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1 Introduction

There are several reasons for an abiding interest in d = 1 superconformal models. On the

one hand, they provide a convenient framework for getting insight into the structure of

higher dimensional superconformal field theories. On the other hand, such systems arise

naturally when studying particle dynamics on near horizon black hole backgrounds [1]

which also links to the AdS2/CFT1-correspondence [2, 3]. In particular, it was argued

in [1, 4] that superconformal mechanics may provide a microscopic quantum description

of extreme black holes. Motivated by this proposal a plenty of SU(1, 1|2) superconformal

one-dimensional systems and their D(2, 1;α) extensions have been constructed [5–24]. A

related line of research concerns the study of superconformal particles propagating on near

horizon black hole backgrounds [25–34].

There are several competing approaches to the construction of superconformal me-

chanics: the superfield approach [10, 14, 16–22, 35], the method of nonlinear realiza-

tions [5, 9, 25, 34], and the canonical formalism (e.g. [29, 37, 45]).1 Some of the models

constructed via different methods can in fact be linked to a super 0-brane, i.e. superpar-

ticle possessing κ-symmetry [34]. Although the SU(1, 1|2) supergroup is central for the

proposals in [1, 4], viewed more broadly it is only a particular instance in a chain of the

SU(1, 1|N) supergroups parametrized by an integer N .

1See also the construction of superconformal mechanics in the context of string theory via specific

reduction from higher dimensional superconformal systems, e.g. [46].
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The goal of this paper is to construct superparticle models on the coset spaces of

the SU(1, 1|N) supergroup which hold invariant under the κ-symmetry or its fraction.

Since the explicit realization relies upon specific properties of spinor representations of

the rotation subalgebra in the full superconformal algebra,2 it seems rather surprising

that such symmetry is feasible for generic values of N . The analysis is also extended to

include angular degrees of freedom which yields a superparticle model on the AdS2×CPN−1

background with two-form flux in which case the κ-symmetry is reduced to a one-parametric

fermionic gauge symmetry.

The organization of the paper is as follows. In section 2, we consider the geometrically

simplest case of the coset space, whose bosonic part is AdS2. Using the method of nonlinear

realizations, we construct an invariant dynamical action. It follows from the requirement

of the κ-symmetry. By imposing the gauge fixing condition, we demonstrate that the

model is canonically related to the SU(1, 1|N) superparticle models constructed earlier

in [35, 37]. Section 3 contains the discussion of generalized Gell-Mann matrices and su(N)

algebra. An invariant action with extra angular degrees of freedom is constructed and its

reduced κ-symmetry is analyzed. It is demonstrated that the background field configuration

associated with the superparticle satisfies the Einstein-Maxwell equations and is linked to

the near horizon black hole geometries. In particular, the instance of N = 2 reproduces the

κ-symmetric super 0-brane propagating in the near horizon region of the extreme Reissner-

Nordström black hole [25]. Concluding section 4 contains the summary and the outlook.

There are three appendices with some technical details.

2 SU(1, 1|N) superparticle on AdS2 background

2.1 Invariant action and κ–symmetry

Consider the supercoset space G/H, where G = SU(1, 1|N) with the structure relation

given in eq. (A.1) of appendix A, and the stability subgroup H generated by the set of

operators {D, Ja,M}. Bosonic part of this superspace is AdS2. The Lie superalgebra

valued MC one-forms are defined by the conventional relation

G̃−1dG̃ = HLH +KLK +DLD + LaJa +MLM + i
(
LQQ+ Q̄LQ̄ + LSS + S̄LS̄

)
, (2.1)

where G̃ is an element of G/H. Here and in what follows we omit indices belonging to

the fundamental representation of su(N) algebra for fermionic one-forms and assume the

summation over repeated indices, i.e. LQQ = (LQ)jQj . Given the MC one-form, our goal

is to construct an invariant action which enjoys the κ-symmetry.

It turns out that the presence of the fermionic generators does not affect the structure

of the transformations which hold the same as in the case of the pure bosonic subalgebra.

One can show [34] that the only invariant bilinear form is LHLK , which will be used

below for constructing the kinetic term. Because the MC one-forms on the subgroup H

transform as connections (see e.g. [41, 42]), they can be used for building the Wess-Zumino

(WZ) term [34]. More precisely, when the subgroup H decomposes into the product of

2For a review of the κ-symmetry in various contexts see [40].
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an abelian group and some subgroup, the MC forms on this abelian subgroup transform

as abelian connections. Hence, their linear combination fits for constructing an invariant

action functional. For the case at hand there are two MC one-forms with this property:

LD and LM . An invariant action on the coset space thus reads

S = −m
∫ √

4LHLK −
∫

(aLD − bLM ), (2.2)

where m, a and b are constant parameters.

A conventional way to ensure that a model under consideration possess the κ-symmetry

relies upon a technically convenient representation for variations of the MC one-forms. In

appendix A we expose such variations for the bosonic MC one-forms. Besides, the κ-

symmetry requires vanishing of the bosonic variations (see e.g. [43])

[δxH ] = [δxK ] = 0. (2.3)

Taking into account this condition and using (A.5), variation of the action can be brought

to the form

δκS = 2i

∫ {
m

√
LH
LK

[δη]− [δψ]

(
a− ibN − 2

2N

)}
LS̄

+ 2i

∫ {
m

√
LK
LH

[δψ]− [δη]

(
a+ ib

N − 2

2N

)}
LQ̄ + c.c., (2.4)

where the boundary terms d[δxD] and d[δxM ] have been discarded. Demanding (2.4) to

vanish, one obtains a system of linear algebraic equations on [δψ], [δη] and their conjugates,

which yields

m2 = a2 +

(
N − 2

2N

)2

b2. (2.5)

Note that the κ-symmetry reduces the number of (complex) fermionic degrees of free-

dom from 2N to N . To reduce the number of fermionic degrees of freedom in another way

one could try to accommodate some part of the fermionic variables in the stability sub-

group. However, this spoils transformation properties of the MC one-forms and prevents

one from constructing invariant bilinears needed to build the action. Thus, the only way to

construct a model with the minimal number of fermionic degrees of freedom is to demand

it to be invariant under the κ-symmetry transformations. The same reasonings are valid

for the model with nontrivial angular degrees of freedom which we discuss in section 3.

2.2 Explicit form of the action

In order to construct the action functional in explicit form, let us define a coset space

element

G̃ = etHezKei(ψQ+Q̄ψ̄)ei(ηS+S̄η̄). (2.6)

– 3 –
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As is known [40], the κ-symmetry reduces the number of fermionic dynamical degrees of

freedom by half. It proves convenient to choose the gauge fixing condition in the form3

η = η̄ = 0. (2.7)

As the next step, we construct the MC one-forms

LH = dt− i(ψdψ̄ − dψψ̄) + LK(ψψ̄)2,

LK = z2dt+ dz, LD = 2zdt, LM = −N − 2

N
LKψψ̄. (2.8)

For what follows it proves convenient to redefine the coordinates

t→ t+
1

z
, ψ → ψ

z
, ψ̄ → ψ̄

z
, (2.9)

which bring the action (2.2) to the form

S = −2m

∫ √
z2 − ż − i(ψ ˙̄ψ − ψ̇ψ̄) + (ψψ̄)2 − 2za− bN − 2

N
ψψ̄. (2.10)

To better understand the structure of the model, let us consider it in the canonical

formalism. The Hamiltonian reads

H =
m2

pz
+ z2pz + 2za+ pz(ψψ̄)2 + b

N − 2

N
ψψ̄, (2.11)

where pz is the momentum canonically conjugate to the bosonic variable z. Fermionic

canonical momenta pψ and pψ̄ defined with the use of the right derivatives lead to the

second class constraints

pψ − ipzψ̄ = 0, pψ̄ − ipzψ = 0. (2.12)

In order to put the Hamiltonian into the standard conformal mechanics form, let us im-

plement the canonical transformation [34]

ψ → ψ√
2pz

, pψ →
√

2pzpψ, (2.13)

along with

z → −p
x
− 2a

x2
, pz →

x2

2
. (2.14)

Then the Hamiltonian and the constraints take the form

H =
p2

2
+
b2

x2

(
N − 2

N

)2

+
2b

x2

N − 2

N
ψψ̄ +

2

x2
(ψψ̄)2,

pψ −
i

2
ψ̄ = 0, pψ̄ −

i

2
ψ = 0. (2.15)

3There is a subtlety in consistent choosing the gauge fixing condition for the κ-symmetry in a way

compatible with static solutions [44]. It can be verfied that the gauge fixing condition (2.7) is an appropriate

one and can be used without loss of generality.
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This is an SU(1, 1|N) supersymmetric extension of the standard conformal mechanics. It

should be noted that the original action (2.10) involved two independent parameters, while,

as a result of the canonical redefinition, the final Hamiltonian depends only on one. One can

verify that the Hamiltonian and constraints (2.15) reproduce the one-particle model of the

SU(1, 1|N) superconformal mechanics in [37]. Turning to the Lagrangian formalism, our

model links to the superparticle constructed within the superfield formalism in pioneering

work [35]. Note that the symmetry structure prompts one to suggest that there should be

a relation between these models and a superparticle in the Lobachevsky space [45].

3 Incorporating angular degrees of freedom

3.1 Generalized Gell-Mann matrices and su(N) algebra

In order to generalize our superparticle model by extending it with angular degrees of

freedom, it proves convenient to use the fundamental representation matrices given in the

bra-ket notations (see e.g. [47]). Let us split the set of (N2−1) traceless hermitian matrices

λa in three subsets {T+
jk, T

−
jk,Λl} such that

• N(N − 1)/2 symmetric matrices

T+
jk = |j〉 〈k|+ |k〉 〈j| , j, k = 1, . . . , N, j 6= k, (3.1)

• N(N − 1)/2 antisymmetric matrices

T−jk = −i |j〉 〈k|+ i |k〉 〈j| , j, k = 1, . . . , N, (3.2)

• (N − 1) traceless diagonal matrices

Λl =

√
2

l(l + 1)

 l∑
j=1

|j〉 〈j| − l |l + 1〉 〈l + 1|

 , l = 1, . . . , N − 1. (3.3)

Using the bra-ket notations it is easy to establish the structure relations of su(N).

The set of antisymmetric matrices T− defines the so(N) subalgebra

[T−jk, T
−
pq] = i

(
T−jpδkq − T

−
jqδkp − T

−
kpδjq + T−kqδjp

)
. (3.4)

The commutator of T+ yields T−

[T+
jk, T

+
pq] = i

(
T−jqδkp + T−jpδkq + T−kqδjp + T−kpδjq

)
, (3.5)

while the mixed commutators read

[T+
jk,T

−
pq] = i

(
T+
jpδkq−T

+
jqδkp−T

+
kqδjp+T+

kpδjq

)
+2i(δkqδjp−δjqδkp)

(
|j〉〈j|−|k〉〈k|

)
. (3.6)

Using the fact that (3.3) along with the unity matrix define a basis in the space of diagonal

N ×N matrices, one can establish the identity [47]

|j〉 〈j| = 1

N
−

√
j − 1

2j
Λj−1 +

N−j−1∑
s=0

Λj+s√
2(j + s)(j + s+ 1)

. (3.7)
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This allows one to rewrite the second term in (3.6) in terms of the diagonal traceless

matrices Λl

|j〉 〈j| − |k〉 〈k| =
√
k − 1

2k
Λk−1 −

√
j − 1

2j
Λj−1 +

k−1∑
s=j

Λs√
2s(s+ 1)

, j < k. (3.8)

As the nest step, let us compute the commutator of Λl and T±jk√
l(l + 1)

2
[Λl, T

±
jk] = ±i

l∑
s=1

(
T∓skδsj ± T

∓
sjδsk

)
± iT∓jk ((k − 1)δk,l+1 − (j − 1)δj,l+1) . (3.9)

Finally, since Λl are diagonal matrices, their commutators vanish. To summarize, (3.4)–(3.9)

define the structure relations of su(N).4

In the basis chosen it is easy to extract the su(N − 1) subalgebra. It is readily verified

that the set of operators {T+
mn, T

−
mn,Λs}, with m,n = 1, . . . , N − 1, s = 1, . . . , N − 2

generates su(N − 1). For what follows it proves convenient to introduce the notation

T±mN := T±m , m = 1, . . . , N − 1. (3.10)

As demonstrated in appendix A, the conventional su(N) commutation relations and (3.4)–

(3.9) differ by a factor of 2i on the right hand side. In what follows we assume that the

duals to the generators T±ij and Λl, the MC one-forms L±ij and Ll obey the su(N) algebra

in the standard form.

3.2 Invariant action

In this section we construct an invariant action on the coset space SU(1,1|N)
SO(1,1)×SU(N−1)×[U(1)]2

thus generalizing (2.2) to include the angular degrees of freedom. As before, we assume that

the first factor in the stability subgroup, SO(1, 1), is generated by the dilatation operator

D. In accordance with the results of the previous section, we set the second factor to be

generated by the operators {T+
mn, T

−
mn,Λs}, where m,n = 1, . . . , N − 1, s = 1, . . . , N − 2.

One copy of U(1) in the third factor corresponds to the operator ΛN−1, while another to M .

The remaining bosonic operators H, K, T±m , the fermions Q, S and their conjugate partners

Q̄, S̄ generate supercoset space. Such a choice of the coset identifies the bosonic part with

AdS2×CPN−1, where CPN−1 is the complex projective space CPN−1 = SU(N)
SU(N−1)×U(1) . Let

us choose the following parametrization of the coset space

G̃ = etHei(ψQ+Q̄ψ̄)ezKei(ηS+S̄η̄)u, (3.11)

where u is an element of CPN−1 generated by T±m .

In order to construct an invariant action, one can use (2.2) as an ansatz and extend it

by angular degrees of freedom. The corresponding kinetic term can be build from the MC

one-forms L±m associated with the generators T±m in (3.10) (for N = 2 see [34])

L+
mL

+
m + L−mL

−
m. (3.12)

4As follows from (A.2), in order to bring the commutation relations (3.4)–(3.9) to the standard form,

one has to multiply each generator by −i/2.
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Recall that above we constructed the WZ-term using the MC one-forms which transform

as abelian connections. In the present case, in addition to LD and LM one reveals LN−1

possessing the same property.

To summarize, the invariant action on the coset space reads

S = −m
∫ √

4LHLK − L+
mL

+
m − L−mL−m −

∫
(aLD − bLM + cLN−1) , (3.13)

where m, a, b are c are constant parameters. This action describes a supersymmetric exten-

sion of a particle on the AdS2 × CPN−1 background with two-form flux. Supersymmetric

extensions of CPN mechanics were earlier studied in [36, 38, 39].

3.3 Reduced κ–symmetry

The action functional (3.13) generalizes the model (2.2) which possesses the κ-symmetry.

For N = 2 it reproduces a super 0-brane model [25, 34]. Let us discuss the issue of the

κ-symmetry for N > 2. Varying the action (3.13), setting

[δxH ] = [δxK ] = [δθ±m] = 0, (3.14)

and proceeding along the same lines as above, one obtains a system of the algebraic equa-

tions

m (2iLH [δη] + [δψ]T+
mL

+
m + [δψ]T−mL

−
m)√

4LHLK − L+
mL

+
m − L−mL−m

− i[δψ]

(
a− ibN − 2

2N
− icΛN−1

)
= 0,

m (2iLK [δψ]− [δη]T+
mL

+
m − [δη]T−mL

−
m)√

4LHLK − L+
mL

+
m − L−mL−m

− i[δη]

(
a+ ib

N − 2

2N
+ icΛN−1

)
= 0, (3.15)

as well as for the complex conjugate pair [δψ̄], [δη̄]. In order to see if the system admits a

solution, let us express [δψ] from the second equation and substitute it into the first. This

gives a linear equation on [δη] which decomposes into four independent linear equations.

The first two of them are proportional to the contraction with the MC one-forms L±m

b
N − 2

N
[δη]T±m + c[δη]{ΛN−1, T

±
m} = 0, (3.16)

where curly bracket stands for the anticommutator. Taking into account the form of the

matrices (3.10) in the bra-ket notations (3.1)–(3.3), one can establish the identity

{ΛN−1, T
±
m} = −

√
2

N(N − 1)
(N − 2)T±m . (3.17)

Hence, the constant parameters b and c should be related to each other

b = c

√
2N

N − 1
. (3.18)

The next equation is proportional to the bilinear form LHLK and reads

[δη]− [δη]

m2

(
a2 + b2

(
N − 2

2N

)2

+ c2Λ2
N−1 + bc

N − 2

N
ΛN−1

)
= 0. (3.19)

– 7 –
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Again, using the bra-ket notations one can find

Λ2
N−1 =

2

N(N − 1)

N−1∑
j=1

|j〉 〈j|+ 2(N − 1)

N
|N〉 〈N | . (3.20)

In order to satisfy this equation with nontrivial c, either the first (N − 1) components of

[δη] should be vanishing or the last one. Both cases imply additional restrictions on the

parameters. Assuming that (3.19) holds, the last equation coming from (3.15) reads

[δη]
(
L+
mT

+
m + L−mT

−
m

) (
L+
n T

+
n + L−n T

−
n

)
− [δη]

(
L+
mL

+
m + L−mL

−
m

)
= 0. (3.21)

In this expression one encounters the following anticommutators

{T+
m , T

+
n } = T+

mn + 2δmn |N〉 〈N | , {T+
m , T

−
n } = −T−mn.

{T−m , T−n } = T−mn + 2δmn |N〉 〈N | , m, n = 1, . . . , N − 1. (3.22)

Note that the matrices T±mn act in the (N − 1)-dimensional space of vectors. It follows

from (3.21) that its solution cannot have the first (N − 1) nontrivial components which

leaves one with

〈[δη]| = κ 〈N | , (3.23)

where κ is an anticommuting single complex gauge parameter. In view of (3.19) the addi-

tional restriction on the parameters, which was mentioned above, reads

m2 = a2 +
c2N

2(N − 1)
. (3.24)

To summarize, we conclude that the action (3.13) possesses a reduced κ-symmetry

with a single fermionic gauge parameter provided the restrictions (3.18) and (3.24) hold.

Note that the case of N = 2 reveals a subtlety. For N = 2 the matrices T±mn in (3.22)

are vanishing and there exists a solution with two gauge parameters which yields the

conventional κ-symmetry (see [25, 34]).

3.4 Background geometry and bosonic part of the action

The MC one-forms used in the construction of the action (3.13) are exposed in appendix B.

One can impose a gauge fixing condition by requiring the N -th component of the fermionic

variables η and η̄ to be vanishing. The gauge fixed action has a complicated form and in

what follows we focus on its bosonic part only.

Interestingly enough, the bosonic part of the action (3.13) can be interpreted as a par-

ticle propagating in external gravitational and electromagnetic fields. In order to under-

stand whether this field configuration satisfies the Einstein-Maxwell equations, let rewrite

the metric in AdS-basis by making use of the coordinates redefinition

t→ 1

2

(
t+

1

r

)
, z → r. (3.25)

– 8 –
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In these coordinates the metric and the gauge field one-form read

ds2 = γ2

(
r2dt2 − dr2

r2
− L+

mL
+
m − L−mL−m

)
,

A = αrdt+ βLN−1, (3.26)

where L±i , LN−1 are the MC one-forms (B.1) with the fermionic parts discarded, while α,

β and γ are some constant parameters related to a, b and c in (3.13). The metric above

describes 2N -dimensional space AdS2 × CPN−1. The Maxwell two-form can be found by

using the MC equations (A.4) and the commutation relations (3.6)

F = −αdt ∧ dr − β

√
N

2(N − 1)
L+
m ∧ L−m. (3.27)

Let us prove that this two-form satisfies the Maxwell equations

d ∗ F = 0, (3.28)

where ∗ is the Hodge dual operator. The dual form to the first term in (3.27) is proportional

to the volume form on CPN−1 and hence it is closed. The Hodge dual of the second term is

proportional to the exterior product of dt∧dr and the linear combination of 2(N−2)-forms

on CPN−1. Clearly, the first term of this product is closed. In order to prove that the linear

combination is closed as well, one has to use the MC equations

dL±m = L±mq ∧ L−q ± L∓mq ∧ L+
q ±

N−1∑
l=m

√
1

2l(l + 1)
Ll ∧ L∓m

∓
√
m− 1

2m
Lm−1 ∧ L∓m ±

√
N − 1

2N
LN−1 ∧ L∓m. (3.29)

From these equations one concludes that (3.27) satisfies the Maxwell equations without

imposing any restrictions on the constant parameters α and β.

It proves convenient to analyze the Einstein equations in tetrad formalism. In ap-

pendix B the geometrical characteristics of CPN−1 are given. Using those results one can

verify that the Einstein equations

Rab −
R

2
ηab − 2

(
FacFbc −

1

4
F 2ηab

)
= 0, (3.30)

where ηab is an 2N -dimensional Minkowski metric, hold provided the constant parameters

obey the restrictions

γ2

2
(N + 2) = 2α2 +

β2N

N − 1
,

γ2 (1 + (N − 2)(N + 1)) = α2 + β2N

2
. (3.31)

Notice that the case of N = 2 reveals a subtlety. The two equations above reduce

to γ2 = α2 + β2 and the resulting solution (3.26) describes the near horizon region of

– 9 –
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the extreme Reissner-Nordström black hole [25, 34]. It is natural to wonder whether the

geometries associated with the N > 2 models are linked to black hole configurations as

well. Recall that (2N − 1)-dimensional sphere can be presented as a Hopf fibration over

CPN−1 and the corresponding metric reads (see e.g. appendix B of [48])

dΩ2
2N−1 = L+

mL
+
m + L−mL

−
m + (dψ + LN−1)2. (3.32)

Geometry in the near horizon region of a generic spherically symmetric charged black hole

solution is represented by a product of AdS2 and a sphere. On can verify that in an

odd-dimensional space this geometry can be reduced in the ψ direction thus giving the

configuration of fields (3.26). For a particle propagating on such background, the only

effect of this reduction is the fixation of the momentum conjugate to the coordinate ψ.

The above reasoning suggests that the bosonic part of the action (3.13) describes a particle

in the near horizon region of a spherically symmetric black hole with the fixed canonical

momentum pψ.

4 Conclusion

To summarize, within the framework of the method of nonlinear realizations the SU(1, 1|N)-

invariant particle models have been constructed. Our consideration was primarily focused

on the two different coset spaces of SU(1, 1|N) supergroup. First we defined the coset

superspace with the bosonic part represented by AdS2 and built a superparticle on it pos-

sessing the κ-symmetry. Having fixed the gauge, we demonstrated that it is canonically

equivalent to the superparticle models of [35, 37]. Then we incorporated angular degrees of

freedom into the scheme which originated from the SU(N) subgroup. The resulting model

describes a supersymmetric extension of a particle on AdS2×CPN−1 space. The particular

case of N = 2 corresponds to the super 0-brane propagating in the near horizon region of

the Reissner-Nordström black hole [25, 34]. It was shown that for N > 2 the κ-symmetry

reduces to a one-parametric fermionic gauge symmetry. This correlates with the analysis

in [37]. The authors of [37] encountered a problem in constructing an SU(1, 1|N) super-

particle with angular variables within the canonical formalism. Our analysis suggests that

in order to realize SU(1, 1|N) symmetry for N > 2 one has to introduce more fermionic

dynamical degrees of freedom. To fully resolve this it seems natural to work within the

superfield formalism.

The bosonic part of the action with angular degrees of freedom was shown to be

related to the near horizon black hole geometries with the spherical symmetry. As it is

known, the symmetry group of the near horizon Myers-Perry black hole with equal rotating

parameters is SO(1, 2) × SU(N). It would be interesting to study a possible link between

the superparticles in this work and those geometries. Finally, it is of interest to generalize

our classical treatment and consider the models at the quantum level.5 In particular, it is

worth analyzing the role of the κ– and reduced κ-symmetry from the quantum perspective.

5Regarding the quantization of superparticle models on the coset spaces see recent works [49, 50] and

references therein.
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A su(1, 1|N) superalgebra

In this work we use the notations in [37] for the structure relations of the superalgebra

su(1, 1|N)

[H,D] = H , [H,K] = 2D ,

[D,K] = K , [Ja, Jb] = fabcJc ,

[D,Qj ] = −1

2
Qj , [D,Sj ] =

1

2
Sj ,

[K,Qj ] = Sα , [H,Sj ] = −Qj ,

[Ja, Qj ] =
i

2
(λa)j

kQk , [Ja, Sj ] =
i

2
(λa)j

kSk ,

[D, Q̄j ] = −1

2
Q̄j , [D, S̄j ] =

1

2
S̄j ,

[K, Q̄j ] = S̄j , [H, S̄j ] = −Q̄j ,

[Ja, Q̄
j ] = − i

2
Q̄k(λa)k

j , [Ja, S̄
j ] = − i

2
S̄k(λa)k

j

[M,Qj ] = iQj , [M, Q̄j ] = −iQ̄j ,

[M,Sj ] = iSj , [M, S̄j ] = −iS̄j ,

{Qj , Q̄k} = −2iHδj
k, {Qj , S̄k} = 2(λa)j

kJa +

(
2iD − N − 2

N
M

)
δj
k,

{Sj , S̄k} = −2iKδj
k {Sj , Q̄k} = −2(λa)j

kJa +

(
2iD +

N − 2

N
M

)
δj
k. (A.1)

The bosonic part of the superlagebra is presented by a direct sum of the conformal algebra

so(1, 2), generated by H, K, D, the R-symmetry subalgebra su(N) ⊕ u(1), which corre-

sponds to the operators Ja and M . Matrices (λa)j
k define fundamental representation of

su(N), i.e. they are hermitian traceless matrices of the dimension N ×N , j, k = 1, . . . , N

which satisfy the commutation relations

[λa, λb] = 2ifabcλc, (A.2)

where, as in (A.1), fabc are totally antisymmetric structure constants of su(N). The

fermionic complex generators obey the conjugation rules

Q†α = Q̄α, S†α = S̄α. (A.3)
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For reader’s convenience we display below the MC equations for the bosonic forms

dLH = −LH ∧ LD − 2iLQ ∧ LQ̄,

dLK = LK ∧ LD − 2iLS ∧ LS̄ ,

dLD = −2LH ∧ LK + 2i
(
LQ ∧ LS̄ + LS ∧ LQ̄

)
,

dLa = −1

2
fabcLb ∧ Lc + 2

(
LQλa ∧ LS̄ − LSλa ∧ LQ̄

)
,

dLM =
N − 2

N

(
LS ∧ LQ̄ − LQ ∧ LS̄

)
. (A.4)

Using these equations, variations of the MC one-forms can be put in the form

δLH = d[δxH ] + [δxD]LH − LD[δxH ]− 2i
(
[δψ]LQ̄ − LQ[δψ̄]

)
,

δLK = d[δxK ]− [δxD]LK + LD[δxK ]− 2i ([δη]LS̄ − LS [δη̄]) ,

δLD = d[δxD]− 2[δxH ]LK + 2[δxK ]LH + 2i
(
[δψ]LS̄ − LQ[δη̄] + [δη]LQ̄ − LS [δψ̄]

)
,

δLa = d[δxa]− fabc[δxb]Lc + 2
(
LSλa[δψ̄]− [δη]λaLQ̄ + [δψ]λaLS̄ − LQλa[δη̄]

)
,

δLM = d[δxM ] +
N − 2

N

(
[δη]LQ̄ − LS [δψ̄]− [δψ]LS̄ + LQ[δη̄]

)
, (A.5)

where, following [9], we introduced the notation

[δZA] = LAMδZ
M , (A.6)

for a MC one-form LA = LAMdZ
M .

B Bosonic MC one-forms incorporating angular variables

The bosonic MC one-forms for the coset element (3.11) read

LH = Dt,

LK = z2Dt+ dz +Dt(ηη̄)2 − 2ηη̄
(
dψη̄ + ηdψ̄

)
− 2iz

(
dψη̄ − ηdψ̄

)
− i(ηdη̄ − dηη̄),

LD = 2zDt+ i(ηdψ̄ − dψη̄),

La = L0
a + 2Dt(ηλbη̄)Uab − 2

(
dψλbη̄ + ηλbdψ̄

)
Uab,

LM =
N − 2

N

(
dψη̄ + ηdψ̄ − ηη̄Dt

)
, Dt = dt− i(ψdψ̄ − dψψ̄), (B.1)

where L0
a are the bosonic MC one-forms on the coset space SU(N)

SU(N−1)×U(1)

u−1du = L0
aJa, (B.2)

and the matrix Uab defines a group element of SU(N) in the adjoint representation

u−1Jau = UabJb. (B.3)

When obtaining these equations, the identity

1

2
(λa)α

β(λa)γ
ρ = − 1

N
δα
βδγ

ρ + δγ
βδα

ρ, (B.4)

proves to be helpful.
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C Curvature of CPN−1

In this appendix we compute the Ricci tensor and the scalar curvature for the metric on

CPN−1. Note that the algebra su(N) can be written in the following form:

[Pα, Pβ ] = fαβAMA, [Pα,MA] = fαAβPβ , [MA,MB] = fABCMC , (C.1)

where we denoted the stability subgroup generators T±mn, Λl for m,n, l = 1 . . . , N − 1

collectively by MA, while the remaining operators by Pα. Given the algebra, let us rewrite

it in the dual form

dLα + fαβALβ ∧ LA = 0,

dLA +
1

2
fABCLB ∧ LC +

1

2
fAαβLα ∧ Lβ = 0. (C.2)

Let us define the invariant metric on CPN−1 as a quadratic combination (3.12) rewritten

in the condensed notations

ds2 = LαLα. (C.3)

Without distinguishing upper and lower indices (which are all Euclidian), one then intro-

duces the tetrad eα = Lα and writes down the equation for the spin connection ωαβ

deα + ωαβ ∧ eβ = 0. (C.4)

Using the MC structure relations (C.2), one finds

ωαβ = −fαβALA. (C.5)

Substituting it into the equation defining the curvature two-form

Rαβ = dωαβ + ωαγ ∧ ωγβ , (C.6)

and using the Jacobi identity for the structure constants, one finds

Rαβ =
1

2
fαβAfγδALγ ∧ Lδ. (C.7)

Taking into account the explicit form of the su(N) structure constants and using the

equation above, one can find the Ricci tensor in the tetrad notation

R+
m

+
n

=
N

2
δ+
m

+
n
, R−

m
−
n

=
N

2
δ−
m

−
n
, (C.8)

while the scalar curvature reads

R = N(N − 1). (C.9)
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