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1 Introduction

The Minimal Dark Matter (MDM) [1, 2] scenario is one of the simplest extensions of the

Standard Model with a dark matter (DM) candidate. It requires the addition of one single

(real or complex) scalar or (Majorana or Dirac) fermionic SU(2)L multiplet, with mass

M as the only free parameter. A mass splitting between the components of the multiplet

arises as a loop correction and it is a generic outcome that the lightest component is

neutral and thus a potential dark matter candidate. Such a candidate is a WIMP (indeed

a perfect WIMP, or WIMP archetype, as it has only electroweak interactions) and matching

with the observed DM abundance points to a specific prediction for the mass M of the

thermal candidate, different for each representation, but all in the TeV range. The precise

determination of this mass is however notoriously delicate because of non-perturbative

effects that must be taken into account to calculate the effective annihilation cross section
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of the DM in the early Universe, a point to which we shall come back. The classification

of possible SU(2)L representations may be further restricted by requiring the absence of a

Landau pole, potentially up to the Planck scale, see section 2. Interestingly the stability of

DM may be automatic in the case of a fermionic quintuplet (in the sense that the lifetime

of the DM candidate is naturally long, even taking into account the possible contribution

from effective operators), without the need to impose an ad hoc discrete Z2 symmetry [1]

(a scalar septuplet however, despite being in a large representation of SU(2)L, may be

unstable at one-loop [3]). For this reason, depending on the context or on the authors,

Minimal Dark Matter may refer to the quintuplet candidate only, or the whole set of

admissible electroweak multiplets; we will adopt the latter definition.1

Minimal Dark Matter candidates, like potentially any WIMP, may be searched ex-

perimentally. Most relevant for MDM are constraints from indirect and direct searches

(assuming that MDM is the dominant form of DM within a standard cosmological evolu-

tion). First, direct detection limits exclude any MDM candidate with non-zero hypercharge

(hence a Dirac fermion or a complex scalar) due to scattering off nucleons through Z bo-

son exchange. Now, sufficient mass spitting between the neutral components can help to

alleviate such constraints, see e.g. [7]. This is what we will assume when quoting doublet

and quadruplet cross-sections below. For a Majorana or real scalar candidate, a coupling

to nucleons arises at one-loop (with only a spin-independent (SI) contribution in the scalar

case), see e.g. [1] for a first estimation. The scattering cross-section of MDM off nucleons

has been carefully revisited at NLO in ref. [8] and, for a fermion MDM-proton scattering,

in a representation of dimension n and of hypercharge Y , one has:

σSI =
4

π
µ2f2

p with fp = (n2 − 4Y 2 − 1)fWp + Y 2fZp (1.1)

with fWp = 2.9 10−10 GeV−2 and fZp = −1.8 10−10 GeV−2 and µ = mDMmp/(mDM + mp)

is the reduced mass. Such estimation gives rise to lower cross-sections than originally

estimated and appear to be above the neutrino floor (except for the doublet) and potentially

marginally testable by the Xenon 1T [9] experiment. In particular, from eq. (1.1), one gets

σSI = 8.4 × 10−50 cm2 for a fermion doublet, with (n, Y ) = (2, 1/2), σSI = 2.7 × 10−47

cm2 for a triplet (or 3-plet for short), with (n, Y ) = (3, 0), σSI = 1.6 × 10−46 cm2 for

a quadruplet (4-plet), with (n, Y ) = (4, 1/2), and finally, σSI = 2.4 × 10−46 cm2 for a

quintuplet (5-plet), with (n, Y ) = (5, 0). Notice that in all cases, one can also compute

the spin-dependent scattering on nucleons. We have checked that, at tree-level, the spin-

dependent scattering cross-sections are way beyond current DM searches limits (for a recent

analysis, see e.g. [10]).

Indirect detection limits on MDM candidates are also strong, at least assuming an

Einasto or Navarro-Frenk-White (NFW) profiles for the dark matter distribution in the

Galaxy. This is because of the Sommerfeld effect, which typically enhances the annihilation

1Alternatively, a discrete symmetry may be a remnant of a gauge symmetry [4]. This is the case for

so-called matter parity in the framework of SO(10) Grand Unified Theory [5]. Table 2 of [6] lists all

SO(10) representations up to 210 and 210′ that contain a DM candidate. They encompass all the MDM

candidates up to a fermionic SU(2)L quadruplet (660 is the smallest SO(10) representation that contains

a fermionic quintuplet).
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cross section of MDM candidates at small relative velocities, giving rise to strong gamma-

ray spectral features, see [11–13] for the wino case and [14, 15] for the quintuplet.2 Notice

that on general grounds, dark matter bound state formation [16–20] could also affect the

dark matter annihilation. It has been shown that the latter effect is expected to be relevant

for quintuplet dark matter, while it is negligible in the case of the triplet [21, 22]. In general,

the wino-like dark matter appears now strongly disfavoured by current indirect detection

searches [23] while the quintuplet could be tested by very near future HESS-II data release

on searches for gamma-ray lines from the 10 years Galactic Center data [24].

Because of the advent of these constraints, it may be timely to consider possible

variations around the MDM framework, which at the same time may lead to a broader

range of possible DM candidates. As mentioned above, a basic assumption of this frame-

work is that there is one and only one electroweak multiplet. This, in particular, pre-

cludes Yukawa coupling to the SM Higgs doublet for fermionic candidates.3 A natural

yet simple variation on the MDM framework is to consider simultaneously different mul-

tiplets, in particular fermionic representations that differ by isospin ∆I = 1/2, that al-

lows for “integrating the Higgs portal to fermion DM” [26]. A familiar instance is the

neutralino of the Minimal Supersymmetric Standard Model (MSSM), which is generi-

cally a mixture of bino/higgsino/wino complex. Recently, there have been much stud-

ies of DM candidates from mixed (as compared to pure) representations: singlet-doublet

(∼ bino-higgsino) [26–33] (see also [34] for the case of a Dirac singlet), doublet-triplet

(∼ higgsino-wino) [26, 35, 36] and triplet-quadruplet [33, 37].

In the present work, we complete this panorama by adding to this list the case of

two Weyl 4plets coupled to a Majorana 5-plet (thus called 5M4D), while discussing in an

unified manner the rest of the Higgs coupled MDM (denoted HMDM in what follows)

candidates. This may be of particular interest given the special status of the fermionic

5-plet within the MDM framework, as alluded to above.4 The scenarios that we consider

rest on only 4 free parameters: 2 bare masses (one Dirac mass, mD, and one Majorana

mass, mM ), and two Yukawa couplings to the Higgs, y1 and y2 hence 3 extra parameters

compared to the pure MDM case (in the sequel, we will refer to pure, i.e. à la MDM, and

mixed states). Considering thermal candidates leaves a 3-dimensional subspace of possible

candidates to explore. The goal of this paper is to illustrate that, due to the Yukawa

coupling to the Higgs, HMDM scenarios allow to enlarge the DM mass range of pure MDM

scenarios in a controlled way. We also tentatively comment on the possibility that, owing

to their richer phenomenology, HMDM candidates could potentially evade current indirect

detection constraints, while being observable by future facilities.

2See also [11] for an appraisal of current and future constraints, including from dwarf spheroidal galaxies.
3For scalar MDM candidates, quartic couplings to the Higgs are allowed for any representation, a scenario

that has been much studied in the literature, see e.g. [25].
4Notice that the stability of the MDM 5-plet is accidental and rests on the assumption that there are no

other degrees of freedom below, say, a GUT scale. Indeed, its decay into SM degrees of freedom is driven by

a dimension 6 operator, through the LHHH∗ ∼ (5, 0) combination of SM fields. In the same way, a Dirac

4-plet would involve a 5 dimensional operator, with LHH∗ ∼ (4,−1/2). Such operator would lead to its

rapid decay. Thus, if the 4D is not at the GUT scale and couples to a 5M , the latter is no longer protected

from decay. Hence, in our framework, a discrete parity must be imposed on all the new fermionic multiplets.
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M\D 2 4 6

1 3 [26–33]

3 3 [26, 35, 36] 3 [33, 37]

5 3 3

7 3

Table 1. The HMDM Model Space. Check marks correspond to pairs of Dirac (D) and Majorana

(M) DM representations that can have a Yukawa coupling to the SM Higgs. The green cells are

models with a Landau pole (LP) for α2 at ΛLP ≥ MPl, while the yellow, orange and red cells

correspond to ΛLP in [MPl, 1010GeV], [1010GeV, 105GeV] and < 105 GeV respectively.

The structure of the paper is as follows. We begin this article describing the general

properties of HMDM in a unified framework and analyze the properties of the mass spectra

of both neutral and charged states in section 2. We then discuss the viable parameter space

for a HMDM dark matter candidate taking into account non perturbative corrections to

the processes of (co)-annihilation making use of the SU(2)L symmetric limit and discuss

briefly the prospects for dark matter detection in section 3. We finally conclude in section 4

and provide some extra material in the appendix.

2 Higgs coupled Minimal Dark Matter (HMDM)

We consider left-handed Weyl fermions, ψ and ψ̃, in a 2n-dimensional representation of

SU(2)L with hypercharge Yψ = −Yψ̃ = 1/2 (i.e. an anomaly free, vector-like fermion),

together with a Majorana fermion, χ, (hence with Yχ = 0) in a 2n ± 1 representation of

SU(2)L. Going to 4-components notation, one can construct the Dirac fermion 2n-plet as

Ψ = (ψ, εψ̃†), with (ε = iσ2 the anti-symmetric tensor of SU(2)) and X = (χ, εχ†) the

Majorana fermion. As mentioned in the introduction, the fermions quantum numbers are

chosen so that these fields may have a Yukawa coupling to the SM Higgs and contain a

neutral particle. To ensure DM stability, we assume that all fields of the dark sector are

odd under a Z2 symmetry, while the Standard Model particles are even.

As in the usual MDM framework, we may require that the DM sector does not drive

electroweak couplings to a Landau pole at a too low energy scale. This requirement sets

upper limits on the possible pairs of Dirac (noted D) and Majorana (resp. M) SU(2)L
representations that are stronger than for pure MDM candidates. This leads to the results

summarized in table 1, where we show the D/M pairs with, respectively, no Landau pole

below ΛLP ∼MPl (green cells), ΛLP ∼ 1010 GeV (yellow cells) and ΛLP ∼ 100 TeV (orange

cells).5 The red cells correspond to representations that have a Landau pole below ∼
100 TeV. In this work, we will consider that models with no Landau pole below 1010 GeV

are acceptable, which leaves some room for other, heavier degrees of freedom to address

the Landau pole problem.

5The Landau poles quoted are those obtained at 1-loop. The 2-loop calculations of ref. [3] give different

values for the Landau poles, but do not change significantly the classification of table 1.
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2.1 Lagrangian

The generic form of the Lagrangian we consider is

L ⊃ −mDψψ̃ −
1

2
mMχχ− y1ψχH

∗ − y2ψ̃χH + h.c. (2.1)

together with the kinetic terms of the new degrees of freedom. We take the Yukawa

couplings to be real. We use the SU(2) tensor formalism so that appropriate contractions

of indices are assumed. It may be useful to explicitly discuss a few examples. Writing

the components of the Higgs doublet as H = (φ+, φ0)T , the simplest case is the Yukawa

coupling of two Weyl doublets, ψi and ψ̃i with i = 1, 2, and one Majorana singlet χ or

Bino-Higgsino system, to which we will refer as 1M2D,

−y1χψiH
∗i = −y1

(
φ0∗χ0ψ0 + φ+∗χ0ψ+

)
,

−y2χψ̃iHjε
ij = −y2

(
φ0χ0ψ̃0 − φ+χ0ψ̃−

)
. (2.2)

The next instance is the doublet-triplet system (i.e. Wino-Higgsino) or 3M2D. The Weyl

fermions are as above, while the Majorana triplet is represented by an SU(2)L symmetric

tensor with 2 indices, χij = χji. The correspondence between the tensor basis and the

more familiar basis in terms of eigenmodes of the T3 generators (T3 basis below) is easy to

work out. For the 3M we have



χ11√
2χ12

χ22


 ≡



χ+

χ0

χ−


 , (2.3)

and the Yukawa couplings then take the form

−y1ψiχi′jH
∗jεi

′i = −y1

(
1√
2
φ0∗χ0ψ0 − φ0∗χ−ψ+ + φ+∗χ+ψ0 − 1√

2
φ+∗χ0ψ+

)
,

−y2ψ̃iχi′jHj′ε
ii′εjj

′
= −y2

(
1√
2
φ+χ0ψ̃− − φ+χ−ψ̃0 +

1√
2
φ0χ0ψ̃0 − φ0χ+ψ̃−

)
.

The other cases are compiled in appendix A.

The above combination of bare masses and Yukawa couplings gives rise to mass ma-

trices MQ for a set of fermions of charge Q = T3 + Y that take the same form for all

the models studied here and are uniquely determined by group representation. In e.g. the

basis {χQ, ψQ, ψ̃Q}, in the cases where 3 fermions appear to have the same charge Q, MQ

is given by:

M3×3
Q =(−1)Q



mM aQm̂1 ãQm̂2

ãQm̂1 0 mD

aQm̂2 mD 0


 , (2.4)

while for one or two states of charge Q, MQ take the form:

M2×2
Q =(−1)Q

(
mM m̂1

m̂2 mD

)
, M1×1

Q =(−1)QmD , (2.5)
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with m̂1,2 = y1,2v/
√

2 (with v = 246 GeV) and

aQ = min

[
nχ(−Q)

nψQ
,
nψQ

nχ(−Q)

]
, ãQ = min

[
nχ(−Q)

nψ̃Q
,
nψ̃Q

nχ(−Q)

]
. (2.6)

Here the nΨ(±Q) is the normalization factor that relates a given component of a multiplet

Ψ of charge ±Q in the tensor basis to that in the T3 basis, as given in appendix A. For

instance, from (2.3) we have for the triplet
√

2χ12 ≡ χ0 and thus nχ0 =
√

2, while χ22 ≡ χ+

and so nχ+ = 1. For Yukawa couplings between a triplet and doublets, a0 = ã0 = 1/
√

2.

2.2 Mass spectra

To discuss the mass spectra we will exploit the existence of a global SU(2)R symmetry,6

that mixes ψ and ψ̃ when y1 = ±y2, to which we will refer as custodial points (see e.g. [37]).

A practical interest of that symmetry is that one can have rather transparent and simple

analytic expressions for the mass spectrum and mixing matrices (at least at tree level).

More physically, we will see that it implies that, after EW symmetry breaking, the particles

fall into multiplets of the diagonal subgroup SU(2) ⊂ SU(2)L × SU(2)R. Away from y1 =

±y2, the mass eigenstates are split but, thanks to the custodial symmetry, we will see that

they remain nearly degenerate and thus can still be classified in terms of SU(2) multiplets.

We begin by considering the custodial limit, and then discuss in qualitative terms the

more general situation. In principle we only need to consider the case y1 = y2 as, through

the field redefinition ψ̃ → −ψ̃, y1 = −y2 is equivalent to y1 = y2 together with a flip in

sign of the Dirac mass, mD → −mD. However, we find it more convenient to fix the sign

of mD and let the Yukawa couplings to have arbitrary signs.

2.2.1 Neutral states

Setting y1 = y2 = y the mass matrix of neutral states is diagonalized by going from the

basis ξi = {χ0, ψ0, ψ̃0} with Lm = −1
2

∑
ijM0,ijξiξj to the basis χi = {χ0

1, χ
0
2, χ

0
3} with

Lm = −1
2

∑
imiχiχi and

m1 =
1

2
(mM +mD + ∆mη)

m2 = mD (2.7)

m3 =
1

2
(mM +mD −∆mη)

where

∆mη =

√
(mD −mM )2 + 8(ηyv/

√
2)2 . (2.8)

Notice that η is equal to the coefficients aQ=0 = aQ̃=0 that appear in the M0 mass matrix

of eq. (2.4). In particular, for the cases that we are interested in, we have:

η =





1 1M2D
1/
√

2 3M2D & 5M4D√
2/3 3M4D

(2.9)

6We follow here the nomenclature of the SM, in which the global symmetry acts naturally on right-

handed fermions, i.e. SM SU(2)L singlet fermions.
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For the diagonalisation, we use the transformation7



χ0

1

χ0
2

χ0
3


=



cη sη/

√
2 sη/

√
2

0 i/
√

2 −i/
√

2

−sη cη/
√

2 cη/
√

2






χ0

ψ0

ψ̃0


 (2.10)

with sη = sin θη and cη = cos θη considering

sin2 θη =
1

2

(
1 +

mD −mM

∆mη

)
. (2.11)

The transformation matrix used in eq. (2.10) is equivalent to the one of [26] up to some

differences in normalization and sign conventions. In addition, our χ0
i indices i = 1, 2, 3

do not point to any mass ordering. The latter depends on the hierarchies between mD

and mM and between ηyv and
√
m2
D −mMmD. Going from the basis above to the mass

ordered basis {χ0
α} with indices α = l,m, h (refering to the light, medium and heavy states)

just simply imply a reordering of the transformation matrix entries. The Lagrangian with

couplings to the Higgs (h) and the Z boson takes the form

L = −g
2

(ψ†0σ̄
µψ0 − ψ̃†0σ̄µψ̃0)Zµ − yη(ψ̃0 − ψ0)χ0 h, (2.12)

which corresponds in the basis of mass eigenstates to

L =
g

2
χ0∗

2 σ̄
µ(sηχ

0
1 + cηχ

0
3)Zµ + h.c.

− yη

2
√

2

(
s2η(χ

0
1χ

0
1 − χ0

3χ
0
3) + 2c2ηχ

0
1χ

0
3

)
h+ h.c. (2.13)

with s2η = sin(2θη) and c2η = cos(2θη). This is in agreement with [26] for 1M2D and 3M2D,

up to distinct phase conventions.8

We first briefly comment on the above Lagrangian, as it will be of interest for DM

scattering on nucleons. First of all, the couplings to the Z are non-diagonal reflecting the

fact that, unless y = 0, the mass eigenstates are all Majorana particles. The constraints

from direct dark matter searches are thus avoided provided the mass differences between

χ1,3 and χ2 are larger than O(100 keV) [38]. Notice also that one of the neutral particles

(here χ2) does not couple to the Higgs. This feature is also generic, as only the combination

∼ y1ψ+y2ψ̃ mixes with the Majorana multiplet (see also footnote 7). Then there are some

potentially interesting limiting cases (see also [26]):

• From (2.8) and (2.11) we see that the Lightest Neutral Particle (LNP) has max-

imal coupling to the Higgs when mM ' mD and y1 ' y2 with y1, y2 � |mM −
mD|/(2

√
2ηv). Indeed at the custodial point y1 = y2 and mN = mD so that χ0

3 = χ0

is the DM candidate and θη = π/4. Moving away from this custodial point, we have

checked numerically that the coupling to the Higgs remains close to maximal coupling

when mM ' mD, y1 and y2 have the same sign and |y1 + y2| � 1.

7This transformation matrix comes from the fact that for y1 = y2 only the combination χ′ ∼ ψ + ψ̃

couples to the Higgs. One obtains (2.10) combining a π/4 rotation of the states ψ and ψ̃ together with a

rotation of angle θη in the subspace spanned by χ′ and χ.
8Notice that we do not obtain a 1/cw prefactor in the Zµ coefficient.
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• In the limit mD � mM and y1 ' y2 with y1, y2 � |mM−mD|/(2
√

2ηv) one recovers

the case of the Majorana DM case with zero coupling to the Higgs and kinematically

suppressed coupling to the Z. Indeed, at the custodial point y1 = y2 (y1 = −y2),

χ0
3 = χ0 (resp. χ0

1 = χ0) is the DM candidate and θη = π/2 (resp. θη = 0).

• When mM � mD and y1 ' y2 with small enough Yukawa couplings the states χ3
0

and χ2
0 have a mass splitting δm = O(y2v2/mN ), forming a pseudo-Dirac fermion

and their coupling to the Z is maximal as θη ' 0. As usual, to avoid constraints

from direct detection, the mass splitting must satisfy δm > 1/2µv2 ∼ 100 keV, where

v ' 10−3 is the velocity of the dark matter and µ is the reduced mass of the dark

matter/direct detection target nucleus [38], see section 3.3.1 for more details.

• Finally, let us stress that for mM ' mD but y1 ' −y2, i.e. with Yukawas of opposite

signs, the lightest neutral state has suppressed coupling to the Higgs. This can be seen

from eqs. (2.8) and (2.11), obtained in the limit y1 = y2 = y, by setting mD → −mD.

In the latter case, the LNP is χ0
2 and corresponds to the combination of Weyl states

∝ ψ0 − ψ̃0 that does not couple to the Higgs. As one departs from this custodial

point, the LNP mixes with the neutral component of the Majorana multiplet, χ0,

and so couples to the Higgs.9 We have checked numerically that this behavior holds

over a broad range of parameters away from the custodial point y1 = −y2.

2.2.2 Charged states and SU(2) multiplets structure

We now comment on the mass spectrum of the charged partners. As mentioned above, at

the custodial points the neutral, singly charged and, if present, doubly charged eigenstates

combine into multiplets of the custodial SU(2). Of course, the custodial symmetry is only

approximate, being explicitly broken by coupling to U(1)Y gauge bosons. In the case

of Minimal Dark Matter, one-loop electroweak corrections induce splittings O(100 MeV)

between the components of a multiplet such that the neutral state of a multiplet with

Y = 0 is always the lightest component, and so is potentially a dark matter candidate [1],

see also [39] for a recent discussion. Once non-zero Yukawa couplings between different

representations are considered, there are more possibilities as, away from the custodial

points, mass splittings between components are obtained already at tree level. We first

focus on tree-level splittings and then comment on the potential effects of loop corrections.

A first feature is that for y1 = ±y2, the Majorana and two Weyl states mix and, to-

gether, neutral and charged particles combine to form Majorana SU(2) multiplets according

to the following pattern:

1M2W 2W → 1M1M3M 3M2W 2W → 3M1M3M

3M4W 4W → 3M3M5M 5M4W 4W → 5M3M5M .
(2.14)

In essence, the two n-plet Weyl states (of same chirality and thus opposite hypercharge)

combine to form a Majorana (n+ 1)-plet, the orthogonal state being a Majorana (n− 1)-

plet. At the custodial points, the components of each multiplet are degenerate, but distinct

9To leading order in y1 + y2 the mass of the LNP does not change but the mixing with χ0 is ∝ δm/m×
mM/m where m ' yv and δm ∼ (y1 + y2)v.
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M-D system mM < m∗ ∼ mD mM > m∗ ∼ mD

1M2D ∼ 1M1M3M χ0
l ∼ 1M χ0

l ⊂
{

3M at y1 = −y2

1M at y1 = y2

3M2D ∼ 1M3M3M χ0
l ⊂ 3M

1M y1 = −y2

3M y1 = y2

3M4D ∼ 3M3M5M 3M
5M y1 = −y2

3M y1 = y2

5M4D ∼ 3M5M5M 5M
3M y1 = −y2

5M y1 = y2

Table 2. After EWSB the Weyl and Majorana states mix. At the custodial points (y1 = ±y2)

they combine into multiplets of a custodial SU(2) symmetry. Away from the custodial points, the

multiplets component are split, but remain nearly degenerate, thanks to the custodial symmetry.

See text. The table shows to which SU(2) multiplet the LNP (lightest neutral particle) χ0
l belongs

for each case. This depends on the mass hierarchy between the bare Majorana and Dirac masses,

or more precisely on whether mM is smaller or larger than m∗ = mD − y21(ηv)2/2mD.

multiplets have a distinct mass. The multiplet that contains the dark matter candidate

can be determined by direct evaluation of the mass eigenstates. However, as the mixing

between three neutral states involves solving a cubic equation, the outcome is not a priori

obvious. Fortunately, the mass spectra have some general features, which are easy to grasp

using the custodial symmetry.

In what follows, we provide a detailed case by case study. In essence, the relevant points

of the discussion below can be summarized as follows: 1) at the custodial points, the LNP

belongs in general (it can be in a 1M , for instance in the 1M2D) to a multiplet of the SU(2)

custodial symmetry; 2) away from the custodial points, the multiplet components are split,

but the splitting is somewhat protected by the custodial symmetry and 3) the LNP is always

the lightest component of the multiplet; 4) the mass splitting are O((y1 ± y2)2v2/mM ) if

mM � mD and O((y2
1 − y2

2)v4/m3
D) if mM � mD, assuming small Yukawa couplings.

The 1M2D case. The typical spectra are shown in figure 1 for the cases mM & mD (left

panel) and mM . mD (right panel).10 In each panel, the three solid lines correspond to the

three neutral states, the lightest being a potential DM candidate. The horizontal dashed

line corresponds to the charged states, with mχ± = mD. Focusing on the custodial point

y2 = −y1, we observe that clearly two of the neutral states, one of which has mass mD at

y2 = −y1, have an avoided level crossing.11 The latter corresponds to the combination of

Weyl states that does not couple to the Higgs. This state is degenerate with the charged

states, and altogether they form an SU(2) triplet, 3M . Whether the LNP belongs to this

10Note that in figure 1, and especially in figures 2–6, we use parameters that do not specifically refer to

viable DM candidates but are meant to clearly illustrate our discussion of the mass spectra.
11For clarity, we plot the absolute value of all the masses. The third neutral state, corresponding to the

red lines in figure 1, state has a negative eigenvalue mass (in our basis). In general, there is level repulsion

between all the states.
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Figure 1. Mass spectra on the 1M2D system for y1 = 1 as a function of y2. The masses of the

neutral states are depicted with continuous colored lines and by a black dashed line for the charged

components. We use the subscripts l and h1,2 to refer respectively to light and heavy neutral

eigenstates. These spectra illustrate the fact that the charged states combined with a singlet to

form a Majorana triplet 3M at the custodial points y1 = ±y2. The lightest neutral particle (LNP

∼ χ0
l ) is in this case generically a Majorana singlet, except near the custodial point y2 = −y1 ≡ −1

if mM > m∗ ∼ mD where it forms a 3M . There is another 3M at y2 = y1 ≡ 1 but its neutral

component is not the LNP. See text for more details.

triplet depends on the hierarchy between the bare Dirac and Majorana masses, mM & mD

(left panel) or mM . mD (right panel). More precisely, it is easy to verify that the levels

cross when

mM = m∗ ≡ mD − y2
1

η2v2

2mD
(2.15)

were we assumed y1v � mD with y2 = −y1. If mM > m∗, the LNP has mass mD and,

together with the charged states, is in a triplet, 3M . If instead mM < m∗, the LNP is a

singlet, 1M . The latter state is a mixture of the original Majorana singlet χ0 and of the

combination of Weyl states to which it couples through the Yukawa.

Away from the custodial point y2 = −y1, we observe from figure 1 that the mass

eigenstates repel each other so that the mass of the LNP decreases while the mass of the

charged partner stays constant, mχ± ≡ mD. Level repulsion thus explains why the LNP

is also the lightest particle, and so potentially a dark matter candidate. For mM > m∗
and working in the limit |y1 + y2|v � mM,D, it is easy to obtain that the mass splitting is

given by

∆m = mχ±l
−mχ0

l
≈ a2

0

4
(y1 + y2)2 v2

mM
≡ (y1 + y2)2 v2

4mM

where the subscript l stands for “light”. So for y1 + y2 6= 0, the LNP is a singlet, and this

both for mM > m∗ and mM < m∗.
Finally, from figure 1 we notice that the charged states combine with another singlet

at y1 = y2. This triplet is however heavier than the LNP.12 To recap, at the custodial

12Also, we notice that the mass of this LNP may vanish for large enough Yukawa couplings. This happens

if the mMmD ≈ η2y1y2v2 and so, assuming perturbative couplings, y1,2 . 4π, only for mDmM < O(TeV).
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Figure 2. Mass spectra on the 3M4D system for y1 = 1 as a function of y2. The eigenmass of

the neutral states are depicted with the same color coding as in figure 1; singly charged eigenmass

are shown as black dotted lines; the doubly charged states have constant mass mD. These spectra

are meant to illustrate the fact that the neutral and charged states combine in 2 Majorana 3M and

one 5M of SU(2) at the custodial points y2 = ±y1 ≡ ±1 and, also, that they are nearly degenerate

away from these points.

points, the pattern of multiplet is as in (2.14), with 1M2W 2W → 1M1M3M . Whether the

LNP is in a 1M or a 3M is summarized in table 2.

The 3M4D case. We discuss this next because it shares features with the 1M2D case.

According to (2.14), we have the pattern 3M4W 4W → 3M3M5M at the custodial points.

This is illustrated in figure 2 that shows that the neutral states follow always the same

pattern as in the 1M2D system discussed above. The question is what is the mass spectrum

of the charged partners? In the 3M4D case, it is the doubly charged state χ±± that does

not mix and so has mass mD. At the custodial point y1 = −y2 we observe from figure 2

that it belongs to a 5M formed with states (neutral and singly charged) that do not couple

to the Higgs. This 5M contains the LNP if mM > m∗. If mM < m∗, the LNP is instead in

a 3M . The twist compared to the 1M2D case is that, away from y1 = −y2, level repulsion

brings down both the mass of the LNP and that of its singly charged partners, so that the

LNP belongs to a nearly degenerate 3M multiplet. The reason for this interesting behavior

may be understood analytically by considering the hierarchies y1,2v � mD � mM or

y1,2v � mM � mD.

1. mM � mD. At y1 = −y2, the LNP belongs to a 5M of SU(2) with mass mD. The

doubly charged components do not mix, so the mass is equal to mD for all y1,2. Away

from the custodial point y1 = −y2, level repulsion brings down the mass of both the

neutral and singly charged components. In the limit y1,2v � mD � mM , we get near

y2 = −y1 that

mχ0
l
≈ mD −

a2
0

4
(y1 + y2)2 v2

mM

≈ mD −
1

6
(y1 + y2)2 v2

mM
(2.16)
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while

mχ±l
≈ mD −

a2
1ã

2
1

2(a2
1 + ã2

1)
(y1 + y2)2 v2

mM

≈ mD −
1

8
(y1 + y2)2 v2

mM
(2.17)

Thus, the mass splitting between the singly charged components and the LNP is

∆m = mχ±l
−mχ0

l
≈ 1

24
(y1 + y2)2 v2

mM
> 0 (2.18)

and the LNP is, at tree level, the lightest component of a nearly degenerate 3M away

from the custodial point. This is a generic conclusion: in all cases, the LNP is at tree

level always the lightest component of the SU(2) multiplet to which it belongs, and

thus a priori a DM candidate. Why this is so is a bit mysterious but may be traced to

the entries in the mass matrices, see (2.4)–(2.6). The outcome is that, somehow, level

repulsion is stronger for the neutral particles than it is for their charged partners.

We also infer that the custodial symmetry is keeping the 3M nearly degenerate. We

interpret this as being due to the fact that at the other custodial point, y1 = y2, the

lightest singly charged and neutral particles must again combine to form an exactly

degenerate SU(2) multiplet. As the mass of the doubly charged states stays constant,

the only possibility is that the LNP is in a 3M , in agreement with what is observed

figure 2. Within the same approximations as above we get that, around y1 = y2, the

mass splitting between the charged component and the LNP is again

∆m ≈ 1

24
(y1 − y2)2 v2

mM
> 0 (2.19)

At the point y1 = y2 the doubly charged states belong to a 5M , but this multiplet

does not contain the LNP.

2. mD � mM . The main difference compared to mD � mM is that the mass splittings

are parametrically smaller. From inspection of the right panel of figure 2, we see

that the LNP is part of 3M for all the range of Yukawa couplings; this multiplet is

essentially the original Majorana triplet. Near y2 = ±y1, and for mD � mM � y1,2v,

we get

∆m ≈ 1

9
(y2

1 − y2
2)2 v

4

m3
D

> 0 (2.20)

We see that the mass splitting is indeed parametrically smaller than in the case

mD � mM as it involves four powers of the Higgs vev, compare with eq. (2.18).

The mass splittings away from the custodial points depend too on the hierarchy of

Majorana and Dirac masses, a feature already observed in [37]. This is illustrated

diagrammatically in figure 3 for mM � mD (left panel) and mM � mD (right panel).

These Feynman graphs mean to illustrate the fact that mass splitting within custodial

SU(2) multiplets requires both y1 6= y2 and a Majorana mass insertion.

To recap, in the 3M4D system, at the custodial points, the pattern of multiplet is as

in (2.14), with 3M4W 4W → 3M3M5M . Whether the LNP is in a 5M or a 3M depends on

the hierarchy between mM and mD, as summarized in table 2.
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Figure 4. Mass spectra in the 3M2D system for y1 = 1 as a function of y2 for mM & m∗ (left

panel) and mM . m∗ (right panel). Masses of neutral states are depicted with continuous colored

lines and the singly charged states with black dotted lines.

The 3M2D and 5M4D cases have common features. The spectra of the neutral states

are analogous to those of the 1M2D and 3M4D systems. The main difference is that all

states (neutral, charged and, if they exist, doubly charged) mix, see figures 4 and 5. Again,

we distinguish mM > m∗ ∼ mD and mM < m∗.

1. mM � mD. At the custodial point y2 = −y1, the LNP is the combination of Weyl

states ψ and ψ̃ that does not couple to the Higgs, and so has mass mD. It is a 1M
in the 3M2D case (figure 4), and is in a 3M in the 5M4D one (figure 5). Away from

y1 = −y2, level repulsion decreases the mass of the LNP. Interestingly, because all

the states are mixed, we see in the left panel of figure 4 (figure 5) in the 3M2D (resp.

5M4D) also the mass of the singly charged states χ±l (resp. doubly charged χ±±l )

decrease, so that at the other custodial point, y1 = y2, the LNP belongs to a 3M
(resp. a 5M ).

2. mM � mD. In this case, shown in the right panel of figure 4 (figure 5) the LNP is

always in a 3M (resp. 5M ) in the 3M2D (resp. 5M4D), as it is essentially the original

Majorana χ0 with a small (in the limit mM � mD) admixture of ψ0
1,2 states.

To recap, in the 3M2D (5M4D) system, and at the custodial points, the pattern of

multiplet is as in (2.14), with 3M2W 2W → 3M3M5M (resp. 5M4W 4W → 5M5M3M ).
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Figure 5. Mass spectra in the 5M4D system for y1 = 1 as a function of y2 for mM & m∗ (left

panel) and mM . m∗ (right panel). Masses of neutral states are depicted with continuous colored

lines, for the singly charged states with black dotted lines and for the doubly charged states with

black dashed lines.

Whether the LNP is in a 1M or a 3M (resp. a 3M or a 5M ) depends on the hierarchy

between mM and mD, see table 2.

2.2.3 Comments on effects of loop corrections

The conclusions of the previous section raises the question of the effects of radiative cor-

rections. The custodial symmetry is broken at one-loop by electroweak corrections. For

pure MDM, ∆m ∝ α2mW sin2 θW = O(100) MeV [1]. For mixed states, one expects that

the situation is more complex. We have not studied the spectra at one-loop, so we will be

sketchy, but we may refer to other works.

A first naive conclusion would be that, at the custodial points, as the LNP belongs to a

multiplet of SU(2), the situation must be the same as for MDM. That this is not quite the

case is illustrated in figure 2 of ref. [37] for the 3M4D case when including NLO corrections.

Beware that we used different conventions, so their case y = y1 = y2 corresponds to our

case y = y1 = −y2. Regardless, their figure 2, illustrate the mass splittings dependence in

y, at one-loop, at one of the custodial points. The LNP is noted χ0
1 ≡ χ0

l and at tree level

it is in a 5M if mM � mD and a 3M if mM . mD (see our figure 2). One first sees in their

figure 2 that the mass splitting between the LNP and its singly charged partners depends

on y. This is manifest for mM & mD (left panel), in which case the LNP has mass mD

and is a Majorana built of the states ψ and ψ̃. As these states have opposite hypercharge,

their coupling to the neutral gauge bosons breaks the custodial symmetry even if at the

custodial point y1 = y2. For the case mM . mD (right panel), the DM is essentially the

original Majorana multiplet, with an admixture of Weyl states, so we expect this case to

be closer to MDM. The dependence on y must be mild, consistent with the right panel of

figure 2 of ref. [37].

Another naive conclusion would be that, away from the custodial points, the LNP

remains the lightest component of the multiplet even at one-loop. After all, in the MDM,

radiative corrections make the charged partners heavier than the neutral one. However,

– 14 –



J
H
E
P
0
4
(
2
0
1
8
)
0
1
1

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5
y2

4

3

2

1

0

1

2

3

∆
m

 [
G

e
V

]

3M4D mM =400 GeV, mD =200 GeV and y1 =1

tree level

one loop [Tait'16]

Figure 6. Mass splitting ∆m = mχ±l
− mχ0

l
in the 3M4D system at tree level for y1 = 1 as a

function of y2 for mM & m∗. The continuous black curve is the mass splitting at tree level. The

red dashed curved is that at one-loop as obtained in ref. [37].

it seems that this is not the case either, see again ref. [37]. To be precise, if we remain

in a regime in which the Yukawa couplings are not “too large”, one may expect that the

dominant contributions to mass splitting are either determined from |y1| 6= |y2| at tree level

or at one-loop through gauge corrections; in both cases, the mass splittings are such that

the LNP must be the lightest stable particle and thus potentially a dark matter candidate.

If the Yukawa couplings get large however, this intuition may become invalid. For instance,

one may get into a regime in which the mass of the LNP (and its charged partners) vanishes

at tree level. This is possible if y1 and y2 are large and have the same sign (again, following

our convention), see our figure 2. More precisely, one may check that this occurs if the

product mMmD ≈ η2y1y2v
2, so that it may happen only for bare Majorana and Dirac

masses below the TeV range provided y1,2 . 4π. For the sake of comparison, we show in

figure 6 both the mass splitting at tree level derived here (black curve) and the result at one

loop obtained in ref. [37] (we report here with red dashed line the red curve ref. [37] plotted

the left panel of their figure 4). There we see that ∆m at one loop (red dashed) becomes

negative when y1 and y2 are large and have the same sign, corresponding to the range of

parameters for which the mass of the components of the lightest multiplet, and their mass

splittings, are driven to zero at tree level (black continuous). That one-loop corrections

can jeopardize the mass splitting in these conditions is thus perhaps not surprising. More

strange is the fact, stated in ref. [37], that ∆m becomes negative at one-loop even if

the bare masses are large, which we suppose corresponds to mMmD � η2y1y2v
2. Also,

ref. [37] reports that this happens for mM & mD. It could be interesting to explore further

this feature.

3 HMDM: cosmology and astrophysics

The questions that we would like to address now is what is the mass range for which our

candidates can accommodate all the DM (i.e. ΩDMh
2 = 0.12) and where, within this mass

range, one would expect to get observable signals from the dark matter? As mentioned in

the introduction, a complete treatment of these questions would require to take into account
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Sommerfeld corrections and bound state formation contribution to the annihilation cross-

section for arbitrary Majorana-Dirac mixing. This is a difficult problem, which has only

been tackled in details for specific SUSY-inspired scenarios, see e.g. [35, 40, 41]. It is

beyond the scope of this work to discuss these non-perturbative corrections in the generic

HMDM. In what follows, we first analyze the viable parameter space in the perturbative

limit. We then review how non-perturbative corrections affect these predictions for the

limiting cases of pure MDM, and we provide an estimate of the Sommerfeld corrections for

the pure quadruplet scenario. The latter is the only MDM case for which the Sommerfeld

effect has not yet been explicitly studied in the literature. We close the discussion on non

perturbative effects deriving the boundaries of the parameter space of the viable HMDM

under study in this paper making use of the SU(2)L symmetric limit. We also briefly

comment on the possible prospects for DM direct and indirect searches.

3.1 HMDM enlarging the MDM space: perturbative results

In this section we want to explore to which extent the parameter space of Minimal Dark

Matter candidates is enlarged when different multiplets are coupled to the Higgs. This

of course has been discussed case by case in many works, but as far as we know, no

systematic comparison has yet been provided in the literature. For a given system, say

the 3M2D, the parameter space is a priori 4 dimensional, as we have two bare masses,

mM and mD and two Yukawa couplings, y1 and y2. Fixing the relic abundance reduces

this to 3 independent parameters (the “viable” DM candidates). For pure MDM, and thus

zero Yukawa couplings, the mass of the viable DM candidate is fixed [1] and for non-zero

Yukawa couplings, the viable candidates should cover a domain in the plane mM −mD.

To estimate the boundary of the HMDM domains, we will make use of the electroweak

symmetric limit. We will do so first because this tremendously simplifies the discussion, as

we may neglect the mass splittings, mixing effects and annihilation through Higgs mediated

processes in determining the abundance. A further motivation is that we may expect that

the boundaries correspond to candidates for which Yukawa couplings are small, and so

are close to the pure MDM cases. Last, the masses of MDM candidates are typically in

the multi-TeV range, at least for MDM multiplet larger than the doublet, so that freeze-

out occurs close or above the electroweak phase transition [1, 2]. Nevertheless, we should

keep in mind that the symmetric approximation is better for the largest multiplets we

consider.13 We will comment further on the validity of this approximation towards the end

of this section.

In the symmetric limit, we may neglect the mass splittings between the multiplet

components, so that our ingredients are a mixture of pure Dirac and Majorana multiplets,

which may co-annihilate with each other if their masses are within ∼ 10% [42]. On the

13Concretely, the electroweak symmetric limit is expected to be most appropriate when DM interactions

freeze-out at a temperature above the Electroweak Phase Transition (EWPT). Assuming that the critical

temperature at which SU(2)L gets restored is of Tcr = 155 GeV, the SU(2)L symmetric limit would be

expected to begin to be accurate for mDM & xf × Tcr ∼ 3 TeV. Notice though that, in e.g. the case of the

triplet DM with mDM = 2.7 TeV, the SU(2)L symmetric limit Sommerfeld correction gives an estimate of

the DM mass that is only ∼ 10% larger than the one obtained in the broken limit, see [22].
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text for details. The pure doublet, triplet, quadruplet and quintuplet limits including Sommerfeld

corrections (and bounds state (B.S.) formation from [22] in the 5-plet case) are indicated with

dashed lines, see section 3.2.

other hand, in the presence of Yukawa interactions between the Dirac and the Majorana

multiplets one expect that for mM ' mD the coannihilation processes are quite efficient.

To determine the boundary of the HMDM domains, we assume that the Yukawa couplings

are sufficiently large for co-annihilations to be relevant, but that they are small enough

so that the DM n-plet annihilation cross-section relevant for freeze-out is dominated by

gauge interactions:

σveff,n '
ζ

n2

α2
2Cn

m2
DM

(3.1)

where ζ = 1 for the Majorana multiplet and 1/2 for the Dirac one, and Cn is a dimensionless

coefficient that mainly depends on n (see section 3.2.3 below for more details). Also, we

have neglected the mass of the gauge bosons. Following the treatment of [42], a proxy

for the total annihilation cross-section at freeze-out for a mixture of Dirac and Majorana

multiplets in interaction, would be:

σveff '
1

g2
eff

∑

i=M,D

g2
i σveff,i and geff =

∑

i=M,D

gi

gi = ni(1 + ∆i)
3/2 exp(−xf∆i) (3.2)

where the sum runs over the two multiplets and ∆i = (mi − m0)/m0 with m0 =

min(mM ,mD), ni denotes the total number of degrees of freedom for the Majorana (M) or

Dirac multiplet (D) and σveff,i corresponds to (3.1) for n = ni. For concreteness, we will
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take xf = m0/Tf = 30 when computing the cross-sections in the SU(2)L symmetric limit.

We also use the standard approximate expression for the relic abundance

ΩDMh
2 ' 1.07 109 xf

Mpl/GeV
√
g∗ η σveff

, (3.3)

valid for annihilation into an s-wave, with Mpl = 1.22 1019 GeV is the Planck mass and

g∗ is the number of relativistic degrees of freedom at the time of freeze-out. Imposing

Ωh2 = 0.12, we obtain the contours shown in figure 7 with continuous colored lines. Notice

that the material necessary to work out the expression of the relevant annihilation cross-

sections is discussed in more detail in section 3.2.14

For each pair of Dirac and Majorana multiplets, the contours have asymptotic solu-

tions corresponding to the pure (Majorana or Dirac) MDM candidates, linking each others

approximatively along the diagonal mM = mD. Along this diagonal, the effective number

of degrees of freedom is larger than for the pure cases, an effect which must be compen-

sated by larger annihilation cross sections and thus smaller DM masses, compared to the

pure cases. To put it simply, the situation is like having together two DM particles, with

a similar mass, and so a larger abundance for fixed annihilation cross sections. This is

the origin of the bottom-left pointing nose-shaped features observed in the contours along

the mM ∼ mD direction. For larger Yukawa couplings DM depletion is more efficient due

to the opening of more annihilation channels and more efficient co-annihilation channels,

and so with extra terms contributing to eq. (3.2), see [42]. Thus the contours feature a

top-right pointing “nose” instead, i.e. the observed relic abundance would be obtained for

a value mM = mD larger than for the pure cases. Such features are observed in the plots

of ref. [37] for the case 3M4D. Thus we infer that the shaded regions delimited by the

contours (gray for 1M2D, blue for 3M2D, green for 3M4D and red for 5M4D) enclose all

the candidates that would give rise to Ωh2 = 0.12 for a proper choice of the Yukawas

y1, y2. For a given model, larger couplings are required in the innermost regions when

larger (mD,mM ) masses are considered. Outside the shaded regions, the DM candidates

have an abundance below Ωh2 = 0.12.

To corroborate this simple, yet qualitative picture we have checked that the contour,

obtained here in the electroweak symmetric limit, is in a good agreement with the numerical

results for the dark matter abundance computed with micrOMEGAs, i.e. working in the

SU(2)L broken limit, including mass splittings. For illustrative purposes, we show in figure 8

the results from a random scan over the parameter space of the 5M4D system, imposing

0.11 < Ωh2 < 0.13, 10−4 < |y1|, |y2| < 4π and 1.5 < mχ,mψ < 10TeV. Let us emphasize

that we do not incorporate the possible non perturbative effects in figure 8. The latter

effects are discussed in the next section. Yet, we see that the viable parameter space of

candidates obtained with micrOMEGAs (colored points) fit very well within the boundaries

obtained in the SU(2)L symmetric limit, shown with dashed red contour (corresponding

14Also notice that the approximation we use here is only valid up to masses of the order of ∼ 10 GeV as

we do not account for the change in relativistic degrees of freedom around QCD transition [43], the figure 7

starts thus with mM ,mD > 10 GeV.
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Figure 8. DM candidate parameter space in the perturbative 5M4D case for an explicit integration

of the dark matter abundance with micrOMEGAs in the SU(2)L-broken limit. All points give rise to

Ωh2 ' 0.12 for a value of the yukawa combination
√
y21 + y22 indicated with the color code. Notice

that we have considered |y1|, |y2| as small as 10−4 but all points with
√
y21 + y22 < 0.5 are shown in

blue as they all end up in the contours of the 5M4D parameter space. With red dashed line, we

show the (red) contour obtained in the SU(2)L symmetric limit for the 5M4D case in figure 7.

to the continuous red colored line in figure 7). The latter was obtained using the simple

equations (3.2) and (3.3).

3.2 Dark matter abundance and Sommerfeld corrections

As mentioned above, computing Sommerfeld corrections in each HMDM case in general is a

very involved calculation. In the SU(2)L symmetric limit, important simplifications of the

Sommerfeld computation come from the fact that isospin is conserved in the annihilation

and scattering processes. This allows to solve Schrodinger equations of 2-particle wave-

functions ΨI of definite total isospin I, without mixing among them. As a consequence the

Sommerfeld correction compution of a system of a large number N of coupled differential

equation is reduced to the resolution of N ′ < N uncoupled differential equations, which

strongly simplifies the problem [15, 21, 22, 44–47]. We will work in this framework in what

follows.

3.2.1 Sommerfeld corrections in the SU(2)L symmetric limit

The N ′ above is associated to the number of possible irreducible representations Ra re-

sulting from the direct product:

Ri ⊗Rj =

N ′∑

k=1

Ra (3.4)
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where Ri and Rj denote the representation under SU(2)L of the two annihilating particles

i and j. Assuming zero mass gauge bosons in the unbroken SU(2)L limit, the potentials

driving the SU(2)L long range interactions, take the form [45]:

V
SU(2)
Ia

(r) =
αIa
r

=
α2

r

1

2
(Ca − Ci − Cj) , (3.5)

where α2 = g/4π, with the SU(2)L gauge coupling g, and the Cl with l = i, j and a are the

quadratic Casimir operators associated to the representation Ri,Rj and Ra. In the case

of SU(2)L, Cl = Il(Il + 1) where Il is the isospin corresponding to the representation Rl.

Also, for annihilating particles with non zero hypercharge, we get a U(1)Y contribution to

the potential that reads:

V U(1) =
α′

r
=
−α2t

2
wY

2

r
(3.6)

where α′ = g′/(4π), g′ is the U(1)Y gauge coupling related to g by the tangent of the

Weinberg angle tw and Y = |Yi| = |Yj | is the absolute value the hypercharge of the

particles i and j.

In this way the total potential associated to a pair of particles annihilating in the total

isospin state I = Ia becomes

VI = V
SU(2)
I + V U(1) =

αI + α′

r
. (3.7)

In the zero mass approximation for the gauge bosons, each of the N ′ Shrödinger equations

can be solved analytically. As a result, in the s-wave limit, the annihilation cross section

σvI of a given total isospin I 2-particles state is given by:

σvI = SI σv
pert
I with SI =

−πaI
1− exp(π/aI)

(3.8)

where SI is the Sommerfeld factor that multiplies the perturbative annihilation cross section

σvpert
I and aI = v/[2(αI + α′)] where v denote the relative velocity of the initial state

particles. A priori, one should be concerned with the fact that at finite temperature,

the gauge boson masses are non zero. The Higgs vev is temperature dependent and, in

addition, the squared masses of the gauge bosons get an extra thermal mass contribution,

see e.g. [48]. We have however checked that due to these effects, for large representations,

the Sommerfeld correction factors obtained resolving the Shrödinger equations including

the thermal mass corrections agree with the Coulomb approximation of eq. (3.8) with an

error < 1% for I ≤ 2 that is the maximum total isospin of a pair of standard model particles

XX ′ into which ij is annihilating into. See also [22] for a careful treatment.

For computing the relic abundance in a pure case, we use eq. (3.3) with

σveff = ζ
∑

ij

gigj
geff

σvij (3.9)

with ζ = 1 for self-conjugate particles and 1/2 otherwise and geff =
∑
gi with gi the

number of degrees of freedom associated to the species i. Notice that the eq. (3.9) is only

valid in the limit of negligible mass splittings between the (co-)annihilating particles that is
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relevant in the SU(2)L unbroken limit. The (co-)annihilation cross-sections of initial state

particles ij to any 2-body SM final state, σvij , can easily be obtained from Feynmman

rules. Making use of Clebsch-Gordan decomposition one can recast the |ij〉 contributions

in terms of the isospin of 2 particle states |Ia〉, see appendix B for one example in the

quadruplet case that is addressed in more detail below. As a result, for a dark matter

candidate in a representation RX of SU(2)L with an isospin IX , in the simple case of

Y = 0, the effective cross section of eq. (3.9) reduces to:

σveff =
ζ

(2IX + 1)2

∑

I

(2I + 1)σvI [caseY = 0] , (3.10)

where I runs over the Ia values with a = 1, . . . , N ′. The cross-sections σvI should be taken

as in eq. (3.8). For Y 6= 0, extra contributions to σveff are expected from U(1)Y gauge

bosons (Bµ) insertions giving rise to annihilation cross sections proportional to α′2, denoted

by σvg′ , and cross sections proportional to α′α, denoted by σvg′g. The former results from

Bµ mediated annihilations into two fermions or two Higgs, corresponding to SU(2)L singlet

state, while the latter results from annihilations into both Bµ and an SU(2)L gauge boson,

corresponding to SU(2)L triplet state. The overall Sommerfeld-corrected effective cross

section relevant for the relic abundance computation thus reads:

σveff =
ζ

(2IX + 1)2

(∑

I

(2I + 1)SIσv
pert
I + SI=1 σv

pert
gg′ + SI=0 σv

pert
g′

)
[caseY 6= 0] ,

(3.11)

where, in the sum, I runs over the Ia values with a = 1, . . . , N ′. Let us emphasize that

the perturbative results, used for the plot in figure 7, can simply be obtained setting the

Sommerfeld factors SI to 1.

3.2.2 One example: the pure quadruplet

We now illustrate in more detail how the method above can be applied to the pure 4-

plet dark matter case. To our knowledge, this is the only pure case in which Sommerfeld

corrections have not been previously computed explicitly. The 4-plet appears in a study

of ref. [37], a treatment at perturbative level only, while the treatment of the doublet,

the triplet, the quintuplet and the 7-plet at non-perturbative level can readily be found in

refs. [14, 15, 21, 22, 46–48]. Our results agree with the most recent updates, see section 3.2.3

for more details.

We thus provide here a detailed computation of the Sommerfeld correction in the

SU(2)L symmetric limit for the 4-plet. The Weyl multiplets that we are dealing with are:

ψ =




ψ++

ψ+

ψ0

ψ−


 and ψ̃ =




ψ̃+

ψ0

ψ−

ψ−−


 , (3.12)

with opposite hypercharges equals to 1/2 and -1/2. In the scattering of 4 and 4̄, we know

that 4 ⊗ 4̄ =
∑N ′

a=1Ra = 1 ⊕ 3 ⊕ 5 ⊕ 7, where Ra are the SU(2)L representations of the
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Figure 9. Pure 4-plet relic abundance Ωh2 including the Sommerfeld corrections (continuous

brown) or not (red dotted) in the s-wave SU(2)L symmetric limit for the annihilation of quadru-

plet dark matter. With the blue dashed line we also show the results obtained with micrOMEGAs

neglecting the Sommerfeld corrections in the SU(2)L broken case.

2-particle states with a = 1, . . . , 4 and isospins I = {0, 1, 2, 3}. In the Coulomb limit, the

associated SU(2)L potentials from eq. (3.5) take the values

V
SU(2)
I =

−α2

r

{
15

4
,

11

4
,
3

4
,
−9

4

}
, [4-plet] (3.13)

where we have used that the 4-plet has isospin I4 = 3/2. In addition, the U(1)Y contribu-

tion reads

V U(1) = −α2t
2
wY

2
4 /r with Y4 = 1/2 . [4-plet] (3.14)

The overall potentials for I = {0, 1, 2, 3} involved in the long range physics computation

associated to the annihilation of the 4 and 4̄ is thus a sum of SU(2)L potentials from

eq. (3.13) and V U(1) as in eq. (3.7). Using (3.8) with v ' 0.2,15 we obtain the following

Sommerfeld correction factors:

SI = {3.9, 3.0, 1.5, 0.3} . [4-plet] (3.15)

After extracting the σvI,g,g′ following the method above, see appendix B for more

details, the results for the relic abundances in the s-wave SU(2)L symmetric limit are

15We use v = 0.23 for the computation of SIa so as to match the results of [14, 15] in the 5-plet case for

which the Sommerfeld correction in the SU(2)L symmetric limit have been shown to provide an accurate

approximation to the full computation [22].
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summarized in figure 9 using:

σvpert
I=0 =

75

4

α2
2π

M2
DM

, σvpert
I=1 =

125

8

α2
2π

M2
DM

, σvpert
I=2 = 6

α2
2π

M2
DM

(3.16)

σvpert
g′g =

15

2
t2w

α2
2π

M2
DM

, σvpert
g′ =

43

8
t4w

α2
2π

M2
DM

[4-plet] (3.17)

From figure 9, in order to account for ΩDMh
2 = 0.12, one would thus get MDM = 2.4 TeV

in the perturbative limit, while taking into account the Sommerfeld corrections one gets

MDM = 3.9 TeV. Also notice that, working in the SU(2)L broken limit using micrOMEGAs

to compute the relic abundance, one obtains MDM = 2.3 TeV in the perturbative limit to

account for ΩDMh
2 = 0.12 (see the blue dashed line in figure 9). This agrees with results

of [37] in the 3M4D case in the limit of high mass triplet (i.e DM almost pure quadruplet).

We are thus making a ∼ 4% error working in the SU(2)L symmetric case in order to

determine the relevant dark matter mass in the perturbative limit.

It has recently been pointed out that bound state formation (BSF) can provide an

extra enhancement of the annihilation cross-section of minimal dark matter [21, 22]. In

particular [21] first showed that the rate of BSF in the triplet case is suppressed compared

to direct annihilation. In [22], it was shown that BSF raises the mass of the 5-plet to

11.5 TeV, i.e. a ∼ 20% (∼ 40%) correction to the mass (annihilation cross section) obtained

with Sommerfeld corrections only while essentially no corrections appear in the 3-plet case.

It is beyond the scope of this paper to compute in detail the impact of BSF on freeze-

out calculations. Here we just want to argue that the correction from BSF corresponding

to the 4-plet case is expected to be smaller than for the 5-plet case. As noted by [22], bound

states can efficiently form even at temperatures T ∼ mDM/xf larger than the corresponding

bound state binding energies, because the dissociation rate can be suppressed with respect

to naive expectations. Nonetheless, the intuition that smaller EB/Tf ratios (i.e. binding

energy to freeze-out temperature) lead to smaller corrections from BSF remains valid,

as shown in [22] for the 3-plet case compared to the 5-plet case. Indeed for the former,

EB . 0.05 GeV at Tf ∼ 100 GeV leads to a correction to the DM relic density at the % level,

whereas for the latter, EB . 60 GeV at Tf ∼ 460 GeV leads to a 40% correction. In the

case of the 4-plet, the most attractive potential (corresponding to the singlet two-particle

state) has a strength of 15α2/4, which corresponds to an n = 0 bound state with binding

energy EB ∼ 4.2 GeV at Tf ∼ 160 GeV, following the method of estimation of [22]. As can

be noted, EB/Tf is a factor ∼ 5 smaller for the 4-plet than for the 5plet, thus the BSF

correction to the relic abundance in the case of the 4-plet should be much less important.

3.2.3 HMDM: Sommerfeld correction of the viable parameter space

The impact of Sommerfeld corrections on the viable space for dark matter is illustrated in

figure 10. In order to derive the Sommerfeld enhanced pure n-plet limits we have followed

the same recipe as in the case of the 4-plet above. For all the pure cases, corresponding

to the limits mM & (.)mD of the models considered here, we summarize our findings in

table 3. These results were obtained considering an average velocity of v ' 0.2 in the
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n Ia λa SIa σvpert
Ia

mpert
DM [TeV] mSom

DM [TeV]

2 0 3
4 + 1

4 t
2
w 1.5

3πα2
2

8m2
DM

1.1 1.1

1 −1
4 + 1

4 t
2
w 0.9

25πα2
2

16m2
DM

3 0 2 2.3
4πα2

2

m2
DM

2.4 3.

1 1 1.6
25πα2

2

4m2
DM

2 −1 0.6
πα2

2

m2
DM

4 0 15
4 + 1

4 t
2
w 3.9

75πα2
2

4m2
DM

2.4 3.9

1 11
4 + 1

4 t
2
w 3.

125πα2
2

8m2
DM

2 3
4 + 1

4 t
2
w 1.5

6πα2
2

m2
DM

3 −9
4 + 1

4 t
2
w 0.3 —

5 0 6 5.9
60πα2

2

m2
DM

4.4 9.3

1 5 5.
125πα2

2

4m2
DM

2 3 3.1
21πα2

2

m2
DM

3 0 1. —

Table 3. For the pure multiplet of dimension n, the Isospins of the relevant 2-particle states are

given by Ia, the potentials are driven by the λa = −(αIa + α′)/α2 couplings and, using σvpertIa

together with the appropriate σvpertg, gg′ in the 2-blet, 4-plet cases, one obtains mSom
DM for the dark

matter mass including Sommerfeld corrections only in the SU(2)L symmetric limit (mpert
DM is obtained

without Sommerfeld corrections).

computation of SIa and the dark matter masses for the candidate giving rise to all the DM

assuming xf = 30. For the doublet, as in the case of 4-plet (see eq. (3.17), one has to

take into account σvg′ and σvgg′ (the U(1)Y and mixed U(1)Y & SU(2)L contribution as

in eq. (3.11)). In the s-wave limit, for the doublet, we have found:

σvpert
g′g =

3

4
t2w

α2
2π

m2
DM

σvpert
g′ =

43

16
t4w

α2
2π

m2
DM

[doublet] (3.18)

Also notice that in table 3, we only provide σvIa for Ia < 3 as we focus on 2 body final

states only which total isospin is always smaller than 3 in the SM. Our results are in

agreement with the cases already available in the literature [22, 47].

The dark matter mass obtained to match Ωh2 = 0.12 when considering Sommerfeld

corrections in the SU(2)L symmetric limit are provided in the last column of table 3 and can

be compared to the latest derived value present in the literature. Considering Sommerfeld
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Figure 10. Boundaries of the DM candidate parameter space of HMDM models in the mM −
mD plane represented with continuous lines when computing the relic abundance in the SU(2)L
symmetric limit with Sommerfeld corrections for the 2-blet, 3-plet, 4-plet limiting cases. For the

5-plet, BSF corrections of [22] are taken into account. As a guide for the eye, the perturbative

results for the pure MDM cases are indicated with dashed lines.

corrections only, one can get from [49] mDM ' 1.2 TeV in the doublet case,16 while in the 3-

plet and in the 5-plet case ref. [22] reports mDM ' 2.7 TeV and mDM ' 9.3 TeV respectively.

We see that the SU(2)L symmetric limit provides a very good way to estimate Sommerfeld

corrections at freeze-out. In the 5-plet case however, bound state formation changes the

dark matter annihilation cross-section and eventually gives rise to the right abundance for

mDM ' 11.5 TeV [22]. We have not tried to re-evaluate this effect here but we account

for it in our summary plot of figure 10. In the latter plot, we make use of our results

from table 3 except in the case of the 5-plet where we use the BSF result from [22]. The

interpolating regions between the pure cases have been obtained with the same method as

in the perturbative case, see section 3.1, eq. (3.2).

3.3 Dark matter detection prospects

As regards prospects for DM detection, we hereby discuss the main features and effects

that can be expected with respect to direct and indirect DM searches when moving from

the pure MDM scenarios to the HMDM ones, without providing a full-fledged analysis that

would also require computing the conditions for the right relic abundances of the various

HMDM scenarios.

Even though our viable DM candidates typically appear in the multi-TeV mass range,

collider searches could provide an extra DM probe. It is beyond the scope of our work to

provide a dedicated collider analysis, we refer the reader to e.g. [47, 50–58] for recent existing

analysis. In particular, we mention that additional fermionic representations can be probed

16We extract the doublet case from ref. [49] in their figure 11 and table. 1 in the decoupling limit: M2 > µ.
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through 1/ disappearing charged tracks for small mass splittings between the multiplet

components, which is typically the case of pure MDM, probing up to ∼ 400 GeV DM in

the triplet case [52, 58], ∼ 500 GeV for the 4-plet [58] and 600 GeV in the 5-plet case [50] at

the large hadron collider (LHC) and up to 3-4 TeV triplet, and 4-5 TeV 4-plet at 100 TeV

collider [52, 58]; 2/ monojet [14, 53, 54, 58], multilepton [51, 54, 58], monophoton [14],

etc. + missing transverse energy searches, probing up to several hundreds of GeV DM,

depending on the representation, with LHC and HL-LHC and up to e.g. 1.7 TeV DM for a

triplet [14], 1-2 TeV for the 3M4D [58] and ∼ 3.5 TeV for a 5-plet [54] at a 100 TeV collider;

3/ when non negligible Yukawas are involved, Electroweak precision test measurements

and modified Higgs-gauge couplings through fermionic loops [53, 55–58] are testing HMDM

scenarios up to hundreds of GeV with LHC [57] and up to the ∼ O(TeV) DM mass range

with future lepton colliders [55, 57, 58].

3.3.1 Direct detection

HMDM has spin-dependent and spin-independent interactions at tree level with quarks.

As mentioned in the introduction, we have checked numerically that spin-dependent cross-

section (computed at tree-level) always appear to be way beyond the reach of current

experiments, we will thus focus here on spin independent (SI) scattering. For the latter,

the relevant processes for HMDM are scatterings with quarks via Higgs exchange at tree

level and, at loop level, scattering with quarks and gluons via exchange of electroweak

bosons. In the limit of pure MDM candidate, the tree level interactions vanish and the

leading interaction occurs via loops [1, 8]. Here we mainly discuss the salient features

of the spin independent scattering cross-section on nucleons at tree level, with particular

emphasis on the 5M4D model, while arguing about the expected behavior at loop level. A

detailed computation of the scattering cross-section in HMDM should be the subject of a

dedicated analysis that is beyond the scope of this work.

From the discussion in section 2.2.1 focusing on the custodial symmetry limit, it ap-

pears that the DM coupling to the Higgs (driving the direct detection cross-section at

tree-level) is expected to be maximal in the limit mM → mD and y1 → y2 while it is

expected to vanish for mM → mD and y1 → −y2. Let us see how this goes beyond the

custodial limit. The SI scattering cross section for the DM candidate off a nucleon N at

tree level for the model M is [31]:

σMSI ∝
µ2

m4
h

(
cMhχ0

l χ
0
l

)2
, (3.19)

where µ = mχ0
l
mN/(mχ0

l
+mN ) is the nucleon-DM reduced mass, mh is the Higgs mass,

and the coefficient cM
hχ0

l χ
0
l

contains the Higgs-DM coupling in the model M , and is:

cMhχ0
l χ

0
l

= −cM√
2

[
y1

(
ZM11

)∗ (
ZM12

)∗
+ y2

(
ZM11

)∗
(ZM13 )∗

]
. (3.20)

The matrix ZM defines the rotation to the mass basis with the {χ0
α} states ordered from

light to heavy states (α = l,m, h). Going from the basis used in section 2.2.1, with {χ0
i }

indices i = 1, 2, 3 not pointing to any mass ordering, to the basis used here just simply
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Figure 11. Tree-level DM-nucleon SI scattering in the plane mD−mM for all the models considered

in this work. Colored regions are excluded by prospects of limits from the XENON1T experiment [9]

for y1 = 1 and y2 = −2. Colored lines show contours of DM composition, the lower right ones denote

|ZM11 |2 = 0.999 while the upper left ones correspond to |ZM11 |2 = 0.001. The contours of the 3M2D
model overlap with those of the 5M4D model.

imply a permutation of the entries of the transformation matrix of eq. (2.10) in order to

get ZM . Finally, the coefficients cM for all the models are:

c1M2D = 1, c3M2D =
1√
2
, c3M4D =

√
2

3
, c5M4D =

1√
2
. (3.21)

We show in figure 11 the present and future exclusion region from XENON1T exper-

iment [9, 59] from the calculation at tree-level for a choice of Yukawa couplings y1 = 1

and y2 = −2. As can be seen, there are common features to all models considered above.

First, there are parts of the parameter space where the cross section is suppressed, even

for light DM that is largely mixed. In figure 11, this translates as incursions of the white

area into the colored regions illustrating the reach of Xenon 1T for a given choice of y1

and y2. Around these “blind spots”, the coupling of the Higgs to DM that mediates the

tree-level interactions is suppressed, as has been discussed in the literature for the case

of the supersymmetric neutralino [60] and the 1M2D model [31, 32]. Second, for a given

size of the Yukawa couplings and for large enough masses the composition of DM seems

to depend on mM − mD. Indeed, as observed in [61], in this limit the dynamics can be

described in terms of two parameters only, ∆ = (mM − mD)/2 and a = |y1 + y2|/2 for

real Yukawa couplings. The reason is that the DM-Higgs effective vertex is in this case

proportional to a2/
√
a2 + (∆/2mW )2. In the ∆ → 0 limit (i.e. along the diagonal), the

cross section is thus maximised. This behavior generalizes the dependence in ∆ and a that

we observed in the custodial symmetry limit in section 2.2.1.
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Figure 12. DM candidate parameter space in the perturbative 5M4D case for an explicit integra-

tion of the dark matter abundance with micrOMEGAs in the SU(2)L-broken limit as in figure 8. All

points give rise to Ωh2 ' 0.12 and the value of the corresponding σSI and |y1 + y2| are indicated

with the color code in the left and right plot respectively. With red dashed line, we show the contour

obtained in the SU(2)L symmetric limit for the 5M4D case in figure 7.

Let us now illustrate the above discussion in a concrete HMDM model. We focus

on the 5M4D model for which we have already discussed the viable parameter space in

section 3.1. In particular the results of figure 8 were obtained from a random scan in

the SU(2)L broken limit with all calculations at tree-level using micrOMEGAs. Here we

project in figure 12 the same parameter space in the mM −mD plane with, this time, the

gradient color corresponding to the values of the spin independent scattering cross-section

computed with micrOMEGAs, σSI , on the left hand (LH) side and |y1 + y2| on the right

hand (RH) side. Let us first focus on the LH side plot illustrating the σSI dependence on

the parameters. The largest values of σSI clearly appear to cluster along the diagonal, i.e.

∆ = 0 as expected from the above discussion. On the other hand, the dark blue colored

points correspond to the vanishing tree-level σSI . Most of them appear to cluster at the

boundary of the viable parameter space, i.e. for vanishing Yukawas or pure MDM cases. In

addition, we see that some more blue points appear to have a suppressed σSI outside from

the boundaries, within the mixed region. Comparing the LH side plot to the RH side plot,

illustrating the dependence in |y1 + y2|, it appears that there is clearly a close correlation

between suppressed σSI (darker points on the RH side) and vanishing |y1+y2|. In the mixed

region, we know from figure 8 that such points typically have non-zero
√
y2

1 + y2
2 values.

As a consequence, we can see that, in the 5M4D case (at tree-level), points with suppressed

σSI and non negligible Yukawa couplings can be obtained y1 → −y2 corresponding to a→ 0

in agreement with the above discussion.

Figure 13 shows the same information as the LH plot of figure 12 but now in the

σSI vs. mDM plane, where the color represents the value of |y1 + y2| ∝ a. Again, all

the points in the scatter plot reproduce the observed relic abundance computed without

taking into account Sommerfeld nor bound-state formation. However, we may expect that

these corrections will only shift (and enlarge) the overall shape of the points cloud to the

right, and that the features will remain the same. Around the pure limits, ie near the
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Figure 13. σSI in the 5M4D case for an explicit integration of the dark matter abundance with

micrOMEGAs in the SU(2)L-broken limit as in figure 8. All points give rise to Ωh2 ' 0.12. The

gray zone is expected to be strongly affected by NLO corrections as in this zone σSI < 1.6 10−46

cm2 = σNLO
SI,4−plet computations. The vertical black dashed lines indicate the DM mass obtained

in the SU(2)L symmetric limit for the pure 4-plet and 5-plet case without sommerfeld corrections.

The red dashed lines include the Sommerfeld correction for the 4-plet and the Sommerfeld + Bound

state effects from [22] in the 5-plet case. The continuous magenta line denote the current constraints

from the Xenon 1T experiment [59] and the magenta line shows the reach prospects for the same

experiment [9]. The dashed orange line shows the “discovery limit” from [62].

vertical dashed lines without (with) non-perturbative corrections in black (red) color, the

tree-level σSI can typically be much smaller than for the mixed regions (away from the

vertical dashed lines) and even below the direct detection experiments prospects. In these

regions, we expect that the loop corrections are quite relevant. As a guide for the eye,

we show with gray color in figure 13, the region where electroweak corrections already

appear to be relevant. In practice we do not expect to have cross-sections, including NLO

corrections, to sum up well below the pure 4-plet result σNLO
SI,4−plet = 1.6 10−46 cm2 obtained

in [8]. In practice, Higgs mediated loop corrections should provide some extra features.

Some estimation of this effect is already provided by [61, 63] for the 1M2D and the 3M2D
models taking into account two-loop contribution to the twist-2 gluon effective operator and

running of the Wilson coefficients down to the nuclear scale.17 The main feature that we

underline here also is that the tree level cross-section dominates in the region of mM = mD

or equivalently ∆ = 0. Beyond tree-level, loop-level blind spots could occur because of a

cancellation between the contribution from the scalar and the twist-2 operators,18 as shown

e.g. in [61, 63].

17Notice that the more recent analysis of [8] took into account extra contributions that slightly modify

the conclusion of [61, 63] for the pure cases. See also [64] for a discussion on uncertainties arising from

non-perturbative nuclear matrix elements.
18New blind spots at loop level could appear in intermediate ∆ region in all cases except for the singlet-like

limit of the 1M2D model, see [61, 63].
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3.3.2 Discussion of indirect searches

In section 3.2, we estimated the impact of the Sommerfeld effect on the relic abundance,

which is clearly important in estimating the mass of the thermal candidates. By the same

token, the Sommerfeld corrections can affect DM annihilation in the recent Universe, like at

the Galactic Centre, where the DM is highly non-relativistic. In particular, they can lead

to annihilation cross sections that are much larger (potentially by orders of magnitude)

than the canonical value ∼ 3 · 10−26 cm2/s required for the relic abundance [65]. This is

particularly true for large multiplet Minimal Dark Matter candidates, not only because they

tend to be in the TeV mass regime, substantially larger than the mass of the Z and W gauge

bosons, but also because their multiplet contain particles multiply charged under U(1)em.

This aspect of MDM has been much studied, starting with [48] (see also [2]). Calculating the

Sommerfeld corrections is infamously involved because of resonant behaviors due to mass

splittings, and the results have been somewhat varying in time (but eventually converged,

see figure 7 [14] and figure 3 in [15]).19

A pure fermionic minimal dark matter candidate is strongly constrained by searches

for gamma-ray spectral features (e.g. monochromatic lines) from the GC region by the

HESS collaboration [67]. The 3-plet and the 5-plet are both are excluded if the DM profile

is cuspy, NFW or Einasto, while the 5-plet is marginally viable if the profile is cored,

isothermal or Burkert [11, 14, 15, 23, 66, 68].20 Does mixing of a Majorana multiplet with

two Weyl states bring anything new? To fully address this question one should calculate the

non-perturbative corrections for each possible viable candidate, taking into account mixing

and also the existence of new channels associated to Higgs exchange, etc. This is a very

technical task, way beyond our scope. Instead we merely argue that, if anything, mixing

brings some new freedom, possibly relaxing the constraints from gamma-rays observations.

The key point is basic, and has been partly considered in some works for the case of Minimal

Dark Matter candidates, either to enhance or deplete the annihilation cross sections at

low velocities, see e.g. [69, 70].21 It rest on the fact that Sommerfeld corrections that

lead to mono-chromatic gamma-rays are very sensitive to the mass splitting between the

DM candidate and its charged partners. For pure MDM candidates, the splitting is set

by electroweak corrections, while mixed states receive an extra contribution from their

direct coupling to the Higgs. Simple criteria to assess the impact of mass splitting on the

Sommerfeld corrections are given in [71]. Suppressing the effect of excited states requires

that the mass splitting ∆ is larger than the kinetic energy of the DM, mDMv
2/2 ≤∼ ∆m.

Less obvious, but natural, it that the binding energy of DM in an attractive channel,

∼ α2mDM must be smaller than the energy required to produced an excited state, ∆m.

19For similar considerations regarding Wino DM ≡ 3-plet MDM, see e.g. [13, 40, 66].
20Notice that a priori one could also get monochromatic photon emission from bound state (B) formation

processes χ0χ0 → Bγ. For the pure 5-plet case, the latter gamma ray signal (with Eγ � mDM) appear to be

below the current Fermi-LAT telescope sensitivity but could potentially be tested in the future depending

on the DM mass, see [22] for more details.
21More extensive and in-depth analyses have been done in the case of the Higgsino-Wino mixing, related

to search for supersymmetric DM candidates [35]. Given the know-how [41], it could be interesting to

extend such analysis to higher multiplets.
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Regardless, changing ∆m allows to move around the position of the resonant peaks, as is for

instance illustrated in [69] and can potentially help in evading the gamma-ray constraints.

4 Conclusion

In the Minimal Dark Matter framework, a dark matter candidate is the neutral component

of an electroweak multiplet of dimension n. As such a candidate has only gauge interactions,

all observables are in principle univocally determined. In particular, its relic abundance

through thermal freeze-out can match the cosmological observed value only for a unique

dark matter mass. Also, their signal in both direct and indirect searches are fixed, at

least modulo astrophysical uncertainties. As such, they are very useful benchmark WIMP

candidates. Focusing on fermionic cases, the highest possible representation, at least if ones

want to avoid Landau poles at low energies, is a Majorana 5-plet. A nice feature of such

candidate is that it may be automatically long-lived, without the need of imposing some

symmetry, as its coupling to SM degrees of freedom can only come through a dimension 6

operator. Lower dimension representations are nevertheless of much interest, if anything

because they correspond to specific corners of well-motivated candidates. For instance, a

Majorana triplet is equivalent to a pure wino candidate, while a doublet is a pure higgsino.

The latter has non-zero hypercharge, and so is excluded by direct detection if it is a pure

Dirac state but mixing with a triplet or a singlet (i.e. a bino), through the Higgs doublet,

makes it Majorana (or quasi-Dirac).

In this work we have extended on the Minimal Dark Matter framework by considering

all pairs of electroweak fermionic multiplets (up to a 5-plet) that can have a Yukawa

coupling with the Standard Model Higgs doublet, a framework we dubbed Higgs coupled

Minimal Dark Matter or HMDM. As in the MDM framework, avoiding the Landau pole

for the EW coupling at a low scales, we end up considering four possible models of mixed

Majorana and Dirac fermions, including the 1M2D, 3M2D, 3M4D and 5M4D. Because of

mixing, and the coupling to the Higgs, the phenomenology of such scenarios is much more

involved than in the pure MDM case. Several cases have been already considered in the

literature, in particular in relation with the neutralino candidates to which we alluded to

above. The 3M4D case has only been discussed recently, see [37]. To our knowledge, the

5M4D case the has not yet been considered in the literature.

Our purpose was to provide a unified presentation of the different cases. Doing so, we

have first provided a detailed analysis of the dark matter mass spectrum. We have made use

of the existence of a custodial symmetry that arises for specific Yukawa couplings and that

provides a way to understand many features of the mass spectra, including the emergence

of quasi-degenerate electroweak multiplets and an understanding of the mass splitting

between the components. In particular, we have shown that, at tree level, the lightest

neutral particle (LNP) is always the lightest component, and so potentially a dark matter

candidate. This conclusion has however to be moderated as one-loop corrections may

change the hierarchy of masses, a fact that we have inferred from [37] and their analysis of

the 3M4D case. Next, we have then analyzed the viable parameter space of HMDM both in

the perturbative approximation and taking into account non-perturbative effects. Indeed,
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as is the case of MDM, the candidates considered here are expected to be particularly

affected by Sommerfeld effect and also, in the case of largest SU(2)L representations, by

bound state formation. The calculations of these phenomena is notoriously delicate, and

even more so for mixed candidates, and have only been tackled for specific mixed scenarios

associated to SUSY phenomenology. Here, we have merely extracted the boundaries of

the viable HMDM parameter space, and this using the electroweak symmetric limit, both

for the perturbative regime and for non-perturbative corrections. This procedure greatly

simplifies the calculations and yet, we argued, provides a good proxy to more precise

calculations. Doing so, we have provided the first estimate of the mass of a (quasi-pure)

4-plet candidate, taking into the Sommerfeld effects. Figure 10 and table 3 summarize our

findings for all the considered HMDM scenarios.

The HMDM framework greatly increases the range of possible DM candidates. Their

coupling to the Higgs, on top of gauge bosons, also greatly enhances the possibility for

their search through direct detection experiments. This is clear using the parameter space

of HMDM candidates using only perturbative calculations. We have argue that the same

should hold taking into account the correction on the mass of the dark matter candidates

due to Sommerfeld effect. In particular, several candidate in the multi-TeV range should be

within reach of the current Xenon-1T experiment and, a fortiori, of future direct detection

experiments. We have not addressed in details indirect detection, for which Sommerfeld

corrections are particularly at the same time very relevant and very sensitive to the precise

characteristics of not only the LNP particle, but also of the other components of the

electroweak multiplet to which it may belong, and in particular the mass splittings, which

in the HMDM scenario arises at tree level, except at exceptional custodial points. A

complete analysis would require to take into account a full one-loop calculation of the mass

spectrum, as well as the Sommerfeld effects. Such study remains to be done for the 3M4D
and 5M4D cases, which are of particular interest as they point to DM candidate in the

multi-TeV mass range. We leave this however for future works.
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A Generators of SU(2) and other useful formulas

We enlist all the generators of the su(2) algebra up to the 6-dimensional representation

T 1
2 =
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0 1
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)
, T 2

2 =
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√
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√
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√
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√
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We use the tensor formalism where




χ1111√
4χ1112√
6χ1122√
4χ1222

χ2222



≡




χ++

χ+

χ0

χ−

χ−−







ψ111√
3ψ112√
3ψ122

ψ222


 ≡




ψ++

ψ+

ψ0

ψ−







ψ̃111√
3ψ̃112√
3ψ̃122

ψ̃222


 ≡




ψ̃+

ψ̃0

ψ̃−

ψ̃−−







χ11√
2χ12

χ22


 ≡



χ+

χ0

χ−




(A.1)

These normalization factors appearing above just simply correspond to√
Binomial[n−1, i−1], where n is the length of the multiplet and i is the position of the

component of charge Q in the T3 basis. For the aQ coefficients defined in (2.6), we have thus

for e.g. the neutral component of the Majorana triplet aχ0 =
√

Binomial[2,1] =
√

2 while for

the neutral component of the Majorana quintuplet we have aχ0 =
√

Binomial[4, 2] =
√

6.

B Cross-sections for two-particle states in SU(2) symmetric limit

On can recast the cross-sections σvij , where ij characterizes the two initial state particles,

in terms of the σvI associated to eigenstates of total isospin I in the SU(2)L symmetric

limit. For the latter purpose, one has to derive the coefficients CIa,ij relating a total isospin

2 particle states |Ia〉 to a sum states |ij〉. This is obtained inverting the Clebsch-Gordan
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decomposition of |ij〉 in terms of |Ia〉.22 The relation between cross-sections then reads:

σvpert
ij =

∑

I

|CI,ij |2σvpert
I (B.1)

where I runs over the Ia values with a = 1, . . . , N ′. In our case, we have obtained the

analystica expressions of σvij making use of Calchep.

Below, we detail the derivation of the different contributions to the total annihilation

cross-section in the case of the quadruplet. Notice that we have provided the relevant σvpert
I

for all cases of interest for this paper in table 3. In the quadruplet case, one considers the

annihilation of a 4 with a 4̄ with hypercharges Y4 = 1/2 and Y4̄ = −1/2 and respectively.

The index i in σvij denotes the charge of annihilating component of the 4 while the index

j denotes the charge of annihilating component of the 4̄. The SU(2)L only contributions

to the annihilation cross are given by:

• Qtot = i+ j = 0

σv0,0 = σvI=0/4 + σvI=1/20 + σvI=2/4 = σv+,− (B.2)

σv++,−− = σvI=0/4 + 9σvI=1/20 + σvI=2/4 = σv−,+ (B.3)

• Qtot = i+ j = 1

σv++,− = 3σvI=1/10 + σvI=2/2 = σv0,+ (B.4)

σv+,0 = 2/5σvI=1 (B.5)

• Qtot = i+ j = 2

σv++,− = σvI=2/2 = σv+,+ . (B.6)

Notice that in this case σvij 6= σvji as the charge indices are not the good representative

quantum numbers to specify the isospin projection of each of the annihilating particles

that have opposite hypercharges.

Using eq. (3.3), with ζ = 1/2 for a Dirac dark matter particle, the relic abundance can

be computed using

σveff =
∑

ij

gigj
g2

tot

σvij =
1

16
(σv0,0+σv+,−+σv−,++σv++,−−+2(σv+,0+σv0,+)+2σv++,−

+2σv+,++2σv++,0+2σv++,+) (B.7)

where the index i and j of the annihilation cross-section σvij refer here to the charges of

ψ and ψ̃ respectively. Using the Clebsh-Gordan decomposition one can extract the σvI ,

with I = 0, 1, 2, 3, from the SU(2)L contributions to σvij , i.e. the non zero contributions

for g′ → 0.23 The expression of σveff can then be rewritten as:

σveff =
1

16

(
σvI=0 + 3σvI=1 + 5σvI=5 + σvg′ + σvg′g

)
(B.8)

22To exctact the Clebsch-Gordan coefficients, i and j can be tagged by their isospin projection (or

equivalently their charge when Y=0) associated to initial particles.
23Here, σv++,+ = σvIR=7 = 0, since there is no 2-particle SM final state with I > 2.
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with σvg′ and σvgg′ being the U(1)Y and mixed U(1)Y & SU(2)L contribution

as in eq. (3.11).

In the s-wave limit, we have thus found for the 4-plet the results of eq. (3.17).
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