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1 Introduction

Since the seminal work of Bondi-van der Burg-Metzner, Sachs [1–3], and Brown-

Henneaux [4], it is now an established fact that in generally covariant field theories there

is a certain class of space-time diffeomorphisms (“residual” or “asymptotic” symmetries)

to which one can associate conserved surface charges. Therefore, certain sets of geometries

are physically distinct despite being related by coordinate transformations. This statement

can actually be adapted to any gauge theory [5] and entails a refinement of the näıve notion

of general covariance [6, 7]. It is also consistent with holography [8, 9] since the conserved

charges associated with asymptotic symmetries are fluxes of various field combinations at

the space-time boundary [5, 10–17].

One elegant application of asymptotic symmetries is the use of universal Cardy-like

formulas [18] to reproduce black hole entropy. This was first done in [19] for BTZ black

holes in AdS3 [20, 21] and was subsequently generalized to extremal Kerr black holes [22],

leading to the Kerr/CFT correspondence. In [22] the authors zoomed in on the near-

horizon region of a four-dimensional extremal black hole with angular momentum J and

looked for asymptotic symmetries of the near-horizon region itself, finding a Virasoro al-

gebra with central charge c = 12J . Assuming that this reflects the presence of a (chiral)

two-dimensional conformal field theory (CFT) and that the Cardy formula is applicable,

they reproduced the entropy of the underlying extremal black hole. In this approach, both
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extremality and the near-horizon approximation are crucial. A similar analysis was subse-

quently applied to extremal black holes in various theories and dimensions, see e.g. [23]

and references therein. Later developments extended these results in two ways:

1. It was shown that the Virasoro algebra of Near Horizon Extreme Kerr consists of

symplectic symmetries1[25, 26] that do not actually require fall-off conditions for the

metric; instead one can construct a family of mutually diffeomorphic but physically

inequivalent solutions that span a phase space of “boundary gravitons”.

2. The action of symplectic symmetry transformations on space-time can be extended

beyond the near-horizon region, everywhere in the bulk of the extremal black hole [32].

In this work we study the symplectic symmetry group of the near-horizon region of

a large class of extremal black holes in diverse dimensions, specifically the Near-Horizon

Extremal Geometries (NHEGs) of [25, 26, 33]. These are solutions of (n+ 4)-dimensional

vacuum Einstein equations with SL(2,R)×U(1)n+1 isometry. The near-horizon geometries

of extremal Kerr (n = 0) and five-dimensional Myers-Perry black holes (n = 1) fall in

this class,2 while higher-dimensional Myers-Perry solutions (n > 1) do not since they lack

U(1)n+1 isometries. In that setting, black hole entropy arises as a Noether charge that also

happens to be the central charge of the symplectic symmetry algebra [26, 36, 37]. It is

subject to laws of NHEG mechanics that can be obtained from the zero temperature limit

of standard black hole thermodynamics [38].

Accordingly, our motivation is to make progress towards the identification of the mi-

crostates responsible for NHEG entropy by classifying the possible homogeneous phase

spaces with NHEG symmetry. Since the NHEG group extends the Virasoro group familiar

from two dimensional CFTs, our first goal will be to define it abstractly, including the

central extension that plays a key role for entropy-matching. Similarly to the Virasoro

group that extends the group Diff(S1) of diffeomorphisms of the circle, the NHEG group

will be based on Diff(Tn+1), the group of diffeomorphisms of the torus, albeit with an

anisotropy vector ~k related to the n + 1 angular momenta of the background. (For n = 0

the NHEG group reduces to the Virasoro group of Kerr/CFT.) It turns out that provided ~k

satisfies a natural quantization condition, the NHEG group is a bundle of Virasoro groups

over an n-dimensional torus Tn. Equipped with these prerequisites we shall classify the

orbits of NHEG backgrounds under the NHEG group, i.e. its coadjoint orbits; these come

equipped with a natural symplectic form left invariant by the action of NHEG transfor-

mations. Owing to the similarity between NHEG and Virasoro algebras, this classification

will be closely related to that of standard Virasoro orbits [39–42]. Each NHEG orbit can

be seen as a set of physically inequivalent field configurations dressing a given background,

1The name “symplectic symmetry” was coined in [24] for cases where the pre-symplectic density ω

vanishes. Symplectic (as opposed to asymptotic) symmetries are such that surface charges can be defined

on any codimension two compact spacelike surface — not necessarily at infinity [25–28]. Apart from NHEGs,

examples of symplectic symmetries include Brown-Henneaux transformations of Bañados geometries [27, 29–

31] and ADM charges [28].
2For n = 0, near-horizon extreme Kerr is the unique metric in this class while for n = 1 there are other

solutions, e.g. those obtained in the near horizon limit of extremal black rings or boosted Kerr strings [34, 35].
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and our goal is effectively to classify all possible such dressings. Note that, within a given

orbit, all points correspond to space-time metrics with SL(2,R)×U(1)n+1 isometry, having

identical n+1 angular momentum charges and identical entropy. We will also quantize the

orbits3 (promoting Poisson brackets to commutators) and build irreducible unitary repre-

sentations of the NHEG algebra. These representations are continuous tensor products of

Verma modules over Tn, which will allow us to evaluate their characters.

The plan is as follows. We start in section 2 by reviewing the construction of NHEG

symmetries in the gravitational context. This is then used in section 3 to motivate an ab-

stract definition for the NHEG group, its algebra and their central extensions. In section 4

we apply this definition to classify coadjoint orbits of the NHEG group. Section 5 contains

a free-field, twisted Sugawara construction of the NHEG algebra. In section 6 we describe

unitary representations of this algebra and compute their characters. We end in section 7

with some physical implications and applications.

Notation. The algebra of vector fields on a circle (the Witt algebra) will be denoted

as Vect(S1), and its central extension (Virasoro) as V̂ect(S1). The corresponding groups

are Diff(S1) and D̂iff(S1), respectively. The NHEG algebra, the NHEG group and their

central extensions will be respectively denoted by Vect~k(T
n+1), Diff~k(T

n+1), V̂ect~k(T
n+1)

and D̂iff~k(T
n+1).

2 Near-horizon extremal geometries

In this section we review the Near-Horizon Extremal Geometries studied in [25, 26, 33]; they

solve the (n + 4)-dimensional vacuum Einstein equations and have an SL(2,R)×U(1)n+1

isometry group.

Metrics. Following [26], we consider an (n+ 4)-dimensional space-time endowed with a

time coordinate t, a radial coordinate r, an azimuthal coordinate θ ∈ [0, π] and angular

coordinates φi ∈ R where i = 1, . . . , n + 1. These angles are identified as φi ∼ φi + 2π,

so they label the points of an (n + 1)-torus Tn+1. We shall think of the coordinates

(t, r, θ, φ1, . . . , φn+1) as being defined in the near-horizon region of an extremal black hole;

the metric of that region is fixed by SL(2,R)×U(1)n+1 isometry as

ds2 = Γ(θ)

[
−r2dt2 +

dr2

r2
+ dθ2 + γij(θ)

(
dφi − kirdt

)(
dφj − kjrdt

)]
, (2.1)

where the functions Γ, γij are constrained by Einstein’s equations. They generally depend

on (n+2)(n+1)/2 parameters (integrals of motion), one of which is an overall normalization

for the function Γ. Of the remaining parameters, n are contained in the components ki,

which are arbitrary up to one relation, and the other n(n+ 1)/2 parameters fix the torus

metric γij [33]. The n = 0 case corresponds to Near-Horizon Extreme Kerr [22, 44, 45] with

k1 = 1, while n = 1 gives the near-horizon geometry of extremal Myers-Perry black holes

3This procedure will rely on the unproven assumption that coadjoint orbits of the Virasoro group can

be quantized, which is a thorny mathematical issue [43]. We make no claims of rigour and confine the

discussion to the formal level.
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or rings with k2 = 1/k1 [34, 35, 44]. Note that under SL(2,R) isometries which keep the t, r

parts of the metric intact, rdt transforms by a closed form, rdt→ rdt+dξ, where ξ depends

on the details of the transformation. Hence SL(2,R) isometries also involve translations of

φi along ki, φi → φi + kiξ, so the vector ~k also affects the generators (Killing vectors) of

the SL(2,R) isometry [36, 37].

NHEGs are not black holes (they have no event horizon), but they do have infinitely

many bifurcate Killing horizons at constant t, r, all at the same Frolov-Thorne [46] tem-

perature 1/2π [36, 37]; see [26, section 2.1] for details. The metric on each bifurcation

surface is

ds2
H = Γ(θ)

(
dθ2 + γij(θ)dφ

idφj
)
. (2.2)

It is smooth for all values of θ; although ~k does not appear here, it is a measurable physical

parameter as its components are related to the angular momentum of the black hole —

see [26, 36, 37]. Thus, on the horizon, and of course on the whole NHEG (2.1), one is

dealing with an anisotropic torus — a torus with a preferred direction specified by ~k. In

principle, the components of ~k may take any value; in practice however, the ratios of those

components are directly related to ratios of components of angular momentum. Assuming

that the latter is quantized, this implies that ~k is proportional to a vector with integer

entries, i.e. an element of the dual lattice of Tn+1. Throughout this work we will always

assume that this condition is satisfied, as it will be necessary to ensure smoothness of the

NHEG group.

Let us then consider an anisotropic torus whose ~k belongs to the dual lattice. In that

case one can use the SL(n + 1,Z) volume-preserving symmetry of the torus to bring ~k,

possibly up to normalization, to the convenient form

~k = (0, . . . , 0, 1). (2.3)

However, note that smoothness of the metric (2.2) generally prevents one from finding a

global frame where ~k has this form for all values of θ. This fact will make the connection

between NHEG orbits and the corresponding space-time metrics somewhat subtle; see

section 7.

Symplectic symmetries. Consider a metric gµν solving Einstein’s equations and let

χ1, χ2 be vector fields; the corresponding symplectic density is a two-form in field space,

ω(δχ1gµν , δχ2gµν ; gµν), where δχgµν = Lχgµν . This density can be of the Lee-Wald [12, 13]

or Barnich-Brandt [5] type, or either of them up to a boundary term (see [26] for de-

tails). When ω vanishes on-shell for suitable vector fields, the latter generate symplectic

symmetries [26–28]. In such cases, the integrability condition on charge variations is usu-

ally satisfied automatically and surface charges can be defined by integration over generic

compact, space-like, codimension-two surfaces. In contrast to the perhaps more familiar

asymptotic symmetries, these surfaces need not be at infinity; for the NHEG (2.1) they

can be located at arbitrary (t, r). Furthermore, one can view the charges as generators of

symplectomorphisms on a phase space built by acting on a background metric with finite

diffeomorphisms generated by χ’s. Each such phase space is an orbit of the symplectic

symmetry group.

– 4 –



J
H
E
P
0
4
(
2
0
1
8
)
0
2
5

For the NHEG (2.1), an interesting family of vector fields generating symplectic sym-

metries is given by [25]

χ[ε(~φ)] = ε~k · ~∂ − ~k · ~∂ε
(

1

r
∂t + r∂r

)
, (2.4)

where we write ~φ = (φ1, . . . , φn+1) and ε = ε(~φ) is an arbitrary function on Tn+1 (it is

2π-periodic in all φi’s); we also let ~∂ be the gradient operator (∂φ1 , . . . , ∂φn+1) on Tn+1 and

write ~k · ~∂ = ki∂φi . These vector fields, unlike those of generic asymptotic symmetries, are

exact in r. By definition, their Lie brackets span the NHEG algebra; its structure is most

easily described by defining generators χ~n = χ[ei~n·
~φ], ~n ∈ Zn+1, whose brackets read

i[χ~m, χ~n] = ~k · (~m− ~n)χ~m+~n. (2.5)

It was shown in [25, 26] that conserved charges associated with the vector fields (2.4) are

well-defined and that they close according to the NHEG algebra up to a classical central

extension. Indeed, if we denote by L~n the surface charge corresponding to χ~n, one has the

Poisson brackets

i{L~m, L~n} = ~k · (~m− ~n)L~m+~n +
c

12
(~k · ~m)3δ~m+~n,0, (2.6)

with
c

12
=

S

2π
= ~k · ~J, (2.7)

where S and ~J are respectively the entropy and angular momenta of the underlying ex-

tremal black hole, or equivalently of the corresponding near-horizon geometry.

Starting from a vector field (2.4), one can exponentiate it to get a first glimpse of

the (centrally extended) NHEG group. This exponential is a finite diffeomorphism x 7→ x̄

determined by the flow of χ[ε] and it takes the form [26]

φ̄i = φi + kiF (~φ), r̄ = re−Ψ(~φ), t̄ = t− 1

r
(eΨ(~φ) − 1), eΨ ≡ 1 + ~k · ~∂F, (2.8)

which indeed reduces to (2.4) for F = ε � 1. (Note that we are not assuming anything

about the norm of ~k.) The NHEG phase space is obtained by applying all diffeomorphisms

of the form (2.8) to the background metric (2.1); it results in a family of metrics of the

form

ds2 = Γ(θ)

[
− (σ − dΨ)2 +

(
dr

r
− dΨ

)2

+ dθ2 + γij(dφ̃
i + kiσ)(dφ̃j + kjσ)

]
, (2.9)

with

σ = e−Ψrdt+ (1− e−Ψ)
dr

r
, φ̃i = φi + ki(F −Ψ). (2.10)

Even though each such metric is related to the background (2.1) by a diffeomorphism (2.8),

the resulting space-time manifolds should be seen as genuinely distinct configurations of

the gravitational field because their surface charges differ. Thus, starting from a given

NHEG background, one obtains an entire family of physically distinct metrics labelled

by different functions F (~φ); this family spans an orbit of the (centrally extended) NHEG

group. One of the purposes of this paper is precisely to classify all such orbits and see how

the metrics (2.9) fit in that classification.
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NHEG charges. On the phase space of metrics (2.9), the surface charges L~n generating

NHEG transformations as in (2.6) read [26]

L~n =

∫
H

Ω T [Ψ]e−i~n·
~φ, (2.11)

where H is the horizon with metric (2.2), Ω is its volume form and T is the “stress tensor”

T [Ψ] =
1

16πG

(
(Ψ′)2 − 2Ψ′′ + 2e2Ψ

)
(2.12)

where primes denote directional derivatives along ~k, i.e. Ψ′ = ~k · ~∂Ψ. Now, the transfor-

mation law of Ψ (as defined in (2.8)) under the NHEG algebra is [26]

δεΨ = εΨ′ + ε′, δεe
Ψ = (εeΨ)′, (2.13)

which is to say that eΨ is a primary field with unit weight under the Virasoro transforma-

tions generated by L~n’s whose ~n is proportional to ~k. Consistently with this observation, the

stress tensor (2.12) can be written in a more inspiring form. Indeed, defining a Schwarzian

derivative

{F(~φ); ~φ } ≡ F
′′′

F ′
− 3

2

F ′′2

F ′2
, (2.14)

one finds that for F ′ ≡ eΨ the expression (2.12) can be recast as

T [Ψ] =
1

8πG

(
F ′2 − {F ; ~φ}

)
. (2.15)

Here F is related to the F of (2.8) by F(~φ) = ~k · ~φ/|k|2 +F (~φ). We will use this suggestive

rewriting below to relate the family of metrics (2.9) to a NHEG coadjoint orbit.

3 NHEG group and algebra

In this section we provide an abstract definition of the NHEG group and its algebra,

including central extensions. The main goal is to recover and extend the structures that

emerge from the symmetry analysis summarized in the previous section. In particular we

shall assume throughout that the anisotropy vector ~k takes the simple form (2.3), which

entails no loss of generality within the class of vectors ~k whose components have rational

ratios. The classification of the corresponding coadjoint orbits is postponed to section 4.

3.1 The NHEG group

To define the NHEG group we proceed in two steps: first dealing with its centerless form,

then adding central extensions.

Centerless version. Consider an (n + 1)-torus Tn+1 = Rn+1/Zn+1 with coordinates

φ1, . . . , φn+1 ∈ R, each identified as φi ∼ φi + 2π. The NHEG transformations generated

by vector fields of the form (2.4) act on that torus according to

~φ 7→ ~φ+ ε(~φ)~k. (3.1)
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The set of such infinitesimal transformations is a subalgebra of Vect(Tn+1) that we denote

by Vect~k(T
n+1). For ~k = (0, . . . , 0, 1), eq. (3.1) reduces to φn+1 7→ φn+1 + ε(~φ), with

φ1, . . . , φn left unchanged; the exponential of this transformation is a diffeomorphism

(φ1, . . . , φn, φn+1) 7→
(
φ1, . . . , φn,F(φ1, . . . , φn+1)

)
(3.2)

where F would have been written as F(~φ) = φn+1 + F (~φ) with the notation of (2.8). It is

such that

F(φ1, . . . , φn, φn+1 + 2π) = F(φ1, . . . , φn, φn+1)± 2π and ∂F/∂φn+1 6= 0,

F(φ1, . . . , φi + 2π, . . . , φn+1) = F(φ1, . . . , φn, φn+1) + 2πNi ∀ i = 1, . . . , n
(3.3)

where N1, . . . , Nn are integers that may take different values for different F ’s (so the last

line is just the requirement that F be 2π-periodic in φ1, . . . , φn modulo 2π). Thus the

NHEG group is

Diff~k(T
n+1) = C∞

(
Tn,Diff(S1)

)
. (3.4)

It is the set of smooth maps that send a point (φ1, . . . , φn) on a circle diffeomorphism

F(φ1, . . . , φn, ·). In other words, it is a bundle of Diff(S1)’s over Tn, which already suggests

that its central extension will be a bundle of Virasoro groups over Tn. All our later

observations follow from this basic fact.

To lighten the notation, from now on we write φn+1 ≡ ϕ and (φ1, . . . , φn) ≡ Φ, as

well as

F(φ1, . . . , φn, φn+1) = F(ϕ,Φ) ≡ FΦ(ϕ) (3.5)

so that F(φ1, . . . , φn, ·) = FΦ. We also denote partial derivatives with respect to φn+1 = ϕ

by a prime: ∂F/∂φn+1 = F ′. Derivatives with respect to the remaining coordinates

φ1, . . . , φn will never appear, as these angles are mere spectators or “parameters” from the

point of view of the NHEG group. In particular, the group operation is (F ,G) 7→ F ·G with

(F · G)(ϕ,Φ) = F
(
G(ϕ,Φ),Φ

)
, i.e. (F · G)Φ = FΦ ◦ GΦ ∀Φ ∈ Tn. (3.6)

Note that for n = 0 the “torus” Tn = T 0 contains only one point and the NHEG group (3.4)

reduces to Diff(S1).

A remark: since the fundamental group of the torus Tn is Zn, the NHEG group (3.4)

has infinitely many connected components (for n > 0). Indeed, the second condition in (3.3)

leaves room for winding numbers Ni; any two elements of the NHEG group whose winding

numbers differ belong to different connected components. Furthermore, the group Diff(S1)

has two connected components, corresponding to diffeomorphisms that preserve or break

the orientation of the circle. In other words, each connected component of the NHEG

group can be labelled by (i) the winding number of its elements, and (ii) the sign plus or

minus in the first line of (3.3). In practice however, we will only deal with the maximal

connected subgroup of the NHEG group, i.e. the component of the identity. It consists

of diffeomorphisms F with zero winding number and which preserve the orientation of

the circle so that F ′ > 0. From now on we simply refer to this connected group as “the

NHEG group”.
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Centrally extended version. In order to reproduce the centrally extended surface

charge algebra (2.6), we need to define a centrally extended version of the NHEG group.

Since the coordinates φ1, . . . , φn behave as parameters, we can define a “local” cen-

tral extension such that the corresponding central charge is a function of φ1, . . . , φn.

To see this, consider the set of all pairs (F , α) whose entries are (i) a diffeomorphism

F(φ1, . . . , φn, φn+1) = F(ϕ,Φ) belonging to the NHEG group (3.4), and (ii) a function

α(φ1, . . . , φn) = α(Φ) on the torus Tn. Consider then the group operation

(F , α) · (G, β) =
(
F · G, α+ β + C[F ,G]

)
(3.7)

where the function C[F ,G] on Tn is a simple generalization of the Bott(-Thurston) cocy-

cle [47]:

C[F ,G](Φ) = − 1

48π

∫ 2π

0
dϕ log(F ′Φ ◦ GΦ)

G′′Φ
G′Φ

. (3.8)

The set of such pairs (F , α) spans the centrally extended NHEG group,

D̂iff~k(T
n+1) = C∞

(
Tn, D̂iff(S1)

)
; (3.9)

it is an extension of (3.4) by the space C∞(Tn) of smooth, real functions α. This extension

is central since it commutes with everything, and it implies that the NHEG algebra can have

infinitely many central charges. The constant, Φ-independent central charge of the surface

charge algebra (2.6) is recovered upon replacing the space C∞(Tn) by R and replacing the

group operation (3.7) by

(F , α) · (G, β) ≡
(
F · G, α+ β +

∫
Tn

dΦC[F ,G]

)
, (3.10)

where now α, β ∈ R and dΦ ≡ dφ1 . . . dφn/(2π)n so that
∫
TndΦ = 1. In other words, the

central extension here is the zero-mode projection of the Φ-dependent one in (3.7). As we

now verify, the Lie algebra that follows from these constructions contains and extends (2.6).

3.2 The NHEG algebra

Eq. (3.1) says that the Lie algebra of the NHEG group consists of vector fields ε = ε(~φ)~k · ~∂
where ~∂ is the gradient on Tn+1. With the convention ~k = (0, . . . , 0, 1), any such vector

field takes the form ε = ε(ϕ,Φ)∂ϕ ≡ εΦ(ϕ)∂ϕ, so from now on we write any element of the

NHEG algebra as ε or εΦ. To obtain the adjoint representation of the NHEG group, we

use the general definition(
AdFε

)
(ϕ,Φ) ≡ d

dt

∣∣∣∣
t=0

(
F · etε · F−1

)
(ϕ,Φ) (3.11)

where the product of group elements is (3.6), so it is a Φ-pointwise multiplication on Tn

given by composition along the S1 spanned by ϕ. Thus the computation is the same as

for the Virasoro group (see e.g. [48, section 4.4.2] or [49, section 6.1.4]), up to an extra

parametric dependence on Φ ∈ Tn. The result is(
AdFε

)
Φ

(ϕ) =
εΦ(F−1

Φ (ϕ))

(F−1
Φ )′(ϕ)

, i.e.
(
AdFε

)
Φ

(FΦ(ϕ)) = F ′Φ(ϕ)εΦ(ϕ). (3.12)

– 8 –
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We can repeat the same arguments with the centrally extended group (3.7); once more the

result is the same as in the Virasoro case up to a parametric dependence on Φ:

Âd(F ,α)(ε, β) =

(
AdFε, β −

1

24π

∫ 2π

0
dϕ ε(ϕ){F ;ϕ}

)
, (3.13)

where α, β and the second entry on the right-hand side are functions of Φ ∈ Tn. For

instance, what we denote by {F ;ϕ} is the function of Φ and ϕ such that {F ;ϕ}(Φ) ≡
{FΦ;ϕ}, with {F ;ϕ} = F ′′′/F ′ − 3

2(F ′′/F ′)2 the standard Schwarzian derivative.

The adjoint representation yields the Lie bracket of the algebra thanks to the definition

[
(ε, α), (ζ, β)

]
≡ − d

dt

∣∣∣∣
t=0

Âd(etε,tα)(ζ, β), (3.14)

where the minus sign is a matter of convention. (Note that we are working with the

centrally extended group.) Using (3.13) and evaluating the t derivative, one finds

[
(ε, α), (ζ, β)

]
=

(
[ε, ζ],

1

24π

∫ 2π

0
dϕ ε′′′(ϕ)ζ(ϕ)

)
, (3.15)

where, as before, α, β and the second entry on the right-hand side are functions of Φ. The

first entry of the right-hand side involves the standard Lie bracket of vector fields. To make

the structure of the algebra more explicit, we can expand all functions in Fourier modes

on the torus. Thus, we let ~m,~n ∈ Zn+1 and define the NHEG generators

L~m ≡
(
ei~m·

~φ~k · ~∂, 0
)
. (3.16)

We also take ~M ∈ Zn and define the (infinitely many) central charges

c( ~M,0) ≡ (0, ei
~M ·Φ). (3.17)

Then the Lie bracket (3.15) implies that the central charges commute with everything, while

the brackets of NHEG generators lead to the expected centrally extended NHEG algebra:

i
[
L~m, L~n

]
= ~k · (~m− ~n)L~m+~n +

c~m+~n

12
(~k · ~m)3δ~k·(~m+~n),0

, (3.18)

where ~k ≡ (0, . . . , 0, 1). The same formula would hold for arbitrary ~k on the dual lattice

of Tn+1. Note that this is the unique maximal central extension of the centerless NHEG

algebra (up to redefinitions of generators, such as shifts in L~0); this can be verified directly

by requiring the central terms to satisfy Jacobi identities. In particular, there is no Kac-

Moody central extension of the type that might be expected for maps from Tn to a generic

Lie algebra; the reason is that the Virasoro algebra has no invariant bilinear form.

The centerless version of the bracket (3.18) clearly reproduces the symplectic symmetry

algebra (2.5), while the restriction of central charges to their zero-mode reproduces the

surface charge algebra (2.6). Note that (3.18) has a Virasoro subalgebra generated by

L
m~k

, and that the generators L~m, ~m · ~k = 0 span an Abelian subalgebra that may be
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viewed as C∞(Tn). An equivalent way to phrase this is to introduce NHEG generating

fields and their Fourier modes along ~k,

L(ϕ,Φ) =
∑
~n

L~ne
i~n·~φ, Ln(Φ) ≡ 1

2π

∫ 2π

0
dϕL(ϕ,Φ)e−inϕ. (3.19)

In these terms the bracket (3.18) reads

i
[
Lm(Φ), Ln(Φ′)

]
=

(
(m− n)Ln+m(Φ) +

c(Φ)

12
m3δn+m,0

)
δn(Φ− Φ′), (3.20)

where the central charges of (3.17) are the Fourier modes of c(Φ). Thus the NHEG alge-

bra is a bundle of Virasoro algebras over an n-dimensional torus Tn; this was of course

expected from (3.4)–(3.9). The remainder of this paper is devoted to some consequences

of this observation.

4 NHEG orbits

Consider a space-time metric that solves Einstein’s vacuum equations and that takes the

NHEG form (2.1). This metric is a point in an infinite-dimensional phase space that

consists of gravitational fields representing the near-horizon geometry of an extremal black

hole. The NHEG symmetry group acts on this phase space and relates various physically

distinct metrics to one another; metrics that are related by NHEG transformations belong,

by definition, to the same NHEG orbit. For instance, the metrics (2.9) span one such

orbit. As it turns out, the transformation law of NHEG metrics under the NHEG group is

given by the coadjoint representation, so the purpose of this section is to study and classify

NHEG coadjoint orbits. The result will be closely related to the classification of Virasoro

orbits [39–41]; see e.g. [42] or [49, chap. 7] for a review.

By definition, any Lie group acts on its Lie algebra according to the adjoint represen-

tation, and the corresponding dual action is the coadjoint representation. In the present

case, assuming ~k = (0, . . . , 0, 1), the dual of the (centrally extended) NHEG algebra con-

sists of pairs (L, c) where L = LΦ(ϕ)dϕ2 is a Φ-dependent Virasoro coadjoint vector while

c = c(Φ) is a Φ-dependent Virasoro central charge.4 The pairing between (L, c) and the

NHEG algebra is

〈
(L, c), (ε, α)

〉
=

1

2π

∫ 2π

0
dϕ

∫
Tn

dΦL(ϕ,Φ)ε(ϕ,Φ) +

∫
Tn

dΦ c(Φ)α(Φ). (4.1)

For the constant central extension defined in (3.10), the second term of the right-hand side

reduces to a product c · α, where both c and α are just real numbers.

Since the NHEG group is a bundle of Virasoro groups, its coadjoint representation

coincides with the standard transformation law of (chiral) CFT stress tensors — i.e. the

4Strictly speaking, both L and c are the coefficients of volume forms L⊗ dΦ and c dΦ on Tn, but since

NHEG transformations never affect the Φ coordinates this abuse of notation is harmless.
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coadjoint representation of the Virasoro group —, up to a parametric dependence on Φ.

Explicitly, this representation is defined by the general formula〈
Âd∗(F ,α)(L, c), (ε, α)

〉
=
〈
(L, c), Âd(F ,α)−1(ε, α)

〉
. (4.2)

Using the fact that the NHEG adjoint action is (3.13), one finds

Âd∗(F ,α)(L, c) =

(
Ad∗FL−

c

12
{F−1; ·}, c

)
, (4.3)

where(
Ad∗FL−

c

12
{F−1; ·}

)
(ϕ,Φ) =

[
(F−1

Φ )′(ϕ)
]2
LΦ(F−1

Φ (ϕ))− c(Φ)

12
{F−1

Φ ;ϕ}. (4.4)

The same formula follows from the ‘rigid’ central extension of (3.10), except that the

corresponding central charge is independent of Φ; note the similarity with (2.15).

The transformation law (4.4) implies that each coadjoint orbit of the NHEG group is

a bundle of Virasoro orbits over Tn; the fibre at Φ is the Virasoro orbit of the CFT stress

tensor LΦ with central charge c(Φ) — see fig. 1. Schematically, any NHEG orbit O takes

the form of a disjoint union

O =
⊔

Φ∈Tn

OΦ (4.5)

where each OΦ is a coadjoint orbit of the Virasoro group. With the Φ-dependent central

extension of (3.7), both the coadjoint vectors and the central charges of these Virasoro

orbits generally vary with Φ; by contrast, with the rigid central extension of (3.10), the

central charge takes the same value for all points Φ on Tn, but the stress tensors LΦ vary.

In principle, this achieves our goal: since the classification of Virasoro orbits is known,

we can describe any NHEG orbit as a bundle of Virasoro orbits over Tn. For instance,

the orbit (2.9) is obtained when c(Φ) = 6S/π and LΦ = c/12 are constant, with the

identification between L and the stress tensor of (2.15) given by A · T = Âd∗F−1L in terms

of the horizon area A = 4GS.

Note that, within a NHEG orbit, one can move between different Virasoro orbits

by varying Φ, but the orbits that are spanned in the process are not entirely arbitrary.

Indeed, in order for the NHEG orbit to be smooth, there must be no singularity in the

bundle (4.5); to ensure this, all OΦ’s should be specified by the same winding number and

have the same type of SL(2,R) monodromies, meaning that the monodromy matrices of

the associated Hill’s equations should either be all elliptic, or all hyperbolic, or all mutually

conjugate and parabolic;5 see again figure 1. Thus, for example, if LΦ0 = −c(Φ0)/24 at

some point Φ0, then the corresponding Virasoro orbit OΦ0 has unit winding number and

trivial monodromy up to a sign — it is the orbit of a CFT vacuum stress tensor under

conformal transformations —; but smoothness then requires that any other OΦ also be a

Virasoro vacuum orbit, which means that there exists a NHEG transformation which turns

5Hill’s equation and the associated monodromies and winding numbers are tools that are routinely used

to classify Virasoro orbits [39, 40]. See e.g. [42] or [49, chap. 7] for a review; see also eq. (4.9) below.
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(a) (b)

Figure 1. Two coadjoint orbits of the NHEG group. Each is a fibre bundle of Virasoro orbits over

Tn; for simplicity we take n = 1 and represent Virasoro orbits by disks, so that NHEG orbits have

the topology of solid tori. The radius of the disk varies with its position Φ, reflecting the fact that

different fibres generally correspond to different Virasoro orbits. In (a) the NHEG orbit is smooth,

but in (b) the fibre at Φ∗ is degenerate (it has zero radius) while its immediate neighbours are

not, so the corresponding NHEG orbit is pathological. This is due to discontinuous jumps between

Virasoro orbits of different types; it occurs for instance when a NHEG coadjoint vector L crosses

the critical value LΦ∗ = −c(Φ∗)/24. We discard such singular NHEG orbits from our classification

and only include smooth orbits such as the one in (a).

the NHEG coadjoint vector L into
(
F · L

)
(ϕ,Φ) = −c(Φ)/24 for any Φ ∈ Tn. In other

words, once the central charges c(Φ) are fixed, there exists a unique smooth NHEG orbit

that contains a fibre which is a vacuum Virasoro orbit. Amusingly, this means that local

data (from the point of view of Tn) contains global information within the class of smooth

NHEG orbits: knowing OΦ0 gives information on the other Virasoro orbits OΦ. Below

we provide examples of smooth orbits for which the fibres at different Φ’s are genuinely

different Virasoro orbits; but first let us revisit the classification of NHEG orbits from a

slightly different point of view.

Lie-algebraic data. Following [41], a quick way to guess the classification of coadjoint

orbits is to find the Lie algebras of their stabilizers. The starting point is the Lie al-

gebra representation that corresponds to the coadjoint transformation law (4.4). Taking

F(ϕ,Φ) = ϕ+ ε(ϕ,Φ) in the latter equation and working to first order in ε, one finds

ad∗εL = ε(ϕ,Φ)L′Φ + 2ε(ϕ,Φ)′LΦ −
c(Φ)

12
L′′′Φ . (4.6)

Now, the stabilizer of L consists of those NHEG group elements that leave it fixed; in

Lie-algebraic terms this is to say that the algebra of the stabilizer is spanned by ε’s for

which (4.6) vanishes:

ε ∈ stabilizer algebra ⇐⇒ ε(ϕ,Φ)L′Φ + 2ε(ϕ,Φ)′LΦ −
c(Φ)

12
L′′′Φ = 0. (4.7)

Of course, this equation and (4.6) coincide with standard Virasoro expressions up to a

parametric dependence on the transverse coordinates Φ.

Knowing the stabilizer (call it GL) of a NHEG coadjoint vector L, one infers that

the corresponding orbit is diffeomorphic to a quotient of the NHEG group by GL. For
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example, suppose that c(Φ) = c > 0 and LΦ = L > −c/24 are positive constants; then the

stabilizer of (L, c) is generated by all ε’s such that ε′ = 0, so it consists of maps from Tn

to the group U(1) ∼= S1 of rigid rotations. As a result the corresponding NHEG orbit is

diffeomorphic to the quotient space

O(L,c)
∼= C∞

(
Tn,Diff(S1)

)/
C∞

(
Tn, S1

) ∼= C∞
(
Tn,Diff(S1)/S1

)
for constant L 6= −c/24. (4.8)

Similarly, the stabilizer of LΦ(ϕ) = −c(Φ)/24 is the group of smooth maps from Tn to

PSL(2,R). Note once more that smoothness of the orbit restricts the allowed configurations

LΦ(ϕ): if LΦ0 = −c(Φ0)/24 at some point Φ0, then GL contains maps that send Φ0 on

PSL(2,R); but in order for GL to be smooth, its elements must be able to map any other

point Φ on PSL(2,R), which implies as before that LΦ = −c(Φ)/24 for any Φ.

Parametric Hill’s equations. The standard classification of Virasoro coadjoint orbits

relies on the monodromies of Hill’s equation [39], so let us comment on the use of this

method in the present context. (For a pedagogical review, see [42] or [49, chap. 7].) The

starting point is a function ψ(~φ) that we take to be single-valued on Tn (so it is 2π-

periodic in the angular coordinates contained in Φ), but not necessarily periodic in ϕ.

Given a NHEG coadjoint vector (L, c), we require ψ to solve the parametric Hill’s equation

− c(Φ)

6
ψ′′(~φ) + LΦ(ϕ)ψ(~φ) = 0. (4.9)

The same equation would be relevant to the classification of Virasoro orbits, albeit without

parametric dependence on Φ. The fact that LΦ(ϕ) is 2π-periodic in ϕ implies that, for

any Φ ∈ Tn, any two linearly independent solutions ψ1, ψ2 of (4.9) behave in a quasi-

periodic way: (
ψ1(ϕ+ 2π,Φ)

ψ2(ϕ+ 2π,Φ)

)
= M(Φ)

(
ψ1(ϕ,Φ)

ψ2(ϕ,Φ)

)
, (4.10)

where the monodromy matrix M(Φ) belongs to SL(2,R). Again, the only difference be-

tween this setting and the standard Virasoro case is the dependence on Φ. In particular,

similarly to the Virasoro case, the conjugacy class of the monodromy matrix is an invariant

label for the orbit of (L, c); in the case at hand, this label is a function on Tn since the

conjugacy class of M(Φ) depends on Φ. Thus, each NHEG orbit is labelled by Φ-dependent

conjugacy classes in SL(2,R). In order for the orbit to be smooth, these conjugacy classes

must all be of the same type at all Φ’s — elliptic, hyperbolic or parabolic. In addition,

Virasoro orbits are labelled by a discrete winding number [42]; smooth NHEG orbits are

such that this number is the same for all Φ ∈ Tn.

We conclude with an example. Consider a NHEG coadjoint vector LΦ(ϕ) = LΦ that

does not depend on ϕ (at fixed Φ, it is a constant from the point of view of the coordi-

nate ϕ). One readily verifies that a corresponding normalized pair of solutions of Hill’s

equation (4.9) is

ψ1(ϕ,Φ) =
ρ(Φ)√
2K(Φ)

eK(Φ)ϕ, ψ2(ϕ,Φ) =
1

ρ(Φ)
√

2K(Φ)
e−K(Φ)ϕ, LΦ(ϕ) =

c(Φ)

6
K2(Φ),

(4.11)
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where ρ(Φ) is any non-zero function on Tn. When the function K(Φ) is real, the corre-

sponding Virasoro orbits are hyperbolic; for K(Φ) = iν(Φ)/2, ν ∈ (0, 1), they are elliptic;

and for K(Φ) = i/2 they are vacuum orbits, for which LΦ = −c(Φ)/24 and the monodromy

matrix is minus the identity. In the first two cases the stabilizer consists of maps from Tn

to U(1), as in (4.8); in the vacuum case it is spanned by maps from Tn to PSL(2,R).

5 NHEG-Kac-Moody algebra

In this section we describe a “free-field” construction of the NHEG algebra in terms of

Abelian current algebras. This is partly motivated by representation theory, but it is also

of interest in computations of black hole entropy from near-horizon symmetries [30–32]; we

shall briefly return to the latter issue in the last section of this work.

Let us consider a set of currents Ji(~φ), i = 1, . . . , n+ 1 and assume that their Fourier

modes

Ji,~n =
1

2π

∫ 2π

0
dϕ

∫
Tn

dΦ e−i~n·
~φJi(~φ) (5.1)

satisfy the centrally extended algebra

i[Ji,~m, Jj,~n] = (~k · ~m) gij δ~m+~n,0 Z (5.2)

where Z is a central charge and gij is a constant metric on the torus Tn+1. This metric is

arbitrary and none of our results will depend on it, so we may choose it to be the same as

in (2.1) at some given θ. We refer to (5.2) as the NHEG-Kac-Moody algebra.

When ~k is proportional to a vector in the dual lattice of Tn+1 (which we assume to be

the case), we can take ~k = (0, . . . , 0, 1) and use the notation of section 3. Then eq. (5.2)

can be written as

Ji,m(Φ) =
1

2π

∫ 2π

0
dϕJi(~φ)eimϕ, i[Ji,m(Φ), Jj,n(Φ′)] = mgij δm+n,0 δ

n(Φ− Φ′). (5.3)

As we see, Ji,0(Φ) is central for all Φ ∈ Tn. To recover the NHEG algebra, we proceed as

in the twisted Sugawara construction and define6

L(ϕ,Φ) ≡ β(Φ) kiJ ′i(ϕ,Φ) +
1

2
gijJi(ϕ,Φ)Jj(ϕ,Φ) (5.4)

where gij is the inverse of the metric gij , β(Φ) is an arbitrary function of Φ and as before

the prime denotes partial derivative with respect to ϕ. One can readily see that the modes

Ln(Φ) of this quantity close according to the NHEG algebra (3.20) with a Φ-dependent

central charge

c(Φ) = 12β2(Φ) kigijk
jZ. (5.5)

Note that this is non-zero only if the twisting term βkJ ′ in (5.4) does not vanish. As for

the brackets of NHEG generators with currents, they take the form

i[L~m, Ji,~n] = −(~k · ~n)Ji,~m+~n + iβ(~k · ~n)2ki δ~m+~n,0 Z. (5.6)

6For generic ~k, we would have L(~φ) = 1
|k|2 β(~φ)~k · ~∂(~k · ~J(~φ)) +

1

2
gijJi(~φ)Jj(~φ) with ~k · ~∂β(~φ) = 0.
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The central term on the right-hand side implies that the currents Ji are not primary

fields; this is of course a standard feature of the twisted Sugawara construction (see e.g.

[30, 31, 50–52]), where the twist term proportional to J ′ in (5.4) gives rise both to the

classical central extension (5.5) and to the anomaly in (5.6). In the next section we will

use this free-field point of view to build NHEG representations.

6 Quantization of NHEG orbits

So far we have analysed NHEG symmetry from a classical perspective involving symplectic

manifolds and Poisson brackets. We now study some aspects of the quantization of these

orbits, whereby Poisson brackets are replaced by commutators according to the canonical

prescription i{·, ·} → [·, ·]. This results in a Hilbert space acted upon by operators Ln(Φ)

that satisfy the commutator algebra[
Lm(Φ), Ln(Φ′)

]
=

(
(m− n)Lm+n(Φ) +

c(Φ)

12
(m3 −m)δm+n,0

)
δn(Φ− Φ′). (6.1)

Here we have shifted the L0(Φ) of (3.20) by −c(Φ)/24, and we assume that the central

charge is some given, strictly positive function c(Φ). The operators Ln(Φ) satisfy the

Hermiticity conditions Lm(Φ)† = L−m(Φ). Similarly, the quantization of the current alge-

bra (5.3) gives commutators

[Ji,m(Φ), Jj,n(Φ′)] = mgij δm+n,0 δ
n(Φ− Φ′), (6.2)

where Ji,m(Φ)† = Ji,−m(Φ). In the remainder of this section we describe irreducible unitary

representations where these commutator algebras are realized.

6.1 NHEG unitarity

Since NHEG orbits are bundles of Virasoro orbits over Tn, their quantization is in principle

straightforward if one assumes that the quantization of Virasoro orbits goes through.7

Indeed, if the Hilbert space obtained by quantizing a Virasoro orbit is the space of a unitary

highest-weight representation of the Virasoro algebra, then the Hilbert space obtained by

quantizing a NHEG orbit is a continuous tensor product of Virasoro representations — one

at each point Φ of Tn. In particular, the highest-weight state |h〉 of a NHEG representation

is specified by a strictly positive real function h(Φ) on Tn. It is such that

L0(Φ)|h〉 = h(Φ)|h〉, Lm(Φ)|h〉 = 0 ∀Φ ∈ Tn, ∀m > 0, (6.3)

and we assume it to be normalized: 〈h|h〉 = 1. The NHEG vacuum state |0〉 is specified

by h(Φ) = 0 for all Φ ∈ Tn, and it is annihilated by all Lm(Φ)’s with m ≥ −1.

Any descendant of the highest-weight state is specified by N insertion points

Φ1, . . . ,ΦN on the torus, and takes the form

L−n1
1
(Φ1)L−n1

2
(Φ1) . . . L−n1

k1

(Φ1) . . . L−nN
1

(ΦN ) . . . L−nN
kN

(ΦN )|h〉 (6.4)

7The quantization of Virasoro orbits is still very much an area of active research; see e.g. [43]. Our

standard of rigour is by no means that of pure mathematics, so we shall bluntly assume that Virasoro

quantization does work.
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where 1 ≤ ni1 ≤ . . . ≤ niki for all i = 1, . . . , N . Strictly speaking, the norm of any such

descendant is infinite due to the delta function on the right-hand side of (6.1). For instance,

〈h|Lm(Φ)L−m(Φ′)|h〉 =

[
2mh(Φ) +

c(Φ)

12
(m3 −m)

]
δn(Φ− Φ′), (6.5)

so one can think of these descendants as analogues of states with definite position in

non-relativistic quantum mechanics. The true elements of the Hilbert space are actually

smeared linear combinations of descendants, such as∫
Tn

dΦ Ψ(Φ)L−m(Φ)|h〉 (6.6)

where Ψ is a square-integrable wavefunction on Tn. More generally, the number of wave-

functions needed to smear a descendant (6.4) is the number
∑N

i=1 ki of Lm(Φ) operators ap-

pearing in its expression. In particular, smeared states are generally highly non-local on Tn.

As in the Verma modules of the Virasoro algebra, the Hilbert space H of the represen-

tation is spanned by all linear combinations of the highest-weight state and its descendants;

here we are including smearing such as (6.6) as a valid way to take linear combinations.

Thus, abstractly, the Hilbert space is an infinite tensor product of Virasoro Verma modules

Vc(Φ),h(Φ), one at each point of the n-torus:

H =
⊗

Φ∈Tn

Vc(Φ),h(Φ). (6.7)

This product is the quantization of eq. (4.5); it is separable thanks to the fact that Φ is

a coordinate on a torus rather than a non-compact manifold. In principle, any irreducible

unitary representation of the NHEG algebra takes this form, and similar conclusions apply

more generally to any quantum theory with NHEG symmetry: any such theory is a bundle

(i.e. a tensor product) of chiral two-dimensional CFTs over an n-torus. One might say that

Tn is a “conformal manifold”, or moduli space, supporting a family of CFTs; the novelty

here is that (i) this manifold has a space-time interpretation since it is embedded in the

NHEG (2.1), and (ii) the symmetry algebra has this moduli space built in, resulting in

wavefunctions such as (6.6) that live on the conformal manifold.

Hilbert space from NHEG-Kac-Moody. Unitary representations of the NHEG alge-

bra can also be built thanks to the currents Ji of section 5. As in the Virasoro case [50–52],

these currents can be seen as creation/annihilation operators generating the space of the

representation when they act on a suitable vacuum state. To define the latter, we start by

noting that

[Ji,0, L~m] = 0 = [Ji,0, Jj,~m], ∀~m ∈ Zn+1, ∀i, j = 1, . . . , n+ 1, (6.8)

implying that the n zero-modes J i,0 commute with all other generators; in fact, they

span the center of the universal enveloping algebra of NHEG-Kac-Moody. Accordingly,

we label the vacuum state |J1, . . . , Jn+1〉 ≡ |Ji〉 by its (local) eigenvalues Ji(Φ) under

central operators:

Ji,m(Φ)|Ji〉 = 0 and Ji,0(Φ)|Ji〉 = Ji(Φ)|Ji〉 ∀m > 0, ∀Φ ∈ Tn. (6.9)
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From the point of view of the NHEG algebra obtained by normal-ordering (5.4) and

shifting it by c(Φ)/24, these vacua are primary states of Φ-dependent weight h(Φ) =
c(Φ)
24 + 1

2g
ijJi(Φ)Jj(Φ):

Lm(Φ)|Jk〉 = 0 ∀m > 0, L0(Φ)|Jk〉 = h(Φ)|Jk〉. (6.10)

Each “vacuum” of NHEG-Kac-Moody is thus specified by n + 1 functions Ji(Φ) on Tn.

Once such a vacuum has been chosen, its descendants are built by acting with creation

operators Ji,−n(Φ), n > 0, at generally different insertion points on Tn. This is directly

analogous to the construction (6.4) in terms of NHEG generators, and one can indeed show

(along the same lines as for the Virasoro case [50–52]) that the Hilbert space spanned by

descendants of |h〉 is isomorphic, as a NHEG-module, to the one spanned by descendants

of |Ji〉 provided h(Φ) ≥ 0 at any point Φ of Tn.

6.2 NHEG characters

To conclude this section, let us evaluate the characters of the representations above. First

note that the Cartan subalgebra of NHEG is infinite-dimensional: as is apparent in (6.1), it

is spanned by all generators L0(Φ) with Φ ∈ Tn. This implies that the chemical potential

itself is generally a function of Φ, τ(Φ); as in standard CFT we assume it has positive

imaginary part everywhere. The associated character is

χh,c(τ) = TrH

(
e
∫
TndΦ 2πiτ(Φ)L0(Φ)

)
(6.7)
=

∏
Φ∈Tn

TrVc(Φ),h(Φ)

(
e2πiτ(Φ)L0(Φ)

)
, (6.11)

where dΦ ≡ dφ1 . . . dφn/(2π)n as before. For definiteness we assume that c(Φ) > 1 and

h(Φ) > 0 everywhere on Tn. Then there are no null states in Vc(Φ),h(Φ) and the counting

of L0 eigenstates at level N reduces to the counting of partitions p(N) of the integer N .

Using this in (6.11), we conclude that

χh,c(τ) =
∏

Φ∈Tn

e2πiτ(Φ)h(Φ)
∞∏
m=1

1

1− e2πimτ(Φ)

= exp

[ ∫
Tn

dΦ

(
2πiτ(Φ)h(Φ)−

∞∑
m=1

log
(
1− e2πimτ(Φ)

))]
. (6.12)

A similar counting works for the vacuum representation where h(Φ) = 0 for all Φ, but then

the product and sum over m start at m = 2. In the special case where τ(Φ) is constant,

the torus integral in (6.12) is finite (
∫
dΦ = 1) and the character reduces to

χh,c(τ) = q
∫
dΦh(Φ)

∞∏
m=1

1

1− qm
, q ≡ e2πiτ . (6.13)

This is just the character of a standard unitary Virasoro representation, free of null states,

whose effective highest weight heff =
∫
dΦh(Φ) is the average of the h(Φ)’s. (Again,

when h = 0 the product would start at m = 2.) In principle one can perform the same

computation when 0 < c(Φ) < 1, in which case the local Virasoro representations contain
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null states and the weights h(Φ) are constrained by the Kac determinant. Then both c and

h are forced to take discrete values, implying that they are both constant over Tn if one

assumes continuity. The corresponding NHEG character thus coincides with the character

of a reducible Verma module.

Recalling the relation between characters and gravitational partition functions [53, 54],

it would be interesting to see if the NHEG characters (6.12)–(6.13) have anything to do

with (one-loop) partition functions of the gravitational field in the near-horizon region of

extremal black holes. We will not attempt to address this intriguing issue here.

7 Discussion and outlook

In this work we have built the NHEG group, starting from the NHEG algebra presented

in [25, 26]. As we have seen, the NHEG group consists of diffeomorphisms of an (n + 1)-

torus that preserve the direction of an anisotropy vector ~k. When the latter is proportional

to an element of the dual lattice, the NHEG group effectively becomes a bundle of Virasoro

groups over an n-torus, generally with a position-dependent central charge. This simple

observation allowed us to derive, for free, the classification of NHEG coadjoint orbits: each

such orbit is a bundle of Virasoro orbits over Tn (see figure 1); the Virasoro orbits at

different points generally differ, but they are constrained by the requirement that they

form a smooth bundle, leading for instance to a statement of unicity of the vacuum NHEG

orbit. In addition we derived the corresponding irreducible unitary representations, which

are simply tensor products of Virasoro modules, and we computed their characters. In

the remainder of this section we briefly address some open issues, extensions and plausible

applications of our analysis.

Orbits versus metrics. As reviewed in section 2, the NHEG group (with constant

central charge) represents the symplectic symmetries of the phase space of metrics (2.9).

This space is a homogeneous manifold with a NHEG-invariant symplectic form, so it is

one of the coadjoint orbits described in section 4; in fact it is the (hyperbolic) orbit of the

constant coadjoint vector LΦ = c/12 with c = 6S/π, provided one identifies (2.15) with

Âd∗F−1L up to an overall normalization. This parallels similar identifications between AdS3

metrics and Virasoro coadjoint orbits [27, 55–57], or their flat space/BMS3 analogues [58].

In the same vein, one may ask whether more interesting profiles of NHEG coadjoint vectors,

e.g. those described in (4.11), correspond to well-defined space-time metrics solving the

vacuum Einstein equations.

Unfortunately, a geometric subtlety makes this identification between NHEG coad-

joint orbits and orbits of NHEG metrics somewhat difficult. Indeed, our construction of

the NHEG group (and of its orbits) used the fact that the anisotropy vector ~k can be

transformed in such a way that ~k = (0, . . . , 0, 1); but in order for this to work in the case

of NHEG metrics, one would have to perform a similar transformation at all values of

the azimuthal angle θ (recall the coordinates used when writing (2.1)). In general, such

a θ-dependent transformation is singular, thus preventing a direct identification between

NHEG coadjoint vectors LΦ(ϕ) and NHEG metrics. A notable exception to this general
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expectation is provided by coadjoint orbits whose representative element is a constant,

i.e. those with LΦ(ϕ) = const. Intuitively, this is consistent with the näıve expectation

that labels of NHEG orbits should be related to the conserved charges associated with ex-

act symmetries/Killing vectors of the background geometry (see [26–28]). Whether other

NHEG orbits correspond to smooth space-time metrics is a puzzling question, and we hope

to return to it in the future.

More on NHEG-Kac-Moody. In section 5 we built the NHEG algebra in terms of

u(1) currents thanks to a twisted Sugawara construction, which we then applied to unitary

NHEG representations along the same lines as in the Virasoro case [50–52]. In that context,

a natural question is whether the currents have a geometric realization in terms of space-

time diffeomorphisms, as is the case for instance in three dimensions [30, 31]. This project

has already been carried out for extreme Kerr black holes [32], but it should be possible to

extend it to higher dimensions.

A preliminary analysis extending the method of [32] has uncovered a closely related

algebra whose generators are u(1) currents that depend on individual φi’s, from which one

can obtain n + 1 copies of Virasoro algebras [59]; it would be interesting to explore this

direction further.

NHEG field theories. As mentioned in section 6.1, NHEG-invariant field theories are

bundles of CFTs over a Tn moduli space. The point of view adopted in this paper, and the

motivation for our investigation, is that such field theories provide putative holographic

duals for extremal black holes. It would be interesting to see what constraints are put

on such theories by the requirement that they describe gravity. An obvious constraint

comes from the Poisson bracket algebra (2.6), which says that the position-dependent

central NHEG charge must in fact be a constant (at least up to quantum corrections).

Optimistically, a better understanding of NHEG field theories might eventually lead to an

identification of extremal black hole microstates that does not rely on string theory [60].

An illustrative application of the considerations of this paper to the identification of

black hole microstates is provided by the recent “horizon fluff” proposal [50–52], according

to which these microstates can be read off from a subtle relationship between near-horizon

and asymptotic symmetry algebras. This proposal has been successfully worked out for

generic BTZ black holes [50–52] and extremal Kerr black holes [32], and is expected to

work for NHEGs too [59]. From this perspective, the orbit analysis presented in this work

should be an important technical tool for the exploration of black hole entropy.
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de Montréal, Montréal Canada (2007).

[49] B. Oblak, BMS particles in three dimensions, Ph.D. thesis, Brussels University, Brussels,

Belgium (2016), arXiv:1610.08526 [INSPIRE].

[50] H. Afshar, D. Grumiller and M.M. Sheikh-Jabbari, Near horizon soft hair as microstates of

three dimensional black holes, Phys. Rev. D 96 (2017) 084032 [arXiv:1607.00009] [INSPIRE].

[51] M.M. Sheikh-Jabbari and H. Yavartanoo, Horizon fluffs: near horizon soft hairs as

microstates of generic AdS3 black holes, Phys. Rev. D 95 (2017) 044007 [arXiv:1608.01293]

[INSPIRE].

[52] H. Afshar, D. Grumiller, M.M. Sheikh-Jabbari and H. Yavartanoo, Horizon fluff,

semi-classical black hole microstates — Log-corrections to BTZ entropy and black

hole/particle correspondence, JHEP 08 (2017) 087 [arXiv:1705.06257] [INSPIRE].

[53] S. Giombi, A. Maloney and X. Yin, One-loop partition functions of 3D gravity, JHEP 08

(2008) 007 [arXiv:0804.1773] [INSPIRE].

– 22 –

https://doi.org/10.1007/JHEP09(2014)036
https://arxiv.org/abs/1407.7484
https://inspirehep.net/search?p=find+EPRINT+arXiv:1407.7484
https://doi.org/10.1007/JHEP03(2014)014
https://arxiv.org/abs/1310.3727
https://inspirehep.net/search?p=find+EPRINT+arXiv:1310.3727
https://doi.org/10.1007/JHEP10(2014)111
https://arxiv.org/abs/1407.1992
https://inspirehep.net/search?p=find+EPRINT+arXiv:1407.1992
https://doi.org/10.1103/PhysRevD.88.101503
https://arxiv.org/abs/1305.3157
https://inspirehep.net/search?p=find+EPRINT+arXiv:1305.3157
https://doi.org/10.1007/BF01218287
https://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,114,1%22
https://doi.org/10.1142/S0217751X98000147
https://arxiv.org/abs/hep-th/9703045
https://inspirehep.net/search?p=find+EPRINT+hep-th/9703045
https://arxiv.org/abs/1402.6572
https://inspirehep.net/search?p=find+EPRINT+arXiv:1402.6572
https://doi.org/10.1103/PhysRevD.60.104030
https://arxiv.org/abs/hep-th/9905099
https://inspirehep.net/search?p=find+EPRINT+hep-th/9905099
https://doi.org/10.1103/PhysRevD.81.024033
https://arxiv.org/abs/0906.2367
https://inspirehep.net/search?p=find+EPRINT+arXiv:0906.2367
https://doi.org/10.1103/PhysRevD.39.2125
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D39,2125%22
https://doi.org/10.1007/978-3-319-61878-4
https://arxiv.org/abs/1610.08526
https://inspirehep.net/search?p=find+EPRINT+arXiv:1610.08526
https://doi.org/10.1103/PhysRevD.96.084032
https://arxiv.org/abs/1607.00009
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.00009
https://doi.org/10.1103/PhysRevD.95.044007
https://arxiv.org/abs/1608.01293
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.01293
https://doi.org/10.1007/JHEP08(2017)087
https://arxiv.org/abs/1705.06257
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.06257
https://doi.org/10.1088/1126-6708/2008/08/007
https://doi.org/10.1088/1126-6708/2008/08/007
https://arxiv.org/abs/0804.1773
https://inspirehep.net/search?p=find+EPRINT+arXiv:0804.1773


J
H
E
P
0
4
(
2
0
1
8
)
0
2
5

[54] G. Barnich, H.A. Gonzalez, A. Maloney and B. Oblak, One-loop partition function of

three-dimensional flat gravity, JHEP 04 (2015) 178 [arXiv:1502.06185] [INSPIRE].

[55] A. Garbarz and M. Leston, Classification of boundary gravitons in AdS3 gravity, JHEP 05

(2014) 141 [arXiv:1403.3367] [INSPIRE].

[56] M.M. Sheikh-Jabbari and H. Yavartanoo, On 3d bulk geometry of Virasoro coadjoint orbits:

orbit invariant charges and Virasoro hair on locally AdS3 geometries, Eur. Phys. J. C 76

(2016) 493 [arXiv:1603.05272] [INSPIRE].

[57] G. Barnich and B. Oblak, Holographic positive energy theorems in three-dimensional gravity,

Class. Quant. Grav. 31 (2014) 152001 [arXiv:1403.3835] [INSPIRE].

[58] G. Barnich and B. Oblak, Notes on the BMS group in three dimensions: II. Coadjoint

representation, JHEP 03 (2015) 033 [arXiv:1502.00010] [INSPIRE].

[59] K. Hajian, M.M. Sheikh-Jabbari and H. Yavartanoo, work in progress.

[60] A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys.

Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].

– 23 –

https://doi.org/10.1007/JHEP04(2015)178
https://arxiv.org/abs/1502.06185
https://inspirehep.net/search?p=find+EPRINT+arXiv:1502.06185
https://doi.org/10.1007/JHEP05(2014)141
https://doi.org/10.1007/JHEP05(2014)141
https://arxiv.org/abs/1403.3367
https://inspirehep.net/search?p=find+EPRINT+arXiv:1403.3367
https://doi.org/10.1140/epjc/s10052-016-4326-z
https://doi.org/10.1140/epjc/s10052-016-4326-z
https://arxiv.org/abs/1603.05272
https://inspirehep.net/search?p=find+EPRINT+arXiv:1603.05272
https://doi.org/10.1088/0264-9381/31/15/152001
https://arxiv.org/abs/1403.3835
https://inspirehep.net/search?p=find+EPRINT+arXiv:1403.3835
https://doi.org/10.1007/JHEP03(2015)033
https://arxiv.org/abs/1502.00010
https://inspirehep.net/search?p=find+EPRINT+arXiv:1502.00010
https://doi.org/10.1016/0370-2693(96)00345-0
https://doi.org/10.1016/0370-2693(96)00345-0
https://arxiv.org/abs/hep-th/9601029
https://inspirehep.net/search?p=find+EPRINT+hep-th/9601029

	Introduction
	Near-horizon extremal geometries
	NHEG group and algebra
	The NHEG group
	The NHEG algebra

	NHEG orbits
	NHEG-Kac-Moody algebra
	Quantization of NHEG orbits
	NHEG unitarity
	NHEG characters

	Discussion and outlook

