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fermions

Christopher P. Herzog and Michael Spillane1

C.N. Yang Institute for Theoretical Physics, Department of Physics and Astronomy,

Stony Brook University, Stony Brook, NY, 11794 U.S.A.

E-mail: cpherzog@insti.physics.sunysb.edu,

michael.spillane@stonybrook.edu

Abstract: We calculate thermal corrections to Rényi entropies for free massless fermions
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1 Introduction

Entanglement entropy has become of interest to various communities in physics from con-

densed matter and quantum information [1, 2] to black holes and quantum gravity [3, 4].

The discovery of a way of calculating entanglement entropy holographically produced in-

terest in the AdS/CFT community as well [5].

In this paper, we use the conventional definition of entanglement entropy. We assume

that the Hilbert space factors nicely with respect to two complementary spatial regions, A

and Ā. The reduced density matrix and Rényi entropies are then defined as

ρA ≡ trĀ ρ, (1.1)

Sn ≡
1

1− n
log tr(ρA)n. (1.2)

The factor of 1/(1− n) in the the definition of the Rényi entropy is convenient for taking

a n→ 1 limit and recovering the entanglement entropy:

SEE ≡ − tr [ρA log(ρA)] = lim
n→1

Sn . (1.3)

It was argued in ref. [6] that for gapped systems at small temperature, thermal correc-

tions to the entanglement entropy are Boltzmann suppressed. Further evidence in d = 1+1
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can be found in refs. [7–11]. For general conformal field theories with temperature 1/β on

a circle of perimeter L, the coefficient of the Boltzman factor was calculated [12]:

δSn ≡ Sn(T )− Sn(0) =
g

1− n

[
1

n2∆−1

sin2∆
(
π`
L

)
sin2∆

(
π`
nL

) − n] e−2πβ∆/L + o
(
e−2πβ∆/L

)
,

(1.4)

δSEE ≡ SEE(T )− SEE(0) = 2g∆

[
1− π`

L
cot

(
π`

L

)]
e−2πβ∆/L + o

(
e−2πβ∆/L

)
, (1.5)

where g is the degeneracy of the first excited state, ∆ is the smallest scaling dimension

among the operators, and ` is the interval length. (In order for these formulae to hold, the

conformal field theory on the circle has to have a unique ground state and a mass gap.)

For higher dimensional conformal field theories on S1 × Sd−1, an analogous thermal

correction to entanglement entropy is also known [13]. The result for the entanglement

entropy for a cap on a sphere with polar angle θ and radius R is given in general by the

following integral:

δSEE = g∆Id(θ)e
−β∆/R + o

(
e−β∆/R

)
, (1.6)

Id(θ) = 2π
Vol(Sd−2)

Vol(Sd−1)

∫ θ

0
dθ′

cos(θ′)− cos(θ)

sin(θ)
sind−2(θ′) . (1.7)

The derivation of this result relies on a conformal transformation from the sphere to hy-

perbolic space. The conformal transformation allows one to identify the reduced density

matrix for the ground state as a unitary transformation of the thermal density matrix on

hyperbolic space. There is a corresponding identification between the logarithm of the

reduced density matrix (or modular Hamiltonian) and the Hamiltonian for the conformal

field theory on hyperbolic space. Unfortunately, there can be subtleties associated with

boundary terms for the modular Hamiltonian when this transformation is invoked. In the

case of conformally coupled scalars [13, 14], these boundary terms mean the result (1.6)

should be corrected; one replaces Id in the result above with Id−2. The issue is that the

conformal coupling requires a Gibbons-Hawking like term on the boundary. The natural

constant θ boundary is different from the boundary of hyperbolic space, and this difference

contaminates the entanglement entropy. In this paper we study free fermions which have

no such Gibbons-Hawking like term and consequently no subtleties associated with the

boundary. Thus we expect and indeed find that the result (1.6) holds for massless free

fermions. As an added benefit, we also compute thermal corrections to Rényi entropies for

fermions.

This paper is organized as follows. First we briefly review the mapping used in ref. [14]

that maps from the multi-sheeted cover of the sphere to a wedge in flat space. We then

calculate the two point function using the method of images, from which we can read

off the thermal corrections to Rényi entropies. Finally, we compare these calculations

of entanglement and Rényi entropies with numerical results for fermions in d = 2 + 1

and d = 3 + 1.
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2 Rényi’s for a general CFT

A main result from ref. [14] was a general equation for the thermal correction to the Rényi

entropy for a conformal field theory. We assume that when the conformal field theory is

placed on a Sd−1×R, there is a unique ground state |0〉 and a set of degenerate first excited

states |ψi〉 with energy Eψ. We divide the Sd−1 into a spatial region A and complement Ā

and consider instead of Sd−1×R, an n-sheeted branched cover of this spacetime where the

branching is over the region A. The result from ref. [14] is

δSn =
n

1− n
∑
i

(
〈ψi(z)ψi(z

′)〉n
〈ψi(z)ψi(z′)〉1

− 1

)
e−βEψ + o(e−βEψ) (2.1)

where ψi is an operator that creates one of the first excited states. The point z is in the

far Euclidean future and the point z′ in the far Euclidean past. The subscript n indicates

the two-point function is to be evaluated on this n-sheeted branched cover. (Note that

the result (2.1) could have been anticipated from a very similar result in 1+1 dimensional

conformal field theories [12].)

In general, it is not clear how to evaluate 〈ψi(z)ψi(z
′)〉n. However, if we restrict to the

case where A is a cap on a sphere of opening angle 2θ, then we can take advantage of a

conformal transformation that maps the n-sheeted branched cover of Sd−1×R to Cn×Rd−2

where Cn is an n-sheeted cover of the complex plane, branched over the negative real axis.

It is convenient to make the transformation in a couple of steps, as was outlined in ref. [14].

The first step takes the cap on Sd−1 to a ball in Rd−1 (see the appendix of ref. [15]):

ds2 = −dt2 + dr2 + r2dΩ2

= Ω2
(
−dτ2 + dθ2 + sin2(θ)dΩ2

)
,

(2.2)

where

t± r = tan

(
t± θ

2

)
, (2.3)

Ω =
1

2
sec

(
τ + θ

2

)
sec

(
τ − θ

2

)
, (2.4)

and dΩ2 is the line element on Sd−2. If the cap has opening angle 2θ0, then the ball has

radius r0 = tan(θ0/2). A further special conformal transformation maps the ball to a half

space:

yµ =
xµ − bµx2

1− 2b · x+ b2x2
, (2.5)

ds2 = dyµdyνδµν = (1− 2b · x+ b2x2)−2dxµdxνδµν . (2.6)

We let x0 and y0 correspond to Euclidean times, and take b1 = 1/r0 to be the only non-

vanishing value of the vector b. After further rescaling and rotations, the inserted operators

can be placed at y′ = (1,2θ0,~0) and y = (1,0,~0), where we are using polar coordinates (r, θ)

on the Cn. (For further details, see ref. [14].)

– 3 –



J
H
E
P
0
4
(
2
0
1
6
)
1
2
4

We will employ a method of images strategy for computing 〈ψi(y)ψi(y
′)〉n on Cn×Rd−2.

This strategy was already used successfully for the scalar in refs. [14, 18]. The idea is to

compute the two-point function using the method of images on the orbifold C/Zm for

general m and then to obtain 〈ψi(y)ψi(y
′)〉n by analytic continuation, setting n = 1/m. As

the method of images relies on the fact that the underlying equations of motion are linear,

we do not expect this method will be useful for interacting field theories.

In the fermionic case, there are issues associated with nontrivial phases, signs and a

choice of spin structure which we must address. One issue, which we now review, is that

rotations act nontrivially on spinor wave functions.

2.1 Rotation on fermions

For a Dirac fermion we know the effect of a rotation on the components of the spinor [16].

A general Lorentz transformation in Euclidean signature, Λ, is given by

ψ(x)→ Λ1/2ψ(Λ−1x), (2.7)

Λ1/2 = exp

(
1

8
ωµν [γµ, γν ]

)
, (2.8)

{γµ, γν} = 2δµν , (2.9)

where ωµν parameterizes the rotations and Lorentz boosts. For the case of interest we are

only interested in rotations in (0,1) plane, for which the only non-vanishing components

are ω01 = −ω10 = φ. The matrix exponential can be done simply and is given by

Λ1/2(φ) = cos(φ/2) + sin(φ/2)γ0γ1. (2.10)

If we then define

γz = γ0 + iγ1 and γ z̄ = γ0 − iγ1, (2.11)

then equation (2.10) simplifies to

Λ1/2(φ) =
1

2
γ0(e−iφ/2γz + eiφ/2γ z̄). (2.12)

A fact that we will rely on heavily moving forward is that γ0γz and γ0γ z̄ are projectors:

(γ0γz)2 = 2(γ0γz) , (γ0γ z̄)2 = 2(γ0γ z̄) , (2.13)

(γ0γz)(γ0γ z̄) = 0 , (γ0γ z̄)(γ0γz) = 0 . (2.14)

3 Analytic calculation of Rényi entropies

In flat space the fermion 2-point function is, up to normalization,

〈ψ̄(y′)ψ(y)〉 =
γ0γµ(y − y′)µ
|y − y′|d

= − 1

d− 2
γ0γµ

∂

∂xµ
1

|y − y′|d−2
.

(3.1)
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Following ref. [14], the Green’s function on a wedge C/Zm × Rd−2 can be calculated

via the method of images. The Green’s function via the method of images is given by

rotating one of the fermions by 2πk/m where k indexes the wedges and m is the number

of wedges. In going between adjacent wedges an extra factor of (−1) is added due to the

spin structure (for example see ref. [17]). The result is then

〈ψ̄(y′)ψ(y)〉1/m = −γ
0γµ∂µ
d− 2

m−1∑
k=0

(−1)kΛ1/2(2πk/m)

[|z − e2πik/mz′|2 + (y − y′)2](d−2)/2
. (3.2)

(Curiously, this expression only makes sense for m an odd integer. Nevertheless, we find

that knowing the two-point function for odd integers is in general sufficient to make the

analytic continuation to n = 1/m.) In the case of interest y = y′ = 0, z′ = e2iθ and z → 1,

the two-point function can be rewritten

GF(1/m,d)(2θ) = − γ0

d− 2
lim
z→1

m−1∑
k=0

(
e

−πik(m−1)
m γz∂z + e

πik(m−1)
m γ z̄∂z̄

) 1

|z − e2i(πk/m+θ)|d−2

=
γ0

4(d− 2)

[
γz ((d− 2)− i∂θ)

m−1∑
k=0

e
−πik(m−1)

m

|1− e2i(πk/m+θ)|d−2
+ γ z̄c.c.

]
.

(3.3)

From this expression, we can deduce the following recursion relation for the two-point

function:

GF(1/m,d+2)(2θ) =
(
(∂2
θ + d(d− 2))γ0(γz + γ z̄) + 2i(γ0γz − γ0γ z̄)∂θ

) GF(1/m,d)(2θ)

8d(d− 1)
. (3.4)

To obtain the Rényi entropy we make the replacement n = 1/m in the two point

function and we use that Eψ = d−1
2R for free fermions on a sphere of radius R:

δSn(θ) =
n

1− n
∑
i

(
〈ψiψi〉n
〈ψiψi〉1

− 1

)
e−(d−1)β/(2R) + o

(
e−(d−1)β/(2R)

)
,

=
n

1− n
tr(GF(n,d)(2θ)G

F
(1,d)(2θ)

−1 − 1)e−(d−1)β/(2R) + o
(
e−(d−1)β/(2R)

)
.

(3.5)

3.1 d = 2

In d = 1 + 1 we can choose gamma matrices (γ0 = σ3 and γ1 = σ1) such that

γ0γz =

(
2 0

0 0

)
and γ0γ z̄ =

(
0 0

0 2

)
.

It is worth noting that it is convenient to have γ0γz diagonal, but is not necessary. Then

the 2-point function is given by

GF(1/m,2)(2θ) =
1

2

m−1∑
k=0

γ0

γz exp
(
−ikπ(m−1)

m

)
1− exp (2i(kπ/m+ θ))

+ γ z̄
exp

(
ikπ(m−1)

m

)
1− exp (−2i(kπ/m+ θ))


= γ0

(
γz
mi

4
e−iθ csc(mθ)− γ z̄mi

4
eiθ csc(mθ)

)
.

(3.6)
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We can then calculate the Rényi entropies (and entanglement).

δSn(θ) =
n

1− n
tr(GF(n,2)(2θ)G

F
(1,2)(2θ)

−1 − 1)e−β/(2R) + o
(
e−β/(2R)

)
=

2

1− n
(sin(θ) csc(θ/n)− n) e−β/(2R) + o

(
e−β/(2R)

)
,

(3.7)

δSEE = 2(1− θ cot(θ))e−β/(2R) + o
(
e−β/(2R)

)
. (3.8)

These agree with the known results for 2d CFTs [12] in general and for 2d fermions [7, 11]

in particular.

3.2 d = 4

In d = 3 + 1 we choose gamma matrices

γ0 =

(
σ2 0

0 −σ2

)
and γ1 =

(
σ1 0

0 −σ1

)
.

In this case the 2-point function is given by

GF(1/m,4)(2θ) =
im

8
(1 + 3m2 + (m2 − 1) cos(2mθ)) csc3(mθ)γ0

(
γze−iθ − γ z̄eiθ

)
. (3.9)

Repeating the calculation in d = 2 we get

δSn(θ) =
n

1− n
tr(GF(n,4)(2θ)G

F
(1,4)(2θ)

−1 − 1)e−3β/(2R) + o
(
e−3β/(2R)

)
=

4

(1− n)n2

(
(3 + n2 − (n2 − 1) cos(2θ/n)) csc3(θ/n) sin3(θ)− 4n3

)
e−3β/(2R)

+ o
(
e−3β/(2R)

)
,

(3.10)

δSEE(θ) = lim
n→1

n

1− n
tr(GF(n,4)(2θ)G

F
(1,4)(2θ)

−1 − 1)e−3β/(2R) + o
(
e−3β/(2R)

)
= 2(5 + cos(2θ)− 6θ cot(θ))e−3β/(2R) + o

(
e−3β/(2R)

)
.

(3.11)

The second result correctly reproduces the entanglement entropy correction found for gen-

eral conformal field theories on the sphere [13]. The result for δSn(θ) is new.

3.3 d = 3

In odd dimensions we can choose the same γz as we would use in one smaller dimension.

Namely,

γ0γz =

(
2 0

0 0

)
and γ0γ z̄ =

(
0 0

0 2

)
.

Following previous work [14, 18], we may try to convert the denominator of the Green’s

function (3.3) to an integral in order to perform the sum over k. In the case of the scalar,

the resulting expression can be analytically continued to all m and thus in particular to

– 6 –
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n = 1/m. However, in the case of the fermion, some extra phases appear to spoil the

analytic continuation. We are able to extract thermal corrections to entanglement entropy

from an n → 1 limit of the integral successfully. Thermal corrections to Rényi entropies

remain out of reach however.

The first step in converting the sum to an integral is an integral representation of the

cosecant used successfully in the analogous calculation for the scalars [14, 18]:∫ ∞
0

dx
xθ/π+k/m−1

1 + x
= π csc(θ + kπ/m) . (3.12)

From this integral representation, it directly follows that

m−1∑
k=0

e−iπk(m−1)/m

sin(πk/m+ θ)
=

1

π

∫ ∞
0

dx
xθ/π−1

1 + x

m−1∑
k=0

xk/me−iπk(m−1)/m

=
1

π

∫ ∞
0

dx
xθ/π−1

1 + x

(1 + e−iπmx)

1 + eiπ/mx1/m
.

(3.13)

Using the representation (3.13) in the Green’s function (3.3) for d = 3, we obtain

GF(1/m,3) =
1

8
(1− i∂θ)γ0γz

1

π

∫ ∞
0

dx
xθ/π−1

1 + x

e−iπm(eimπ + x)

1 + eiπ/mx1/m
+ γ0γ z̄c.c. (3.14)

To get the entanglement entropy, we expand around m = 1:

GF(1/m,3) = (1− i∂θ)
γ0γz

π

∫ ∞
0

dx
x
θ
π

1 + x

(
1

x
− log(x)

1− x
(m− 1) +O(m− 1)2

)
+ c.c.

= γ0γz
(
ie−iθ csc2(θ)− 2eiθπ

(1 + eiθ)3
(m− 1) +O(m− 1)2

)
+ c.c.

(3.15)

The entanglement entropy correction is then constructed from a ratio of Green’s functions

δSEE(θ) = lim
m→1

1

m− 1
tr(GF(1/m,3)(2θ)G

F
(1,3)(2θ)

−1 − 1)e−β/R + o
(
e−β/R

)
= 4π csc(θ) sin4(θ/2)e−β/R + o

(
e−β/R

)
.

(3.16)

This result matches the general case derived in ref. [11].

While this integral representation gives the correct thermal corrections to the entan-

glement entropy, it appears to fail for the Rényi entropies. We suspect a reason is that

the integral representation grows too quickly as a function of complex m to satisfy the

assumptions of Carlson’s Theorem. In other words, there will not be a unique analytic

continuation. We can break the integral up into two pieces, one from 0 < x < 1 and a

second from 1 < x <∞, and then replace the two integrals with double sums:

m−1∑
k=0

e−iπk(m−1)/m

sin(πk/m+ θ)
=

∞∑
p,q=0

(−1)p+qm

(
e−imπe−iπ(q+1)/m

π(1 +mp+ q)−mθ
+

e−iπ(q+1)/m

π(1 +m+mp+ q)−mθ

+
eiπq/m

π(mp+ q) +mθ
+

e−imπeiπq/m

π(m+mp+ q) +mθ

)
.
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In the case of the scalar, the phases in the numerator of this expression vanish, and the

sum has better convergence properties. Here instead, for m = iy pure imaginary, the sum

has the same kind of growth as sin(πm), which vanishes for all integer m.1

3.4 Recursion relation for entanglement entropy

We would also like to show that our recursion relation (3.4) is compatible with the recursion

relation for the entanglement entropy found in ref. [11]. We start by Taylor expanding the

two-point function and relating it to the entanglement entropy2

Gn,d(2θ) = Gd(2θ) + δGd(2θ)(n− 1) +O(n− 1)2, (3.17)

Gd(2θ) = γ0(γze−iθ − γ z̄eiθ) i cscd−1(θ)

2d
, (3.18)

δSEE(θ) = g
δGd(2θ)

Gd(2θ)
e−βEψ + o(e−βEψ). (3.19)

We will proceed by induction and assume equation (1.6) in d dimensions. Equa-

tion (1.7) has the following recursion relation

Id(θ)− Id−2(θ) = −2π
Vol(Sd−2)

Vol(Sd−1)

sind−2(θ)

(d− 1)(d− 2)
. (3.20)

Then using equation (1.6) and recalling that ∆ = (d− 1)/2,

δGd(2θ) =
d− 1

2
Id(θ)Gd(2θ)

=
d− 1

2
Gd(2θ)

(
Id+2 + 2π

Vol(Sd)

Vol(Sd+1)

sind(θ)

(d+ 1)d

)
.

(3.21)

Acting on both sides with the operator in equation (3.4) and simplifying yields

δGd+2(2θ) =
d+ 1

2
Id+2(θ)Gd+2(2θ). (3.22)

We checked the entanglement entropy for both d = 1 + 1 and d = 2 + 1. Thus by induction

the two recursion relations are in agreement for both even and odd dimensions.

4 Numerical check

We are interested in numerically checking our results. As mentioned earlier a free fermion

on a sphere does not suffer from the same boundary term ambiguities as the conformally

coupled scalar [13]. The numerics for a free fermion should then directly give the general

conformal field theory results. Using the convention Ψ̄ = Ψ†γ0 the Hamiltonian and

Lagrangian densities for a fermion in curved space are given by Γ

L =
√
−gΨ̄(iγλDλ)Ψ, (4.1)

H =
√
−gΨ̄(iγjDj)Ψ, (4.2)

{Ψα(x),Ψ†β(x′)}
√
−g = iδαβδ(x− x′) . (4.3)

1See appendix A for an alternate integral representation of the sum.
2Here we are taking the case where γ0γz is diagonal so that the inverse is particularly simple.
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Where Dλ is the covariant derivative on the manifold. This can be written explicitly in

terms of the vierbein (eλI ) and spin connection (ωλIJ).3 We have defined the curved space

gamma matrices and covariant spinor derivative

γµ = γIeµI , (4.4)

Dµ = ∂µ +
1

8
ωµIJ [γI , γJ ] , (4.5)

where ωµIJ is the spin connection. Using the torsion free Maurer-Cartan equation, dei +

ej ∧ ωj i = 0, we can extract the spin connection, the nonvanishing elements of which are

ωj i = cos(θi)

(
j−1∏
k=i+1

sin θk

)
dθj . (4.6)

The general Hamiltonian in d+ 1 dimensions is then

H = i
√
−gΨ̄

d∑
`=1

γ`

 `−1∏
j=1

csc(θj)

(∂θ` +
d− `

2
cot(θ`)

)
Ψ (4.7)

where ` is a flat spatial index.

We can remove the cotangents and the volume factor in the commutation relation with

the following definition Ψ =
(∏d

j=1 csc(d−j)/2(θj)
)
ψ:

{ψα(x), ψβ(x′)} = iδαβδ(x− x′) , (4.8)

H =
d∑
i=1

i−1∏
j=1

csc(θj)ψ̄γ
i∂θiψ ≡ ψ̄

(
γ1∂θ1 +

1

sin(θ1)
Od
)
ψ . (4.9)

To obtain a numerical result efficiently, we turn this Hamiltonian density into a d = 1 + 1

Hamiltonian. To this end, we integrate over θi for i > 1. We then calculate the spectrum

of O where the lowest energy, smallest eigenvalue, gives the lowest order thermal correction

to the Rényi entropies. For general d the result is

Hd =

∫ π

0
dθ1ψ

†
(
γ0γ1∂θ1 +

(d− 2)γ0

2 sin(θ1)

)
ψ (4.10)

as can be found in ref. [19]. We discretize these Hamiltonians, turning the integral into

a sum and the derivative into a finite difference. We then numerically calculate the en-

tanglement and Rényi entropies in the same way as previous papers [11, 14, 20]. We find

agreement with our analytical results for the entanglement entropy in both d = 2 + 1 and

d = 3 + 1 (see figure 1), and for the Rényi entropy in d = 3 + 1 (see figure 2).

3We use capital Roman letters I, J,K, . . . for flat space-time indices, lower case Greek λ, µ, ν, . . . for

curved space-time indices, lower case Greek α, β, γ, . . . for spinor indices, and lower case Roman i, j, k, . . .

for curved spatial indices.
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Figure 1. δSEE in d = 2 + 1 (left), 3 + 1 (right) with 200 grid points.
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Figure 2. For d = 3 + 1, δS2 (left) and δS4 (right) with 200 grid points.

5 Discussion

In this paper we extended to include massless free fermions the work in ref. [14], which

considered thermal corrections to Rényi and entanglement entropies for the conformally

coupled scalar. This extension allowed a direct and successful comparison with ref. [13] —

which provided general results for thermal corrections to entanglement entropy for confor-

mal field theories — without additional complications caused by boundary terms present

for the conformally coupled scalar. We also were able to calculate thermal corrections to

the Rényi entropies for the free fermion in even dimensions. We give the analytic result in

d = 1 + 1 (3.7) and d = 3 + 1 (3.10) along with a recursion relation (3.4) which allows for

computations of all even dimensions. In odd dimensions, we were unable to find an analytic

continuation that would allow us to calculate thermal corrections to Rényi entropies, but

we were able to reproduce the thermal corrections to entanglement entropy. Amusingly,

the situation is usually reversed, where one can compute Rényi entropies but the analytic

continuation to entanglement entropy is not feasible.

It is possible that the methods used in this paper and those in ref. [14] could allow for

corrections to be calculated for other free higher spin theories and possibly more generally

for conformal field theories.
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A Alternate formulation of d = 3 sum

In our effort to find the Rényi entropies in odd dimensions we came across an alternate

form of the sum in equation (3.13).

m−1∑
k=0

e−πik(m−1)/m

sin(πk/m+ θ)
= e−iθ

cot(mθ) + i− 2
1

sin(mθ)

m/2−1∑
k=1/2

sin[2k(θ − π/2m)]

sin(πk/m)

 . (A.1)

This alternate representation is essentially a Fourier series on the shifted interval π
2m <

θ < 2π + π
2m .

Using the same integral form for the cosecant used for d = 3 we can rewrite this new

sum as an integral.

m/2−1∑
k=1/2

sin[2k(θ − π/2m)]

sin(πk/m)
=

1

π

m/2−1∑
k=1/2

∫ ∞
0

dx
xk/m

x(1 + x)
sin[2k(θ − π/2m)]. (A.2)

The integral can be evaluated for individual values of n = 1/m. This rewriting of the

sum seems to have different issues with analytic continuation than those that plagued

equation (3.13). It appears to reproduce correctly the n = 2 thermal correction to the

Rényi entropy (see figure 3), but fails for the others and for the entanglement entropy.

Equation (A.1) gives the following results for the first couple of Rényi entropies

n = 2 2 sin(θ/2)3

n = 3 4
3

[
2 + cos

(
2θ
3

)]
sin2

(
θ
3

) .
(Note that the n = 3 result is not reproduced by our numerics.)

– 11 –



J
H
E
P
0
4
(
2
0
1
6
)
1
2
4

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] T.J. Osborne and M.A. Nielsen, Entanglement in a simple quantum phase transition, Phys.

Rev. A 66 (2002) 032110 [INSPIRE].

[2] G. Vidal, J.I. Latorre, E. Rico and A. Kitaev, Entanglement in quantum critical phenomena,

Phys. Rev. Lett. 90 (2003) 227902 [quant-ph/0211074] [INSPIRE].

[3] L. Bombelli, R.K. Koul, J. Lee and R.D. Sorkin, A Quantum Source of Entropy for Black

Holes, Phys. Rev. D 34 (1986) 373 [INSPIRE].

[4] M. Srednicki, Entropy and area, Phys. Rev. Lett. 71 (1993) 666 [hep-th/9303048] [INSPIRE].

[5] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT,

Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

[6] C.P. Herzog and M. Spillane, Tracing Through Scalar Entanglement, Phys. Rev. D 87 (2013)

025012 [arXiv:1209.6368] [INSPIRE].

[7] T. Azeyanagi, T. Nishioka and T. Takayanagi, Near Extremal Black Hole Entropy as

Entanglement Entropy via AdS2/CFT1, Phys. Rev. D 77 (2008) 064005 [arXiv:0710.2956]

[INSPIRE].

[8] T. Barrella, X. Dong, S.A. Hartnoll and V.L. Martin, Holographic entanglement beyond

classical gravity, JHEP 09 (2013) 109 [arXiv:1306.4682] [INSPIRE].
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