z4|2),

and Ei ≥ 0. Thus, we get,

s = 4E1E2|z12|2, t = −4E1E3|z13|2, u = −4E1E4|z14|2. (3.6)

Using energy momentum conservation relation p1 + p2 + p3 + p4 = 0, one can write

three other possible expressions for s, t and u as,

s = 4E1E2|z12|2, t = −4E2E4|z24|2, u = −4E2E3|z23|2,
s = 4E3E4|z34|2, t = −4E1E3|z13|2, u = −4E2E3|z23|2,
s = 4E3E4|z34|2, t = −4E2E4|z24|2, u = −4E1E4|z14|2.

– 5 –
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Using the above four expressions for s, t and u, we simplify the amplitude in (3.2) as,

A′(Ei, zi, z̄i) = ln
s|t||u|
µ6

= ln

64

(
E1E2E3E4

µ4

) 3
2 ∏
i<j

|zij |

 . (3.7)

In writing (3.7) we have only displayed the momentum dependent piece of the amplitude

and the momentum conserving delta function has been omitted. As in [18], it is convenient

to change the integration variables to an overall frequency S ≡
∑4

i=1Ei and a set of

simplex variables σi = S−1Ei ∈ [0, 1] that satisfies a constraint
∑4

i=1 σi = 1. Using these

new variables we finally get,

A′ = ln

S6

µ6
64

(
4∏
i=1

σi

) 3
2 ∏
i<j

|zij |

 . (3.8)

The integral over Ei now gets transformed to integrals over S and σi, with a proper delta

function insertion. The momentum conserving delta function can be expressed in-terms of

these new simplex variables as,

δ4(Σpi) =
δ(|z − z̄|)

4z13z24z̄13z̄24
δ(σ1 − σ∗1)δ(σ2 − σ∗2)δ(σ3 − σ∗3)δ(σ4 − σ∗4), (3.9)

where, we have defined,

σ∗1 =
z24z̄34

Dz12z̄13
, σ∗2 = − z34z̄14

Dz23z̄12
, σ∗3 = − z24z̄14

Dz23z̄13
, σ∗4 =

1

D
, D = 2

(
z24z̄34

z12z̄13
−z34z̄14

z23z̄12

)
.

After performing the S integral, we get,

∫ ∞
0

dS

S
SiΛ ln

S6

µ6
64

(
4∏
i=1

σi

) 3
2

∏
i<j

|zij |2
 1

2

 = −6iδ′(Λ)

2

(
4∏
i=1

σi

) 1
4

(∏
i<j |zij |2

) 1
12

µ


−iΛ

.

(3.10)

Finally, performing the σ integrals, we get the one-loop Mellin amplitude on the sphere as,

Ã(λ, z, z̄) = T̃1 + T̃2, where, T̃1 is the tree level four point amplitude given as,

T̃1 = −λR(2π)5δ(Σjλj)
δ(|z − z̄|)

4z13z24z̄13z̄24
Π4
j=1(σ∗)

iλj
j ,

and the one-loop contribution T̃2 is given as,

T̃2 = (2π)5 λ2
R

32π2

δ(|z − z̄|)
4z13z24z̄13z̄24

 4∏
j=1

σ
iλj
∗j


6iδ′(Λ)

2

(
4∏
i=1

σ∗i

) 1
4

(∏
i<j |zij |2

) 1
12

µ


−iΛ

+ δ(Σjλj)πi

 .

(3.11)
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The above results can be written in nice conformal covariant form by using hi = h̄i = 1+iλi
2

and h =
∑

i hi as:

T̃1 = −8π5λRδ(Σjλj)δ(|z − z̄|)

 4∏
i<j

|zij |h/3−hi−hj |z̄ij |h̄/3−h̄i−h̄j

 [z(z − 1)]2/3, (3.12)

T̃2 =
iλ2

R

4

(
2

µ

)−iΛ [
6π3δ′(Λ) + π4δ(Λ)

]
δ(|z − z̄|)

 4∏
i<j

|zij |h/3−hi−hj |z̄ij |h̄/3−h̄i−h̄j

 [z(z − 1)]2/3.

(3.13)

Here we see that the label λi of the Mellin amplitude is actually related to the conformal

dimensions of each of the four conformal primaries. The amplitude is channel covariant

and transforms properly as a function of its arguments (z, z̄). To be precise, the function

takes the form in the s channel 12→ 34 (z > 1),

f(z, z̄) = [z(z − 1)]2/3 . (3.14)

In the t channel 13→ 24 (0 < z < 1)

f(z, z̄) = [z(1− z)]2/3 . (3.15)

In the u channel 14→ 23 (z < 0)

f(z, z̄) = [z(z − 1)]2/3 .2 (3.16)

Thus, we see that the one-loop amplitude of flat space massless φ4 theory retains its

conformal structure when expressed on the Celestial sphere. Although this is not a surprise,

but, here we also see that the Function of the cross rations f(z, z̄) is identical at tree level

and loop-level amplitude. We shall comment more on this structure in the later section.

4 Unitarity for Mellin amplitudes

The massless φ4 theory that we are interested in is an unitary field theory. As we know,

in usual field theories, unitarity of the scattering amplitude implies that the S-matrix

satisfies SS† = 1. Inserting S = I + iT , the condition on the non-trivial contribution to

the scattering matrix T reduces to,

−i(T − T †) = T T †.

This relation plays an extremely important role in Quantum Field Theory. It computes the

imaginary part in a scattering amplitude and simultaneously predicts that one can only get

2One can easily check that the Mellin amplitudes for different channels are related as:

T̃12−>34(z) = T̃13−>24(1/z) = T̃14−>23(1− z),

with argument > 1. The functional form of amplitude is same in all channels only the ranges of z are

different.

– 7 –
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the imaginary contribution to scattering when the virtual particles in a feynman diagram

go on-shell. In this section, we would find the consequence of unitarity on the Mellin

amplitudes T̃ . We shall be presenting the computation for s channel processes (12→ 34).

Using the inverse Mellin transform as defined in (3.5), one can restate the above relation

in terms of Mellin amplitudes. Thus we readily get the following relation,

−i
(2π)4

[T̃12→34(λi, zi)− T̃ ∗34→12(−λi, zi)]

=
1

(2π)8

∫
d3p

(2π)6

d3p′

4epep′

∫
dλpdλp′dλPdλP ′E

−2−i(λp+λP )
p E

−2−i(λp′+λP ′ )
p′ T̃12→p,p′(λ, z)T̃ ∗34→P,P ′(λ, z)

=
4× 4π2

(2π)14

∫
dzpdz̄p dzp′dz̄p′

∫
dλpdλp′ T̃ (λ1, λ2, λp, λp′ ; z1, z2, zp, zp′)T̃ ∗(λ3, λ4,−λp,−λp′ ; z3, z4, zp, zp′),

(4.1)

Here, i = 1, 2, 3, 4 and we have used following two relations for simplifications,

d3p = 2Epep dEp dzpdz̄p,∫
E−1−iλdE = 2πδ(λ), ep = Ep

(
1 + |zp|2

)
.

(4.2)

Therefore we see that, for a unitary flat space QFT, the corresponding Mellin ampli-

tudes has to satisfy (4.1). This relation is generic and should hold for any unitary QFT.

We have explicitly checked that the scattering amplitude for φ4 theory obtained in equa-

tions (3.12) and (3.13) satisfies the above relation. For our case the Mellin amplitude3 gets

its first imaginary contribution at oneloop level and hence the above relation (4.1) gets first

contribution at order λ2
R. For the s channel process, using explicit expressions as given

in (3.13), the l.h.s. of (4.1) simplifies to,

−i
(2π)4

[T̃2(λi, zi)− T̃ ∗2 (−λi, zi)] =
λR

8(2π)5
T̃1(λi, zi), (i = 1, 2, 3, 4), (4.3)

where as the r.h.s. of equation (4.1) only picks up the tree level amplitude. Let us rewrite

the r.h.s. as,

A(zi) =
4× 4π2

4(2π)14

∫
dzpdz̄p dzp′dz̄p′∫

dλpdλp′ T̃1(λ1, λ2, λp, λp′ ; z1, z2, zp, zp′)T̃1(λ3, λ4,−λp,−λp′ ; z3, z4, zp, zp′). (4.4)

The last integral is hard to perform in general. Keeping in mind the conformal structure

of the Mellin amplitude, we set the points z2 = 1, z4 = 0, z1 = ∞. This simplifies the

computation and we check that:

lim
z1→∞

 4∏
i<j

|zij |−2h/3+2hi+2hj

A(z1, 1, z, 0)

 =
−1

25
δ(|z − z̄|)δ(Σjλj)[z(z − 1)]2/3. (4.5)

3Much like the momentum space amplitude.

– 8 –
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p1

p2

p3

p4

+ cross-channel diagrams

Figure 3. Leading log two loop diagram.

The Dirac delta function of Λ is easily obtained from two Dirac delta functions of λ’s of

A(by integrating over λp′). The other Dirac delta functions of cross ratios are also handeled

in the straight forward way. The integral over λp gives:∫
dλp

[
(zz̄p − z̄zp)2(z̄(−1 + z̄p)zp + z(z̄zp − z̄p(−1 + z̄ + zp)))

2

z2z̄2(z̄p − zp)2(z̄ + z(−1 + z̄p)− z̄p + zp − z̄zp)2

]iλp
. (4.6)

It gives a Dirac delta function with three solutions; one of it is z = z̄. The other two

solutions are physically non-significant and hence we discard them. The integrals over

remaining variables are not hard, for example they can be converted to real integrals and

be evaluated using Mathematica. Thus we see that the Mellin amplitudes nicely satisfies

the unitarity constraint of the QFT.

5 Comments on higher order Mellin amplitudes

We can extend the above discussion on the conformal structure of the flat space scattering

amplitude to the two and higher loops . First we talk about the two loop amplitude. There

are two different types of diagrams that contribute at two loop. The first kind is given

by diagram in figure 3. They lead to momentum dependent log contribution to scattering

amplitude given by

T ∼ λ3
R

(
log2

(
s

µ

)
+ log2

(
t

µ

)
+ log2

(
u

µ

))
. (5.1)

This expression when transformed to Mellin space reduces to:

T̃3 ∼ λ3
Rδ
′′(Λ)δ(|z − z̄|)×

 4∏
i<j

|zij |h/3−hi−hj |z̄ij |h/3−hi−hj


(

2

µ

)−iΛ
[z(z − 1)]2/3

{
z−i

Λ
3 (z − 1)i

Λ
6 + zi

Λ
6 (z − 1)i

Λ
6 + (z − 1)−i

Λ
3 zi

Λ
6

}
. (5.2)

Let us pause here to discuss few universal features of the expression in (5.2). First, we note

that, even at the two loop order, the Mellin amplitude has the proper conformal factor that

makes it transform covariantly under the global conformal transformation of the boundary

sphere. Secondly, the similar dependence on the form of the delta function at tree level,

– 9 –
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one loop and two loop suggests that, at n-loop level Mellin amplitude, one should get a

delta function dependence of the form δn(Λ). It is quite interesting that a same cross-ratio

dependent function [z(z − 1)]2/3 appeared at tree, one loop and two loop level. We expect

it to arise at any loop level for leading log term. Also note that factor in the curly bracket

of (5.2) appears to be universal at all level. To understand why it is universal, let us start

with tree level amplitude T̃1 in (3.12). If we multiply T̃1 in (3.12) by f(Λ) defined by:

f(Λ) =
1

3

{
z−i

Λ
3 (z − 1)i

Λ
6 + zi

Λ
6 (z − 1)i

Λ
6 + (z − 1)−i

Λ
3 zi

Λ
6

}
, (5.3)

we immediately see that the product equates to T̃1 since δ(Λ)f(Λ) = 1. Thus, we can

as well write the tree level Mellin amplitude as T̃1f(Λ). Similarly note that the one loop

amplitude of (3.13) can also be rewritten as T̃2f(Λ). The term proportional to δ(Λ) in T̃2

does not change much like the tree level amplitude. The term proportional to the derivative

of δ(Λ), i.e.

T̃2 ∼ λ2
R

 4∏
i<j

|zij |2h/3−2hi−2hj

 δ′(Λ)δ(|z − z̄|)×
(

2

µ

)−iΛ
[z(z − 1)]2/3f(Λ), (5.4)

can be shown to be identical to the one in (3.13).4 Based on this observation, we can

readily extend the result to arbitrary n-loop order Mellin amplitude. We see that, for

any n-loop order, the momentum space amplitude will have a contribution like: Mn+1 ∼
λn+1
R [logn(s) + logn(t) + logn(u)]. The corresponding Mellin amplitude will behave as,

T̃n+1 ∼ λn+1
R

 4∏
i<j

|zij |2h/3−2hi−2hj

 δn(Λ)δ(|z − z̄|)

× 2−iΛ[z(z − 1)]2/3
{
z−i

Λ
3 (z − 1)i

Λ
6 + zi

Λ
6 (z − 1)i

Λ
6 + (z − 1)−i

Λ
3 zi

Λ
6

}
. (5.5)

The numerical coefficient will depend on the exact computation, but the momentum de-

pendence is fixed as in (5.5).

The other diagram that contribute at the two loop level is figure 4. However, this has no

finite momentum dependent contribution to scattering amplitude (see appendix A). It only

contributes a coupling constant dependent constant factor. Thus, for the corresponding

Mellin amplitude, it contributes similar to (3.12). The same feature seems to be true to

all loop order Mellin amplitudes, but we do not have a concrete proof for this yet.

6 Conclusions and future directions

In this paper, we have studied the conformal structure of the flat space QFT four-point

amplitude of massless φ4 theory. We have computed exact results up to two loop order

in the perturbation theory as given in equations (3.12), (3.13) and (5.2). We have also

4This can be shown by using g(Λ)∂Λδ(Λ) = ∂Λ[δ(Λ)g(0)] − δ(Λ)∂Λg(Λ). Further when derivative hits

f(Λ), the terms add up to 0 for Λ = 0.
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p4 p3

p1 p2

+ cross-channel diagrams

Figure 4. Two loop contribution.

reformulated the role of Unitarity of QFT for the corresponding Mellin amplitudes. Equa-

tion (4.1) is the constraint that the Mellin amplitudes of any unitary theory has to satisfy.

In particular, we have shown that the four point Mellin amplitude of massless φ4 theory

does satisfy the required relation. While the conformal structure of the Mellin amplitude

is guaranteed by proper choice of conformal primary wave functions, the interesting aspect

of our results is the universality of the Mellin amplitude to all these three orders in the

perturbation series. We have seen that the dependence of the Mellin amplitude on the

conformal cross ration factor (the only non-trivial dependence of the celestial sphere) to

tree, oneloop and two level are identical. Only difference in them appears as in the order

of derivative of delta function of
∑
λi. It is also certain that similar contribution will be

there in all loop Mellin amplitude. Based on this observation, we see that all loop answer

for φ4 theory, the leading log part of the Mellin amplitude takes the form:

T̃all−loop ∼

 4∏
i<j

|zij |2h/3−2hi−2hj

( n∑
l=0

λl+1
R alδ

l(Λ)

)
δ(|z − z̄|)

×
(

2

µ

)−iΛ
[z(z − 1)]2/3

{
z−i

Λ
3 (z − 1)i

Λ
6 + zi

Λ
6 (z − 1)i

Λ
6 + (z − 1)−i

Λ
3 zi

Λ
6

}
,

(6.1)

where δl(Λ) is lth derivative of the delta function with respect to its argument. For example

δ0(Λ) = δ(Λ), δ1(Λ) = δ′(Λ), (6.2)

and the coefficients al are the only undetermined numbers which one has to compute. It

would be remarkable if it turns out that the form in (6.1) is the entire result for the four-

point scattering amplitude for φ4 theory at all loop. We have only proved it to be true up

to two loop order. There can be other contributions as well at three and higher loop order

and we do not yet have any concrete comment on that.

We end the paper with some comment on possible future directions. First of all, it

would be nice to find the conformal covariant amplitudes for QED. For that, one needs to

write down the conformal primaries for asymptotic fermionic states [21]. This will have

importance on the structure of soft photon theorems of QED. Also, this will provide us

with another example to study the CFT structure of flat space amplitudes.
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On a deeper note, in [22], the authors outlined how the 4D scattering amplitudes can

be reformulated in the language of a 2D CFT on the Celestial sphere. To give similar

interpretation to our results, one needs to show how the Mellin amplitudes satisfy all the

properties of a CFT amplitude. In our work we have only shown that they transform

covariantly under the global conformal transformation, but a lot is left to do. It would be

nice to make this connection precise. Once the connection is established, the ultimate goal

would be to recast all interesting question of a QFT in their dual 2d CFT and to compute

them directly in the CFT.
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A Two-loop computation in momentum space

In this appendix we calculate the contribution of figure 4 to the massless four-point scat-

tering amplitude at two loop order. In the following, we will only keep track of terms

that are finite and momentum dependent and not worry about the overall constants. Only

the diverging Gamma functions are explicitly written with other finite ones being omitted.

Here, p = p1 + p2. The amplitude behave as,

M∼
∫
ddk

∫
ddk′

1

k2(k + p)2

1

k′2(k′ + p3 + k)2
. (A.1)

Combining k′ dependent factors from the denominator and integrating over them we get,

M∼ Γ(2− d/2)

∫ 1

0
dx

∫
ddk

1

k2(k + p)2

1

[−x(1− x)(k + p3)2]2−d/2
. (A.2)

The x-integral is trivial and momentum independent. Combining the three denominators

(see for example Kleinert, chapter 8 [23]) the above expression simplifies to,

M∼
∫ 1

0
dydz

∫
ddk

z1−d/2

[(1− y − z)k2 + y(k + p)2 + z(k + p3)2]4−d/2
. (A.3)

Completing the squares and integrating over k we get,

M∼ Γ(4− d)

∫ 1

0
dydz

z1−d/2

[yp2 − y2p2 − 2yzpp3]4−d
. (A.4)

Now, using the relation p2 = 2p · p3, the integral reduces to,

M∼ Γ(ε)

∫ 1

0
dydz z−1[y − y2 − yz]−ε(p2)−ε. (A.5)

– 12 –
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Finally, we have to take ε→ 0 and it gives,

M∼
∫ 1

0
dz z−1 log(p2). (A.6)

This is the final contribution from figure 4. As we see, the lower limit of the integral

is divergent and by usual renormalization techniques, it cancels with diverging pieces of

other diagrams. The finite contribution comes from the upper limit of the Integral and

it is simply 0 at the upper limit. Thus, we conclude that for massless φ4 theory, the two

loop four point scattering amplitude does not get any momentum dependence contribution

from figure 4. This feature may not be true at higher loops.

Open Access. This article is distributed under the terms of the Creative Commons
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