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1 Introduction

One way to break the Lorentz invariance in the AdS/CFT correspondence is to generalize

the AdS (anti-de Sitter) spacetime to become the Lifshitz geometry [1]

ds2 = `2
(
− r2zdt2 +

dr2

r2
+ r2dxidxi

)
. (1.1)

The metric is invariant under the scaling

r → λ−1r , t→ λzt , xi → λxi . (1.2)

The AdS/CFT correspondence is expected to continue to hold such that classical gravity in

the bulk is dual to some strongly coupled condensed matter theory (CMT) living in (t, xi)

that exhibits such scaling symmetry. Although the Lifshitz metric (1.1) is homogeneous,

it is not Einstein. This leads to a question as what type of matter can support such a

geometry. Furthermore, for application in the AdS/CMT, one would like to construct the

Lifshitz spacetimes with bulk fields that are not too exotic from the condensed matter

point of view.

If we focus on two-derivative gravities, a natural choice of matter is a vector field.

The Ansatz that respects the Lifshitz symmetry is A = qrzdt, where q is a constant.

Unfortunately it will not satisfy the Maxwell equation without a source, namely d∗F = 0,

where F = dA. On the other hand, a massive vector (Proca) field provides its own source,

with the equation d∗F = m2∗A. Indeed, a variety of Lifshitz spacetimes were constructed

using the Proca fields [2]. In the original paper [1], a four-dimensional theory is considered

in which the source is provided by a 3-form field strength, namely

d∗F = cH3 . (1.3)
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However, in four dimensions, one can Hodge dualize this H3 = dB2 to a 1-form associated

with an axion χ. In the Hodge dual description, the massless vector A eats χ and becomes

a massive Proca field. Thus the construction really uses a Proca field in disguise and the

physical degrees of freedom of A and B2 cannot be diagonalized. It turns out that this

is rather general whenever a vector is involved. The string theory embedding of Lifshitz

spacetimes is certainly possible [3-12]. Many of the examples are rather complicated and

involve some unrealistic irrational exponents z. The simplest examples may be some z = 2

Lifshitz spacetimes that can be obtained from some AdS wave solutions by the Kaluza-

Klein circle reduction. It turns out, as shown explicitly in [11], that the Kaluza-Klein

vector in the effective Lagrangian indeed eats an axion scalar and becomes massive.

The prejudice against a Proca field is that it is more exotic than the Maxwell field and

its dual operator in a boundary field theory has less interesting application in condensed

matter systems. We thus would like to construct Lifshitz spacetimes carrying fluxes of a

true Maxwell field rather than a Proca field. Such fluxes are necessarily electric to preserve

the Lifshitz symmetry, and we hence refer these geometries to electrically-charged Lifshitz

spacetimes. We find this can be done in five dimensions, where the source is provided by

some Yang-Mills instanton or instanton-like configurations, through the equation

d∗F ∼ F a ∧ F a . (1.4)

Indeed, the constant-time slice of the Lifshitz spacetime in five dimensions is a hyperbolic

four-space in which one can construct SU(2) Yang-Mills instanton or instanton-like con-

figurations. This observation allows us to construct Lifshitz spacetimes that carry electric

charges of a true Maxwell field, provided that the spacetimes are also colored. These pro-

vide first examples of electrically-charged Lifshitz spacetimes. It should be emphasized

that the Yang-Mills source to the right-hand-side of (1.4) is quadratic, whilst the Proca

equation of motion is linear. Thus, whilst the system in (1.3) is a Proca field in disguise,

ours are inequivalent.

We carry out this construction in section 2. We consider Einstein gravity coupled

to a cosmological constant and SU(2) Yang-Mills fields and a Maxwell field. The key

construction is the supergravity inspired FFA-type term that yields the right-hand side of

equation (1.4). We also study the Green’s functions for the dual operators associated with

a minimally coupled SU(2) scalar triplet and a U(1) charged scalar.

In condensed matter theory, the low energy physics is more commonly described by

Lifshitz theory with hyperscaling violation which breaks both Lorentz and scaling invari-

ances of the theory. The gravitational dual can be constructed by introducing a dilaton

field such that the spacetime is Lifshitz up to an overall dilaton scaling factor that violates

the scaling symmetry [13–16]. Many Lifshitz-like solutions with hyperscaling violations

have been found in literature [17-30]. In section 3, we demonstrate that by introducing a

dilaton, the hyperscaling violation is also possible in our system. In section 4, we present

some exact black hole solutions that are asymptotic to the Lifshitz spacetimes with or

without hyperscaling violations. We present similar four-dimensional solutions in section

5. The paper is concluded in section 6.
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2 Electrically charged Lifshitz spacetimes

2.1 The construction

In this section, we consider D = 5 gravity coupled to a cosmological constant Λ, SU(2)

Yang-Mills fields Aaµ (a = 1, 2, 3) and Maxwell field Aµ. The Lagrangian is given by

L =
√
−g
(
R− 3Λ− 1

4g2
s

F aµνF
aµν − 1

4
FµνF

µν
)
− σ

2g2
s

εµ1µ2µ3µ4ρF aµ1µ2F
a
µ3µ4Aρ , (2.1)

where ε is a totally-antisymmetric tensor density, defined by ε01234 = 1. The Yang-Mills

and Maxwell field strengths are

F aµν = ∂µA
a
ν − ∂νAaµ + εabcAbµA

c
ν , Fµν = ∂µAν − ∂νAµ . (2.2)

The most general two-derivative Lagrangian that respects all the symmetries will include

also an FFA term for the Maxwell field alone. We shall not consider this term here since

it has no effect on the solutions that we shall construct.

It should be emphasized that all the fields we consider above are of garden variety and

have been observed in nature. The topological FFA-term is inspired by five-dimensional

supergravities and it is unique in five dimensions. The Lagrangian (2.1) cannot be gen-

eralized to other dimensions with our content of fields. The theory is specified by three

non-trivial coupling constants, (Λ, gs, σ) and we let these coupling constants be arbitrary

to begin with. The equations of motion are

DµF
aµν ≡ ∇µF aµν + εabcAbµF

cµν = σενµ1µ2µ3µ4F aµ1µ2Fµ3µ4 ,

∇µFµν =
σ

2g2
s

ενµ1µ2µ3µ4F aµ1µ2F
a
µ3µ4 ,

Rµν = Λgµν +
1

2g2
s

(
gρσF aµρF

a
νσ − 1

6F
2gµν

)
+ 1

2

(
gρσFµρFνσ − 1

6F
2gµν

)
, (2.3)

where ε is a tensor, given by εµ1···µ5 = εµ1···µ5/
√
−g. Note that the second equation above

becomes of (1.4) in the form language.

The solutions to (2.3) can be be embedded in D = 5, N = 4, SU(2) × U(1) gauged

supergravity provided that

Λ = −2g2
s , σ = ±1

4 , (F a)2 = 2F 2 . (2.4)

(The bosonic sector of D = 5, N = 4, SU(2) × U(1) gauged supergravity [31] contain in

addition a scalar and rank-2 antisymmetric tensor.)

As we have discussed in the introduction, the motivation for us to consider the the-

ory (2.1) is to construct Lifshitz spacetimes that carry Maxwell fluxes. For a charged

solution that preserves the Lifshitz symmetry, the Ansatz for the Maxwell field must be

A = qrzdt , (2.5)

where q is a constant. It is easy to verify that it will not satisfy the Maxwell equation of

motion d∗F = 0, since ∗F = zqr3dx1∧dx2∧dx3. This problem is circumvented for a Proca

– 3 –
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field where ∗A can provide a source with d∗F ∼ ∗A. In our theory (2.1), the source is

provided by the Yang-Mills instanton(-like) configurations, via the second equation in (2.3).

To see this explicitly, we consider the Ansatz for the SU(2) Yang-Mills fields that respect

the Lifshitz symmetry, given by

Aa = pr dxa −→ F a ∧ F a = 3p3 Ω(4) . (2.6)

where p is a constant and Ω(4) is the volume form of the four-dimensional hyperbolic space

ds2
4 =

dr2

r2
+ r2(dx2

1 + dx2
2 + dx2

3) (2.7)

that is a constant-time slice of the Lifshitz spacetime. It is easy to verify that when p = 1,

we have

F a = ∗4F a , DiF
aij = 0 . (2.8)

Thus our p = 1 Ansatz gives rise precisely to an Yang-Mills instanton in the hyperbolic

4-space. We refer the cases of general p to instanton-like configurations.

The second equation in (2.3) implies that

q = −4σ

g2
s

p3 . (2.9)

In other words, the electric flux is provided by Yang-Mills instanton(-like) numbers. It is

straightforward to construct the full Lifshitz solution, given by

ds2 = −r2zdt2 +
dr2

r2
+ r2(dx2

1 + dx2
2 + dx2

3) ,

Aa = pr dxa , A = qrzdt , q = 1
z

√
2(z − 1)(z − 2p2 + 2) ,

σ = − zq

8p(z − 1)
, g2

s =
p2

2(z − 1)
, Λ = −1

3(z2 + 4z + 7 + p2(z − 1)) . (2.10)

When σ = 0, we have q = 0 and the solution reduces to colored Lifshitz spacetimes obtained

in [32], with p2 = 1
2(z + 2). In this σ = 0 case, a Yang-Mills instanton, corresponding to

p = 1, cannot support a Lifshitz spacetime alone since it requires that z = 0, and hence

g2
s < 0.

It is of interest to examine what happens when the Yang-Mills configuration is indeed

an instanton (p = 1). The solution becomes

ds2 = −r2zdt2 +
dr2

r2
+ r2(dx2

1 + dx2
2 + dx2

3) , Aa = r dxa , A =

√
2(z−1)
z rzdt ,

gs =
√

1
2(z−1) , σ = −

√
z

32(z−1) , Λ = −1
3(z + 2)(z + 3) . (2.11)

The general Lifshitz spacetimes (2.10) are specified by two parameters (z, p), which implies

that the three coupling parameters (Λ, gs, σ) of the theory are not independent. It turns

out that the three conditions (2.4) cannot be all satisfied for our Lifshitz spacetimes and

hence the solutions cannot be embedded in SU(2) ×U(1) gauged supergravity.

– 4 –
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2.2 Green’s functions in boundary field theories

Having obtained the electrically-charged and colored Lifshitz spacetimes, we would like

to study the implications on the boundary field theories. We first consider a minimally-

coupled U(1)-charged scalar

Lφ =
√
−g(−DµφD

µ∗φ∗ −m2φφ∗) , (2.12)

where Dµ = ∂µ − iAµ. The covariant equation of motion is:

1√
−g

Dµ(
√
−ggµνDνφ)−m2φ = 0 . (2.13)

Taking the Fourier transformation

φ(r, t, x) = ϕ(r)e−iωt+ikx1 , (2.14)

we can derive a more explicit equation for ϕ(r)

ϕ′′ +
z + 4

r
ϕ′ +

((ω +At)
2

r2z+2
− k2

r4
− m2

r2

)
ϕ = 0 , (2.15)

where the momentum has been chosen along the x1 direction due to the rotational invari-

ance. In the asymptotic r →∞ limit, we have:

ϕ→ A

r∆−
+

B

r∆+
, ∆± = 1

2(z + 3)± µ , (2.16)

where A,B are integration constants and µ = 1
2

√
(z + 3)2 + 4m2 − 4q2. For the dual

operators to have real dimensions, we need imposing the Breitenlohner-Freedman type of

bound, namely

m2 ≥ m2
BF , m2

BF = −(z + 3)2

4
+ q2 . (2.17)

We shall work in standard quantization, where the vev of the dual operator is defined by

〈O+〉 = B and the two-point function can be derived as: GO+ = B/A.1

For vanishing ω, eq. (2.19) can be analytically solved in terms of Bessel functions:

ϕ = r−
z+3
2 Kµ(k/r) . (2.18)

In the boundary limit, we find

ϕ→ k−µ Γ(µ)

21−µr∆−
+
kµ Γ(−µ)

21+µr∆+
. (2.19)

The Green’s function for ω = 0 can be readily read off:

GO+(ω = 0, k) = (1
2k)2µΓ(−µ)

Γ(µ)
. (2.20)

1For a certain mass range m2
BF ≤ m2 ≤ m2

BF + 1, the A mode is also normalizable and one can also

work in the alternative quantization, where the vev of the dual operator is now defined by 〈O−〉 = A and

the two-point function is given by GO− = A/B.

– 5 –
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For non-vanishing ω, eq. (2.19) cannot be analytically solved except for the relativistic case

z = 1.

We now consider a minimally-coupled SU(2) scalar triplet

Lφa =
√
−g
(
− 1

2Dµφ
aDµφa − 1

2m
2φaφa

)
, (2.21)

where Dµφ
a = ∂µφ

a + εabcAbµφ
c. The covariant equations are

1√
−g

Dµ(
√
−ggµνDνφ

a)−m2φa = 0 . (2.22)

The wave equations were analysed in [32] in the momentum space and they can be solved

for zero frequency (ω = 0) or zero momenta (k2 = kiki = 0), giving rise to the Green’s

functions

GO+(ω = 0, k) = (1
2k)2ν Γ(−ν)

Γ(ν)
, GO+(ω, k = 0) =

( iω

2z

)2ν Γ(−ν
z )

Γ(νz )
, (2.23)

where

ν = 1
2

√
(z + 3)2 + 4(m2 + 2p2) . (2.24)

It is interesting note that the Yang-Mills fluxes, which are magnetic, contributes a

positive constant shift to the effective mass-square of the scalar triplet. On the other hand,

the Maxwell flux, which is electric, contribute an negative constant shift. It follows that

the condensed matter system becomes unstable for large q, but remains stable for large

p. For the SU(2) scalars that are also charged, the two characteristic powers of falloffs at

large r are given by

∆± = 1
2(z + 3)± 1

2

√
(z + 3)2 + 4m2 + 8p2 − 4q2 . (2.25)

3 Dilaton and hyperscaling violation

As discussed in the introduction, condensed matter systems are more commonly described

by the Lifshitz theory with some hyperscaling violation. In the gravity side, this can be

achieved by an r-dependent scalar field. It follows that Lifshitz-like solutions with hy-

perscaling violations carrying electric fluxes are easier to come by than those electrically-

charged Lifshitz solutions. (See, e.g. the references listed in the relevant part of the Intro-

duction.) In this section, we introduce a dilaton Φ to (2.1) and propose a new Lagrangian

LYM =
√
−g
[
e−2Φ

(
R− 3Λ + 1

2ω(∂Φ)2 − 1

4g2
s

F aµνF
aµν
)
− 1

4
e2ΦFµνF

µν
]

− σ

2g2
s

εµ1µ2µ3µ4ρF aµ1µ2F
a
µ3µ4Aρ . (3.1)

The subscript of the Lagrangian denotes that it is written in the “Yang-Mills frame”, in

which the Yang-Mills fields do not “see” the dilaton Φ explicitly. We introduce a new

coupling constant ω for the dilaton. The effective Yang-Mills coupling in this frame is then

given by

geff
YM = gs 〈eΦ〉 . (3.2)

– 6 –
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It is instructive to write the Lagrangian also in the Einstein frame, which we find to be

LEin =
√
−g
(
R− 3Λe−λφ − 1

2(∂φ)2 − 1

4g2
s

eλφF aµνF
aµν − 1

4
e−2λφFµνF

µν
)

− σ

2g2
s

εµ1µ2µ3µ4ρF aµ1µ2F
a
µ3µ4Aρ , (3.3)

where λ and φ are related to ω and Φ as follows

λ2 =
48

9(32− 3ω)
, φ = − 4

3λ
Φ . (3.4)

The metrics in the Einstein and Yang-Mills frames are related by

ds2
Ein = eλφds2

YM . (3.5)

Note that when ω > 32/3, the dilaton coupling constant λ becomes purely imaginary. The

reality of the Lagrangian (3.3) can be restored by letting φ → iφ. This implies that the

dilaton φ for ω > 32/3 has wrong kinetic sign and hence ghost-like. This observation is

not apparent in the Lagrangian (3.1).

We obtain a class of colored and charged Lifshitz solutions with hyperscaling violations.

In the Yang-Mills frame, the solutions are

ds2
YM = −r2zdt2 +

dr2

r2
+ r2(dx2

1 + dx2
2 + dx2

3) ,

Aa = pr dxa , A = qrz+
3
2
θdt , Φ = −3

4θ log r , ω = 8− 16z

3θ
,

σ = −1
8

√
2z + 3θ + 4− 4p2

(z − 1)p2
, q =

2
√

(z − 1)(2z + 3θ + 4− 4p2)

2z + 3θ
,

Λ = −1
3

(
9
4θ

2 + 3
2(2z + 5)θ + z2 + 4z + 6 + p2(z − 1)

)
. (3.6)

They are specified by three parameters, (z, p, θ), which are determined by (Λ, gs, σ, ω) of

the theory. In the Einstein frame, the metric is simply ds2
Ein = rθds2

YM, with

λ2 =
2θ

3(2z + θ)
, φ =

θ

λ
log r . (3.7)

When λ = 0, corresponding to ω → −∞, we have θ = 0, and the dilaton decouples from

the theory. The solution reduces to the one obtained in section 2.1.

It should be commented that although the metric in the Yang-Mills frame is Lifshitz,

the Lifshitz symmetry is still broken in the full theory since the dilaton Φ is r-dependent.

Of course, any field, such as graviton and Yang-Mills fields, who does not see the dilaton is

not sensitive to the hyperscaling violation. On the other hand, the Maxwell field is indeed

modified by the hyperscaling violation.

A necessary condition for the theory to be embedded into supergravity is λ2 = 1,

which implies z = 0 or θ →∞. Thus unfortunately, our solutions cannot be embedded in

five-dimensional gauged supergravities.

– 7 –
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4 Exact Lifshitz black holes

Having obtained the charged and colored Lifshitz spacetimes, it is of interest to construct

black hole solutions. Unfortunately, we could not find any such exact solutions within the

theories considered in the previous sections. By introducing a new Maxwell field F = dA,

we construct a class of exact Lifshitz black holes that are charged under A. The Lagrangian

for A in the Yang-Mills frame is given by

LAYM = −1
4

√
−ge−2ΦFµνFµν . (4.1)

We find a class of exact black hole solutions

ds2 = −r2z f̃dt2 +
dr2

r2f̃
+ r2(dx2

1 + dx2
2 + dx2

3) , f̃ = 1− Q2

2(z − 1)r2(z−1)
,

Aa = pr dxa , A = qr2(z−2)dt , A = Qrdt Φ = −1
2(z − 4) log r ,

σ = −
√
z − 1− p2

4p
√
z − 1

, q =

√
(z − 1)(z − 1− p2)

z − 2
,

Λ = −1
3(z − 1)(4z − 3 + p2) , ω =

32

z − 4
. (4.2)

In other words, the hyperscaling violation parameter of the the corresponding asymptotic

Lifshitz spacetime is constrained to be θ = 2
3(z − 4). In the Einstein frame, the dilaton

coupling constant is given by

λ2 =
z − 4

6(z − 1)
. (4.3)

Thus for the dilaton to be non-ghost like, we must have z ≥ 4. When z = 4, the dilaton

decouples and the corresponding Lifshitz vacuum has no hyperscaling violation.

All the black holes have vanishing mass, but satisfy

TdS + ΦedQe = 0 , TS + ΦeQe = 0 , (4.4)

with

T = z−1
2π r

z
0 , S = 1

4r
z−1
0 , Φe = −r0Q , Qe = 1

16πQ , (4.5)

where r0 is the horizon and f̃(r0) = 0. There have been many examples of such Lifshitz

black holes in literature [32–37].

5 D = 4 Lifshitz spacetimes with or without hyperscaling violations

We now consider the analogous construction in four dimensions. The matter field content

consists of the SU(2) Yang-Mills fields, a Maxwell field and a dilaton Φ. The Lagrangian

in the Yang-Mills frame is given by

LYM =
√
−ge2Φ

(
R− 2Λ + 1

2ω(∂Φ)2 − 1

4g2
s

F aµνF
aµν − 1

4
F2
)
. (5.1)

It can be converted to the Einstein frame using the conformal scaling

ds2
Ein = eλφds2

YM , with λ2 =
4

12− ω
, φ = − 2

λ
Φ . (5.2)

– 8 –
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The Lagrangian in the Einstein frame is then given by

LEin =
√
−g
(
R− 2Λe−λφ − 1

2(∂φ)2 − 1

4g2
s

eλφF aµνF
aµν − 1

4
eλφF2

)
. (5.3)

Turning off the vector field A, we obtain a class of colored Lifshitz vacua with hyperscaling

violations. In the Einstein frame, they are given by

ds = rθ
(
− r2zdt2 +

dr2

r2
+ r2(dx2

1 + dx2
2)
)
,

φ =
θ

λ
log r , A3 = 0 , Aa = prdxa , a = 1, 2,

λ =

√
θ

2z + θ
, g2

s =
z + 1 + θ

2(z − 1)
, p =

√
1 + z + θ ,

Λ = −1
2(θ2 + (2z + 3)θ + z2 + 2z + 3) . (5.4)

When λ = 0, we have θ = 0 and consequently the dilaton decouples. The resulting

Lifshitz vacua with no hyperscaling violation was obtained previously in [32, 38]. The

Lagrangian (5.3) also admits an exact black hole solution charged under the Maxwell field

A for θ = z − 3. It is given by

ds = rz−3
(
− r2z f̃dt2 +

dr2

r2f̃
+ r2(dx2

1 + dx2
2)
)
, f̃ = 1− Q2

2(z − 1)r2(z−1)

A = Qrdt , (A1, A2, A3) =
√

2(z − 1) r(dx1, dx2, 0) , φ =
√

3(z − 1)(z − 3) log r ,

λ =
√

z−3
3(z−1) , g2

s = 1 , Λ = −1
2(4z2 − 7z + 3) . (5.5)

The solution with θ = 0, i.e. z = 3 was obtained in [32]. It can be easily checked that

the electrically charged black holes have zero mass, with the thermodynamical quantities

(T, S,Φe, Qe) satisfying (4.4).

6 Conclusions

In this paper we construct a class of Lifshitz spacetimes in five dimensions that carry

electric fluxes of a Maxwell field. The theory that makes this possible is Einstein gravity

coupled to a cosmological constant, SU(2) Yang-Mills fields as well as the Maxwell field.

The key construction is the supergravity-inspired FFA-type Chern-Simons term. This

term provides the Maxwell equation with a Yang-Mills instanton(-like) source. The al-

lowed dynamic exponents of the Lifshitz solutions are z > 1. We studied the scalar wave

equations of the electrically-charged and/or SU(2)-colored scalars and found that the elec-

tric background added a negative constant shift to the effective scalar mass-square whilst

the magnetic Yang-Mills background added a positive constant shift.

We introduced a dilaton to the system and obtained a class of Lifshitz spacetimes with

hyperscaling violations for z > 1 with arbitrary parameter θ. We also constructed some ex-

act black hole solutions with vanishing mass, but satisfying a non-trivial thermodynamical

first law (4.4). We constructed analogous solutions with or without hyperscaling violations

in four dimensions.

– 9 –
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The matter fields in our construction are all of garden variety, namely the Maxwell and

Yang-Mills fields rather than the Proca field or more exotic ones. Our Lisfhitz spacetimes

carrying electric fluxes appear to be first in literature and should provide interesting gravity

duals for studying some strongly couple condensed matter systems.
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[32] Z.-Y. Fan and H. Lü, Charged Black Holes in Colored Lifshitz Spacetimes, Phys. Lett. B 743

(2015) 290 [arXiv:1501.01727] [INSPIRE].

[33] T. Zingg, Thermodynamics of Dyonic Lifshitz Black Holes, JHEP 09 (2011) 067

[arXiv:1107.3117] [INSPIRE].
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