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1 Overview and motivation

For the past several years, the holographic description of AdS black branes in the presence

of non trivial scalar profile has drawn renewed attention due to its rich phenomenological

contents in the context of AdS/CFT duality where the scalar hair in the bulk plays the

role of the (scalar) condensation operator in the dual field theory [1]–[15]. It has been ob-

served that due to the presence of the (non)minimal coupling between the scalar field and

the U(1) gauge field(s), the near horizon (IR) physics comes up with an emerging length

scale close to the the extremal limit of the brane. In other words, Quantum Field Theories

(QFTs) dual to these gravitational theories exhibit the so called scale covariance in the IR

which decouples as one RG flows towards the UV fixed point of the theory [16]–[24]. In the

IR, such QFTs are essentially described in terms of two parameters, namely the dynamic

critical exponent (z) and the hyperscaling violating parameter θ(> 0). Such hyperscal-

ing violating QFTs play an extremely important role in the holographic understanding of

certain condensed matter phenomena and beyond that, for example the holographic de-

scription of the so called Fermi surfaces [25, 26] as well as the area law violation in the

context of holographic entanglement entropy [27]–[29].

One of the major reasons behind the existence of such hairy configurations rests on the

fact that the interaction potential V (φ) (in the presence of the mild Tachyonic excitations

which thereby makes the usual charged black brane configurations unstable below certain

critical value of the temperature) exhibits a negative local maxima for the vanishing of

the scalar field (φ). As a continuation of our discussion on the hairy configurations, it is

noteworthy to mention that recently there has been some investigations in order to explore

whether one could construct hairy configurations in the presence of positive mass squared

(m2 > 0) excitations by considering non AdS asymptotic boundary conditions. These

analysis suggest that one can in fact construct scalar dressed black brane configurations
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in the context of exactly integrable Einstein-Scalar gravity with positive mass squared

excitations and these are termed as Scalar Black Branes (SBB) in the literature [30]–[32].

The most striking feature about these SBBs is the existence of the interpolating soliton

between a scale covariant UV (z = 1, θ < 0) and a scale invariant IR fixed point (z = 1,

θ = 0) in the extremal limit of the brane [30]–[32]. From the free energy (F = M − TS)

computations it is in fact easy to note that the SBB configuration is stable/ thermody-

namically preferred only above certain critical temperature (T > Tc). Otherwise, at low

temperatures it is the Schwarzschild AdS (SAdS) solution (with the vanishing of the scalar

field (φ = 0)) that turns out to be thermodynamically most preferred configuration in the

bulk [31].

This is precisely the place where we end up with certain specific motivation behind

our present analysis. Before we actually come to that, let us first note that the QFTs dual

to SBBs exhibit a strikingly different feature, namely they come up with certain emerging

length scale at UV (which essentially decouples in the IR) in the presence of a negative

hyperscaling violating exponent (θ < 0) [31]. This feature is indeed opposite to that of

the earlier holographic scenarios [18, 20, 25]. This is also quite unusual from the point of

view of the QFTs encountered in the usual condensed matter systems in the sense that

there one generally expects the hyperscaling violation to occur in the IR and not in the

UV scale of the theory [33]. As a matter of fact, the dramatic change in the boundary

behaviour of the scalar field (for T > Tc) corresponds to turning on different operators for

the boundary field theory which in turn suggests that QFTs dual to SBBs are eventually

described in terms of a different Lagrangian compared to those dual to usual SAdS for

T < Tc [32]. Another important issue that should be noted at this stage is the fact that

due to the presence of the negative hyperscaling violating exponent (θ) these QFTs cannot

be fitted into the holographic framework of the so called condensed matter systems in (2+1)

dimensions since the hyperscaling violating factor essentially changes the dimensionality

(d) of the system to d − θ which therefore in the present scenario seems to increase the

effective dimensionality of the system.1

We would like to emphasise these points a bit further. We would like to ask the

following question: how does the two point correlation between two operators namely,

〈Oi(x)Oj(0)〉 behaves in the low frequency (hydrodynamic) limit of these special class

of strongly coupled QFTs at UV. In other words, the purpose of the present article is

to use the usual frame work of the Gauge/gravity duality in order to explore the low

frequency behaviour of the two point correlators for a very special class of strongly coupled

hyperscaling violating QFTs both in the extremal as well as in the non extremal limit.2

1Holographic models with negative values of θ have been constructed earlier in the context of Dp branes

in [18]. The rising of the effective dimensionality in the boundary field theory seems to indicate the fact

that the dual gravitational counterpart would prefer to live in more than (3 + 1) dimensions [31]. Therefore

from the point of view of the boundary field theory these SBBs are really interesting objects and worth of

further investigations.
2In [32], the authors have studied the short distance and/or the high frequency behaviour of the two

point correlation function between the scalar operators for these special class of QFTs ( with θ < 0) and

observed the power law behaviour in the two point function. This observation leaves the ground open for

further investigations on the behaviour of these correlation functions in the low frequency regime.
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Let us illustrate this point a bit further. The goal of the present article is to study

the physics of linear response for a special class of strongly coupled hyperscaling violating

QFTs at sufficiently long length scales and to check the universality between its various

response parameters, namely the charge conductivity (σDC) and the shear viscosity (η).

In order to check these universalities, we essentially compute the transport coeffi-

cients and/or the response parameters for the boundary hydrodynamics using the so called

Kubo’s formula,

χ< = − lim
ω→0

1

ω
GR(ω,k = 0) (1.1)

where GR(ω,k) is the retarded Green’s function that relates the boundary operator O to

its classical source ϕB. In our analysis, we systematically address the above universality

issue(s) in two steps. In the first part of our analysis, we compute the R-charge diffu-

sion [34]–[36] for the boundary hydrodynamics where we turn on U(1) fluctuations over

the fixed back ground of the SBBs and study the behaviour of the 〈Jµ(x) Jν(0)〉 correlators

in the low frequency limit which enable us to compute the σDC/χ ratio for these special

class of strongly coupled QFTs near its UV scale. In the remaining part of our analysis,

we turn on massless spin 2 (graviton) excitations in the bulk and compute the correla-

tors of the type 〈Tµν(x) T%σ(0)〉 in the low frequency limit. From our analysis we observe

that (like in the case for the pure AdS4 black branes) the low frequency (near horizon)

graviton fluctuations in the bulk capture the physics of linear response for the boundary

hydrodynamics and the corresponding universality of the η/s ratio [37]–[47] is guaranteed

even in the presence of the negative hyperscaling violating effects near the UV scale of

the theory. In summary, we find that the universality of the η/s ratio is still maintained

both in the extremal as well as in the non extremal limit, while on the other hand, such

universality relations do not seem to hold for the R-charge diffusion. In fact we note that

(unlike the case for the pure AdS4 black branes) the latter quantity exhibits a non trivial

scaling relation with the temperature. These observations therefore enforce us to conclude

that the (hyperscaling violating) gauge theories dual to SBBs might fall under a separate

universality class as compared to those QFTs dual to usual AdS4 black branes.

Before we conclude our introductory section, it is customary to mention some the

notable facts about our analysis. Let us first focus in particular in the extremal limit. Note

that taking the hydrodynamic limit of near extremal AdS4 black branes has been always

a bit tricky since the ω → 0 and the T → 0 limits do not commute in general. On top of

it, due to the presence of the double pole structure in the near horizon limit, the general

arguments concerning the universality of the η/s ratio in the non extremal limit should not

necessarily hold near the extremal point [48]–[51]. Considering all these facts the present

scenario for our analysis turns out to be more delicate in the sense that the near horizon

geometry of the extremal soliton (dressed with scalar hair) is radically different (it does

not contain the usual AdS2 factor) from that of the extremal AdS4 black branes [48]–[51].

Therefore from the bulk point of view it appears that the usual arguments that go in favour

of extremal AdS4 black branes should not directly apply here. However, we figure out that

due to the presence of the double pole structure near the horizon of the extremal SBBs
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one recovers the usual lower bound for η/s [48]–[51]. From the boundary point of view this

simply indicates the fact that these strange quantum critical fluids with θ < 0 , exhibit

identical shear as those of the usual quantum critical systems with θ ≥ 0 [18, 20, 25].

Therefore from the point of view of the boundary hydrodynamics the analysis near the

extremal limit appears to be more non trivial as well as worthy of further investigations.

The organisation of the paper is the following. In section 2, we start with a brief

introduction to the dual gravitational description in the bulk and discuss its supergavity

realizations. In section 3, following the original prescription of [34]–[36], we compute the R-

charge diffusion constant for the dual field theory in its UV limit. In section 4, considering

the non extremal SBBs, we check the universality of η/s ratio for these special class of

gauge theorise at strong coupling regime. In section 5, we perform the η/s computation in

the extremal limit. Finally, we conclude in section 6.

2 Review of the gravity dual

We start our analysis with a brief introduction to the fundamentals of the gravity set up

in the bulk (in particular in the non extremal limit) which essentially consists of Einstein’s

gravity minimally coupled with the scalar field (φ) in the presence of a self interaction

potential (V (φ)) namely [31],

S =

∫
d4x
√
−g(R− 2(∂φ)2 − V (φ))

V (φ) = − 6

γL2

(
exp 2

√
3βφ− β2 exp

2
√

3φ

β

)
; γ = 1− β2 (2.1)

where L is the fundamental length scale of the AdS4 and β is a real parameter such that

for the present analysis of this paper |β| � 1. Before we proceed further, a few crucial

points are to be noted at this stage. First of all, the above action in (2.1) essentially gives

rise to two classes of static black brane configurations, one is the Schwarzschild black brane

(SAdS) configuration (for T < Tc) which corresponds to the vanishing of the scalar field

along with some local minima in the potential, V = −6/L2 and the other corresponds to

Scalar Black Brane (SBB) solution in the presence of the non trivial scalar profile,3

ds2 = ∆
2β2

3γ

( r

r0

) 2
1+3β2

(−Γdt2 + dx2
i ) +

E∆
4β2

3γ

Γ

(
r

r0

) −2

1+3β2

dr2


φ =

β√
3γ

log

[
A

∆

(
r

r0

) −3γ

1+3β2

]
. (2.2)

The SBB solution (2.2) could be found to possesses a number of interesting features.

For example, in the extremal limit, it is in fact possible to show that for certain choice

of parameters in the theory, the SBB solution depicted above in (2.2) could be thought

of as a scalar soliton interpolating between an IR fixed point (that could be thought of

3For details see [31].
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as an AdS4 with the AdS length scale L) and the scale covariant Domain Wall (DW)

kind of asymptotics at UV. In other words, in the UV we encounter certain hyperscaling

violation due to some emerging UV length scale that essentially decouples in the IR limit.

At this stage it is noteworthy to mention that the IR (r → 0) limit of the soliton (2.2)

essentially corresponds to the local minima of the potential namely, V = −6/L2 . On the

other hand, the UV (r → ∞) limit stands for the zero of the potential. At this stage it

is noteworthy to mention that one can in fact express (2.2) in a more compact form using

certain dimensionless coordinates (t, r) namely [31],

ds2 =
γ2L2

(1 + 3β2)2

[
−∆

2β2

3γ Ξ(r)dt2 + ∆
2β2

γ Ξ−1(r)dr2

]
+ ∆

2β2

3γ r
2

1+3β2 (dx2 + dy2)

φ =
1

2
log
(

∆
−2β√

3γ r
−2
√

3β

1+3β2

)
; Ξ = r

2
1+3β2

(
1− Θ1

rα

)
; ∆(r) = 1 +

Θ2

rα

α =
3γ

1 + 3β2
(2.3)

where Θ1,2 are two dimensionless parameters4 which obey certain constraint among them-

selves namely, Θ1 = 1
Θ2
−Θ2 .

Eq. (2.3) essentially is the starting point of our analysis. In order to start our ex-

plorations on the hydrodynamic description of the above black brane configuration (2.3),

it is customary to discuss some of the essential thermodynamic properties which will be

required in the subsequent analysis. The Hawking temperature as well as the thermal

entropy (density) of the SBB solution (2.3) turns out to be [31],

T =
3γΘ

3β2−1
3γ

2 (1−Θ2
2)1/3

4π(1 + 3β2)
; s = 4πΘ

−2/3γ
2 (1−Θ2

2)2/3. (2.4)

Before we actually conclude this section, for the sake of completeness, a few important

remarks and/or comments are in order and these are essentially related to the string theory

realization of the SBB solutions (2.2) in general in any dimension (d). In [32], it has been

argued that SBB solutions (2.2) could in principle be obtained from black p-branes by

means of Kaluza-Klein (KK) compactification on a sphere (Sq, q = d− p− 2).

Let us illustrate this point a bit further. Usually in d dimensions one starts with the

bosonic action of the form,

I =

∫
ddx

(
R− 1

2
(∂Φ)2 − eaΦ

2(p+ 2)!
F(p+2)

)
(2.5)

where F(p+2) is the (p+2) form and Φ is the dilaton. The black p-branes could be expressed

as the Ramond-Ramond charged solution of the above SUGRA theory which could be

4One important assumption of our analysis is the fact that throughout this paper we shall consider both

the parameters of the theory namely, β2 and Θ2 are much less than unity [31] namely β2 � 1 and |Θ2| � 1.

Therefore in principle we can always ignore terms (compared to that with the unity) those are essentially

at most at the quadratic or in any subsequent higher orders in these parameters.
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formally expressed as,5

ds2 = H(r)
−2D̃
ρ

(
h(r)dt2 +

p∑
i=1

dx2
i

)
+H(r)

2D
ρ (h−1dr2 + r2dΩ2

q). (2.6)

Finally, using the following KK compactification,

ds2 = e
− 2q
p
ψ
ds2
p+2 + e2ψdΩ2

q (2.7)

and doing some trivial manipulation one can in fact express the metric ds2
p+2 in the above

form (2.2) with some proper identification of the parameter β2 .

3 R-charge diffusion

Using the methods of the AdS4/CFT3 duality, in this section our goal is to compute the

DC electrical conductivity (σDC) for certain special class of QFTs that come up with

an additional UV length scale along with the z = 1 critical exponent and the negative

hyperscaling violating parameter (θ < 0). As mentioned earlier in the introduction, near

the extremality, the IR physics of these QFTs could be described in terms of infra-red

fixed point and which is therefore considered to be scale invariant with z = 1 and θ = 0.

These QFTs are quite unusual both from the point of view of the earlier holographic

models [18, 20, 25] as well as from the field theories encountered in the usual condensed

matter systems [33]. The reason for this is that there one expects the hyperscaling violation

to occur in the IR instead of the UV. Since these are the systems where the perturbative

calculations do not seem to work very well, therefore the holographic realization of the

charge transport phenomena would be indeed an interesting subject in itself.

The entity that we are finally interested in is to compute the R -charge diffusion (D)

using the so called Einstein’s relation namely, D = σDC/χ (in the so called hydrodynamic

limit) for these special class of strongly coupled QFTs considering the SBBs (2.3) in the

dual gravitational counterpart. In order to compute the DC conductivity, one essentially

needs to evaluate the retarded two point current-current correlation,6

σDC = −e2 lim
ω→0

1

ω
Im GRx,x(ω,q = 0)

GRx,x(ω,q = 0) = −i
∫
dτ dx eiωτ Θ(t) 〈[Jx(x), Jx(0)]〉 (3.1)

over the fixed background (2.3). One can perform this computation following the original

prescription of [34]–[36] where one usually treats the Maxwell action,

SM = − 1

4g2
SG

∫
d4x
√
−gFabFab (3.2)

as perturbations over the non extremal background (2.3).

5For details see [32].
6Note that here e is the small gauge coupling parameter which has been introduced by considering the

fact that the corresponding U(1) symmetry at the boundary is weakly gauged [35].
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The first step towards computing the R-charge diffusion is to compute the charge sus-

ceptibility (χ(= %/µ)) for which we need to know both the charge density (%) as well as

the chemical potential (µ) for the boundary theory. Following the AdS4/CFT3 prescrip-

tion [35], the charge density for the present theory turns out to be,

% = lim
r→∞

δS
(OS)
M

δAt
=
e2µZ(1 + 3β2)

3γ3g2
SGL

2

Z =
CΘ2

((
1

Θ2
−Θ2

)
1/α
) 2αβ2

3γ
+ 2

3β2+1
−1((( 1

Θ2
−Θ2

)
1/α
)
α + Θ2

)− 2β2

3γ
−1

2F1

(
1, 3(α+1)β2+α−1

3αβ2+α
; 3β2−1

3αβ2+α
− 2β2

3γ + 1;−
((

1
Θ2
−Θ2

)
1/α

)
α

Θ2

)
C = β2

(
α
(
6β2 + 2

)
− 9γ

)
+ 3γ. (3.3)

Using (3.3), one can immediately read off the charge susceptibility as,

χ =
e2Z(1 + 3β2)

3γ3g2
SGL

2
. (3.4)

Finally, we are in a position to compute the DC conductivity which could be performed

by turning on fluctuations in the spatial component(s) of the U(1) gauge field namely,

Ax(r, t) ∼
∫
dωe−iωtAx(r) (3.5)

where Ax(r) satisfies the equation of the following form namely,

A′′x +
b′(r)

b(r)
A′x − ω2 c(r)

b(r)
Ax = 0 (3.6)

where, b(r) =
√
−ggrrgxx and c(r) =

√
−ggxxgtt .

Considering the ingoing wave boundary condition [36] near the horizon of the

SBBs (2.3), the natural next step would be to solve the above equation (3.6) in the low

frequency (|ω| � 1) regime. In order to do that we consider the following ansatz namely,

Ax = (1− (rH/r)
α)λX (r) (3.7)

where rH/r is a dimensionless entity with rH =
(

1
Θ2
− Θ2

)
1/α as the position of the

horizon [31]. The parameter λ could be estimated by imposing the so called incoming wave

boundary condition near the horizon of the SBBs (2.3) which finally yields,

λ = −iNω

N =
r
α− 2

3β2+1

H

α

(
1− 2Θ2

2

1−Θ2
2

) 2β2

3γ

. (3.8)

In order to solve (3.6), we consider the following perturbative expansion of the function

X (r) namely,

X (r) = X (0)(r) + iωX (1)(r) +O(ω2). (3.9)
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Substituting (3.7) into (3.6) together with (3.8) and (3.9) we arrive at the following set of

equations namely,

X ′′(1) −
2NαrαH

rα+1(1− rαH/rα)
X ′(0) +

b′

b
X ′(1)

+
NαrαH

rα+1(1− rαH/rα)

(
α+ 1

r
+

αrαH
rα+1(1− rαH/rα)

− b′

b

)
X (0) = 0

X ′′(0) +
b′

b
X ′(0) = 0. (3.10)

The natural next task would be to solve the above set of equations (3.10). As the

exact analytic solutions to the above set of equations (3.10) turn out to be quite difficult

to achieve, therefore in the following we only note down the corresponding solutions in the

large radius limit (rH � r) namely,7

X (0)(r) =
C1

(
3β2r + r

)1− 2
3β2+1

3β2 − 1
+ C2

X (1)(r) = C4 +
r−α

(
3β2r + r

)− 2
3β2+1

((
1

Θ2
−Θ2

)
1/α
)− 2

3β2+1

α (3β2 − 1)
F(r) (3.11)

where the function F(r) could be formally expressed as,

F(r) = α
(
3β2 + 1

)
C3r

α+1

((
1

Θ2
−Θ2

)
1/α

)
2

3β2+1

−
(
3β2 + 1

)
C1r

((
1

Θ2
−Θ2

)
1/α

)
2α

(
2Θ2

2 − 1

Θ2
2 − 1

)
2β2

3γ

−
(
3β2 − 1

)
C2

((
1

Θ2
−Θ2

)
1/α

)
2α
(
3β2r + r

) 2
3β2+1

(
2Θ2

2 − 1

Θ2
2 − 1

)
2β2

3γ . (3.12)

Using (3.11), the DC conductivity (3.1) finally turns out to be,

σDC =
e2

2g2
SG

(C2C3 − C1C4)

(1 + 3β2)
2

1+3β2

. (3.13)

Using (3.4) and (3.13) it is in fact quite trivial to compute the R-charge diffusion

constant for the boundary hydrodynamics which turns out to be,

D =
3γ3L2(C2C3 − C1C4)

2Z(1 + 3β2)
3(1+β2)

1+3β2

= K T
θ−3
θ−1 (3.14)

where, θ = 6β2

3β2−1
stands for the hyperscaling violating exponent for the boundary

QFT [30]–[32] and K corresponds to the overall numerical factor and/or the c-number

sitting in front of the temperature. At this stage it is in fact quite interesting to note that

since the spatial component of the gauge field has the inverse dimension of length namely,

7Note that in the large radius limit we retain only linear order terms in the ratio rαH/r
α+1.
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[Ax] = L−1 therefore the arbitrary coefficients Ci(i = 1, 2, 3, 4) also carry the same dimen-

sion namely, [Ci] = L−1 and as a result of this, the R -charge diffusion (3.14) is effectively

a dimensionless entity and/or a pure c-number near the UV scale of the boundary QFT in

the strong coupling regime. Finally, it is worthwhile to point out that unlike the case for

the AdS black branes [34]–[36] (i.e; space times with AdS asymptotics), the charge diffu-

sion constant (3.14) goes under a different scaling with the temperature and this might be

regarded as the consequence of the broken scale invariance near the UV scale of the theory.

This suggest that the QFTs that we consider in this paper should fall under a separate

universality class.

4 η/s

Having done the computation on the R-charge diffusion, in this section we turn our atten-

tion towards computing the two point correlation between the stress energy tensor of the

boundary QFT in the hydrodynamic limit. Looking at this issue from a broader perspec-

tive, our goal is to make a systematic comparison between the η/s ratios corresponding

to these scalar dressed black brane configurations considering both the extremal as well as

the non extremal limits. We shall concentrate on the non extremal case first.

According to the AdS4/CFT3 prescription, in order to compute the two point corre-

lation between the boundary stress tensor what one essentially needs to do is to turn on

the metric fluctuations (hxy) in the bulk since the boundary value of the graviton fluctua-

tions (h
(0)
xy ) essentially acts as the source for the energy momentum tensor of the boundary

QFT. In Quantum Field Theories although there are in principle several ways to compute

the retarded correlators (namely, the Green’s functions), however in our analysis we shall

adopt the so called Kubo’s formula that stands for the most elegant as well as the straight

forward way to compute the two point function between the stress tensor that finally

yields the so called hydrodynamic transport/response parameter namely the coefficient of

viscosity8 [37]–[47],

η = − lim
ω→0

1

ω
Im GRxy,xy(ω,q = 0). (4.1)

The first step towards computing the retarded correlator is to turn on the metric

fluctuations of the following form namely,9

hxy(r, t) = ∆
2β2

3γ r
2

1+3β2 Φ(r, t)

Φ(r, t) =

∫
dωe−iωtΦω(r). (4.2)

8At this stage it is customary to note that the metric perturbations with one spatial index namely y are

essentially the vectors with respect to the boundary global SO(2) symmetry where as on the other hand

modes with two or no y indices are the scalars provided we had turned on our spatial momentum along x

direction.
9At this stage one could easily check that the graviton fluctuations (hxy) do not mix up with other

perturbations of the theory, for example the scalar perturbations (δφ). Therefore at least for shear mode

calculations these fluctuations are not important. In fact the scalar fluctuations mix up non trivially with

the graviton perturbations in the bulk while studying the sound propagation in a fluid medium and therefore

it plays an important role there. Finally, it is noteworthy to mention that the effective action corresponding

to graviton fluctuations turns out to be at most second order in derivatives of Φ(r, t).
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As a natural next step we substitute (4.2) into the linearised Einstein’s equation,

R(1)
ab =

1

2
habV (φ) (4.3)

which finally yields the differential equation of the form,

−
(
3β2 + 1

)2
Θ2

2ω
2r

3
3β2+1 Φω(r)

Θ2r
3

3β2+1 +
(
Θ2

2 − 1
)
r

3β2

3β2+1

+
r
− 2

3β2+1
−2(

Θ2r
1− 4

3β2+1 + 1
) 4β2

3(β2−1)(
Θ2r

3β2

3β2+1 + r
3

3β2+1

)
2

k(r) =
(
β2 − 1

)2
Θ2L

2hxyV (φ) (4.4)

where the function k(r) could be formally expressed as,

k(r) =
(
3β2 + 1

)2
Θ2

2

(
Θ2

2 − 1
) (
−r4

)
(rΦ′′ω(r) + Φ′ω(r))− 6Θ2r

4
3β2+1

+2 (
β2 − 1

) (
β2 −Θ2

2

)
Φω(r)

−Θ2r
12

3β2+1
((

3β2 + 1
)
r
((

3β2 + 1
)
rΦ′′ω(r) + 4Φ′ω(r)

)
− 6

(
β2 − 1

)
Φω(r)

)
+Θ2r

4
3β2+1

+2 ((
3β2+1

)
r
(
2
(
−3
(
β2+1

)
Θ2

2+3β2+1
)

Φ′ω(r)−
(
3β2+1

) (
3Θ2

2−2
)
rΦ′′ω(r)

))
+3r

8
3β2+1

+1
Θ2

2

((
3β2 + 1

)
r
(
−
(
3β2 + 1

)
rΦ′′ω(r)−

(
β2 + 3

)
Φ′ω(r)

)
+ 4

(
β2 − 1

)
Φω(r)

)
+r

8
3β2+1

+1 (
3β2 + 1

)2
r (rΦ′′ω(r) + Φ′ω(r)). (4.5)

Regarding the above equation in (4.4) the two crucial points are to be noted. Firstly,

since we are interested to evaluate the retarded Green’s function exactly at the boundary

therefore we do not actually have to bother about the potential V (φ) in our equation as it

approaches zero near the boundary (rH/r � 1) [31]. Secondly, it looks exactly as that of

the wave equation for a scalar minimally coupled to the curved background. In order to

solve (4.4) we take the following ansatz namely,

Φω(r) = (1− rαH/rα)δH(r) (4.6)

where δ could be fixed by the incoming wave boundary condition,

δ = −iΓω

Γ =
r

(1−α)/2
H

α

(
1 +

Θ2

rαH

) 2β2

3(1−β2)

(4.7)

subjected to the following constraint satisfied at the horizon of the black brane namely,

2Θ3
2 + 3Θ2

2r
α
H + Θ2r

2α
H − rα+1

H (2 + rαH) = 0 (4.8)

which is essentially a polynomial in Θ2 that basically constraints the value of the dimen-

sionless parameters Θi(i = 1, 2) of our theory in order to make it to be consistent with the

ingoing wave boundary condition near the horizon of the black brane.

Finally, considering (4.7) and substituting (4.6) into (4.4) we arrive at the following

equation namely,

C1(r)H′′(r) + C2(r)H′(r) + C3(r)H(r) = 0 (4.9)
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where each of the individual coefficients Ci(r)(i = 1, 2, 3) could be read off as,

C1 = −(1 + 3β2)Θ2r
5+α(rα + Θ2)2

C2 = 2iΓωαrαHΘ2(1 + 3β2)(rα + Θ2)2r4 + (1 + 3β2)Θ3
2r
α
Hr

4 − 6(1 + β2)Θ3
2r
α+4

+2Θ2(1 + 3β2)rα+4 − 4Θ2r
4+3α − 3Θ2

2(β2 + 3)r2α+4 + (1 + 3β2)r2α+4

C3 = −iΓωαrαH
[
(α+ 1)(1 + 3β2)Θ2(rα + Θ2)2r3 + (1 + 3β2)Θ3

2r
3rαH − 6Θ3

2(1 + β2)r3
]

−iΓωαrαH
[
2Θ2(1 + 3β2)r3 − 4Θ2r

2α+3 − 3Θ2
2(β2 + 3)rα+3 + (1 + 3β2)rα+3

]
−6Θ2r

3+α

(
β2 − 1

)
(1 + 3β2)

(
β2 −Θ2

2 − r2α − 2Θ2r
α
)
. (4.10)

Note that in the above equation (4.9) we have retained terms only upto leading order in

the frequency ω as the higher order terms do not contribute to the coefficient of viscosity

(η). Our next task would be to solve (4.9) perturbatively in the frequency ω namely,

H(r) = H(0)(r) + iωH(1)(r) +O(ω2)

Ci(r) = C(0)
i (r) + iωC(1)

i (r). (4.11)

Substituting (4.11) into (4.9) we arrive at the following set of equations,

C(0)
1 H

′′(0) + C(0)
2 H

′(0) + C(0)
3 H

(0) = 0

C(0)
1 H

′′(1) + C(0)
2 H

′(1) + C(1)
2 H

′(0) + C(0)
3 H

(1) + C(1)
3 H

(0) = 0. (4.12)

The solutions corresponding to (4.12) turn out to be,10

H(1) ≈ H(0) = K2 −K1
7Θ2e

16Θ2r
α
H−7

9Θ2r
α

16Θ2rαH − 7
. (4.13)

Using the above solution (4.13) as well as the asymptotic boundary condition, the

coefficient of viscosity finally turns out to be,

η = Θ
−2/3γ
2 (1−Θ2

2)2/3 (4.14)

which finally yields,

η

s
=

1

4π
. (4.15)

Eq. (4.15) is expected on general ground for theories coupled to (two derivative) Ein-

stein’s theory of gravity in the non extremal limit. The key feature of the present analysis is

10Note that as the exact solutions corresponding to (4.12) is indeed quite non trivial to achieve therefore

in order to obtain these solutions (4.13) we have taken into account a few important facts, for example, we

have dropped all the terms of the type Θ2/r
α including its various higher powers in the large r limit as

|Θ2| � 1 [31]. Moreover in our computation we have dropped all the terms ∼ 1/r3 on wards. Finally, here

Ki s are some arbitrary coefficients that could be fixed in terms of asymptotic normalization conditions

namely, Φω(∞) = 1 .
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that it ensures the above universality (4.15) for space times that asymptotically approaches

towards a DW kind of geometry rather than the usual AdS4 asymptotics. It is therefore

an artefact of the earlier analysis for space times with usual AdS4 asymptotics, namely the

η/s ratio in the so called non extremal limit is sensitive only to the gravitational couplings

of the theory and therefore does not get corrected due to the presence of the various matter

couplings (non trivial matter interactions) in the theory that do not include any explicit

or implicit function of the Riemann curvature [39].

Before we conclude this section, it is also important to understand the significance of

the above result from the point of view of the boundary field theory. The SBBs (2.3) in the

bulk essentially describe a completely different gauge theory at the boundary rather than

a different phase in the same gauge theory. In other words, the QFTs dual to SBBs are

completely different from that of the QFTs dual to the usual SAdS black branes in the bulk

for T < Tc [32]. More precisely, the UV physics of these dual QFTs is associated with an

additional length scale in the presence of a negative hyperscaling violating factor namely,

z = 1, θ = 6β2

3β2−1
[30]–[32]. Therefore the Gauge/gravity duality plays an important role in

order to ensure the universality of η/s ratio for a wide class of gauge theories that might

exhibit hyperscaling violation at UV.

5 Extremal limit

In this section, based on the standard frame work of the AdS4/CFT3 duality, we turn

our attention towards the hydrodynamic description of the extremal SBBs in (3 + 1) di-

mensions11 [30]–[31]. The extremal (zero temperature) limit of SBBs could be formally

obtained by setting Θ1 = 0 [31],

ds2 = ∆
2β2

3γ

[
r

2
1+3β2 (−dt2 + dx2) +

γ2L2Θ
−2β2

γ

2

(1 + 3β2)2
r
−2

1+3β2 ∆
4β2

3γ dr2

]
. (5.1)

For Θ2 > 0 , eq. (5.1) eventually corresponds to a regular scalar soliton interpolating

between a scale covariant theory at UV and an AdS4 geometry corresponding to the IR

fixed point. In order to proceed further we define a new coordinate,

u = 1 + rα; β2 < 1/3 (5.2)

which finally helps us to reduce the above metric (5.1) into the following form namely,

ds2 = g
(0)
tt dt

2 + g(0)
uu du

2 + g
(0)
ij dx

idxj (5.3)

11The present analysis of this section might be considered as an extension of the earlier calculations [48]–

[51] to space times with non AdS asymptotics, for example the Domain Wall (DW) kind of geometry that

emerges as the dual to certain class of quantum critical systems which seem to posses hyperscaling violating

phase associated with some emerging UV length scale [30]–[32].
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where the individual zeroth order coefficients of the metric reads as,

g
(0)
tt = −(u− 1)

2
3 (u− 1 + Θ2)

2β2

3γ = −(u− 1)
2
3S(t)(u)

g
(0)
ij = (u− 1)

2
3S(t)(u)δij

g(0)
uu = (u− 1)−2

[
L2

9
Θ
−2β2

γ

2 (u− 1 + Θ2)
2β2

γ

]
= (u− 1)−2S(u)(u) (5.4)

such that the horizon of the black brane is located at u = 1 and the boundary is located

at u → ∞. At this stage one should take a note on the fact that the functions S(u)

are perfectly regular at the horizon. The extremal nature of the black brane could be

found out through the existence of the double pole in the metric component g
(0)
uu at the

horizon and this feature is identical to that with the black brane solutions with usual AdS4

asymptotics [48, 49].

At this stage it is noteworthy to mention that in the extremal limit, the near horizon

geometry of SBBs (5.3) are significantly different from those of the most general class of

black holes with the usual AdS4 asymptotics. The near horizon geometry for the most

generic class of extremal AdS black branes usually appears with a double pole singularity

in g
(0)
uu and a double zero in g

(0)
tt [49]. On the other hand, for extremal SBBs (5.3) we

note that the zero of the g
(0)
tt appears with a different (fractional) power which therefore

distinctly categorize the extremal SBBs from that of the usual AdS black branes in the

extremal limit.

With the above (zeroth order) metric coefficients (5.4) in hand, our next task would

be to consider the graviton fluctuations of the form gµν = g
(0)
µν + hµν , in particular,

hxy(u, t) = (u− 1)
2
3S(t)(u)Φ(u, t)

Φ(u, t) =

∫
dωe−iωtΦω(u). (5.5)

Substituting (5.5) into linearized Einstein’s equation (4.3) we arrive at the following

differential equation namely,

(u− 1)2/3Θ
− 2β2

β2−1

2 (Θ2+u−1)
3−2β2

3(β2−1)<(u)

4 (β2 − 1)2 − 1

2
ω2L2Φω(u) =

L2(u−1)
2
3

2
S(t)(u)Φω(u)V (φ)

(5.6)

where the function <(u) could be formally expressed as,

<(u) = 12
(
β2 − 1

)
Φω(u) (Θ2 + u− 1)

1
β2−1 (−(β − 1)Θ2 + u− 1) ((β + 1)Θ2 + u− 1)

−18
(
β2 − 1

)2
(u− 1) (Θ2 + u− 1)

2β2−1

β2−1
(
(u− 1)Φ′′ω(u) + 2Φ′ω(u)

)
. (5.7)

Following the original prescription of [48] our next task would be to solve the above

equation (5.6) at two extremal limits, namely close to the horizon of the extremal black

brane as well as near the boundary of the space time. Finally, we would match both of
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these solutions at some intermediate matching region (u → 1) [48]. We first focus on the

near horizon solution. In order to proceed further we define a new variable (ζ),

u = 1 +
ω

ζ
(5.8)

and express our near horizon solution for both ωL→ 0 and ζL→ 0 in such a way so that

the ratio ω
ζ → 0. With the choice of this new variable (ζ) the near horizon (u ∼ 1) equation

for Φω turns out to b,12

Φ′′ω ≈ 0 (5.9)

whose solution could be formaly expressed as,

Φω = qI(1 + iLζ) = qI

(
1 +

iωL

u− 1

)
. (5.10)

Eq. (5.10) represents an ingoing wave near the horizon of the extremal SBB (5.3) at

least if we truncate ourselves upto leading order in ζ considering it to be vanishingly small.

Our next task would be to find the precise solution near the boundary (u� 1) of the space

time. In this case the equation corresponding to Φω(u) turns out to be,

Φ′′ω +
2

u− 1
Φ′ω ≈ 0. (5.11)

The solution corresponding to (5.11) could be formally expressed as,

Φω(u) = Q(0)
I −

Q(1)
I

(u− 1)
(5.12)

where Q(0)
I and Q(1)

I are two arbitrary integration constants that could be related to each

other by the normalized boundary condition namely Φω(∞) = 1. Note that in order

to arrive at the above equation (5.11) we have made use of the fact that |Θ2| � 1 and

β2 � 1 [31] such that one could neglect terms of the type Θ2
2β

2 compared to unity. Finally,

we match the solutions (5.10) and (5.12) for u→ 1 which finally yields,

Q(0)
I = qI , Q(1)

I = −iqIωL (5.13)

Finally, substituting (5.13) into (5.12) the final form of the graviton wave function (5.12)

turns out to be,

Φω(u) = qI

[
1 + i

ωL

(u− 1)

]
. (5.14)

12At this stage it is noteworthy to mention that the u coordinate is a suitable coordinate only in the

asymptotic region (u� 1). On the other hand, ζ is the appropriate variable for the near horizon expansion

as it is easy to note that in the near horizon limit (u ∼ 1) the ω expansion turns out to be ill defined in the

u coordinate. All these features are quite reminiscent of the usual scenario that one encounters for AdS4

black branes [48]–[49].
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Using (5.14) the retarded two point correlator finally turns out to be,

GRxy,xy = − iω

16πGN
. (5.15)

Using (5.15) the viscosity to entropy ratio finally turns out to be,

η

s
=

1

4π
(5.16)

which therefore satisfies the conjectured lower bound namely, η/s > 1/4π like in the non

extremal case. From the bulk point of view this result is a bit surprising due to the fact that

the time component of the metric exhibits a different (near horizon) zero limit as compared

to those of the extremal (charged) AdS black branes [48]–[49]. As an example, for AdS4

Reissner Nordstrom black holes g
(0)
tt exhibits a double zero near the horizon of the black

brane and because of this fact the near horizon geometry turns out to be AdS2 ×R2 [48]–

[49]. On the other hand, in the extremal limit of SBBs, the time component of the metric

namely, g
(0)
tt exhibits a different zero limit (see (5.4)) and which does not appear as the

inverse of the double pole structure in g
(0)
uu . As a result the IR geometry turns out to be

different than the usual AdS2 × R2. From the point of view of the boundary field theory

this result is even more illuminating. It simply translates the fact that the quantum critical

systems even in the presence of negative hyperscaling violation (near the UV scale of the

theory) exhibit identical shear as of those with no hyperscaling violation (θ = 0) [48]–[49],

or hyperscaling violation near the IR scale of the theory [18, 20, 25].

6 Summary and final remarks

We now summarize the key findings of our analysis. The basic motivation behind the

present analysis was to explore the hydrodynamic regime of a very special class of strongly

coupled QFTs that exhibit the so called hyperscaling violation at the UV scale of the

theory in the presence of a negative hyperscaling violating exponent (θ < 0). The dual

gravitational counterpart for these special class of QFTs encodes scalar dressed black branes

with non AdS asymptotics [30]–[32]. In the extremal limit, the dual description in the bulk

takes the form of the scalar dressed extremal soliton endowed in between a fixed point at

IR and the Domain Wall (DW) geometry at UV.

The entire analysis of this paper could in principle be divided into two parts. In

the first part of our analysis we compute the R-charge diffusion for these special class of

strongly coupled hyperscaling violating QFTs near its UV scale. From our analysis we note

that the charge diffusion coefficient scales non trivially with temperature as compared to

the usual case of AdS black branes [34]–[36]. We identify this as the natural consequence

of the hyperscaling violation (θ < 0) near the UV scale of the theory.

In the second part of our analysis we particularly focus on the universality of η/s ratio

both in the non extremal as well as the extremal limit. In the non extremal limit the η/s

ratio turns out to be 1/4π and this essentially translates the fact that the usual membrane

paradigm arguments [47] also work for space times with non AdS asymptotics.
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In the extremal limit the scenario turns out to be a bit surprising where we note that

the conjectured lower bound for η/s is still satisfied. From the bulk point of view this

effect should come as a surprise by noting the fact the extremal scalar soliton does not

carry the explicit factor of AdS2 in its near horizon limit and therefore the near horizon

geometry is radically different from that of the extremal charged AdS black branes [48, 49].

However we note that the radial component of the metric (g
(0)
uu ) exhibits a double pole near

the horizon like in the case for extremal AdS4 black branes. Therefore we interpret our

finding (5.16) as the consequence of the existence of such a pole structure near the horizon

which somehow confirms the fact that membrane paradigm like arguments should always

hold in the presence of a double pole singularity in the near extremal limit [49]. From the

point of view of the boundary field this clearly explains the fact that these special class of

strongly coupled quantum critical systems (with θ < 0) exhibit identical shear as those of

the QFTs dual to extremal AdS black branes.

In summary, the take home message from the present analysis is that the proposed

universal bound on the σDC/χ ratio [35] strictly holds in the presence of the conformal

invariance and trivially breaks down due to the presence of an emerging (UV) length scale.

On the other hand, the η/s ratio is not at all sensitive to the UV sector of the theory and

is entirely determined by the physics at IR and which is therefore more sacred. The final

conclusion that we reach considering all these facts is that the class of gauge theories in

the presence of negative hyper scaling violation (θ < 0) near the UV scale of the theory,

might fall under a separate universality class as compared to those with θ > 0.

Before we conclude this paper a few comments are in order. It will be really a nice

exercise to compute the sound modes as well as the bulk viscosity to entropy ratio for these

hyperscaling violating theories employing the techniques of Gauge/gravity duality. Besides

these issues, one can also repeat the above calculations for electrically charged SBBs where

due to the presence of the minimal coupling with the U(1) gauge field in the theory, the near

horizon structure in the extremal limit might contain an explicit AdS2 factor and therefore

this should reproduce the usual results for the η/s ratio [48, 49]. One can also repeat the

above calculations in the presence of non minimal coupling to the abelian gauge sector

where one might expect the result in the extremal limit to be sensitive to the coupling

function itself.
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