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geometry, and, accordingly, reduce to a Baxter TQ-equation in the Nekrasov-Shatashvili
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1 Introduction

SHc is an algebra introduced by Shiffmann and Vasserot in [1] (see also [2]) to describe

the equivariant cohomology of the instanton moduli space of N = 2 gauge theories in four

dimensions. It has been defined as a spherical (symmetric) version of the degenerate double

affine Hecke algebra (DAHA) which has been developed by Cherednick for many years [3].1

While DAHA encodes the algebraic (recursive) properties of Macdonald polynomials [4]

1In fact, SHc is a short notation introduced in [1] for central extension of the Spherical degenerate double

affine Hecke algebra. It may be better referred to as Schiffmann-Vasserot algebra, but we will use SHc in

the text.
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with two deformation parameters, degenerate DAHA is obtained by taking a limit q, t→ 1

such that one parameter β remains, with t = q−β . In this limit, Macdonald polynomials

degenerate into Jack polynomials.

This algebra precisely describes the algebraic structure behind Nekrasov instanton par-

tition functions [5] with the Omega background R2
ε1×R

2
ε2 with the identification β = −ε1/ε2

and has been used to prove the 4D/2D correspondence which generalizes Alday, Gaiotto

and Tachikawa’s proposal [6] (AGT conjecture) for various types of quiver gauge theories

— namely pure super Yang-Mills theory [1], the gauge theories with fundamental [7] and

bifundamental hypermultiplets [8] (see also the recent preprint [9]). For pure super Yang-

Mills, the theory is characterized by a Gaiotto state [10], a coherent state affiliated to the

Whittaker vector appearing in the representation theory of noncompact Lie algebra. To

address higher quiver gauge theories, an operator which intertwines different representa-

tions is required for the description of bifundamental multiplets. It is defined by a direct

product of the Carlsson-Okounkov operator [11] which describes the U(1) part and the ver-

tex operator of Toda field theory. This operator must be properly generalized to describe

the gauge theories on arbitrary quiver diagrams. Aside from SUSY gauge theories, SHc

has also revealed itself particularly useful in the study of vortex dynamics [12].

In such developments, the important role devoted to SHc as a “universal” symmetry

came principally from the fact that it contains all WN algebras for arbitrary N , together

with an additional U(1) factor. The parameter β is identified with a deformation parameter

that defines the central charge c = (N−1)(1+Q2N(N+1)) of WN representations through

the combination Q =
√
β−
√
β
−1

. In this sense, SHc should be regarded as a one parameter

deformation of the W1+∞ algebra. The latter is known to have realizations in terms of N

free fermions acting on a space of N -tuple Young diagrams. These representations, that

we call here rank N representations, are identical to those defined by Fateev and Lukyanov

in [13]. The correspondence between the two algebras has also been confirmed in more

general cases where the Hilbert space contains singular vectors. The most typical example

is the minimal models of WN . There, it has been demonstrated explicitly in [14] that

SHc reproduces the proper descriptions of the Hilbert space constrained by the so-called

N-Burge conditions [15, 16]. This universality is essential when we have to treat a system

that contains gauge groups of different rank, as it is the case for quiver theories.

On the other hand, the action of SHc on instanton partition functions of quiver N = 2

gauge theories is very different from the representation of WN algebras. It is better under-

stood after the introduction of an orthonormal basis constructed by Alba, Fateev, Litvinov

and Tarnopolsky (AFLT basis) to prove the 4D/2D duality [17, 18]. AFLT basis should be

regarded as a generalization of Jack polynomials [19–22], it is the proper basis to describe

the action of degenerate DAHA. Instead of the description in terms of chiral primary fields

with different spins, it is defined more abstractly through generators Dm,n with two indices

m,n. The first index m ∈ Z is identified with the index of the Virasoro generators Lm
while the second one n ∈ Z≥0 corresponds to the spin n + 1 of the generator. Since it is

a nonlinear symmetry with a reasonably complicated structure, we have to be careful how

to organize the generators. One of the authors [23] has recently found that holomorphic

expansion in terms of the second index, D±1(z), D0(z), gives a compact description of SHc

– 2 –
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through the study of the Nekrasov-Shatashvili [24] limit of AGT conjecture. This turns

out to be very useful and is a main tool of this paper.

The focus of the paper is to provide an SHc description of Nekrasov partition functions

for general AQ and A
(1)
Q -type quiver gauge theories. To do so, the action of SHc operators

on Gaiotto states, together with the adjoint action on the intertwiner operator describing

bifundamental fields, is worked out. These actions are conveniently expressed in terms

of the vertex operators Y(z) associated with the current D0(z). They extend the work

on the covariance of the partition function presented in [8] by giving us the possibility

to consider quiver theories with gauge groups of different ranks. As a consequence of

our results, several useful identities can be established among correlators of the gauge

theories. In particular, we were able to recover the expression of the qq-characters recently

introduced by Nekrasov, Pestun and Shatashvili (NPS) [25]. For the simplest A1 case with

fundamental multiplets (4.10),

χ(z) =

〈
Y(z + ε+) + q

m(z)

Y(z)

〉
.

Here ε+ := ε1+ε2 and 〈· · ·〉 denotes an average weighted by the instanton partition function,

which is defined in (4.4). The operator Y(z) is interpreted as an operator version of the

chiral ring generating function. These characters, presented as further deformation of

the characters of Yangian algebras [26], encode in a compact form a recursion relation

among the instanton partition functions [27]. Here we show that SHc provides a proper

symmetry behind the qq-character formulae, as was already predicted by NPS, and that

the polynomiality property naturally follows from our description.

The qq-characters define a double deformation of the Seiberg-Witten geometry in a

form of second quantization. In the above example, the Seiberg-Witten curve is expressed

as (5.1),

y + q
m(z)

y
=

N∏
`=1

(z − a`).

Seiberg-Witten theory is well-known to provide an effective description of the infrared

sector of N = 2 gauge theories on R4 [28, 29]. The effective Lagrangian is written in terms

of an holomorphic function, the prepotential, obtained from the knowledge of an algebraic

curve and a differential form. This formulation is identified with the construction of finite

gap solutions for classical integrable hierarchies, the algebraic curve corresponding to the

spectral curve of the system [30].2 When the gauge theory is considered in the Nekrasov-

Shatashvili (NS) limit ε2 → 0 of the Omega-background, the associated integrable systems

are quantized, with the remaining parameter ε1 playing the role of the Planck constant [24].

The algebraic curve becomes the Baxter TQ-equation of the quantum system [31, 32] (see

also [27, 33] for the extension to quivers), it is equivalent to a Schrödinger equation under

a quantum change of variables [34], in a form of ODE/IM correspondence [35].3 In this

2These finite gap solutions can also be obtained from Hitchin systems.
3In this classical version of AGT correspondence, the Shrödinger equation is obtained as the semiclas-

sical limit of the null vector decoupling equations obeyed by Liouville correlators containing a degenerate

operators. It is sometimes referred as the bispectral duality [36, 37].
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framework, the two complex variables of the algebraic curve become non-commutative,

thus defining a first quantization of the Seiberg-Witten curve [38–40]. In the full Omega-

background, the qq-character is an operator acting in a Hilbert space of quantum states.

In the NS limit, the expectation value of this operator in the Gaiotto state (which plays the

role of a coherent state) becomes the T-polynomial of the TQ-equation, while its defining

relation in terms of vertex operators reproduces Baxter’s relation. In this sense, the qq-

character formula presents a second quantization of the integrable system in which the

TQ-relation emerges in the classical ε2 → 0 limit.

We organize the paper as follows. In section 2, we introduce the holomorphic field

description of SHc algebra and the rank N representation. We also provide useful expres-

sions for the adjoint actions of the vertex operators. In section 3, after a brief review of the

general construction of the instanton partition functions, we introduce the building blocks

(Gaiotto states, flavor vertex operator, intertwiner) with which the partition functions are

written as a product. We show that the Gaiotto state satisfies stronger constraints which

are compactly expressed in terms of SHc fields. A generalized intertwiner which connects

different rank gauge groups is also defined. It satisfies similar conditions as the Gaiotto

states and indeed it reduces to the Gaiotto state when the gauge group of one side is trivial.

The flavor vertex operator is used to include the fundamental hypermultiplets in the gauge

theories. These results are used in section 4 to build an infinite number of constraints

among the correlation functions of the vertex operator Y. The new characterizations of

the Gaiotto states and the intertwiner play an essential role to give a closed and compact

expression for these constaints — written in the form of qq-characters. Finally in sec-

tion 5 we present their interpretation as quantum Seiberg-Witten geometry along the line

of [23, 27, 41]. The concluding section proposes some perspectives for future research, and

several technical details are gathered in the appendix.

2 Reformulation of SHc algebra

2.1 SHc algebra in terms of holomorphic fields

The SHc algebra is defined on a set of operators Dm,n with the double grading (m,n) ∈
Z × Z≥0 [1]. The first index is called the degree and the second index the order. The

algebraic relations involving D±1,n and D0,n are written as

[D0,n, D±1,m] = ±D±1,n+m−1, n ≥ 1 , (2.1)

[D−1,n, D1,m] = En+m n,m ≥ 0 , (2.2)

[D0,n, D0,m] = 0 , n,m ≥ 0 . (2.3)

where Ek denotes a linear combination of powers of the generators D0,n that will be given

shortly. Additional relations can be found in [2], but they will not be used here. The

algebra is spanned by the operators of degree 0 and ±1 upon the recursive use of the

following commutation relations,

D±(m+1),0 = ± 1

m
[D±1,1, D±m,0], D±m,n = ±[D0,n+1, D±m,0], (2.4)
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for n ≥ 0 and m > 0. Rank N representations of SHc match with those of a semidirect

product of the WN algebra and a U(1) current. The Heisenberg generators (U(1) currents)

are related to Dm,0, the Virasoro generators to Dm,0, Dm,1, and operators Dm,n with n > 1

to the currents of spin n+ 1 [1, 7].

It is useful to assemble the generators in the form of holomorphic fields [23],

D±1(z) =
∞∑
n=0

z−n−1D±1,n, D0(z) =
∞∑
n=0

z−n−1D0,n+1, E(z) = 1 + ε+

∞∑
n=0

z−n−1En,

(2.5)

where ε+ = ε1+ε2. We use here the Omega-background equivariant deformation parameters

ε1, ε2 [5, 42] instead of the SHc deformation parameter β = −ε1/ε2 in order to simplify the

comparison with gauge theories.4 It is noted that these Laurent series are vanishing at

z =∞, in which they are different from usual holomorphic fields in CFT.

We rewrite the defining properties of the generators D±1,n and D0,n in terms of the

holomorphic fields,

[D0(z), D±1(w)] = ±D±1(w)−D±1(z)

z − w
, [D−1(z), D1(w)] =

E(w)− E(z)

z − w
ε−1
+ . (2.6)

For the definition of E(z) and the vertex operators which will appear later, it is essential

to introduce

Φ(z) := log(z)D0,1 −
∞∑
n=1

1

nzn
D0,n+1 ⇒ D0(z) = ∂zΦ(z). (2.7)

This definition of the field Φ(z) resembles the mode expansion of an holomorphic free

bosonic field in CFT and the series D0(z) can be interpreted as the associated current. As

we noted, however, the usual U(1) current in CFT is expanded as a sum over the degree

as J(ζ) =
∑

n∈Z (coeff.)D−n,0ζ
−n−1 while (2.7) is expanded with respect to the order.

In addition, fields at different points are commuting, [Φ(z),Φ(w)] = 0, as a consequence

of (2.3). In this sense, the interpretation of the complex variable z is different from the

holomorphic coordinate of a Riemann surface but it should rather be seen as the spectral

parameter of an integrable model. We will come back to this description later.

The following dressed combination of vertex operators will play a central role in our

reformulation of the SHc algebra and the correspondence with gauge theories,

Y(z) = ec(z)eΦ(z−ε1)eΦ(z−ε2)e−Φ(z)e−Φ(z−ε+). (2.8)

The function c(z) encodes the dependence in the infinite number of the central charges cn
(n ≥ 0) of the algebra. It expands as

c(z) = c0 log(z)−
∞∑
n=1

cn
nzn

. (2.9)

The generating series E(z) can now be expressed using the newly defined vertex operator,

E(z) = Y(z + ε+)Y(z)−1. (2.10)
4The correspondence between the convention of [8] and this paper is summarized in appendix A.
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2.2 Rank N representations

Among possible representations of SHc, the best studied one is the rank N representation

where the Hilbert space is spanned by a basis labeled by N -tuple Young diagrams ~Y =

(Y1, · · · , YN ). The representation is characterized by N complex numbers a` (` = 1, · · · , N)

that define the central charges cn through the relation

ec(z) =

N∏
`=1

(z − a`). (2.11)

To emphasize the dependence of the representation in the parameters a` through the central

charges, they will be included in the notation of the vector basis |~a, ~Y 〉. These vectors form

an orthonormal basis of the representation space,

〈~a, ~Y |~a, ~Y ′〉 = δ~Y ,~Y ′ , 1 =
∑
~Y

|~a, ~Y 〉〈~a, ~Y |. (2.12)

For N = 2, this basis is actually proportional to the one employed in the proof of AGT

conjecture in [17] and is usually referred as the AFLT basis. For a generic N , they can

be identified with the generalized Jack polynomials introduced in [21] and studied in [22].

The vacuum state is obtained by taking the N -tuple of empty Young diagrams denoted ~∅,
it satisfies

D0,n|~a,~∅〉 = D−1,n|~a,~∅〉 = 0, or D0(z)|~a,~∅〉 = D−1(z)|~a,~∅〉 = 0. (2.13)

The Hilbert space spanned by |~a, ~Y 〉 will be denoted V~a. When several Hilbert spaces are

considered, an extra label ~a will be inserted on the notation of the operators D~a
r (z) to

specify in which space V~a they act. The rank N representations of SHc are equivalent to

the representations of WN ×U(1) [1, 14].

The action of SHc generators of degrees ±1 on the state |~a, ~Y 〉 involves the N -tuple

Young diagram with a box added/removed. As such, they can be seen as an analog

of creation/annihilation operators while the total number of boxes in ~Y represents the

number of particles (later identified with the instanton charge). Following [23], N -tuple

Young diagrams ~Y with a box x added/removed will be denoted ~Y ± x (respectively).

We further introduce the sets A(~Y ) and R(~Y ) containing all the boxes that can be added

to/removed from the Young diagrams composing ~Y . In figure 1, we illustrate the locations

of the boxes in the sets A(Y ) and R(Y ) with the example of a single Young diagram Y .

The boxes x ∈ ~Y are characterized by a triplet of indices (`, i, j) where ` = 1 · · ·N and

(i, j) ∈ Y` gives the position of the box in the `th Young diagram. To each box x is

associated a complex number φx depending on the central charges using the map

x = (`, i, j) ∈ ~Y −→ φx = a` + (i− 1)ε1 + (j − 1)ε2 ∈ C. (2.14)

With these definitions, the action of the spanning subalgebra takes the simple form [8, 23]

D+1(z)|~a, ~Y 〉 =
∑

x∈A(~Y )

Λx(~Y )

z − φx
|~a, ~Y + x〉, D−1(z)|~a, ~Y 〉 =

∑
x∈R(~Y )

Λx(~Y )

z − φx
|~a, ~Y − x〉,

D0(z)|~a, ~Y 〉 =
∑
x∈~Y

1

z − φx
|~a, ~Y 〉, (2.15)

– 6 –
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Y ∈ A(Y )

∈ R(Y )

Figure 1. A(Y ) and R(Y ).

which are equivalent to their component form (n ≥ 0):

D+1,n|~a, ~Y 〉 =
∑

x∈A(~Y )

(φx)nΛx(~Y )|~a, ~Y + x〉, D−1,n|~a, ~Y 〉 =
∑

x∈R(~Y )

(φx)nΛx(~Y )|~a, ~Y − x〉,

D0,n+1|~a, ~Y 〉 =
∑
x∈~Y

(φx)n|~a, ~Y 〉. (2.16)

We note that the second relation in (2.16) implies that the moments of φx∈~Y are the eigen-

values of the commuting charges D0,n. In the (generalized) Calogero-Sutherland system,

D0,n plays the role of infinite commuting charges and φx is interpreted as the momentum

of each particle. The interpretation of z as the spectral parameter is natural in this sense.

The left action of SHc generators on bra 〈~a, ~Y | is identical for the diagonal operators D0(z),

E(z), eΦ(z). However it is reversed for the operators D±1(z),

〈~a, ~Y |D+1(z)=
∑

x∈R(~Y )

Λx(~Y )

z − φx
〈~a, ~Y − x|, 〈~a, ~Y |D−1(z)=

∑
x∈A(~Y )

Λx(~Y )

z − φx
〈~a, ~Y + x|. (2.17)

The series E(z) is also diagonal on the states |~a, ~Y 〉, with eigenvalues given by the function

Λ(z)2 =
∏

x∈A(~Y )

z − φx + ε+
z − φx

∏
x∈R(~Y )

z − φx − ε+
z − φx

. (2.18)

The coefficients Λx(~Y ) in the action (2.15) of Dη(z) correspond to the residues of this

function Λ(z)2 at z = φx with x ∈ A(~Y ) or R(~Y ):

Λ(z)2 = 1 + ε+
∑

x∈A(~Y )

Λx(~Y )2

z − φx
− ε+

∑
x∈R(~Y )

Λx(~Y )2

z − φx
,

Λx(~Y )2 =
∏

y∈A(~Y )
y 6=x

φx − φy + ε+
φx − φy

∏
y∈R(~Y )
y 6=x

φx − φy − ε+
φx − φy

. (2.19)

Eventually, the action of the vertex operator is expressed in terms of a product over the

boxes of ~Y ,

eΦ(z)|~a, ~Y 〉 = Q~Y (z)|~a, ~Y 〉, with Q~Y (z) =
∏
x∈~Y

(z − φx). (2.20)
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The specific combination of vertex operators entering in the definition (2.8) of Y(z) leads

to a remarkable simplification of its eigenvalues

Y(z)|~a, ~Y 〉 =

N∏
`=1

(z − a`)
∏
x∈~Y

(z−φx−ε1)(z − φx − ε2)

(z − φx)(z − φx − ε+)
|~a, ~Y 〉 =

∏
x∈A(~Y )(z − φx)∏

x∈R(~Y )(z−ε+−φx)
|~a, ~Y 〉.

(2.21)

We note that there is a cancellation of factors between the numerators and the denominators

in the middle term, and the resulting expression in the r.h.s. bears contributions only from

the edges of the Young diagrams. Taking the ratio (2.10) defining the operator E(z), we

recover the expression (2.18) for the function Λ(z)2:

E(z)|~a, ~Y 〉 = Λ(z)2|~a, ~Y 〉 . (2.22)

In appendix C, we provide an explicit computation of the commutation relations of D0(z),

D±1(z) in the rank N representation.

Finally we would like to mention the existence of an automorphism of representation.

Under the shift of ~a, ai → ~a′ = ~a + µ~e where ~e = (1, 1, · · · , 1), the representation (2.16)

implies that

D~a+µ~e
+1 (z)|~a+ µ~e, ~Y 〉 =

∑
x∈A(~Y )

Λx(~Y )

z − µ− φx
|~a+ µ~e, ~Y + x〉, (2.23)

D~a+µ~e
−1 (z)|~a+ µ~e, ~Y 〉 =

∑
x∈R(~Y )

Λx(~Y )

z − µ− φx
|~a+ µ~e, ~Y − x〉 . (2.24)

The coefficients appearing here may be identified with the representation of D~a
±1(z−µ). It

implies that there is an automorphism of the algebra by shifting the variable z: D~a+µ~e
r (z) ∼

D~a
r (z − µ) for r = 0,±1. This shift symmetry of the representations is referred as the

spectral flow in the context of W1+∞-algebra [43].

2.3 Adjoint action of the vertex operators

In order to prepare for the computations necessary in the next sections, we would like to

evaluate the commutation relations between the vertex operators e±Φ(z) and the elements

spanning the SHc algebra. The generators of degree zero form a commutative subalgebra,

as a consequence the field Φ(z) commute with the series D0(z).

The evaluation of the adjoint action on D±1 is slightly more involved. We introduce a

vertex operator depending on two finite sets of points zi and wj with i ∈ I, j ∈ J ,

U({zi}, {wj}) := exp

(∑
i∈I

Φ(zi)−
∑
j∈J

Φ(wj)

)
. (2.25)

We claim the following identities:

U({zi}, {wj})−1D1(u)U({zi}, {wj}) = P−u=∞,zi∈I

[∏
j∈J(wj − u)∏
i∈I(zi − u)

D1(u)

]
,

U({zi}, {wj})−1D−1(u)U({zi}, {wj}) = P−u=∞,wj∈J

[ ∏
i∈I(zj − u)∏
j∈J(wj − u)

D−1(u)

]
,

(2.26)
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with the projector P−u=∞,zi∈I acting on functions of the variable u as

P−u=∞,zi∈If(u) := f(u)−
∑
i∈I

Resζ=zif(ζ)

u− zi
− P+

u f(u). (2.27)

Here P+
z picks up the positive powers of a Laurent series in z, namely for a function

f(z) =
∑∞

n=−m anz
−n, it operates as P+

z f(z) =
∑0

n=−m anz
−n. Later we will use a similar

notation for the orthogonal projector P−z = 1 − P+
z = P−z=∞ which picks up the negative

powers of f(z). The second term in (2.27) also plays the role to remove singularities at

u = zi. One may use a contour integration to write these projections in a compact form,

for example,

P−u=∞,zi∈If(u) =

∮
C

f(w)

u− w
dw

2πi
, (2.28)

where the contour C is defined by |w| = R with R < Mini(|zi|). The formula (2.26)

formally resembles an OPE in CFT, up to the existence of the projection operator which

is necessary here since there is no singularity except for u = 0 on the left hand side.

Before proving (2.26), it may be instructive to give some specific examples which will

be used later. The first one is when one of the sets I, J is null:

e−η
∑M
i=1 Φ(zi)Dη(z0)eη

∑M
i=1 Φ(zi) =

M∑
i=0

Dη(zi)
∏
j( 6=i)

1

zj − zi
,

eη
∑M
i=1 Φ(zi)Dη(w)e−η

∑M
i=1 Φ(zi) = P−w

[
Dη(w)

M∏
i=1

(zi − w)

]
.

(2.29)

The other one is the adjoint action of Y(z) which is defined as a product of vertex operators

with shifted arguments:

1

Y(z)
D−1(w)Y(z) = S(w − z)D−1(w) +

ε1ε2
ε+

(
D−1(z)

z − w
− D−1(z − ε+)

z − w − ε+

)
,

Y(z + ε+)D1(w)
1

Y(z + ε+)
= S(z − w)D1(w)− ε1ε2

ε+

(
D1(z)

z − w
− D1(z + ε+)

z − w + ε+

)
,

(2.30)

where S(z) denotes a scattering factor S(z) defined as

S(z) =
(z + ε1)(z + ε2)

z(z + ε+)
. (2.31)

Proof of the formula (2.26). To end up this section, we would like to give a short

derivation of the identity (2.26). Rather than working with the commutator (2.6) directly,

it is easier to evaluate the action on the states |~a, ~Y 〉 which form a faithful representation

of the SHc algebra. We use the property

Q~Y±x(z)

Q~Y (z)
= (z − φx)±1, (2.32)
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which is a direct consequence of (2.20), and the action (2.15) of Dη(z) on the states |~a, ~Y 〉.
It follows that

U({zi}, {wj})−1D1(u)U({zi}, {wj})|~a, ~Y 〉 =
∑

x∈A(~Y )

∏
j∈J(wj − φx)∏
i∈I(zi − φx)

Λx(~Y )

u− φx
|~a, ~Y + x〉.

(2.33)

The product in the r.h.s. can be rewritten as a sum over single poles in φx, with an extra

polynomial term, using the algebraic identity,∏
j∈J(wj − φ)

(u− φ)
∏
i∈I(zi − φ)

=

|J |−|I|−1∑
n=0

an(u|z, w)φn +

∏
j∈J(wj − u)

(u− φ)
∏
i∈I(zi − u)

+
∑
i∈I

∏
j∈J(wj − zi)

(zi − φ)(u− zi)
∏
j∈I\{i}(zj − zi)

. (2.34)

Here an are the coefficients appearing in Laurent expansion of the l.h.s. in φ, they depend

on the parameter zi, wj and u:

P+
φ

∏
j∈J(wj − φ)

(u− φ)
∏
i∈I(zi − φ)

=

|J |−|I|−1∑
n=0

an(u|z, w)φn. (2.35)

The sum over single poles in φ can be used to reform D1(z), while the polynomial part in

φx gives the transformations D1,n, and (2.33) becomes(∏
j∈J(wj−u)∏
i∈I(zi−u)

D1(u)+

|J |−|I|−1∑
n=0

an(u|z, w)D1,n+
∑
i∈I

∏
j∈J(wj − zi)

(u− zi)
∏
j∈I\{i}(zj − zi)

D1(zi)

)
|~a, ~Y 〉 .

(2.36)

Since the states |~a, ~Y 〉 generate a faithful representation, the equality of vectors can be

lifted at the level of operators

U(z, w)−1D1(u)U(z, w) =

∏
j∈J(wj − u)∏
i∈I(zi − u)

D1(u) +

|J |−|I|−1∑
n=0

an(u|z, w)D1,n

+
∑
i∈I

∏
j∈J(wj − zi)

(u− zi)
∏
j∈I\{i}(zj − zi)

D1(zi) (2.37)

The expression for U(z, w)−1D−1(u)U(z, w) is similarly obtained and is written as (2.37)

with the substitution of the variables zi ↔ wj . The right hand side of (2.37) can be

simplified by analyzing the first term: the second term cancels the poles (and the constant

part) at u = ∞ of the first term, while the third term cancels the simple poles at u = zi.

The existence of such terms is natural since the left hand side of (2.37) is not singular at

these points. The procedure of removing the unwanted poles is performed by the projector

P−u=∞,zi∈I defined in (2.27), and (2.37) produces (2.26). It is noted that to analyze the pole

at infinity, the following property should be employed,

P+
φ

r(φ)

u− φ
=

P+
φ r(φ)− P+

u r(u)

u− φ
= −P+

u

r(u)

u− φ
, (2.38)

– 10 –



J
H
E
P
0
4
(
2
0
1
6
)
1
6
7

for any meromorphic function r(z). It implies in particular

|J |−|I|−1∑
n=0

an(u|z, w)φn = −
|J |−|I|−1∑
n=0

an(φ|z, w)un. (2.39)

3 Instanton partition function and SHc algebra

3.1 Nekrasov instanton partition function

Class S gauge theories with N = 2 supersymmetry are obtained by compactification of the

six dimensional N = (2, 0) theory on a Riemann surface. They are classified by a quiver

diagram where each node i is in correspondence with the simple group component SU(Ni)

of the total gauge group G = ⊗iSU(Ni). Thus, to each node corresponds a gauge multiplet

containing a vector, two fermions and a scalar field in the adjoint representation. The

arrows i → j of the quiver represents bifundamental matter fields, i.e. a chiral multiplet

containing a fermion and a scalar field, with mass mij , and transforming in the fundamental

representation of SU(Ni) × SU(Nj). In addition, a number Ñi of fundamental (or anti-

fundamental) matter fields can be attached to each node i. They consist in chiral multiplets

of masses m
(f)
i with f = 1 · · · Ñi, encoded in the Ñi-vector ~mi (see figure 2).

The instanton partition functions of class S theories have been evaluated using local-

ization in the Omega-background [5]. The theory is considered on the Coulomb branch

where the adjoint scalar fields take non-zero vacuum expectation values. These complex

parameters will be denoted a
(i)
` with ` = 1 · · ·Ni, they form the Ni-vector ~ai attached to the

node i. Localization provides a sum over nested integrals that can be computed by residues.

The residues are in one-to-one correspondence with the boxes of the Ni-tuple Young dia-

grams for each node i of the quiver. The resulting formula is a sum over realizations of

these diagrams weighted by the multiplets contributions [42, 44–47]:

Zinst. =
∑

~Y1,···~YQ

Q∏
i=1

q
|~Yi|
i Zvect.(~ai, ~Yi)Zfund.(~ai, ~Yi; ~mi)

∏
i→j∈EQ

Zbfd.(~ai, ~Yi;~aj , ~Yj |mij), (3.1)

where Q is the number of nodes in the quiver, EQ its set of links, and |~Y | denotes the total

number of boxes in the N-tuple Young diagram ~Y . The instanton counting parameter qi
corresponds to the exponentiated gauge coupling at the node i, suitably renormalized in

asymptotically free theories .

It is known that the contribution from each representation can be systematically de-

rived from that for the bifundamental representation. Taking a bifundamental field of mass

m12 coupled to the two gauge groups SU(N1) and SU(N2), the contribution reads:

Zbfd.(~a, ~Y ;~b, ~W |m12) =

N1∏
`=1

N2∏
`′=1

gY`,W`′ (a` − b`′ −m12) (3.2)

gλ,µ(x) =
∏

(i,j)∈λ

(x+ ε1(λ′j − i+ 1)− ε2(µi − j))

·
∏

(i,j)∈µ

(−x+ ε1(µ′j − i)− ε2(λi − j + 1)) . (3.3)
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SU(N1)

vevs ~a1 vevs ~a2 vevs ~aQ

SU(N2) SU(NQ)
bf. m12 bf. m23 mQ−1,Q

Ñ1 Ñ2 ÑQ

fund. ~m1 fund. ~m2 fund. ~mQ

Figure 2. AQ linear quiver.

Here λi is the height of ith column and λ′i is the length of ith row of Young diagram λ (see

figure 3).

The other building blocks can be written from (3.2) as follows.

• Fundamental hypermultiplets transforming under the gauge group SU(N) and the

flavor group SU(Ñ), with masses m1, · · · ,mÑ : we take a vanishing bifundamental

mass m12 = 0, for the first node N1 = Ñ , ~a1 = ~m := (m(1), · · · ,m(Ñ)) and ~Y1 = ~∅,
and for the second node N2 = N , ~a2 = ~a and ~Y2 = ~Y arbitrary:5

Zfund.(~m;~a, ~Y ) = Zbfd.(~m,~∅;~a, ~Y |0). (3.4)

• Antifundamental hypermultiplet: in a symmetric way, we take m12 = 0, for the first

node N1 = N , ~a1 = ~a and ~Y1 = ~Y and for the second one N2 = Ñ , ~a2 = −~m and
~Y2 = ~∅,

Zaf.(~m;~a, ~Y ) = Zbfd.(~a, ~Y ;−~m,~∅|0) = Zfund.(−ε+ − ~m;~a, ~Y ). (3.5)

• Adjoint hypermultiplet: we take N1 = N2 = N , ~Y1 = ~Y2 = ~Y and ~a1 = ~a2 = ~a,

Zadj.(~a, ~Y |m) := Zbfd.(~a, ~Y ;~a, ~Y |m). (3.6)

• Vector multiplet: inverse of the adjoint hypermultiplet with zero mass,

Zvect.(~a, ~Y ) := Zbfd.(~a, ~Y ;~a, ~Y |0)−1. (3.7)

We note that the fundamental matter can be seen as bifundamental matter where one

of the two gauge groups is taken in the weak coupling limit, effectively becoming a flavor

group. In this limit, the corresponding exponentiated gauge coupling q is sent to zero,

and due to the presence of the factor q|
~Y |, only empty Young diagrams contribute in the

5We have chosen to shift the definition of the fundamental masses by ε+ in order to simplify formulas:

~mfund. = ~m+ ε+, ~maf. = ~m+ ε+. Note also that antifundamental contributions will be not discussed here

as they are equivalent to fundamental contributions with shifted masses.
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i

j λ′j

λi

Figure 3. Young diagram.

summations. As a result, the contribution of a fundamental matter multiplet is derived

from the bifundamental contribution by attaching to each set of Ñi fundamental flavors an

Ñi-tuple of empty Young diagrams.

The fact that the various contributions to the partition function of the different multi-

plets are derived from the bifundamental contribution implies important consequences for

their SHc realization that will be presented in the next section.

3.2 Action of SHc operators on instanton partition functions

In this paper we focus on the linear quiver AQ and its affine version A
(1)
Q , they are character-

ized by the set of arrows EQ = {i→ i+1, i = 1 · · ·Q−1} and EQ = {i→ i+1, i = 1 · · ·Q}
respectively, with the identification of indices modulo Q. One of the goal of this paper is

to formulate the action of SHc operators on the (affine) linear quiver instanton partition

function. For this purpose, we need to rewrite the partition function in terms of elements

of the representation theory of SHc: Gaiotto states, intertwiner and the vertex operator

(figure 4).

Gaiotto state. To each node i of the quiver diagram is associated a vector space of

representation V~ai spanned by the vectors |~ai, ~Yi〉 where ~Yi takes values in all the possible

realization of Ni-tuple Young diagrams. The set of complex parameters ~ai is fixed in each

V~ai and define the central charges of the representation of SHc. The Gaiotto state has been

introduced in [10] as a specific Whittaker vector of the Virasoro algebra with respect to the

maximal nilpotent subalgebra {Ln, n > 0}. This algebra is spanned by the two elements

L1 and L2, and the Gaiotto state is defined up to a normalization by the conditions,6

L1|G〉 = α|G〉, L2|G〉 = 0, (3.8)

where α is a constant. This definition has been generalized to the case with fundamen-

tal flavors [48], and to higher rank [49, 50], and eventually implemented in the space of

6As a consequence of the Virasoro commutation relations, the second condition implies Ln|G〉 = 0

for n > 2.
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〈G,~a| |G,~a〉 U(~m) V12(m)

Figure 4. Correspondence between quiver diagram and Gaiotto states/vertex operator/intertwiner.

representation of SHc (which contains a Virasoro sub-algebra) [1],

|G,~a〉 =
∑
~Y

√
Zvect(~a, ~Y )|~a, ~Y 〉, |G,~a〉 ∈ V~a. (3.9)

This state is known to provide the instanton partition function of pure N = 2 SYM (A1

quiver, Ñ = 0),

Zinst = 〈G,~a|qD|G,~a〉 =
∑
~Y

q|
~Y |Zvect.(~a, ~Y ), (3.10)

where the operator D = D0,1 counts the number of boxes in ~Y , D|~a, ~Y 〉 = |~Y ||~a, ~Y 〉. It is

identified with L0 in Virasoro algebra up to the zero mode and qD may be regarded as the

propagator in string theory. In the following, we refer to the operator of the form qD as

the dilatation operator. It satisfies,

qDD±1(z) = D±1(z)qD±1 . (3.11)

In terms of SHc operators written in the form of holomorphic fields, the Gaiotto state

has a new characterization. This is one of the main results of the paper:

D−1(z)|G,~a〉 =
1√
−ε1ε2

1

Y(z)
|G,~a〉, (3.12)

D1(z)|G,~a〉 =
−1√
−ε1ε2

P−z Y(z + ε+)|G,~a〉, (3.13)

〈G,~a|D−1(z) =
−1√
−ε1ε2

〈G,~a|P−z Y(z + ε+), (3.14)

〈G,~a|D1(z) =
1√
−ε1ε2

〈G,~a| 1

Y(z)
. (3.15)

These formulae are a consequence of a more general result, presented in (3.22) and (3.23)

below, and proven in appendix B.

These new expressions contain more information than the previously known relations

given in (3.16). They reveal themselves powerful enough to derive several useful relations,

presented in [27], among instanton partition function for arbitrary (A-type) quiver dia-

grams. The asymptotic of the operators Y(z) at infinity is deduced from (2.21): Y(z) ∼ zN
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since |A(~Y )|−|R(~Y )| = N for any N -tuple ~Y . Expanding the first relation at infinite spec-

tral parameter z allows to recover the characterization of the Gaiotto states in [7, 8],

D−1,n|G,~a〉=0, D−1,N−1|G,~a〉=
1√
−ε1ε2

|G,~a〉, D−1,N |G,~a〉=
1√
−ε1ε2

(
N∑
`=1

a`

)
|G,~a〉,

(3.16)

where n = 1 · · ·N − 2, and the last property has been obtained using the formula (A.3)

in [23]. These identities suggest to see the Gaiotto state as a (partial) coherent state in

the physical sense of eigenstate of the annihilation operators D−1,n.

Flavor vertex operator. Due to the presence of the empty Young diagram in the

definition (3.4), the fundamental matter contribution can be written in a simpler form,

Zfund.(~m;~a, ~Y ) =
∏
x∈~Y

Ñ∏
f=1

(φx −m(f)) =

Ñ∏
f=1

(−1)|
~Y |Q~Y (m(f)), (3.17)

where Q~Y (z) denotes the eigenvalue of the vertex operator defined in (2.20). This expres-

sion implies that the vertex operator can be used to insert fundamental multiplets in the

quiver gauge theories.

U(~m) = (−1)ÑD exp

 Ñ∑
f=1

Φ(m(f))

 ⇒ U(~m)|~a, ~Y 〉 = Zfund.(~m;~a, ~Y )|~a, ~Y 〉. (3.18)

This operator generates the modified Gaiotto states in the presence of fundamental mul-

tiplets, as studied in [7]. Since it plays the role to add the contribution of fundamental

hypermultiplets with flavor group SU(Ñ), it will sometimes be referred to as the flavor

vertex operator. The instanton partition function for this theory can be written

Zinst = 〈G,~a|qDU(~m)|G,~a〉 =
∑
~Y

q|
~Y |Zvect.(~a, ~Y )Zfund.(~m;~a, ~Y ). (3.19)

It is noted that the vertex operator U(~m) commutes with the dilatation operator qD.

Intertwiner. Up to now, only partition functions of N = 2 theories with a single gauge

group have been reproduced. To address the case of bifundamental matter coupled with

multiple gauge groups, the construction of a new operator V12(~a1,~a2|m12) : V~a2 → V~a1
is required. This operator intertwines two SHc representations specified by ~a1,~a2, with a

different rank N1 for V~a1 and N2 for V~a2 ,

V12(~a1,~a2|m12) =
∑
~Y1,~Y2

Z̄bfd.(~a1, ~Y1;~a2, ~Y2|m12) |~a1, ~Y1〉〈~a2, ~Y2|, (3.20)

where a renormalized version of the bifundamental contribution has been used,

Z̄bfd.(~a1, ~Y1;~a2, ~Y2|m12) =

√
Zvect.(~a1, ~Y1)Zvect.(~a2, ~Y2)Zbfd.(~a1, ~Y1;~a2, ~Y2|m12). (3.21)
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Several algebraic properties of the intertwiner operator were studied from the viewpoint of

SHc in [8], in relation with a recursion formula satisfied by Z̄bfd..
7

The intertwiner satisfies a set of identities which resemble the conditions (3.12)–(3.15)

for the Gaiotto states:

D~a1
−1(z)V12(~a1,~a2|m12)− V12(~a1,~a2|m12)D~a2

−1(z −m12)

=
1√
−ε1ε2

P−z

(
1

Y(1)(z)
V12(~a1,~a2|m12)Y(2)(z + ε+ −m12)

)
, (3.22)

D~a1
+1(z)V12(~a1,~a2|m12)− V12(~a1,~a2|m12)D~a2

+1(z + ε+ −m12)

= − 1√
−ε1ε2

P−z

(
Y(1)(z + ε+)V12(~a1,~a2|m12)

1

Y(2)(z + ε+ −m12)

)
. (3.23)

Here the notation Y(i) (i = 1, 2) represents the action of the vertex operor Y in the space

V~ai . These formulas characterize the transformation of the bifundamental contribution

under the action of SHc. The proof of the formulae is summarized in appendix B.

In the 4D/2D correspondence, the intertwiner is described as a vertex operator of the

form, V = V COV Toda where V CO is the Carlsson-Okounkov vertex [11] for the U(1) factor

and V Toda is the vertex operator of Toda field theory associated with the WN algebra.

This construction, however, has some limitations. One issue is the technical difficulty

to define the transformation properties of V Toda for higher spin generators. We have to

face a nonlinear expression in terms of W generators or Toda fields which is usually not

manageable. A more serious issue is the impossibility to define an intertwiner between WN

and WM Toda systems with N 6= M since there is no obvious correspondence between the

generators in WN algebras with a different N (see, for example [51, 52], for attempts to

explore such a setup). At the level of SHc, the correspondence between the generators for

representations of a different rank becomes obvious and the transformation properties (3.22)

and (3.23) are compact and tractable. Furthermore, it was confirmed in [7, 8] that these

conditions contain the modified Ward identities for the U(1) current and the Virasoro

operator for V = V COV Toda when N1 = N2. In this sense, our characterizations of the

intertwiner is a natural generalization of the conventional vertex operators in Toda field

theories to study the 4D/2D correspondence.

Gaiotto state from intertwiner. As briefly recalled in the previous subsection, the

study of the instanton partition functions for miscellaneous field content can be reduced to

the analysis of the bifundamental hypermultiplet. This fact has an important consequence

for the SHc realization that we explain here. We first consider the special case N1 = N ,

N2 = 0 and m12 = 0 for the intertwiner. Here the rank 0 representation means a trivial

representation which consists of one state — the vacuum |, 〉 (empty slots means that we

have no Fock space). Since Zbfd.(~a, ~Y ; , |0) = Zvect.(, ) = 1, we find after omitting the trivial

bra vacuum,

V12(~a, |0) = |G,~a〉. (3.24)

7In [8] it was assumed that the ranks of the two representations are the same. However, the computation

performed there can be straightforwardly generalized to the case N1 6= N2.
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bifund. m

SU(N)

vevs ~a

Figure 5. A
(0)
1 quiver.

Taking the opposite case of a rank zero representation for the first node produces the

bra Gaiotto state in a similar way. In this sense, the recursion properties of the Gaiotto

states (3.12)–(3.15) are straightforward consequences of (3.22) and (3.23). We note that

we can take D
(2)
η (z) = 0 for the trivial representation and the action operator Y on V2 is

replaced by 1.

Inclusion of (anti-)fundamental hypermultiplet is also straightforward. From (3.4)

and (3.5), after fixing N1 = N , N2 = Ñ , m12 = 0 and ~a2 = ~m + ε+, we obtain that the

action of the intertwiner on the vacuum produces the Gaiotto state with a flavor vertex

operator inserted:

V12(~a, ~m+ ε+|0)|~m+ ε+,~∅〉 = U(~m)|G,~a〉 . (3.25)

Full partition function. We now have all the elements to write down the instanton
partition function of any linear quiver as a product of operators,

Zinst =

{
〈G,~a1|qD1 U(~m1)V12(~a1,~a2|m12)qD2 U(~m2)V23(~a2,~a3|m23) · · · |G,~aQ〉 for AQ ,

TrV~a1

[
qD1 U(~m1)V12(~a1,~a2|m12)qD2 U(~m2)V23(~a2,~a3|m23) · · ·VQ1(~aQ,~a1|mQ1)

]
for A

(1)
Q .

(3.26)

To each arrow i→ j of the quiver is associated the intertwiner Vij(~ai,~aj |mij), and to each

node i an operator qDi U(~mi). For the linear quivers, the resulting operator is sandwiched

between the Gaiotto states attached to the first and the last node. On the contrary, a trace

is directly obtained for the affine quiver from the intertwiners, it is defined as

TrV~a · · · =
∑
~Y

〈~a, ~Y | · · · |~a, ~Y 〉. (3.27)

As an example, the partition function of N = 2∗ theory represented in figure 5 with

bifundamental fields of mass m reads

Zinst = TrV~a
[
qDV11(~a,~a|m)

]
=
∑
~Y

q|
~Y |Zvect.(~a, ~Y )Zbfd.(~a, ~Y ;~a, ~Y |m)

=
∑
~Y

q|
~Y |Zvect.(~a, ~Y )Zadj(~a, ~Y |m), (3.28)

thanks to the orthonormality property of the states |~a, ~Y 〉.

– 17 –



J
H
E
P
0
4
(
2
0
1
6
)
1
6
7

Alternative expressions. Although it will not be used in this paper, we would like

to provide, as a side remark, a new expression for the bifundamental contribution (3.2)

involving the vertex operator Y(z). This expression is a consequence of the property (B.1)

expressing the variation of Zbfd.(~a, ~Y ;~b, ~W |m) under the addition of a box in the Young

diagrams ~Y . It turns out that the right hand side of (B.1) is independent of the actual

content of boxes in the Young diagrams ~Y . As a result, this formula can be used to build

recursively Zbfd.(~a, ~Y ;~b, ~W |m) from Zbfd.(~a,~∅;~b, ~W |m), adding boxes one by one. Since,

Zbfd.(~a,~∅;~b, ~W |m) can be further identified with a fundamental contribution of mass ~a−m,

it is shown that

Zbfd.(~a, ~Y ;~b, ~W |m) = 〈~b, ~W |U(~a−m)|~b, ~W 〉
∏
x∈~Y

〈
~b, ~W |Y(φx −m+ ε+)|~b, ~W

〉
= 〈~a, ~Y |U(~b+m− ε+)|~a, ~Y 〉

∏
x∈ ~W

〈
~a, ~Y |Y(φx +m)|~a, ~Y

〉 (3.29)

where the second equality has been obtained by exploiting the symmetry under the ex-

change of (~a, ~Y ) ↔ (~b, ~W ) and m ↔ ε+ − m. As a special case of this expression, new

formulae for the vector contribution and the Gaiotto states can also be deduced,

Zvect.(~a, ~Y ) =

〈
~a, ~Y

∣∣∣U(~a− ε+)−1
∏
x∈~Y

Y(φx)−1
∣∣∣~a, ~Y〉 ,

|G,~a〉 =
∑
~Y

1√
U(~a− ε+)

∏
x∈Y

1√
Y(φx)

|~a, ~Y 〉. (3.30)

4 Ward identities of SHc and qq-character

In the previous section, we have seen that the instanton partition function for any AQ
type quiver gauge theories can be written by combining Gaiotto states, dilatation op-

erators, flavor vertex operators and intertwiners as in (3.26). The behavior of these

states/operators under the action of SHc generators has been characterized through the

set of relations (3.12)–(3.15), (3.11), (2.26) and (3.22)–(3.23). As a side result, one obtains

a series of consistency conditions by inserting D±1(z) in the correlator and evaluating the

inner product in two different ways,

(〈G,~a1|O1D±1(z))O2|G,~aQ〉 = 〈G,~a1|O1 (D±1(z)O2|G,~aQ〉) , (4.1)

where Oi denotes a combination of flavor vertex operator, dilatation operators and in-

tertwiners. These conditions may be regarded as the Ward identities for the correlation

functions of SHc. Since it is written as a generating function with parameter z, it gives

an infinite number of constraints. In the following, we evaluate the explicit form of these

identities. We observe that their structure takes the form of a double quantum deformation

of the character formulae for AQ, the so-called qq-character proposed by Nekrasov, Pestun

and Shatashvili [25, 41]. In the next section, we will discuss another interpretation of these

formulae as a quantum deformation of the Seiberg-Witten curve.
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4.1 A1 quiver

We start from the expression (3.10) of the instanton partition function for pure SYM

with SU(N) gauge group, and consider the insertion of the operator of D−1(z),

〈G,~a|D−1(z)qD|G,~a〉, evaluated in two different ways as in (4.1). After the use of the

identities (3.11), (3.12), (3.14), we arrive at,

〈G,~a|P−z
(
Y(z + ε+) +

q

Y(z)

)
qD|G,~a〉 = 0 . (4.2)

The insertion of Y has the effect of adding extra factors to the partition function. For

example, from (2.21),

〈G,~a|Y(z + ε+)qD|G,~a〉 =
∑
~Y

q|
~Y |

(∏
x∈A(~Y )(z + ε+ − φx)∏

x∈R(~Y )(z − φx)

)
Zvect.(~a, ~Y ). (4.3)

We will use the following notation for the expectation value of the Gaiotto state:

〈· · ·〉 =
1

Zinst

∑
~Y

q|
~Y |Zvect.(~a, ~Y )〈~a, ~Y | · · · |~a, ~Y 〉. (4.4)

This defines an average of operators acting on states |~a, ~Y 〉 that is normalized to 〈1〉 = 1.

The relation (4.2) is rewritten in the form:

P−z

〈
Y(z + ε+) +

q

Y(z)

〉
= 0 . (4.5)

This condition is the generating function of an infinite number of constraints on the in-

stanton partition function. At the same time, this formula implies that

χ(z) := 〈Y(z + ε+)〉+

〈
q

Y(z)

〉
=
〈
P+
z (Y(z + ε+))

〉
(4.6)

has no negative powers of z in the Laurent expansion at z =∞. We note that Y(z) behaves

as Y(z) ∼ zN as z → ∞. It implies that χ(z) thus defined is a polynomial in z of degree

N . The expression χ ∼ y+ 1/y is reminiscent of the character of sl(2) for the fundamental

representation. The formula (4.6) is deformed by two parameters ε1,2 and was referred as

a fundamental qq-character in [25, 27, 41] for the quantum deformed Yangian Yε(sl(2)).

The inclusion of fundamental hypermultiplets with Ñ flavor is a straightforward gen-

eralization. The only necessary modification is to insert a flavor vertex operator U(~m) in

front of |G,~a〉. The commutator with D−1(z) is obtained from (2.29):

D−1(z)U(~m) = U(~m)P−z [D−1(z)m(z)] , m(z) =

Ñ∏
f=1

(z −m(f)) . (4.7)

Inserting this relation between two Gaiotto states (with an operator qD), and then evalu-

ating the action of D−1(z) through (3.12) and (3.14) leads to

P−z

〈
Y(z + ε+) + q

m(z)

Y(z)

〉
= 0, (4.8)
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where the average acquired an extra factor Zfund.(~m;~a, ~Y ),

〈· · ·〉 =
1

Zinst

∑
~Y

q|
~Y |Zfund.(~m;~a, ~Y )Zvect.(~a, ~Y )〈~a, ~Y | · · · |~a, ~Y 〉. (4.9)

After including the fundamental hypermultiplets, the qq-character is modified to

χ(z) =

〈
Y(z + ε+) +

qm(z)

Y(z)

〉
. (4.10)

As a consequence of (4.8), P−z χ(z) = 0 and the qq-character is again a polynomial of degree

N in z. A more detailed discussion of the qq-character in the presence of fundamental

hypermultiplets is presented in appendix D.

In the case Ñ < N , the ratio m(z)/Y(z) has no polynomial part and the character

χ(z) equals the average of the operator P+
z Y(z + ε+). As a result, explicit expressions for

the qq-character can be obtained by expansion of Y(z + ε+) at infinity using the proper-

ties (2.8), (2.21):

Y(z + ε+) =

N∏
`=1

(z + ε+ − a`)
(

1− ε1ε2
d

dz
D0(z) + higher terms in ε

)

=
N∏
`=1

(z + ε+ − a`) + ε1ε2z
N−2 D +O(zN−3). (4.11)

In the average (4.4) the operator D with eigenvalue |~Y | can be replaced by a logarithmic

q-derivative,

χ(z) =

N∏
`=1

(z + ε+ − a`) + ε1ε2z
N−2q∂q logZinst +O(zN−3) . (4.12)

Specializing to N = 1 and to N = 2 with a1 = −a2 = a, we deduce the following expressions

U(1) : χ(z) = z + ε+ − a,
SU(2) : χ(z) = (z + ε+)2 − a2 + ε1ε2q∂q logZinst.

(4.13)

4.2 qq-characters of higher representations for the A1 quiver

In a series of recent lectures, Nekrasov proposed a generalization of the qq-character for

higher representations of Yε(sl(2)) [25]. Higher qq-characters involve a set of complex

parameters ν1, · · · , νr ∈ C, and they are defined as

χr(z|ν1, · · · νr) =
∑

ItJ={1,··· ,r}

q|J |
∏
i∈I
j∈J

S(νi − νj)

〈∏
i∈I
Y(z + ε+ + νi)

∏
j∈J

m(z + νj)

Y(z + νj)

〉
.

(4.14)

Here S(z) is the scattering factor (2.31). It is claimed in [25] that the expectation value

of these operators is again a polynomial in z. This proposal has been verified using our

formalism in appendix D for the second character of pure SU(N) SYM in the restricted
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cases N = 1 and N = 2. The second character can be rewritten using the shifted spectral

variables z1 = z + ν1, z2 = z + ν2,

χ2(z1, z2) =

〈(
Y(z1 + ε+) +

qm(z1)

Y(z1)

)(
Y(z2 + ε+) +

qm(z2)

Y(z2)

)〉
+ q

ε1ε2
z12

〈
Y(z1 + ε+)

z12 + ε+

m(z2)

Y(z2)
+
Y(z2 + ε+)

z12 − ε+
m(z1)

Y(z1)

〉
,

(4.15)

with z12 = z1 − z2. This condition is equivalent to (4.14). From the insertion of two

operators D1(z1)D−1(z2) within two Gaiotto states, it is possible to show that

P−z1P−z2χ2(z1, z2) = 0. (4.16)

The polynomiality is further obtained in the cases N = 1 and N = 2 by employing the

explicit expression (4.11) of the operator Y(z + ε+). In both cases, it was found that

χ2(z1, z2) = P+
z1P+

z2 〈Y(z1 + ε+)Y(z2 + ε+)〉+
2qε1ε2
z2

12 − ε2+
. (4.17)

4.3 Generalization to the AQ-type quiver

For simplicity here we will only treat explicitly the case of the A2 quiver without funda-

mental matter fields. For any operator O we introduce the index α = 1, 2 labeling the

space V~aα in which the operator acts, and we associate the expectation value〈
O(α)(z)

〉
=

1

Zinst

∑
~Y1,~Y2

q
|~Y1|
1 q

|~Y2|
2 Zvect.(~a1, ~Y1)Zvect.(~a2, ~Y2)Zbfd.(~a1, ~Y1;~a2, ~Y2|m12)

〈~aα, ~Yα|Oα(z)|~aα, ~Yα〉. (4.18)

To derive the qq-character relations, we consider the commutation relation (3.22) between

the SHc generating series Dη(z) and the intertwiner operator. We consider the operator

insertion of the following type,

〈G,~a1|D~a1
−1(z)qD1 V12(~a1,~a2|m12)qD2 |G,~a2〉, 〈G,~a1|qD1 V12(~a1,~a2|m12)qD2 D

~a2
+1(z)|G,~a2〉,

(4.19)

and then using the action of the SHc modes on Gaiotto states, it is possible to derive the

following identity, obtained respectively from the former and latter expressions:

P−z

〈
Y(1)(z + ε+) + q1

Y(2)(z + ε+ −m12)

Y(1)(z)
+ q1q2

1

Y(2)(z −m12)

〉
= 0,

P−z

〈
Y(2)(z + ε+) + q2

Y(1)(z +m12)

Y(2)(z)
+ q1q2

1

Y(1)(z +m12 − ε+)

〉
= 0.

(4.20)

These identities imply that the two following qq-characters are polynomials in z:

χ(1)(z) =

〈
Y(1)(z + ε+) + q1

Y(2)(z + ε+ −m12)

Y(1)(z)
+ q1q2

1

Y(2)(z −m12)

〉
,

χ(2)(z) =

〈
Y(2)(z + ε+) + q2

Y(1)(z +m12)

Y(2)(z)
+ q1q2

1

Y(1)(z +m12 − ε+)

〉
.

(4.21)
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Generalization of these formulae to the AQ quiver with fundamental multiplets is straight-

forward. For example, the first one is generalized to

χ(1)(z) =

Q+1∑
i=1

[
i−1∏
j=1

qjmj(z − ζj)

]〈
Yi(z + ε+ − ζi)
Yi−1(z − ζi−1)

〉
, ζj =

j−1∑
k=1

mk,k+1, (4.22)

with ζ0 = ζ1 = 0, Y0 = YQ+1 := 1 and the mass polynomials mi(z) =
∏Ñi
f=1(z − m(i)

f )

associated to the fundamental multiplet of the node i, with flavor group SU(Ñi). We note

that for a linear quiver with N = N1 ≥ N2 ≥ · · · ≥ NQ, the rank of the flavor group need

to satisfy Ñi ≤ 2Ni − Ni+1 − Ni−1 with N0 = NQ+1 = 0. In this set-up, the character

χ(1)(z) is a polynomial of degree at most N .

As already stated, in the weak coupling limit q2 → 0 the second node of the quiver

diagram acts as a set of N2 fundamental flavors of mass a
(2)
` coupled to the first node.

This relation can also be observed at the level of characters. As can be seen from (4.18)

in this limit only the empty N2-tuple ~Y2 = ~∅ contribute to the sum, Zvect.(~a2,~∅) = 1 and

Zbfd. → Zfund.. We further notice that the operator Y(2)(z+ ε+) becomes polynomial and,

as such, can be identify with χ(2)(z), it reproduces a mass polynomial with masses a
(2)
` −ε+,

χ(2)(z)→
N2∏
`=1

(z − a(2)
` + ε+) =: m(z). (4.23)

In this weak coupling limit, the first equation in (4.21) becomes the equation (4.10) for the

massive qq-character, with an extra shift of the fundamental masses by m12.

5 Quantum Seiberg-Witten geometry

In the limit ε1, ε2 → 0, the Omega-background reduces to R4 and the infrared theory

is characterized by a complex algebraic curve. This curve, together with a differential

form, determines the prepotential of the theory through the Seiberg-Witten relations. It

is also associated to the spectral curve of a classical integrable system in the Bethe/gauge

correspondence (see for instance [30] and references inside). For simplicity here, we focus

our discussion on the case of a single node with gauge group SU(N) and a number Ñ of

fundamental multiplets. In this case, the algebraic curve can be written in the form

y + q
m(z)

y
=

N∏
`=1

(z − a`). (5.1)

This expression should be compared with the definition (4.6) of the qq-character. It is then

appealing to interpret the qq-character as a double deformation of the Seiberg-Witten ge-

ometry, where the expectation value of the operator Y(z) reduces to the complex parameter

y of the curve E(y, z) = 0, while the qq-character χ(z) reproduces the gauge polynomial

in the r.h.s. of (5.1). This is indeed the case, as we will demonstrate shortly.

The discussion becomes even more illuminating if we introduce the intermediate back-

ground R2
ε1×R

2 obtained in the Nekrasov-Shatashvili limit ε2 → 0 of the Omega-background.
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This ε1-deformation of the Euclidean background is known to be responsible for the quan-

tization of the classical integrable system associated to the N = 2 gauge theory [42]. In

this background, the Seiberg-Witten curve is replaced by a Baxter TQ-equation that has

been derived in [31, 32] (the derivation was later extended to quivers in [27, 33]),

T (z)Q(z) = Q(z + ε1) + qm(z)Q(z − ε1), Q(z) =
∏
r

(z − ur), (5.2)

where T (z) and Q(z) denote respectively the Baxter T- and Q-polynomials. The TQ-

equation can be recast in a form more similar to the original Seiberg-Witten curve (5.1)

by the introduction of the ratio Y (z) = Q(z)/Q(z − ε1):8

T (z) = Y (z + ε1) + q
m(z)

Y (z)
. (5.4)

In this form, it readily reproduces (5.1) in the limit ε1 → 0. In order to show that the

qq-character defines a sort of second quantization of the Seiberg-Witten geometry, we will

take the NS limit and reproduce the TQ-relation (5.4), the operator Y(z) being reduced

to the rational function Y (z), and the qq-character to the T-polynomial.

To perform the NS limit, we will follow the procedure described in [23] (see also [27])

and first re-derive the Bethe equations. In the NS limit, the sum over Young diagrams

entering the expression (3.19) of the partition function is dominated by a Young diagram
~Y ∗ with infinitely many boxes.9 This critical Young diagram minimizes the summation

and its profile is obtained by solving the discrete saddle point equations:

q|
~Y ∗+x|Zvect.(~a, ~Y

∗ + x)Zfund.(~m;~a, ~Y ∗ + x)

q|~Y ∗|Zvect.(~a, ~Y ∗)Zfund.(~m;~a, ~Y ∗)
= 1, ∀x ∈ A(~Y ∗). (5.5)

Taking into account the variation of the vector and fundamental contributions, we find

− q

ε1ε2
m(φx)

∏
y∈R(~Y ∗)(φx − φy)(φx − φy − ε+)∏
y∈A(~Y ∗)
y 6=x

(φx − φy)(φx − φy + ε+)
= 1, ∀x ∈ A(~Y ∗). (5.6)

Following [23], we now consider only Young diagrams with infinitely high columns, and

such that a box can be added to (or removed from) each column. Up to ε2-corrections,

the images under φx of a box x ∈ A(~Y ∗) and the box immediately below x′ ∈ R(~Y ∗) are

8The TQ-equation can also be written in an operatorial form,(
ŷ + qm(z)ŷ−1)Q(z) = T (z)Q(z), ŷ = eε1∂z (5.3)

where ŷ is a shift operator. Here the non-commutativity of the variables ŷ and z becomes manifest and the

previous relation defines a quantum curve. This difference equation is actually equivalent to a Schrödinger

equation under a quantum change of variables [34]. This correspondence goes under the name of bispectral

duality [38–40] and can be seen as a degenerate version of the AGT correspondence relating the gauge

theory in the NS background with the semiclassical Liouville/Toda theory.
9This argument is similar to the one employed by Nekrasov and Okounkov in [42] to perform the limit

ε1, ε2 → 0. The main difference here is that the critical Young diagram doesn’t have a continuous profile

but is instead described by a step-function where the plateaux are given by the Bethe roots.
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equal, they define the set of Bethe roots ur = φx for x ∈ R(~Y ∗).10 This is true for all boxes

x ∈ A(~Y ∗), except for N extra boxes (one for each diagram) that lie on the top right of

the diagrams, and for which φx = ξ` with ξl = a` + n`ε1 and n` the number of columns

for the Young diagram Y ∗` .It is emphasized that these extra boxes are necessary to fulfill

the relation |A(~Y ∗)| = |R(~Y ∗)| + N between the cardinal of the two sets. The number of

columns n` in each diagram will play the role of a cut-off sent to infinity at the end of the

computation. Under this identification, and taking into account the factor −ε1ε2 from the

box y of coordinate φy = φx − ε2 just below x, we find in the limit ε2 → 0:

1 = q
m(ur)

Ξ(ur)Ξ(ur + ε1)

M∏
s=1
s 6=r

ur − us − ε1
ur − us + ε1

, Ξ(z) =

N∏
`=1

(z − ξ`), (5.7)

and the number of Bethe roots is M =
∑

` n`. These equations resemble the Bethe equa-

tions of an inhomogeneous sl(2) XXX spin chain with a twist parameter q.11 The TQ-

equation associated to this system of Bethe roots reads

T (z)Q(z) = Ξ(z)Ξ(z + ε1)Q(z + ε1) + qm(z)Q(z − ε1), (5.8)

Introducing the Q-polynomial as in (5.2), it is indeed possible to show that the r.h.s. is

a polynomial of degree M + 2N , with M zeros at z = ur as a consequence of the Bethe

equations (5.7). The TQ-equation (5.2) is reproduced by further sending the number of

Bethe roots M to infinity, together with the cut-offs ξ` after a proper rescaling of the T

and Q polynomials. More details on this limit will be provided in the work [53] to appear.

The NS limit of the expectation value (4.9) of operators is also dominated by the

single state |~a, ~Y ∗〉, and diagonal operators in the basis |~a, ~Y 〉 can be identified with their

eigenvalues:12

〈O〉 ∼
〈
~a, ~Y ∗|O|~a, ~Y ∗

〉
(5.9)

due to the simplification Zinst ∼ Zvect.(~a, ~Y
∗)Zfund.(~m;~a, ~Y ∗). From the action (2.21) of

the operator Y(z) on states |~a, ~Y 〉, replacing the coordinate φx of boxes that can be added

to /removed from ~Y ∗ by Bethe roots, we find

〈Y(z)〉∼
〈
~a, ~Y ∗|Y(z)|~a, ~Y ∗

〉
∼ Q(z)Ξ(z)

Q(z − ε1)
,

〈
1

Y(z)

〉
∼
〈
~a, ~Y ∗| 1

Y(z)
|~a, ~Y ∗

〉
∼Q(z − ε1)

Q(z)Ξ(z)
.

(5.10)

Denoting χNS(z) the limit of the qq-character χ(z), the identity (4.6) reproduces the TQ-

equation (5.8) with the T-polynomial T (z) = χNS(z)Ξ(z) (the presence of the extra cut-off

factor Ξ(z) will be explained in [53]).

Our observation can be easily generalized to apply to linear quiver gauge theories.

The NS limit for the A2 quiver has been performed in [23]. Using the same procedure, the

qq-character identity (4.21) reproduces the TQ-relation for an inhomogeneous sl(3) XXX

spin chain characterized by two sets of Bethe roots (equation (7.15) of [27]).

10In a Young diagram λ, the image φx of x = (i, λi) ∈ R(λ) is given explicitly by φx = a + (i − 1)ε1 +

(λi − 1)ε2, it is finite in the limit ε2 → 0 since λi tends to infinity such that ε2λi remains finite.
11In fact, in the superconformal case Ñ = 2N , it exactly reproduces the inhomogeneous XXX spin chain

for an appropriate choice of masses mf .
12This is true for well-behaved operators for which the insertion does not modify significantly the saddle

point equations.
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6 Summary and concluding remarks

In this paper, we developed a holomorphic field representation of SHc algebra. It has

the merit to express the commutation relations and the finite rank representations of the

operators in a compact form. Instanton partitions for AQ and A
(1)
Q -type quiver gauge

theories can be expressed concisely in terms of Gaiotto state, intertwiner operator, and

a newly introduced flavor vertex operator that insert the contribution of fundamental

hypermultiplets. A new characterization of the Gaiotto state and intertwiner has been

established using the adjoint action of SHc holomorphic fields. It provided the infinite set

of constraint on the instanton partition function from the chiral ring generating function

proposed in [27]. These constraints are summarized in simple algebraic relations which

were referred as the qq-character.

The qq-characters describe a quantum version of the Seiberg-Witten geometry [41]

in the NS limit ε2 → 0. In this setup, the ε2-deformation introduces a form of second

quantization of the TQ-system in which the T-polynomial is replaced by an operator acting

in the Hilbert space of the rank N representation. This should be compared with the

recent results obtained in [54, 55], where the subleading corrections to the NS limit have

been derived. These corrections are compatible (up to a quantum correction) with the

second quantization of the NS action that is interpreted as the Yang-Yang functional of

the underlying quantum integrable system. By comparing these two different approaches, a

unified interpretation for the ε2-deformation of quantum integrable systems should emerge.

There are some obvious generalizations of the current study for future work. In [27],

similar algebraic relations for the chiral generating functional were proposed for ADE type

quiver gauge theories. In order to describe the bifurcation in the quiver diagram, we need

to find a SHc description of trivalent vertex which takes of the form:

|~b〉〉αβγ =
∑
~W

Zvect.(~b, ~W )−1/2|~b, ~W 〉α ⊗ |~b, ~W 〉β ⊗ |~b, ~W 〉γ . (6.1)

Here we added extra labels α, · · · to specify the Hilbert spaces. With the help of such

operator, one may give the partition for the D4 quiver partition function, for example, as

⊗3
i=1

(
αi〈G,~ai|q

D
(i)
0,1

i Vαiβi(~ai,
~b|mi)

)
· q

D
(1)
0,1

4 |~b〉〉β1β2β3

=
∑

~Y1,~Y2,~Y3, ~W

q
| ~W |
4 Zvect.(~b, ~W )

3∏
i=1

q
|~Yi|
i Zvect.(~ai, ~Yi)Zbfd.(~ai, ~Yi;~b, ~W |mi) . (6.2)

In order to derive the qq-character for such extended cases, we need to find an analog

of (3.22), (3.23) for the trivalent vertex. At this moment, however, this seems not so

simple and we would like to leave it for future study. Another possible direction proposed

in [27] is the 5D version of the current analysis. It corresponds to the algebra studied by

many authors in [56–59] and has implications in 4D [60, 61]. Since the building blocks

are already known (for example, [62, 63]), it would not be so difficult to perform a similar

analysis in such set-up. In addition, our formulation of SHc seems particularly suited to the

generalization to the six-dimensional Ω-background R2
ε1 ×R2

ε2 ×R2
ε3 in which the instanton

partition function of N = 2 theories are expressed as a sum over plane partitions [64].
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In a different perspective, it is important to clarify the relations with integrable models.

On one hand, a proposal of NPS in [27] suggests a connection between quantum geometry

and the representation of the Yangian associated to the quiver Dynkin diagram. On the

other hand, Maulik and Okounkov have proposed in [65] the expression of the Yangian

of ĝl(1). In their formalism, the Dynkin diagram is regarded as the finite lattice of a

spin system, where the spin degree of freedom is actually described by a free boson Fock

space. In [66], a short summary of [65] and a possible supersymmetric generalization were

presented. While the two approaches are very different, the coproduct defined by the

authors of [65] coincides with the one employed in [1]. Our analysis which relates the NPS

qq-character [27] to the SHc algebra [1] could provide an interesting link between the two

Yangians.

Note added. After the first version of this paper was submitted to arXiv, N. Nekrasov

published a paper [67] where he studied Dyson-Schwinger equations for the instanton par-

tition functions. He evaluated the effect of adding point-like instantons, and express this

effect by an operator Y which is identical to ours. There seems to be a direct relation with

our analysis and we hope to provide a more detailed comparison in the near future.
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A Comments on the notations

In this paper, in order to ease the comparison with the gauge theory, we use the omega

background parameters ε1, ε2 instead of the CFT parameter β = −ε1/ε2 in [7, 8]. Since

some results of these papers are used here, we summarize the correspondence between

the notations in this appendix. As we use two parameters instead of one, we need some

rescaling and shift of parameters to compare with the results there. Adding a tilde to the

notations in [7, 8], the comparison goes as follows:

D0,n+1 =(ε2)nD̃0,n+1, D±1,n=(ε2)nD̃±1,n, En=(ε2)nẼn , (A.1)

a`=−ε2ã` + ε+, z=ε2/ζ̃, cn=(−ε2)nc̃n, (A.2)

φ(x)|x∈A(Y`) =−ε2(ã`+Ãt(Y`)), φ(x)|x∈R(Y`) =−ε2(ã`+B̃t(Y`)). (A.3)

We note that under the rescaling (A.1), the algebra (2.1)–(2.3) remains the same.
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B Proof of the recursion formulae for Gaiotto states and intertwiner

Since the Gaiotto state can be derived from the intertwiner (3.25), it will be sufficient to

prove (3.22), (3.23). We need a few formulae to characterize the behavior of the instanton

partition function building blocks (here bifundamental and the vector contributions) under

the variations of the number of boxes in the N -tuple ~Y .

Zbfd.(~a, ~Y + x;~b, ~W |m)

Zbfd.(~a, ~Y ;~b, ~W |m)
=

∏
y∈A( ~W )(φx − φy + ε+ −m)∏

y∈R( ~W )(φx − φy −m)
, (B.1)

Zbfd.(~a, ~Y − x;~b, ~W |m)

Zbfd.(~a, ~Y ;~b, ~W |m)
=

∏
y∈R( ~W )(φx − φy −m)∏

y∈A( ~W )(φx − φy + ε+ −m)
, (B.2)

Zbfd.(~a, ~Y ;~b, ~W + x|m)

Zbfd.(~a, ~Y ;~b, ~W |m)
=

∏
y∈A(~Y )(φx − φy +m)∏

y∈R(~Y )(φx − φy +m− ε+)
, (B.3)

Zbfd.(~a, ~Y ;~b, ~W − x|m)

Zbfd.(~a, ~Y ;~b, ~W |m)
=

∏
y∈R(~Y )(φx − φy +m− ε+)∏

y∈A(~Y )(φx − φy +m)
, (B.4)

Zvect.(~a, ~Y + x)

Zvect.(~a, ~Y )
= − 1

ε1ε2

∏
y∈R(~Y )(φx − φy)(φx − φy − ε+)∏
y∈A(~Y )
y 6=x

(φx − φy)(φx − φy + ε+)
, (B.5)

Zvect.(~a, ~Y − x)

Zvect.(~a, ~Y )
= − 1

ε1ε2

∏
y∈A(~Y )(φx − φy)(φx − φy + ε+)∏
y∈R(~Y )
y 6=x

(φx − φy)(φx − φy − ε+)
. (B.6)

These formulae were used in [8] to prove the recursive properties of the quiver gauge

theories. Essentially the same computation shows up here. We evaluate the action of

Dη(z) on the intertwiner:

V (~a,~b|m) =
∑
~Y , ~W

Z̄bfd.(~a, ~Y ;~b, ~W |m)|~a, ~Y 〉〈~b, ~W | , (B.7)

with Z̄bfd.(~a, ~Y ;~b, ~W |m) :=

√
Zvect.(~a, ~Y )Zvect.(~b, ~W )Zbfd.(~a, ~Y : ~b, ~W |m). We first eval-

uate the action of D−1(z) on the intertwiner from the left. It is easily deduced from its

action on states |~a, ~Y 〉,

D~a
−1(z)V (~a,~b|m) =

∑
~Y , ~W

Z̄bfd.(~a, ~Y ;~b, ~W |m)
∑

x∈R(~Y )

Λx(~Y )

z − φx
|~a, ~Y − x〉〈~b, ~W |. (B.8)

An alternative expression can be obtained after noticing that the inverse images of a state

|~a, ~Y 〉 under the mapping D−1(z) are the states |~a, ~Y +x〉 for x ∈ A(~Y ) because the action

of the operator removes one box. Since the states |~a, ~Y 〉 form a basis of the vector space

V~a, it is possible to write

D~a
−1(z)V (~a,~b|m) =

∑
~Y , ~W

∑
x∈A(~Y )

Λx(~Y + x)

z − φx
Z̄bfd.(~a, ~Y + x;~b, ~W |m)|~a, ~Y 〉〈~b, ~W |. (B.9)
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It is convenient to rewrite this expression as follows, using the fact that Λx(~Y + x)2 =

Λx(~Y )2, ∀x ∈ A(~Y ):13

D~a
−1(z)V (~a,~b|m)=

∑
~Y , ~W

∑
x∈A(~Y )

Λx(~Y )

z − φx
Z̄bfd.(~a, ~Y +x;~b, ~W |m)

Z̄bfd.(~a, ~Y ;~b, ~W |m)
Z̄bfd.(~a, ~Y ;~b, ~W |m)|~a, ~Y 〉〈~b, ~W |.

(B.10)

We evaluate the ratio for Z̄bfd. from (B.1) and (B.5) and put the explicit form of

Λx(~Y ) (2.19):

Λx(~Y )
Z̄bfd.(~a, ~Y +x;~b, ~W |m)

Z̄bfd.(~a, ~Y ;~b, ~W |m)
=

1√
−ε1ε2

∏
y∈R(~Y )(φx−φy−ε+)∏

y∈A(~Y )
y 6=x

(φx − φy)

∏
y∈A( ~W )(φx−φy−m+ε+)∏
y∈R( ~W )(φx − φy −m)

.

(B.11)
The action of D−1 from the right can be evaluated similarly,

− V (~a,~b|m)D
~b
−1(z′) =

∑
~Y , ~W

∑
x∈R( ~W )

Λx( ~W )

z′ − φx
Z̄bfd.(~a, ~Y ;~b, ~W − x|m)

Z̄bfd.(~a, ~Y ;~b, ~W |m)
Z̄bfd.(~a, ~Y ;~b, ~W |m)|~a, ~Y 〉〈~b, ~W |.

(B.12)

From (B.4) and (B.6), the factor in the middle takes the form:

Λx( ~W )
Z̄bfd.(~a, ~Y ;~b, ~W−x|m)

Z̄bfd.(~a, ~Y ;~b, ~W |m)
=

1√
−ε1ε2

∏
y∈A( ~W )(φx−φy+ε+)∏

y∈R( ~W )
y 6=x

(φx − φy)

∏
y∈R(~Y )(φx−φy+m−ε+)∏
y∈A(~Y )(φx − φy +m)

.

(B.13)

To add (B.10) and (B.12), we use the following identity to simplify the formula (we put

z′ = z −m)

∑
x∈A(~Y )

1

z − φx

∏
y∈R(~Y )(φx − φy − ε+)∏

y∈A(~Y )
y 6=x

(φx − φy)

∏
y∈A( ~W )(φx − φy −m+ ε+)∏

y∈R( ~W )(φx − φy −m)

+
∑

x∈R( ~W )

1

z −m− φx

∏
y∈A( ~W )(φx − φy + ε+)∏

y∈R( ~W )
y 6=x

(φx − φy)

∏
y∈R(~Y )(φx − φy +m− ε+)∏

y∈A(~Y )(φx − φy +m)

= P−z

(∏
y∈R(~Y )(z − φy − ε+)∏

y∈A(~Y )(z − φy)

∏
y∈A( ~W )(z − φy −m+ ε+)∏

y∈R( ~W )(z − φy −m)

)
. (B.14)

This formula is obtained by comparing the residue of the poles on both sides. Finally, we

note that by using (2.21), we obtain

P−z

(∏
y∈R(~Y )(z − φy − ε+)∏

y∈A(~Y )(z − φy)

∏
y∈A( ~W )(z − φy −m+ ε+)∏

y∈R( ~W )(z − φy −m)

)
|~a, ~Y 〉〈~b, ~W |

= P−z

(
1

Y(1)(z)
|~a, ~Y 〉〈~b, ~W |Y(2)(z −m+ ε+)

)
. (B.15)

After combining everything, we prove (3.22). The proof of (3.23) is completely parallel

and we omit it here.
13In this expression, and the analysis hereafter, the correct choice of sign is verified by comparing with

the direct action of SHc generators on states with a small number of boxes.
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C Some calculations of commutation relations in the rank N represen-

tation

For completeness, we present here some explicit computations for the commutators of

holomorphic generators.

[D0(z), D1(w)]. From (2.15),

D1(w)D0(z)|~a, ~Y 〉 =
∑
x∈~Y

1

z − φx

∑
y∈A(~Y )

Λy(~Y )

w − φy
|~a, ~Y + y〉, (C.1)

D0(z)D1(w)|~a, ~Y 〉 =
∑

y∈A(~Y )

∑
x∈~Y+y

1

z − φx
Λy(~Y )

w − φy
|~a, ~Y + y〉. (C.2)

The difference is the inclusion of the box y in ~Y +y. So we obtain the first relation in (2.6).

[D0(z), D1(w)] |~a, ~Y 〉 =
∑

y∈A(~Y )

Λy(~Y )

(z−φy)(w−φy)
|~a, ~Y 〉=

∑
y∈A(~Y )

1

z−w

(
Λy(~Y )

w−φy
−Λy(~Y )

z−φy

)
|~a, ~Y 〉

=
D1(w)−D1(z)

z − w
|~a, ~Y 〉. (C.3)

[D1(z), D−1(w)].

D1(z)D−1(w)|~a, ~Y 〉 =
∑

x∈R(~Y )

∑
y∈A(~Y−x)

Λx(~Y )

w − φx
Λy(~Y − x)

z − φy
|~a, ~Y − x+ y〉

=
∑

x∈R(~Y )

∑
y∈A(~Y )

Λx(~Y )

w − φx
Λy(~Y − x)

z − φy
|~a, ~Y − x+ y〉

+
∑

x∈R(~Y )

Λx(~Y )

w − φx
Λx(~Y − x)

z − φx
|~a, ~Y 〉, (C.4)

where we have assumed for ~Y a generic form such that A(~Y − x) = A(~Y )∪ {x}. From the

explicit form of Λx(~Y ), one may prove for y ∈ A(~Y ):

Λy(~Y − x)2 = Λy(~Y )2S(φx − φy)
S(φy − φx)

, Λx(~Y − x)2 = Λx(~Y )2 , (C.5)

where S(z) is the scattering factor which appeared in (2.31). After combining them,

D1(z)D−1(w)|~a, ~Y 〉 becomes,

∑
x∈R(~Y )

∑
y∈A(~Y )

Λx(~Y )

w − φx
Λy(~Y )

z − φy

(
S(φx − φy)
S(φy − φx)

)1/2

|~a, ~Y −x+y〉+
∑

x∈R(~Y )

(Λx(~Y ))2

(w − φx)(z − φx)
|~a, ~Y 〉 .

(C.6)
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D−1(w)D1(z)|~a, ~Y 〉 is evaluated similarly, assuming that R(~Y + x) = R(~Y ),∑
y∈A(~Y )

∑
x∈R(~Y )

Λx(~Y )

w − φx
Λy(~Y )

z − φy

(
S(φx − φy)
S(φy − φx)

)1/2

|~a, ~Y −x+y〉+
∑

x∈A(~Y )

(Λx(~Y ))2

(w − φx)(z − φx)
|~a, ~Y 〉 .

(C.7)

In [D1(z), D−1(w)], the first term cancels and the second term gives E(z)−E(w)
ε+(z−w) |~a, ~Y 〉 after

the use of the relations (2.18), (2.19) and (2.22). Degenerate situations should be evaluated

case by case, but the general conclusion remains unchanged.

D Detailed analysis of the qq-characters

D.1 Matter case

There are different possibilities for the insertion position of the SHc operator D−1(z), the

simplest option is to insert it on the left of the mass operator as in 〈G,~a|qDD−1(z)U(~m)|G,~a〉,
and then use the braiding relation (4.7) to move it to the right. The two formulas (3.12)

and (3.14) for the action of D−1(z) provides the identity (4.8). However, this is not the

unique choice for the insertion of the D−1(z), a second possibility is to insert it on the right

of the mass operator,

〈G,~a|qDU(~m)D−1(z)|G,~a〉. (D.1)

A new braiding relation is needed in order to move the SHc operator to the left, which is

deduced from (2.29):

U(~m)D−1(z) =

D−1(z)

m(z)
−

Ñ∑
f=1

D−1(m(f))

z −m(f)

Ñ∏
f ′=1
f ′ 6=f

1

m(f) −m(f ′)

U(~m). (D.2)

The action of D−1(z) on the Gaiotto state is then computed from (3.12) and (3.13), leading

to the identity

1

m(z)
P−z 〈Y(z+ε+)〉−

Ñ∑
f=1

1

z−m(f)

Ñ∏
f ′=1
f ′ 6=f

1

m(f)−m(f ′)

〈
Y(m(f)+ε+)−Π(m(f))

〉
=−q

〈
1

Y(z)

〉
,

(D.3)

where the operator Π(z) = P+
z Y(z + ε+) has been introduced to simplify the expression.

As a result, the fundamental qq-character defined in (4.6) obeys

χ(z) = 〈Π(z)〉+m(z)

Ñ∑
f=1

1

z −m(f)

Ñ∏
f ′=1
f ′ 6=f

1

m(f) −m(f ′)

〈
Y(m(f) + ε+)−Π(m(f))

〉
. (D.4)

In the last term, the apparent poles are cancelled by the zeros of m(z) and the r.h.s. is a

polynomial. The compatibility with the identity (4.8) implies the following equality,

m(z)

Ñ∑
f=1

1

z −m(f)

Ñ∏
f ′=1
f ′ 6=f

1

m(f) −m(f ′)

〈
Y(m(f) + ε+)−Π(m(f))

〉
= P+

z q

〈
m(z)

Y(z)

〉
. (D.5)
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D.2 Second qq-character of the A1 quiver

D.2.1 Double action of SHc operators Dη(z)

As a preliminary step it is necessary to derive the action of two operators D−1(z1) and

D1(z2) with different arguments on a Gaiotto state |G,~a〉. The method is the same as in

the case of a single operator, and upon using the property

〈~a, ~Y + x|Y(z + ε+)|~a, ~Y + x〉 = S(z − φx)〈~a, ~Y |Y(z + ε+)|~a, ~Y 〉, (D.6)

with S(z) the scattering factor defined in (2.31), it is possible to write down

D−1(z1)D1(z2)|G,~a〉

=
1

ε1ε2

∑
~Y

√
Zvect.(~a, ~Y )

∑
x∈A(~Y )

1

z1−φx

∏
y∈R(~Y )(φxy−ε+)∏

y∈A(~Y )
y 6=x

φxy
P−z2S(z2−φx)Y(z2+ε+)|~a, ~Y 〉,

(D.7)

where the sign ambiguity has been fixed by comparing the coefficient of the vacuum state

with the direct action of the SHc generators. Inserting the pole decomposition of

S(z2 − φx)

z1 − φx
=

S(z21)

z1 − φx
+

ε1ε2
ε+z12

1

z2 − φx
− ε1ε2
ε+(z12 − ε+)

1

z2 − φx + ε+
, (D.8)

with the shortcut notation z21 = z2 − z1, it is possible to perform the summation over

x ∈ A(~Y ):

D−1(z1)D1(z2)|G,~a〉

=
1

ε1ε2

∑
~Y

√
Zvect.(~a, ~Y )

[
P−z2S(z21)

Y(z2+ε+)

Y(z1)
+
ε1ε2
ε+z12

Y(z2+ε+)

Y(z2)
− ε1ε2
ε+(z12−ε+)

]
|~a, ~Y 〉,

(D.9)

where it has been used that the last two terms in the brackets have no polynomial part at

infinity, and consequently in the last term the two factors Y(z2 + ε+) have cancelled each

other. This result can be written in the compact form

D−1(z1)D1(z2)|G,~a〉=
[

1

ε1ε2
P−z2S(z21)

Y(z2+ε+)

Y(z1)
+

1

ε+z12

Y(z2+ε+)

Y(z2)
− 1

ε+(z12−ε+)

]
|G,~a〉.

(D.10)

The action of the commuted operators D1(z2)D−1(z1) is derived from the same method,

D1(z2)D−1(z1)|G,~a〉= 1

Y(z1)

[
S(z21)

ε1ε2
P−z2Y(z2+ε+)−

P−z1Y(z1+ε+)

ε+z21
+

P−z1Y(z1)

ε+(z21+ε+)

]
|G,~a〉.

(D.11)

This expression is simplified employing the following identity,

P−z2 [S(z21)Y(z2 + ε+)]=S(z21)P−z2Y(z2+ε+)+
ε1ε2
ε+z21

P+
z1Y(z1+ε+)− ε1ε2

ε+(z21 + ε+)
P+
z1Y(z1),

(D.12)
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obtained by decomposition of S(z21) as a sum over single poles and of Y(z2 + ε+) into

positive and negative powers. As a result, we find

D1(z2)D−1(z1)|G,~a〉=
[

1

ε1ε2
P−z2S(z21)

Y(z2+ε+)

Y(z1)
+

1

ε+z12

Y(z1+ε+)

Y(z1)
− 1

ε+(z12−ε+)

]
|G,~a〉.

(D.13)

Taking the difference between (D.10) and (D.13), the commutation relation (2.6) between

D−1(z1) and D1(z2) is recovered, with the action of E(zα) on Gaiotto states given in (2.10)

by the ratio of Y operators with shifted arguments.

D.2.2 Derivation of the second qq-character

The expression of the second qq-character follows from the consideration of the symmetrized

action (D.10) of two SHc operators inside two Gaiotto states,

〈 ~G,~a|qD [D−1(z1)D1(z2) +D−1(z2)D1(z1)] |G,~a〉. (D.14)

This quantity can be computed either using the right action (D.10) of two operators on

the Gaiotto state, or from the right (3.12), (3.13) and left (3.14) actions of a single SHc

operator. These two possible ways of calculation furnish the following identity:

− 2q−1

ε1ε2
P−z1P−z2 〈Y(z1 + ε+)Y(z2 + ε+)〉 (D.15)

=
1

ε+z12

〈
Y(z2 + ε+)

Y(z2)
− Y(z1 + ε+)

Y(z1)

〉
+

1

ε1ε2
P−z2

[
S(z21)

〈
Y(z2 + ε+)

Y(z1)

〉]
+

1

ε1ε2
P−z1

[
S(z12)

〈
Y(z1 + ε+)

Y(z2)

〉]
− 2

z2
12 − ε2+

.

The second line involves the commutator of D−1(z1) with D1(z2) evaluated in the Gaiotto

states average. The same quantity can also be computed by direct right (3.12), (3.13) and

left (3.14) actions on Gaiotto states, leading to a second identity:

1

ε+z12

〈
Y(z2 + ε+)

Y(z2)
− Y(z1 + ε+)

Y(z1)

〉
= − q−1

ε1ε2
P−z1P−z2 〈Y(z1 + ε+)Y(z2 + ε+)〉

+
q

ε1ε2

〈
1

Y(z1)Y(z2)

〉
. (D.16)

Replacing the average of the commutator in the first identity, and introducing the positive

part Π(z) = P+
z Y(z + ε+) produces

0 = q−1 〈(Y(z1 + ε+)−Π(z1))(Y(z2 + ε+)−Π(z2))〉+ P−z1

[
S(z12)

〈
Y(z1 + ε+)

Y(z2)

〉]
+ P−z2

[
S(z21)

〈
Y(z2 + ε+)

Y(z1)

〉]
+ q

〈
1

Y(z1)Y(z2)

〉
− 2ε1ε2
z2

12 − ε2+
.

(D.17)

This relation implies for the second qq-character (4.15),

P−z1P−z2χ2(z1, z2) =
2qε1ε2
z2

12 − ε2+
. (D.18)
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This is not enough to conclude on the polynomiality of the second qq-character, because

of the presence of the cross-terms

P−z1P+
z2χ2(z1, z2) =

〈
Π(z2)

(
Y(z1 + ε+)−Π(z1) + q

S(z21)

Y(z1)

)〉
− q ε1ε2

ε+

〈
Π(z1)

z21Y(z1)
− Π(z1 + ε+)

(z21 + ε+)Y(z1)

〉
. (D.19)

On the other hand, we know the explicit expression of the second qq-character for small

N , and can use it to deduce the expression of χ2(z1, z2). First, it is noted that after the

introduction of the orthogonal projector in (D.17), χ2 can be rewritten as the average of

an operator Π2(z1, z2)

χ2(z1, z2) = 〈Π2(z1, z2)〉 , (D.20)

defined as

Π2(z1, z2) = −Π(z1)Π(z2) + P+
z1

[
Π(z1)

(
Y(z2 + ε+) + q

S(z12)

Y(z2)

)]
+ P+

z2

[
Π(z2)

(
Y(z1 + ε+) + q

S(z21)

Y(z1)

)]
+

2qε1ε2
z2

12 − ε2+
. (D.21)

At first sight, it is not clear whether this quantity is a polynomial and we had to check it

case by case using the explicit expression of the polynomial operator Π(z) given in (4.13)

for N = 1, 2.

Case N = 1: in this case Π(z) is a scalar and can be taken out of the vacuum expectation

values, i.e. 〈Π(z) · · ·〉 = Π(z) 〈· · ·〉. Since it is a polynomial of degree one, it satisfies

P+
z1S(z12)Π(z1) = Π(z1) and as a result

〈Π2(z1, z2)〉 = −Π(z1)Π(z2) + Π(z1)χ(z2) + Π(z2)χ(z1) + q
2ε1ε2

z2
12 − ε2+

(D.22)

where χ(z) is the fundamental qq-character given in (4.6). In this simple case, χ(z) = Π(z)

which provides the final result

〈Π2(z1, z2)〉 = χ(z1)χ(z2) + q
2ε1ε2

z2
12 − ε2+

. (D.23)

Case N = 2: in this case, Π(z) is a polynomial of degree two that satisfies P+
z1S(z12)Π(z1)

= Π(z1) + ε1ε2. It follows that

Π2(z1, z2) = −Π(z1)Π(z2) + Π(z1)

(
Y(z2 + ε+) +

q

Y(z2)

)
+ ε1ε2

q

Y(z2)

+ Π(z2)

(
Y(z1 + ε+) +

q

Y(z1)

)
+ ε1ε2

q

Y(z1)
+ q

2ε1ε2
z2

12 − ε2+
.

(D.24)

The explicit expression of Π(z) deduced from (4.11) allows to show that〈
Π(z1)

(
Y(z2 + ε+) +

q

Y(z2)

)
+ ε1ε2

q

Y(z2)

〉
=

1

Zinst
Dz1 (Zinstχ(z2))=

1

Zinst
Dz1Dz2Zinst.

(D.25)
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with the shifted derivative

Dzα = (zα + ε+)2 − a2 + ε1ε2q∂q, χ(z) = 〈Π(z)〉 =
DzZinst

Zinst
. (D.26)

Using this expression we arrive at

χ2(z1, z2)=〈Π2(z1, z2)〉= 1

Zinst

[
Dz1Dz2 + 2q

ε1ε2
z212 − ε2+

]
Zinst, 〈Π(z1)Π(z2)〉= 1

Zinst
Dz1Dz2Zinst ,

(D.27)

replacing z1 = z + ν1 and z2 = z + ν2, this quantity is obviously a polynomial in z.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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