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1 Introduction

The partition functions of three-dimensional Chern-Simons theories show various interest-

ing aspects of M2-branes. The would-volume theory of N M2-branes on R8/Zk is described

by an N = 6 superconformal Chern-Simons theory called ABJM theory [1], which has a

gauge group U(N)k×U(N)−k (with the subscripts denoting the Chern-Simons levels) and

two pairs of bifundamental matters connecting the two U(N) factors. Due to the progress

in the supersymmetric localization [2], the partition function on a sphere is reduced to a

matrix model with a finite-dimensional multiple integral. One of the major developments

is the full determination of the partition function of the ABJM theory in the large N ex-

pansion, including the perturbative [3–6] and non-perturbative [7–10] effects. In the study,

among others, it is interesting to find that the matrix model has several interpretations.

On one hand, it can be superficially regarded as the pure Chern-Simons matrix model with

an unconventional super gauge group U(N |N) [11]. On the other hand, the matrix model

can be regarded as the partition function of a Fermi gas system [6]

ZABJM
k (N) =

1

N !

∑
σ∈SN

(−1)σ
∫

dNµ

(2π)N

N∏
i=1

〈µi|ρ̂U(N |N)|µσ(i)〉, (1.1)

with a non-trivial density matrix

ρ̂U(N |N) =
1√

2 cosh q̂
2

1

2 cosh p̂
2

1√
2 cosh q̂

2

, (1.2)

which is closely related to the quantum mechanical system associated to the local P1 × P1

geometry [12].
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It is then interesting to ask whether we can generalize the results to theories with a

large number of supersymmetries.1 One direction is the generalization to the matrix model

with a superficial gauge group U(N1|N2) [19, 20] where two factors of the bosonic subgroup

have different ranks and the physical interpretation of the difference is the introduction of

fractional M2-branes [20]. In studying the partition function with the deformation [21–25],

there are two formulations. The first one, called closed string formalism in [26], changes

the expression of the density matrix ρ̂ (1.2) while preserving the trace structure (1.1). This

formalism was first conjectured in [21] and then proved in [22]. Partially due to the lack

of a proof of the formalism for a long time, in [23] another formalism, called open string

formalism, was proposed. This formalism, on the other hand, keeps the expression of the

density matrix (1.2), while modifying the trace structure (1.1) with an extra determinant

factor.

Another direction is the replacement of the unitary supergroup by the orthosymplectic

supergroup [19, 20], whose physical interpretation is the introduction of the orientifold

plane in the type IIB description. The study of the partition function was initiated in2 [30]

by the case of OSp(2N |2N) with equal sizes of bosonic submatrices from the expectation

that the case without the fractional branes should play a fundamental role. Among others

it was found that the density matrix for this theory is closely related to
[
ρ̂U(N |N)

]
+

, the

density matrix for the ABJM theory with a projection to the even chirality. Here the

chirally projected density matrices[
ρ̂U(N |N)

]
± = ρ̂U(N |N)

1± R̂
2

, (1.3)

were introduced in [31, 32] with R̂ being the reflection operator changing the sign of the

coordinate. Then, it was found that when we double the quivers following the prescription

in [33], the partition function schematically reduces to the ABJM partition function.

Recently, there appeared an interesting paper [34]. In [34], it was observed that the

OSp(2N + 1|2N) theory, still having equal ranks and hence no fractional branes [20],

seems to serve an equally fundamental role. It was found that the density matrix for the

OSp(2N +1|2N) theory is exactly that of the ABJM theory with the projection to the odd

chirality

ρ̂OSp(2N+1|2N) =
[
ρ̂U(N |N)

]
− . (1.4)

It is then interesting to ask whether and how this relation holds in the deformation

into the case of different ranks. The first part of this paper is devoted to answering this

question. We have found that, when we deform the theory into that with a superficial

gauge group OSp(2N + 1|2(N + M)) (or OSp(2(N + M) + 1|2N) which shares the same

partition function), the density matrix is again exactly the odd projection of the density

matrix for the theory with a superficial unitary gauge group U(N |N + 2M):

ρ̂OSp(2N+1|2(N+M)) =
[
ρ̂U(N |N+2M)

]
− . (1.5)

1For other generalizations whose exact large N expansion is known, see [13–15] for the (2, 2) model

and [16–18] for the local P2 model.
2Some works which may be related to a similar physical setup are [27–29].

– 2 –



J
H
E
P
0
4
(
2
0
1
6
)
1
3
2

Figure 1. A schematic relation between the density matrix for the orthosymplectic theory and

that for the unitary theory.

See figure 1 for a schematic picture explaining the relation. We stress that the relation (1.5)

gives a Fermi gas formalism for the OSp(2N+1|2(N+M)) theory, which enables the study

of the grand potential and its relation to topological string theory.

Our manipulations start with an expression rather similar to the open string formal-

ism [23]. It is useful to keep the determinant factor coming from the open string formalism

to see many cancellations in the expressions. After performing a similarity transforma-

tion and an integration of delta functions, we can put the expression into the form of the

closed string formalism and prove the relation (1.5). In both of the U(N |N + 2M) and

OSp(2N + 1|2(N +M)) theories there is a physical bound [20] stating that 0 ≤ 2M ≤ k.3

It is interesting to find that our relation between these two theories is consistent with the

bound. We stress that, although we are influenced by the work of [22], it seems difficult to

arrive at our proof of the relation (1.5) if we simply follow the change of variables in [22].

Following the observation (1.4), in the second part, we turn to the study of the simplest

M = 0 case, the OSp(2N + 1|2N) theory, which is equivalent to the ABJM U(N |N)

theory with the odd chiral projection. We study the exact values of the partition functions

constructed from the chirally projected density matrices and read off the grand potentials

J±,k(µ) from the numerical fitting. We find an interesting functional relation stating that

the difference between J+,k(µ) and J−,k(µ) is extremely simple for integral k, with an

explicit relation expressed in k mod 8 as in the case of the OSp(2N |2N) theory [30]. We

further turn to the worldsheet instanton effects and identify the diagonal Gopakumar-Vafa

invariants.

This paper is organized as follows. In section 2, we present a proof for (1.5). After

establishing this relation, we turn to the study of the grand potential in section 3. Finally

we conclude with some discussions. The appendix is devoted to a collection of several data

which are needed for our claim in section 3.

Note added. After this work was done and while we are preparing the draft, [35] appears

on arXiv, which has some overlaps with our section 3 (especially (3.5)).

2 Orthosymplectic matrix model as odd projection

In this section we shall prove that the density matrix for the orthosymplectic matrix model

with the superficial gauge group OSp(2N1 + 1|2N2) is equivalent to a chiral half of that for

a matrix model with a suitable unitary super gauge group.

3Note that the level in the orthosymplectic matrix model is k instead of 2k. In other words, the number

of D5-branes in the brane construction of [20] is k in our convention.
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Let us start with the partition function of the orthosymplectic theory4

Zk(N1, N2) =

∫
DN1µ

N1!

DN2ν

N2!

VOVSp

H
, (2.1)

where the integration from the tree-level contribution is

Dµi =
dµi
4πk

e
i

4πk
µ2
i , Dνk =

dνk
4πk

e−
i

4πk
ν2
k , (2.2)

while the measures from the one-loop contributions of the vector multiplets and the hyper-

multiplets are

VO =

N1∏
i<j

(
2 sinh

µi − µj
2k

)2(
2 sinh

µi + µj
2k

)2 N1∏
i=1

(
2 sinh

µi
2k

)2
,

VSp =

N2∏
k<l

(
2 sinh

νk − νl
2k

)2(
2 sinh

νk + νl
2k

)2 N2∏
k=1

(
2 sinh

νk
k

)2
,

H =

N1∏
i=1

N2∏
k=1

(
2 cosh

µi − νk
2k

)2(
2 cosh

µi + νk
2k

)2 N2∏
k=1

(
2 cosh

νk
2k

)2
. (2.3)

After taking care of the trivial cancellation between VSp and H, we find that the partition

function is symmetric under the simultaneous exchange of (N1, N2) and the sign change

of k. Hereafter let us assume N1 ≤ N2 and k > 0 without loss of generality and rewrite

Zk(N1, N2) as Zk,M (N) by introducing N = N1 and M = N2 − N1. Otherwise we can

simply consider its complex conjugate.

As in the case of the non-equal rank deformation of the ABJM theory [23], let us first

prepare a determinant formula suitable for the application to the current situation,

det


[

1
(zi+wk)(1+1/(ziwk))

]
(i,k)∈ZN×ZN+M[

w
m− 1

2
k −w

−(m− 1
2)

k

w
1
2
k −w

− 1
2

k

]
(m,k)∈ZM×ZN+M


= (−1)MN+ 1

2
M(M−1)

∏N
i<j(zi − zj)(1− 1/(zizj))

∏N+M
k<l (wk − wl)(1− 1/(wkwl))∏N

i=1

∏N+M
k=1 (zi + wk)(1 + 1/(ziwk))

,

(2.4)

where ZL = {1, 2, · · · , L} is a set of L elements in this ordering. This formula can be

derived as follows. We start with the standard Cauchy determinant [30, 32]

det

([
1

(zi+wk)(1+1/(ziwk))

]
(i,k)∈ZN+M×ZN+M

)

=

∏N+M
i<j (zi − zj)(1− 1/(zizj))

∏N+M
k<l (wk − wl)(1− 1/(wkwl))∏N+M

i=1

∏N+M
k=1 (zi + wk)(1 + 1/(ziwk))

. (2.5)

4Compared with the standard normalization in the literature such as [30], the integral variables µi and

νk are rescaled by k from the beginning.
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Then, we send zN+1, zN+2, · · · , zN+M to infinity one after another using the series expan-

sion in z,

1

(z + w)(1 + 1/(zw))
=
∞∑
m=1

(−1)m−1

zm
wm − w−m

w − w−1
. (2.6)

Since in the determinant we can add a multiple of one row to another without changing

its value, the leading contribution in the m-th row of the lower block is the z−m term,

(wm − w−m)/(w − w−1). Note that this coefficient is a Laurent polynomial of w. Again,

due to the same property of the row addition, we can keep only the top terms of the

polynomials wm−1 + w−(m−1) or change the lower terms arbitrarily. We choose to replace

this coefficient by another with half intermediate steps

wm − w−m

w − w−1
→ wm−

1
2 − w−(m− 1

2)

w
1
2 − w−

1
2

. (2.7)

This proves the determinant formula (2.4). Then, after substituting zi = eµi and wk = eνk

into (2.4), we can rewrite the measure as the product of two determinants

VOVSp

H
= det


[

(2 sinh
µi
2k )(2 sinh

νk
2k )(

2 cosh
µi−νk

2k

)(
2 cosh

µi+νk
2k

)
]

(i,k)∈ZN×ZN+M[
2 sinh

(m− 1
2)νk
k

]
(m,k)∈ZM×ZN+M


2

. (2.8)

As usual, it is useful to introduce the operators q̂ and p̂ satisfying the canonical com-

mutation relation [q̂, p̂] = i~ with the Planck constant identified with ~ = 2πk. In terms of

the eigenstates |µ〉 of q̂ normalized by 〈µ|ν〉 = 2πδ(µ − ν), the entries in the upper block

of the determinant can be rewritten using the matrix elements

〈µi|
Π̂−

2 cosh p̂
2

|νk〉 =
1

2k

(
2 sinh µi

2k

) (
2 sinh νk

2k

)(
2 cosh µi−νk

2k

) (
2 cosh µi+νk

2k

) . (2.9)

For the lower entries, we introduce states 〈〈m|, |m〉〉 defined such that5

〈〈m|νk〉 = 〈νk|m〉〉 = 2 sinh

(
m− 1

2

)
νk

k
. (2.10)

We can trivialize one of the permutations coming from the determinants in (2.8) by re-

labeling the indices of νk. After including the Gaussian factors e
i

4πk
µ2
i and e−

i
4πk

ν2
k , the

partition function becomes

Zk,M (N) =
1

N !

∫
dNµ

(4πk)N
dN+Mν

(4πk)N+M

N∏
i=1

2k〈µi|e
i

2~ q̂
2 Π̂−

2cosh p̂2
e−

i
2~ q̂

2 |νi〉
M∏
m=1

〈〈m|e−
i

2~ q̂
2 |νN+m〉

×det

([
2k〈νk| Π̂−

2cosh p̂
2

|µj〉
]

(k,j)∈ZN+M×ZN
[〈νk|n〉〉](k,n)∈ZN+M×ZM

)
. (2.11)

5In terms of the suitably normalized zero-momentum eigenstate |0̃〉 introduced in [30], this state can be

expressed as |m〉〉 = 2 sinh
(m− 1

2 )q̂
k
|0̃〉. Hence, this state is a linear combination of momentum eigenstates

|p̃〉 with imaginary momenta p = ±(2m − 1)πi. The subtlety of this state will need a special care later in

this section.
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In the case of equal ranks, it was a standard technique to perform a similarity trans-

formation [36]

〈µi| → 〈µi|e
i

2~ p̂
2
, |µi〉 → e−

i
2~ p̂

2 |µi〉, 〈νk| → 〈νk|e
i

2~ p̂
2
, |νk〉 → e−

i
2~ p̂

2 |νk〉, (2.12)

which is allowed because all of these states appear only in

1 =

∫
dµi
2π
|µi〉〈µi| =

∫
dνk
2π
|νk〉〈νk|. (2.13)

Here we follow this similarity transformation and see the effects on each component.

Roughly speaking, in the following we shall see that the matrix elements in the two products

in (2.11) in front of the determinant become delta functions, which enable us to perform

the νk integrations.

First, let us consider the determinant part

det

([
2k〈νk|e

i
2~ p̂

2 Π̂−
2 cosh p̂

2

e−
i

2~ p̂
2 |µj〉

]
(k,j)∈ZN+M×ZN

[
〈νk|e

i
2~ p̂

2 |n〉〉
]

(k,n)∈ZN+M×ZM

)
.

(2.14)

It is trivial to see the left block of the determinant is unchanged under the similarity

transformation, while the right block can be easily computed as

〈νk|e
i

2~ p̂
2 |n〉〉 = e−

i
2~(2π(n− 1

2))
2

〈νk|n〉〉 . (2.15)

After taking care of the extra phase factors, the determinant (2.14) can be written as

e−
πi
12k

M(2M+1)(2M−1) det

([
2k〈νk| Π̂−

2 cosh p̂
2

|µj〉
]

(k,j)∈ZN+M×ZN
[〈νk|n〉〉](k,n)∈ZN+M×ZM

)
.

(2.16)

Note that this is an odd function of both µi and νk which can be shown by the determinant

formula (2.4).

Next, let us consider the matrix elements in (2.11) in front of the determinant.

For the first product, after the similarity transformation which changes (2 cosh p̂
2)−1 into

(2 cosh q̂
2)−1, we find

2k〈µi|e
i

2~ p̂
2
e
i

2~ q̂
2 Π̂−

2 cosh p̂
2

e−
i

2~ q̂
2
e−

i
2~ p̂

2 |νi〉 =
2πk

2 cosh µi
2

(δ(µi − νi)− δ(µi + νi)), (2.17)

where we have explicitly spelled out the matrix element 〈µi|Π̂−|νi〉. For the second product,

we have

〈〈m|e−
i

2~ q̂
2
e−

i
2~ p̂

2 |νN+m〉 =

∫
dλ

2π
2 sinh

(
m− 1

2

)
λ

k
e−

i
2~λ

2 1√
ik
e
i

2~ (λ−νN+m)2
. (2.18)

There is a subtlety on the definition of this integral which will be clarified at the end of

this section. For the moment, we perform the Gaussian integral formally

〈〈m|e−
i

2~ q̂
2
e−

i
2~ p̂

2 |νN+m〉 =
2πk√
ik
e−

i
2~(2π(m− 1

2))
2

× (δ(νN+m + (2m− 1)πi)− δ(νN+m − (2m− 1)πi)). (2.19)

– 6 –
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As a result, all the νk integrations can be done explicitly due to the delta functions in (2.17)

and (2.19). There are further simplifications. Since the remaining determinant (2.16) in

the integrand is an odd function of νk, we can simply replace the matrix elements discussed

above as

2k〈µi|e
i

2~ p̂
2
e
i

2~ q̂
2 Π̂−

2 cosh p̂
2

e−
i

2~ q̂
2
e−

i
2~ p̂

2 |νi〉 →
4πk

2 cosh µi
2

δ(µi − νi),

〈〈m|e−
i

2~ q̂
2
e−

i
2~ p̂

2 |νN+m〉 →
4πk√
ik
e−

i
2~(2π(m− 1

2))
2

δ (νN+m + (2m− 1)πi) .

(2.20)

After substituting these replacements and taking care of the extra phase factors, the

partition function is given by

Zk,M (N) = e−
πi
6k
M(2M+1)(2M−1)(ik)−

M
2

1

N !

∫
dNµ

(4πk)N

N∏
i=1

1

2 cosh µi
2

× det


[
2k〈µi| Π̂−

2 cosh p̂
2

|µj〉
]

(i,j)∈ZN×ZN
[〈µi|n〉〉](i,n)∈ZN×ZM[

2k〈ρm| Π̂−
2 cosh p̂

2

|µj〉
]

(m,j)∈ZM×ZN
[〈ρm|n〉〉](m,n)∈ZM×ZM

 , (2.21)

where ρm = −(2m − 1)πi. Using again the Cauchy determinant formula (2.4) for the

determinant factor in (2.21), finally we find that the partition function is given by

(−1)MNZk,M (N)

Zk,M (0)
=

1

N !

∫
dNµ

(4πk)N

N∏
i=1

(
2sinhµi2k

)2
V (µi)

4coshµik

N∏
i<j

(
tanh

µi − µj
2k

tanh
µi + µj

2k

)2

,

(2.22)

where we have defined V (µ) as

V (µ) =
1

2 cosh µ
2

M∏
m=1

tanh
µ− ρm

2k
tanh

µ+ ρm
2k

, (2.23)

and the normalization factor as

Zk,M (0) = (−1)
1
2
M(M−1)e−

πi
6k
M(2M+1)(2M−1) (ik)−

M
2

×
M∏
m=1

2 sinh
ρm
2k

M∏
m<n

4 sinh
ρm − ρn

2k
sinh

ρm + ρn
2k

. (2.24)

The expression (2.22) can be interpreted as the partition function of a Fermi gas system

(−1)MNZk,M (N)

Zk,M (0)
=

1

N !

∑
σ∈SN

(−1)σ
∫

dNµ

(2π)N

N∏
i=1

〈µi|ρ̂|µσ(i)〉, (2.25)

– 7 –
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with the density matrix

ρ̂ =
√
V (q̂)

Π̂−

2 cosh p̂
2

√
V (q̂). (2.26)

If we rewrite the function V (µ) (2.23) as

V (µ) =
1

2 cosh µ
2

M− 1
2∏

s=−(M− 1
2

)

tanh
µ+ 2πis

2k
. (2.27)

and compare it with the result for U(N1|N2), we easily find that this is nothing but (2.21)

in [26] with M replaced by 2M .

Let us now return to the subtlety in (2.18). One way to regularize the integral is to

insert e−iελ
2

into (2.18) with an infinitesimal parameter ε > 0 and rotate the integration

contour clockwise. Then, the integration becomes

〈〈m|e−
i

2~ q̂
2
e−

i
2~ p̂

2 |νN+m〉 =
1√
ik
e
i

2~ν
2
N+m

[
∆ε

(
νN+m,

2m− 1

2k

)
−∆ε

(
νN+m,−

2m− 1

2k

)]
,

(2.28)

where ∆ε(νN+m, α) is given by

∆ε(νN+m, α) =

∫
dλ

2π
eαλe−

i
~λνN+me−iελ

2
, (2.29)

which is vanishing in the limit ε→ 0 for

(Re νN+m)

(
α+

Im νN+m

2πk

)
> 0. (2.30)

In (2.19) we have formally rotated νN+m counterclockwise to a pure imaginary variable

as well and found the integration reduces to a sum of delta functions in the limit ε → 0.

Of course, such a manipulation is allowed only if the integration contour of νN+m does

not pick up any finite residues in the rotation. Possible residues might come from poles of

the matrix element 2k〈νN+m| Π̂−
2 cosh p̂

2

|µj〉 in the determinant in (2.11), which are located at

νN+m = ±µj + lkπi with integral l, or more concisely | Im(νN+m)| ≥ kπ, as can be seen

from the expression (2.9). On the other hand, our computation (2.30) for the regularized

expression shows that the residues in the region Re(νN+m) > 0, Im(νN+m) > (2m − 1)π

and Re(νN+m) < 0, Im(νN+m) < −(2m − 1)π are accompanied by a vanishing factor in

the limit ε → 0. Since the index m runs over m = 1, 2, · · · ,M and the consistency of the

OSp(2N+1|2(N+M)) theory requires 2M ≤ k, only poles in the region | Im(νN+m)| < kπ

are relevant. Therefore, we are allowed to use the formal expression (2.19) in the proof.

3 Exact functional relation and topological invariants

In the previous section, we have established the relation between the density matrix for the

orthosymplectic OSp(2N + 1|2(N + M)) (or OSp(2(N + M) + 1|2N)) matrix model and
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that for the unitary U(N |N + 2M) matrix model with the projection to the odd chirality.

Here we shall proceed to studying the simplest M = 0 case [34], the OSp(2N+1|2N) grand

potential, which is equivalent to the grand potential J−,k(µ) constructed from the density

matrix for the original ABJM U(N |N) matrix model with the odd projection. Although

the chiral projection of the density matrix was introduced early in [31] and the importance

was already stressed in [30, 32], there has not been a strong motivation to study them

carefully6 until we know that it appears directly in the orthosymplectic matrix model [34].

In this section, we shall study the non-perturbative effects of J−,k(µ) carefully. We point

out a functional relation between the grand potentials with the chiral projections J±,k(µ),

from which the membrane instantons due to the chiral projections are determined. Then,

we further turn to the study of the worldsheet instantons in J−,k(µ).

We first define the grand potentials constructed from the density matrices with the

chiral projections

∞∑
n=−∞

eJ±,k(µ+2πin) = det(1 + eµρ±). (3.1)

The perturbative part of each grand potential is given by a cubic polynomial

Jpert
±,k (µ) =

C±,k
3

µ3 +B±,kµ+A±,k, (3.2)

with the coefficients related to those of the ABJM theory by

C±,k =
CABJM
k

2
, B±,k =

BABJM
k ± 1/2

2
, A±,k =

AABJM
k ∓ log 2

2
, (3.3)

which results in the Airy function as in the full case [5]. We define the non-perturbative

part as Jnp
±,k(µ) = J±,k(µ) − Jpert

±,k (µ). Our observation is that the difference of the non-

perturbative parts

∆k(µ) = Jnp
+,k(µ)− Jnp

−,k(µ), (3.4)

looks quite simple for integral k,

∆k≡1,7 mod 8(µ) = −∆k≡3,5 mod 8(µ) =
1

4
log

1 + 2
√

2e−µ + 4e−2µ

1− 2
√

2e−µ + 4e−2µ
,

∆k≡0 mod 8(µ) =
1

2
log(1 + 4e−µ), ∆k≡4 mod 8(µ) =

1

2
log(1− 4e−µ),

∆k≡2,6 mod 8(µ) =
1

4
log(1 + 16e−2µ), (3.5)

from the numerical fitting. For the reader’s convenience, we present in the appendix the

exact values of the partition functions and the grand potentials found from the numerical

6Very recently, we are informed by Kazumi Okuyama that the grand potentials of general U(N1|N2)

theories with the chiral projections are studied [35] in the expectation of its physical relevance. This section

has some overlaps with it.
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fitting.7 Note that the expression in (3.5) is reminiscent of the odd-power terms of e−µ in

the orthosymplectic OSp(2N |2N) matrix model. See (2.45) in [30].

In the above, we have seen that the membrane instanton part is corrected for the

orthosymplectic matrix model J−,k(µ). It is natural to expect that the worldsheet instanton

part should be corrected as well if we believe that the total function should have a certain

modular invariance connecting the membrane and worldsheet instanton parts. Since it

seems that the membrane instantons do not contain new singularities, we expect that

only the worldsheet instantons with genus greater than zero are corrected. To study the

worldsheet instantons carefully, next let us turn to the sum of two grand potentials J±,k(µ),

since the difference seems to encode only the membrane instantons. We first define the

non-perturbative effects of the sum Σk(µeff) as

J+,k(µ) + J−,k(µ) =
CABJM
k

3
µ3

eff +BABJM
k µeff +AABJM

k + Σk(µeff), (3.6)

where the right-hand side is expressed in terms of the effective chemical potential µeff given

in [9],

µeff =

µ− (−1)k/22e−2µ
4F3

(
1, 1, 3

2 ,
3
2 ; 2, 2, 2; (−1)k/216e−2µ

)
, k = even,

µ+ e−4µ
4F3

(
1, 1, 3

2 ,
3
2 ; 2, 2, 2;−16e−4µ

)
, k = odd.

(3.7)

Then, we can rewrite the results in appendix A.2 as in table 1.

Using the expression of Σk(µeff) in table 1, we find that the coefficients dm(k) of the

worldsheet instantons e−
4mµeff
k for Jnp

−,k(µ) fit well with the Gopakumar-Vafa formula

dm(k) =
(−1)m

m

∞∑
g=0

∑
d|m

ngd d

(
2 sin

2πm

dk

)2g−2

. (3.8)

From the comparison, we can read off the diagonal Gopakumar-Vafa invariants ngd directly,

which are shown in table 2. It is interesting to note that these invariants are all integers,

which is not guaranteed from the beginning. Here we have listed the invariants for the

ABJM theory as well for convenience. We have found that, as we expected, twice of the

invariants for J−,k(µ) match exactly with those for the ABJM theory for genus zero.

In principle the diagonal Gopakumar-Vafa invariants come from the trivial relation

∞∑
n=−∞

eJ
ABJM
k (µ+2πin) =

 ∞∑
n+=−∞

eJ+,k(µ+2πin+)

 ∞∑
n−=−∞

eJ−,k(µ+2πin−)

 , (3.9)

between two chirally projected grand potentials. It would be interesting to derive the

invariants directly from (3.9).

7These exact values are well-known to several experts. For example, the values for k = 1 appear in [31]

and the values for k = 2, 3, 4, 6 are the basic ingredients used to compute the values without projections

in [7]. The non-perturbative large µ expansion of the grand potential should also be known to experts. For

example, some functional relations using them appear in [37]. The reason that we collect these results here

is to justify our functional relation (3.5) and to identify the diagonal Gopakumar-Vafa invariants in table 2.
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Σ1(µeff) =

[
8µ2

eff+4µeff+1

4π2
−3

8

]
e−4µeff+

[
−

9(32µ2
eff+8µeff+1)

32π2
+

67

16

]
e−8µeff

+

[
41(72µ2

eff+12µeff+1)

54π2
−133

4

]
e−12µeff+O(e−16µeff),

Σ2(µeff) =

[
2µ2

eff+2µeff+1

π2
−1

2

]
e−2µeff+

[
−

9(8µ2
eff+4µeff+1)

8π2
+

17

4

]
e−4µeff

+

[
82(18µ2

eff+6µeff+1)

27π2
−101

3

]
e−6µeff+

[
−

777(32µ2
eff+8µeff+1)

64π2
+

2273

8

]
e−8µeff

+O(e−10µeff),

Σ3(µeff) =
4

3
e−

4
3
µeff+

[
8µ2

eff+4µeff+1

12π2
−145

72

]
e−4µeff−2e−

16
3
µeff+O

(
e−

20
3
µeff

)
,

Σ4(µeff) = e−µeff+

[
−

2µ2
eff+2µeff+1

2π2
+

5

2

]
e−2µeff+

10

3
e−3µeff

+

[
−

9(8µ2
eff+4µeff+1)

16π2
+

49

4

]
e−4µeff+O(e−5µeff),

Σ5(µeff) =
2(5−

√
5)

5
e−

4
5
µeff−5−

√
5

5
e−

8
5
µeff+

2(5+7
√

5)

15
e−

12
5
µeff+

15−13
√

5

10
e−

16
5
µeff

+O(e−4µeff),

Σ6(µeff) =
4

3
e−

2
3
µeff+

[
2µ2

eff+2µeff+1

3π2
−43

18

]
e−2µeff−2e−

8
3
µeff+O

(
e−

10
3
µeff

)
,

Σ8(µeff) = 2e−
1
2
µeff−1

2
e−µeff−4

3
e−

3
2
µeff+

[
−

2µ2
eff+2µeff+1

4π2
+

23

4

]
e−2µeff+O

(
e−

5
2
µeff

)
,

Σ12(µeff) = 4e−
1
3
µeff−8

3
e−

2
3
µeff+

1

3
e−µeff+6e−

4
3
µeff+O

(
e−

5
3
µeff

)
.

Table 1. Non-perturbative effects of the sum Σk(µeff) of grand potentials constructed for two

chirally projected density matrices.

4 Conclusion and discussion

In this paper we have shown that the claim [34] that the density matrix for the OSp(2N +

1|2N) matrix model matches with that for the U(N |N) matrix model with the odd chiral

projection is extended to (1.5), after the inclusion of the fractional brane. We have also

proceeded to study the grand potentials constructed from the density matrices projected

to the even and odd chiralities, where we find a functional relation which determines the

new membrane instanton effects. We have further studied the worldsheet instanton effects

and identified the first few diagonal Gopakumar-Vafa invariants.

We have restricted ourselves to the study of the non-equal rank deformation of the

OSp(2N + 1|2N) density matrix. It is apparently interesting to see the same non-equal
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d 1 2 3 4

nd0 −2 −2 −6 −24

nd1 0 1 8 73

nd2 0 0 −2 −76

nd3 0 0 0 39

nd4 0 0 0 −10

nd5 0 0 0 1

nd6 0 0 0 0

d 1 2 3 4

nd0 −4 −4 −12 −48

nd1 0 0 0 9

nd2 0 0 0 0

nd3 0 0 0 0

nd4 0 0 0 0

nd5 0 0 0 0

nd6 0 0 0 0

Table 2. The diagonal Gopakumar-Vafa invariants identified for the chirally projected model

J−,k(µ) (left) and the ABJM matrix model (right).

rank deformation of the OSp(2N |2N) density matrix [30] and/or the BPS Wilson loop

one-point function in these theories along the line of [23, 36]. It is interesting to find that,

as a general rule, the orientifold projection used to construct the orthosymplectic Chern-

Simons theories from the unitary one seems to have a relation to the chiral projection of the

corresponding density matrix appearing in the Fermi gas formalism of the matrix model.

We would like to see the physical interpretation of this fact more directly.
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A Chirally projected density matrices

A.1 Exact values of the partition functions

In this appendix, we record the first few exact values of the ABJM partition functions with

the projections to the even and odd chiralities. They are given respectively in tables 3

and 4.

A.2 Grand potential

In this appendix, we shall present the grand potentials of the ABJM matrix model with

the projections to the even and odd chiralities. They are given respectively in tables 5

and 6.

– 12 –



J
H
E
P
0
4
(
2
0
1
6
)
1
3
2

Z+,1(1)=
1

4
√
2
, Z+,1(2)=

−2+π
64π

, Z+,1(3)=
−2
√
2+(8−5

√
2)π

512π
,

Z+,2(1)=
2+π

16π
, Z+,2(2)=

3(−2+π)2

512π2
, Z+,2(3)=

168+396π−58π2−27π3

73728π3
,

Z+,3(1)=
2−
√
2

8
, Z+,3(2)=

−18+(27−54
√
2+32

√
3)π

1728π
,

Z+,3(3)=
18(14+

√
2)−(90−135

√
2+64

√
3+32

√
6)π

13824π
,

Z+,4(1)=
−1+2

√
2

32
, Z+,4(2)=

−16+32
√
2π−(7+4

√
2)π2

2048π2
,

Z+,4(3)=
16−160

√
2−32

√
2π+5(−7+10

√
2)π2

65536π2
,

Z+,5(1)=
−5
√
2+4
√
5

40
, Z+,5(2)=

150+(625−100
√
10−16(5

√
2+2
√
10)
√

5−
√
5)π

8000
,

Z+,5(3)=

[
−50(3

√
2+4
√
5)+(200+125

√
2−300

√
5+(64

√
10+128

√
2)

√
5−
√
5

+16(5−6
√
2+3
√
5−2
√
10)

√
5+
√
5)π

]/
[64000π],

Z+,6(1)=
−18+(9+8

√
3)π

432π
, Z+,6(2)=

756−12(189+8
√
3)π+(949−144

√
3)π2

124416π2
,

Z+,6(3)=
−36936+2268(81+8

√
3)π+54(4451+720

√
3)π2−(37503+46792

√
3)π3

161243136π3
,

Z+,8(1)=
5−4

√
2−
√
2

64
, Z+,8(2)=

−32+64
√

2+
√
2π+(17−32

√
2−8

√
2−
√
2)π2

8192π2
,

Z+,8(3)=
32(−5+12

√
2−
√
2)+64(−8

√
2+
√

2+
√
2)π+(727−160

√
2−420

√
2−
√
2)π2

524288π2
,

Z+,12(1)=
−5−2

√
2+4
√
6

96
, Z+,12(2)=

−432+288(
√
2+2
√
6)π+(889+564

√
2−864

√
3−296

√
6)π2

165888π2
,

Z+,12(3)=
[
432(15+14

√
2−28

√
6)−96(−216+141

√
2+74

√
6)π

+(−49101−37654
√
2+10656

√
3+36908

√
6)π2

]/[
47775744π2]

Table 3. Exact values of the partition function Z+,k(N) of the ABJM theory with the projection

to the even chirality.
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Z−,1(1)=
2−
√
2

8
, Z−,1(2)=

6+(1−2
√
2)π

64π
, Z−,1(3)=

−20−6
√
2+(2+5

√
2)π

512π
,

Z−,2(1)=
−2+π
16π

, Z−,2(2)=
12+12π−5π2

512π2
, Z−,2(3)=

−168+396π+202π2−99π3

73728π3
,

Z−,3(1)=
−4+3

√
2

24
, Z−,3(2)=

−90+(135−36
√
2−32

√
3)π

1728π
,

Z−,3(3)=
−72−90

√
2+(180−27

√
2−32

√
6)π

13824π
,

Z−,4(1)=
3−2
√
2

32
, Z−,4(2)=

−16−32
√
2π+(33−12

√
2)π2

2048π2
,

Z−,4(3)=
−48+160

√
2−96

√
2π+(209−130

√
2)π2

65536π2
,

Z−,5(1)=
2+5
√
2−4
√
5

40
, Z−,5(2)=

350+(−25(−9−2
√
2+8
√
5+4
√
10)+16(5+

√
5)
√

5+2
√
5)π

8000π
,

Z−,5(3)=

[
50(−2+35

√
2+4
√
5)+(125(42−21

√
2+12

√
5−8
√
10)

+16(−270+25
√
2+74

√
5+5
√
10)

√
5+2
√
5)π

]/
[320000π],

Z−,6(1)=
18+(9−8

√
3)π

432π
, Z−,6(2)=

756+(2268−96
√
3)π+(−995+144

√
3)π2

124416π2
,

Z−,6(3)=
36936−2268(−81+8

√
3)π+270(−1279+144

√
3)π2+(−89991+93448

√
3)π3

161243136π3
,

Z−,8(1)=
−3+4

√
2−
√
2

64
, Z−,8(2)=

−32−64
√

2+
√
2π+(129−32

√
2−56

√
2−
√
2)π2

8192π2
,

Z−,8(3)=
96−384

√
2−
√
2+64(−8

√
2+7

√
2+
√
2)π+(−1009+96

√
2+1124

√
2−
√
2)π2

524288π2
,

Z−,12(1)=
7+2
√
2−4
√
6

96
, Z−,12(2)=

−432−288(
√
2+2
√
6)π+(3697−132

√
2−864

√
3−568

√
6)π2

165888π2
,

Z−,12(3)=
[
3024(−3−2

√
2+4
√
6)+96(216+33

√
2−142

√
6)π

+(157863+40678
√
2−20448

√
3−72908

√
6)π2

]/[
47775744π2].

Table 4. Exact values of the partition function Z−,k(N) of the ABJM theory with the projection

to the odd chirality.
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Jnp
+,1 =

1√
2
e−µ− 4

3
√
2
e−3µ+

[
2µ2+µ/2+1/8

π2

]
e−4µ− 16

5
√
2
e−5µ+

64

7
√
2
e−7µ

+

[
−13µ2+µ/8+9/64

π2
+2

]
e−8µ+

256

9
√
2
e−9µ− 1024

11
√
2
e−11µ

+

[
368µ2−76µ/3+77/36

3π2
−32

]
e−12µ− 4096

13
√
2
e−13µ+

16384

15
√
2
e−15µ+O(e−16µ),

Jnp
+,2 =

[
2µ2+µ+1/2

π2
+2

]
e−2µ+

[
−13µ2+µ/4+9/16

π2
−14

]
e−4µ

+

[
368µ2−152µ/3+77/9

3π2
+
416

3

]
e−6µ+

[
−2701µ2−13949µ/24+11291/192

2π2
−1582

]
e−8µ

+

[
80912µ2−317122µ/15+285253/150

5π2
+
97472

5

]
e−10µ+O(e−12µ),

Jnp
+,3 = − 1√

2
e−µ+

2

3
e−

4
3
µ+

4

3
√
2
e−3µ+

[
2µ2+µ/2+1/8

3π2
−8

9

]
e−4µ+

16

5
√
2
e−5µ−17

9
e−

16
3
µ

+
2

15
e−

20
3
µ− 64

7
√
2
e−7µ+

[
−13µ2+µ/8+9/64

3π2
+
88

9

]
e−8µ− 256

9
√
2
e−9µ+O

(
e−

28
3
µ
)
,

Jnp
+,4 = −1

2
e−µ+

[
−2µ2+µ+1/2

2π2
−1
]
e−2µ−8

3
e−3µ+

[
−13µ2+µ/4+9/16

2π2
−6
]
e−4µ

−128

5
e−5µ+

[
−184µ2−76µ/3+77/18

3π2
−160

3

]
e−6µ−2048

7
e−7µ+O(e−8µ),

Jnp
+,5 =

5−
√
5

5
e−

4
5
µ− 1√

2
e−µ−5−

√
5

10
e−

8
5
µ+

5+7
√
5

15
e−

12
5
µ+

4

3
√
2
e−3µ+

15−13
√
5

20
e−

16
5
µ

+

[
2µ2+µ/2+1/8

5π2
+
−13+5

√
5

5

]
e−4µ−145+131

√
5

150
e−

24
5
µ+

16

5
√
2
e−5µ+O

(
e−

28
5
µ
)
,

Jnp
+,6 =

2

3
e−

2
3
µ+

[
2µ2+µ+1/2

3π2
+
10

9

]
e−2µ−17

9
e−

8
3
µ+

2

15
e−

10
3
µ+

[
−13µ2+µ/4+9/16

3π2
−56

9

]
e−4µ

+
2776

189
e−

14
3
µ−31

18
e−

16
3
µ+

[
368µ2−152µ/3+77/9

9π2
+
1408

27

]
e−6µ−35938

243
e−

20
3
µ+

6508

297
e−

22
3
µ

+

[
−2701µ2−13949µ/24+11291/192

6π2
−4648

9

]
e−8µ+O

(
e−

26
3
µ
)
,

Jnp
+,8 = e−

1
2
µ+

3

4
e−µ−2

3
e−

3
2
µ+

[
−2µ2+µ+1/2

4π2
+
1

2

]
e−2µ+

6

5
e−

5
2
µ+4e−3µ−20

7
e−

7
2
µ

+

[
−13µ2+µ/4+9/16

4π2
+6

]
e−4µ+

70

9
e−

9
2
µ+

192

5
e−5µ−252

11
e−

11
2
µ

+

[
−92µ2−38µ/3+77/36

3π2
+
224

3

]
e−6µ+

924

13
e−

13
2
µ+

3072

7
e−7µ+O

(
e−

15
2
µ
)
,

Jnp
+,12 = 2e−

1
3
µ−4

3
e−

2
3
µ−5

6
e−µ+3e−

4
3
µ−38

5
e−

5
3
µ+

[
−2µ2+µ+1/2

6π2
+
127

9

]
e−2µ−344

21
e−

7
3
µ

+
265

18
e−

8
3
µ−40

9
e−3µ−514

15
e−

10
3
µ+

3196

33
e−

11
3
µ+

[
−13µ2+µ/4+9/16

6π2
−1552

9

]
e−4µ+O

(
e−

13
3
µ
)
.

Table 5. Non-perturbative effects of the grand potential Jnp
+,k(µ) with the projection to the even

chirality.
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Jnp
−,1 = − 1√

2
e−µ+

4

3
√
2
e−3µ+

[
2µ2+µ/2+1/8

π2

]
e−4µ+

16

5
√
2
e−5µ− 64

7
√
2
e−7µ

+

[
−13µ2+µ/8+9/64

π2
+2

]
e−8µ− 256

9
√
2
e−9µ+

1024

11
√
2
e−11µ

+

[
368µ2−76µ/3+77/36

3π2
−32

]
e−12µ+

4096

13
√
2
e−13µ−16384

15
√
2
e−15µ+O(e−16µ),

Jnp
−,2 =

[
2µ2+µ+1/2

π2
−2
]
e−2µ+

[
−13µ2+µ/4+9/16

π2
+18

]
e−4µ

+

[
368µ2−152µ/3+77/9

3π2
−608

3

]
e−6µ+

[
−2701µ2−13949µ/24+11291/192

2π2
+2514

]
e−8µ

+

[
80912µ2−317122µ/15+285253/150

5π2
−164672

5

]
e−10µ+O(e−12µ),

Jnp
−,3 =

1√
2
e−µ+

2

3
e−

4
3
µ− 4

3
√
2
e−3µ+

[
2µ2+µ/2+1/8

3π2
−8

9

]
e−4µ− 16

5
√
2
e−5µ−17

9
e−

16
3
µ

+
2

15
e−

20
3
µ+

64

7
√
2
e−7µ+

[
−13µ2+µ/8+9/64

3π2
+
88

9

]
e−8µ+

256

9
√
2
e−9µ+O

(
e−

28
3
µ
)
,

Jnp
−,4 =

3

2
e−µ+

[
−2µ2+µ+1/2

2π2
+3

]
e−2µ+8e−3µ+

[
−13µ2+µ/4+9/16

2π2
+26

]
e−4µ

+
384

5
e−5µ+

[
−184µ2−76µ/3+77/18

3π2
+
864

3

]
e−6µ+

6144

7
e−7µ+O(e−8µ),

Jnp
−,5 =

5−
√
5

5
e−

4
5
µ+

1√
2
e−µ−5−

√
5

10
e−

8
5
µ+

5+7
√
5

15
e−

12
5
µ− 4

3
√
2
e−3µ+

15−13
√
5

20
e−

16
5
µ

+

[
2µ2+µ/2+1/8

5π2
+
−13+5

√
5

5

]
e−4µ−145+131

√
5

150
e−

24
5
µ− 16

5
√
2
e−5µ+O

(
e−

28
5
µ
)
,

Jnp
−,6 =

2

3
e−

2
3
µ+

[
2µ2+µ+1/2

3π2
−26

9

]
e−2µ−17

9
e−

8
3
µ+

2

15
e−

10
3
µ+

[
−13µ2+µ/4+9/16

3π2
+
232

9

]
e−4µ

+
2776

189
e−

14
3
µ−31

18
e−

16
3
µ+

[
368µ2−152µ/3+77/9

9π2
−7808

27

]
e−6µ−35938

243
e−

20
3
µ+

6508

297
e−

22
3
µ

+

[
−2701µ2−13949µ/24+11291/192

6π2
+
32216

9

]
e−8µ+O

(
e−

26
3
µ
)
,

Jnp
−,8 = e−

1
2
µ−5

4
e−µ−2

3
e−

3
2
µ+

[
−2µ2+µ+1/2

4π2
+
9

2

]
e−2µ+

6

5
e−

5
2
µ−20

3
e−3µ−20

7
e−

7
2
µ

+

[
−13µ2+µ/4+9/16

4π2
+38

]
e−4µ+

70

9
e−

9
2
µ−64e−5µ−252

11
e−

11
2
µ

+

[
−92µ2−38µ/3+77/36

3π2
+416

]
e−6µ+

924

13
e−

13
2
µ−5120

7
e−7µ+O

(
e−

15
2
µ
)
,

Jnp
−,12 = 2e−

1
3
µ−4

3
e−

2
3
µ+

7

6
e−µ+3e−

4
3
µ−38

5
e−

5
3
µ+

[
−2µ2+µ+1/2

6π2
+
163

9

]
e−2µ−344

21
e−

7
3
µ

+
265

18
e−

8
3
µ+

56

9
e−3µ−514

15
e−

10
3
µ+

3196

33
e−

11
3
µ+

[
−13µ2+µ/4+9/16

6π2
−1264

9

]
e−4µ+O

(
e−

13
3
µ
)
.

Table 6. Non-perturbative effects of the grand potential Jnp
−,k(µ) with the projection to the odd

chirality.
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