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1 Introduction

When a system is in thermal equilibrium, it can very well be described by a few macroscopic

quantities, like, temperature, pressure, volume, energy, entropy and various chemical po-

tentials associated with conserved charges of the system. The system is governed by certain

laws called the thermodynamical laws by which these quantities are related to each other.

One such law is the first law of thermodynamics which simply describes the conservation

of energy of the system, in particular, it relates the change in energy (dE) to the change

in entropy (dS) or the amount of information stored in the system by a proportionality

constant, the temperature, i.e., dE = TdS.

It is, however, not so easy to describe a system when it is away from equilibrium. For

a quantum system even if it is away from equilibrium, the quantum information can be

encoded in a quantity called entanglement entropy (see [1–7]). The energy of the system can

also be given independently whether it is at or away from equilibrium. Then it is interesting

to ask whether an analogous thermodynamical first law like relation holds good even when

the system is away from equilibrium. This question was addressed [8] for some excited state

(also see [9, 10] for related works which compute the holographic entanglement entropy for

excited states) of certain quantum system and then studying the relation of the change

in entanglement entropy obtained by holographic method [11, 12] and the corresponding

change in energy of the excited state of the system. It was indeed found that for sufficiently

small subsystem, the change in entanglement entropy is proportional to the change in

energy, where the proportionality constant is related to the size of the entangling region.

Identifying the proportionality constant as the inverse of some temperature, the so-called

entanglement temperature, we get a first law in analogy with first law of thermodynamics.

The simple first law where the change in entanglement entropy is directly proportional

to the change in energy is not necessarily true always. It is true for the case studied

in [8], where it was the consequence of the choice of translationally and rotationally in-

variant excited state. However, for rotationally non-invariant (anisotropic) excited states

the change in entanglement entropy will not only involve change in energy, but it will also

involve a pressure-like term as obtained in [13, 14]. So, defining a new pressure-like quan-

tity called the entanglement pressure one can still get a modified first law in analogy with

thermodynamical first law.
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However, in all the cases the first law of entanglement thermodynamics were obtained

by studying the relativistic system. In this paper we look at the excited state of a non-

relativistic system, the Lifshitz system in four dimensions, where there is no conformal

invariance. Not only that, the excited state we consider will be non-isotropic. So, the

change in entropy will involve apart from an entanglement pressure term an additional

term which is related to the entangling region and in analogy with the first law of ther-

modynamics can be identified with an entanglement chemical potential and a first law-like

relation can be written. To be precise, we start from a dual gravity solution in four space-

time dimensions which admits a Lifshitz scaling symmetry. The solution follows from a

four dimensional gravity action with a cosmological constant and a massive gauge field. We

consider an excited state corresponding to an asymptotic Lifshitz solution obtained in [15]

by perturbation and solving the linearized equations of motion in the radial gauge. We

compute the entanglement entropy of this excited state on a strip-type subsystem using

holographic method and find that it is finite and contains three terms proportional to en-

ergy, pressure and a term which can be identified with a chemical potential. With proper

identifications we recover a first law-like relation - a first law of entanglement thermody-

namics. In the relativistic limit we find that the chemical potential term vanishes and we

recover the relativistic result obtained before when the space-time dimension is four.

This paper is organized as follows. In the next section we give the relevant part of

the holographic stress tensor complex for a four dimensional asymptotically Lifshitz theory

as discussed in detail in [15]. In section 3, we compute the holographic entanglement

entropy of this excited state of the Lifshitz system and obtain the first law of entanglement

thermodynamics. Then we conclude in section 4.

2 Lifshitz theory and holographic stress tensor

In this section we will briefly review the asymptotic perturbation of four dimensional Lif-

shitz theory and the associated holographic stress tensor of the theory [15]. We here

mention the relevant part of the stress tensor complex (required for obtaining the first law

of entanglement thermodynamics in the next section) for constant perturbation of four

dimensional Lifshitz theory. It is well-known that a four dimensional Lifshitz metric can

be obtained from a bulk action (see [16, 17] ) of the form,

S =
1

16πG4

∫

d4x
√−g

(

R− 2Λ− 1

4
FµνF

µν − 1

2
m2AµA

µ

)

(2.1)

where Aµ is a massive gauge field and Λ is a cosmological constant. The equations of

motion following from the above action are,

Rµν = Λgµν +
1

2
FµρF

ρ
ν − 1

8
FρσF

ρσgµν +
1

2
m2AµAν

∇µF
µν = m2Aν . (2.2)
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Choosing Λ = −1
2(z

2 + z + 4) and m2 = 2z, the equations of motion (2.2) have a solution

of the form [15]

ds2 = −r2zdt2 + r2(dx2 + dy2) +
dr2

r2

A = αrzdt, α2 =
2(z − 1)

z
. (2.3)

The solution has a Lifshitz scaling symmetry: t → λzt, x → λx, y → λy, r → λ−1r, where

z is the dynamical scaling exponent and α is a constant as given above. The solution (2.3)

is the gravity dual of a (2+1) dimensional quantum many body system with a Lifshitz

symmetry near its quantum critical point. A complete action including a boundary term

which is on-shell finite and leads to a well-defined action principle is given as,

Stot =
1

16πG4

∫

d4x
√−g

(

R− 2Λ− 1

4
FµνF

µν − 1

2
m2AµA

µ

)

+
1

16πG4

∫

d3ξ
√
−h

(

2K − 4− zα
√

−AαAα
)

+ Sderiv (2.4)

where ξα are the boundary coordinates and hαβ is the induced metric on the boundary.

K = hαβKαβ is the extrinsic curvature, where Kαβ = ∇(αnβ) with nα, a unit vector or-

thogonal to the boundary directed outwardly. Sderiv are terms involving the derivatives

of the boundary fields. We will ignore this term as it will not contribute for the constant

boundary fields in our case. The above action can then be used to define the stress tensor

of the boundary theory by varying it with respect to the boundary metric. Since here

the boundary theory is non-relativistic, instead of a fully covariant stress tensor, one can

define stress tensor complex consisting of energy density, energy flux, momentum density

and pressure density which satisfy the conservation relations. For the calculation of entan-

glement entropy we will need only the energy and the pressure densities as we will see in

the next section.

Now instead of the Lifshitz solution (2.3) which corresponds to the ground state we

will consider an excited state by perturbing the solution as follows [15],

ds2 = −r2z(1 + htt(r))dt
2 + r2(1 + hxx(r))dx

2 + r2(1 + hyy(r))dy
2 +

dr2

r2

+2[−r2zv1x(r) + r2v2x(r)] dtdx+ 2[−r2zv1y(r) + r2v2y(r)] dtdy + 2r2hxy(r) dxdy

A = αrz[(1 + at(r) +
1

2
htt(r))dt+ v1x(r)dx+ v1y(r)dy] (2.5)

Note that (2.5) gives an asymptotically Lifshitz space-time when htt(r), hxx(r), hyy(r),

v1x(r), v2x(r), v1y(r), v2y(r), hxy(r), and at(r) go to zero as r → ∞. Here hrµ = 0 gauge is

chosen. Also we have assumed the perturbations to be constant in the boundary directions

and so, ar = 0 by equation of motion. Note that the perturbations have been split into

scalar, vector and tensor parts and because of the rotational invariance of the background

– 3 –
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in the x-y plane they don’t mix with each other. Now defining

htt(r) = f(r)

hxx(r) = k(r) + td(r)

hyy(r) = k(r)− td(r)

at = j(r) (2.6)

the linearized action can be obtained by substituting (2.6) in (2.4). This action has been

shown in [15] to be finite on-shell and the various components of the stress tensor complex

can be found by varying the action with respect to the boundary metric. We here give the

expressions of the energy and pressure densities that we will need later. In terms of the

functions defined above they have the forms [15],

Ttt = −rz+2

[

2r∂rk(r) + α2

(

zj(r) + r∂rj(r) +
1

2
r∂rf(r)

)]

Txx = −2rz+2

[

(z − 1)j(r)− r

2
∂rf(r)−

r

2
∂rk(r)−

1

2
(z + 2)td(r)

]

Tyy = −2rz+2

[

(z − 1)j(r)− r

2
∂rf(r)−

r

2
∂rk(r) +

1

2
(z + 2)td(r)

]

. (2.7)

We also need another function obtained from the linearized action by varying with respect

to the massive gauge field and having the form,

s0(r) = αrz+2

[

zj(r) + r∂r

(

1

2
f(r) + j(r)

)]

. (2.8)

This is not conserved but will be useful to express the extra term that appears in the

entanglement entropy to be discussed in the next section. The equations of motion following

from the linearized action can be explicitly solved in the radial gauge and the normalizable

solutions for j(r), k(r), f(r) and td(r) can be obtained. The solutions have quite different

forms for z = 2 and z 6= 2 and therefore we give the solutions separately in the following [15,

18, 19]. For z = 2,

j(r) = −c1 + c2 ln r

r4
,

f(r) =
4c1 − 5c2 + 4c2 ln r

12r4
,

k(r) =
4c1 + 5c2 + 4c2 ln r

24r4
,

td(r) =
td2
r4

(2.9)

and for z 6= 2,

j(r) = − (z + 1)c1
(z − 1)rz+2

− (z + 1)c2

(z − 1)r
1

2
(z+2+βz)

,

f(r) = 4
1

(z + 2)

c1
rz+2

+ 2
(5z − 2− βz)

(z + 2 + βz)

c2

r
1

2
(z+2+βz)

,
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k(r) = 2
1

(z + 2)

c1
rz+2

− 2
(3z − 4− βz)

(z + 2 + βz)

c2

r
1

2
(z+2+βz)

,

td(r) =
td2
rz+2

(2.10)

where β2
z = 9z2−20z+20 = (z+2)2+8(z−1)(z−2). Note that in the above c1, c2 and td2 are

integration constants. There are other integration constants in the solution which have been

put to zero, by coordinate redefinition and to recover asymptotic Lifshitz solution (2.3).

One of the constants in (2.10) involving term with a fall-off r−
1

2
(z+2−βz) has been set to

zero since it gives a divergent contribution for z > 2 and it gives non-normalizable mode

even for z < 2 [19]. These solutions can be used in (2.7) to find the finite energy and the

pressure densities (or their expectation values) in terms of the parameters or the constants

of the solution. We will also compute s0(r) using these solutions. Note that we have not

given the solution for v1x(r), v1y(r), v2x(r) v2y(r) and hxy(r) explicitly since they will not

be needed for the computation of the entanglement entropy of the excited state which we

turn to in the next section.

3 Entanglement thermodynamics and a first law for the excited state

In this section we will compute the (shift in the) holographic entanglement entropy of the

excited state due to the metric perturbation (2.5) as given in [8, 20]. The entangling region

is taken to be a strip with width ℓ given by

− ℓ

2
≤ x ≤ ℓ

2
, 0 ≤ y ≤ L (3.1)

with l ≪ L, i.e., we consider a thin strip. The standard procedure [11, 12] of computing the

holographic entanglement entropy is to minimize a surface embedded in the time slice of

the bulk geometry and ending at r = ∞ with the boundary coinciding with the entangling

region. Then the entanglement entropy would be given by the area of this minimal surface

divided by 4G4. We parameterize the minimal surface by x = x(r) and calculate the area

from the induced metric (see (2.5)) as,

A =

∫ rt

∞

dr

∫ L

0
dy

√

1 + r4x′ 2(r) + r4x′ 2(r)(hxx(r) + hyy(r)) + hyy(r) . (3.2)

Here ‘prime’ denotes derivative with respect to r. Now minimizing the area determines the

function x(r) and substituting that back into (3.2) we finally obtain,

A = A(0) +
L

2

∫

∞

rt

dr
hyy(r) +

(

rt
r

)4
hxx(r)

√

1−
(

rt
r

)4
(3.3)

and

ℓ =
2

rt

∫

∞

1

dζ

ζ2
√

ζ4 − 1
=

2
√
π Γ

(

3
4

)

Γ
(

1
4

)

rt
(3.4)

where rt is the turning point and ζ = r/rt. Also here A(0) denotes the area of the min-

imal surface for the Lifshitz background. Since we are considering small perturbations
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around this background, h’s are small such that the turning point rt is actually close to

the boundary and we do not bother about the IR geometry. However, note that since h’s

are functions of r as well as the boundary coordinates, it is not obvious how the smallness

of h is related to the smallness of the subsystem which lives on the boundary. But as

x = x(r) or conversely, r is a function of x, and so, h’s implicitly depend on ℓ, the size of

the subsystem. What we mean by small subsystem is that ℓ should be such that hxx[ℓ] ≪ 1

and hyy[ℓ] ≪ 1. This is precisely what we have used in obtaining (3.3) from (3.2) and only

in this case (3.3) makes sense. Note from (3.4) that rt is inversely related to the measure

of the entangling region, i.e., ℓ and therefore, as rt is close to the boundary (r = ∞), ℓ is

very small.1

From (3.3) we get the shift in area ∆A due to the perturbation which in turn will

give us the shift in entanglement entropy of the excited state over the pure Lifshitz ground

state as,

∆S =
L

8G4

∫

∞

rt

dr
1

√

1− ( rtr )
4

[

hyy(r) +
(rt
r

)4
hxx(r)

]

. (3.5)

In (2.6) hxx(r) and hyy(r) are defined in terms of the functions k(r) and td(r), whose

solutions are given in (2.9) for z = 2 and in (2.10) for z 6= 2. We will therefore evaluate

∆S in the following for the two cases separately.

For z = 2, using the form of k(r) and td(r) as given in (2.9), (3.5) reduces to

∆S =
L
√
πΓ(34)

8G4Γ(
1
4)24rt

3

[

32c1
5

− 48td2
5

+ c2

(

352

25
− 8π

5

)

+
32

5
c2 ln rt

]

. (3.6)

Now using (3.4) we will replace one rt in the denominator of the ∆S expression in (3.6)

and write it as,

∆S =
ℓLπ

24rt2
1

16πG4

[

32c1
5

− 48td2
5

+ c2

(

352

25
− 8π

5

)

+
32

5
c2 ln rt

]

. (3.7)

To express ∆S in terms of the holographic energy-momentum tensors, we first write down

their forms (2.7) using various functions given in (2.9) and for z = 2 we have [15],

〈Ttt〉 =
1

16πG4

4c2
3

〈Txx〉 =
1

16πG4

(4c2
3

+ 4td2

)

. (3.8)

Using these in (3.7) we get,

∆S =
π

24r2t

(324−30π)

25

[

〈Ttt〉Lℓ−
60

(324−30π)
〈Txx〉Lℓ+

160

(324−30π)

Lℓ

16πG4
(c1+c2 ln rt)

]

.

(3.9)

1It should be mentioned here that the coordinates t, r, x, y in (2.3) are all dimensionless and related to

the original dimensionful coordinates t̃, r̃, x̃, ỹ by a scaling t = t̃R−z, r = r̃R, x = x̃R−1, y = ỹR−1, where R

is the radius of the Lifshitz space-time given in (2.3).
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Defining an entanglement temperature as [8, 14, 20],

Tent =
24r2t
π

25

(324− 30π)
=

96Γ2
(

3
4

)

ℓ2Γ2
(

1
4

)

25

(324− 30π)
(3.10)

where we have used (3.4) in the second equality and also the total energy and entanglement

pressure as,

∆E =

∫ L

0

∫ ℓ/2

−ℓ/2
dy dx 〈Ttt〉

= L ℓ 〈Ttt〉
∆Px = 〈Txx〉 (3.11)

we can rewrite (3.9) as,

∆E = Tent∆S +
60

(324− 30π)
∆PxV − 160

(324− 30π)

Lℓ

16πGN
(c1 + c2 ln rt), (3.12)

where V = Lℓ is the volume of the entangling region. This looks like the first law of entan-

glement thermodynamics modulo the last term. We note that the stress tensor complex for

the Lifshitz theory has contribution not only from the metric but also from the gauge field.

The gauge field part is actually encoded in the function s0(r) given in (2.8). This quantity

by itself is not conserved and is dual to the gauge field A0 = r−zAt = α. We can evaluate

〈s0(r)〉 for z = 2 with the solution of the functions given in eq.(2.9) and we obtain,

〈s0(r)〉 =
4

3
(c1 + c2 ln r) (3.13)

precisely the combination we have in the last term of our expression of ∆E in (3.12). Also

note that the quantity 〈s0〉/(16πG4) has the same scaling dimension as the energy density

or the chemical potential. Also if we evaluate 〈s0(r)〉 at the turning point rt, then it can be

interpreted as a physical quantity at the boundary by the relation (3.4). Thus identifying

∆µ ≡ 〈s0(rt)〉
16πG4

(3.14)

where ∆µ is the entanglement chemical potential of the excited state, we can write the

first law of the entanglement thermodynamics as,

∆E = Tent∆S +
60

(324− 30π)
∆PxV − 30

(324− 30π)
∆µQ. (3.15)

Note that we have used Q = m2αV in the last term, with m and α as defined in eqs. (2.3)

and (2.2). Also we have identified m2A0 = m2α as some charge density j0 using the

equation of motion (2.2). Thus, (3.15) represents a modified first law of entanglement

thermodynamics for the Lifshitz system for z = 2. It must be emphasized that (3.15) is an

analog of the first law of thermodynamics and not the first law itself. Hence, it does not

bear exact resemblance with the first law. The reason that it is not the first law is because

here we are studying a system at zero temperature which is not a thermodynamical system

– 7 –
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at all. Thus the entanglement temperature that we have defined is not to be identified

with the thermodynamical temperature. Also unlike in the formulation of the first law of

thermodynamics which involves a change in the volume ∆V and a change in the charge

∆Q, here we have kept both the volume of the entangling region V = Ll and the charge

Q = m2αV to be fixed. Exciting the gauge theory is translated in the gravity side to

fluctuations of the background (i.e. the metric and the bulk gauge field). This causes

changes in the energy-momentum tensor Tµν leading to a change in the pressure ∆P and

the energy ∆E. In a similar vein, fluctuations of the function s0(rt) inflict a change in the

entanglement chemical potential ∆µ.

The shift in holographic entanglement entropy can similarly be calculated for z 6= 2

from (3.5) using the forms of hxx(r) = k(r) + td(r) and hyy(r) = k(r) − td(r) as given

in (2.10) and so we have,

∆S =
L
√
π

16G4rtz+1

[

Γ(1+z
4 )

Γ(3+z
4 )

1

(z + 3)
(2c1 − td2) + rt

1

2
(z+2−βz)

Γ( z+βz

8 )

Γ( z+4+βz

8 )

2(4 + βz − 3z)

4 + z + βz
c2

]

.

(3.16)

Again we replace one rt in the denominator of (3.16) in terms of ℓ and get,

∆S =
LℓΓ(14)π

2Γ(34)rt
z

1

16πG4

[

Γ(1+z
4 )

Γ(3+z
4 )

1

(z+3)
(2c1−td2)+rt

1

2
(z+2−βz)

Γ( z+βz

8 )

Γ( z+4+βz

8 )

2(4+βz−3z)

4+z+βz
c2

]

.

(3.17)

We will express ∆S in terms of the energy-momentum tensor and the chemical potential

as before. The holographic stress energy tensor for z 6= 2 can be calculated as before

from (2.7) using the functions given in (2.10) and they are given as [15],

〈Ttt〉 =
1

16πG4

4(z − 2)

z
c1

〈Txx〉 =
1

16πG4
[2(z − 2)c1 + (z + 2)td2]. (3.18)

The chemical potential in this case can be obtained from s0(r) given in (2.8) with the

functions given in (2.10) and has the form,

∆µ =
1

16πG4
〈s0(rt)〉 =

1

16πG4

α

z − 1

[

4c1 + c2z(4 + βz − 3z)r
1

2
(z+2−βz)

t

]

. (3.19)

The relations (3.18) and (3.19) can be inverted to obtain,

c1 =
16πG4z

4(z − 2)
〈Ttt〉,

td2 =
16πG4(2〈Txx〉 − z〈Ttt)〉

2(z + 2)
,

c2 =
16πG4 [(z − 2)(z − 1)∆µ− αz〈Ttt〉]
αz(z − 2)(4 + βz − 3z)r

1

2
(z+2−βz)

t

. (3.20)

Now using (3.20) in (3.17) we get,

∆S =
πΓ

(

1
4

)

A1

2rztΓ
(

3
4

)

[

〈Ttt〉Lℓ−
A2

A1
〈Txx〉Lℓ+

A3

A1
∆µ(m2αLℓ)

]

(3.21)
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where

A1 =
z2

(z + 3)(z2 − 4)

Γ
(

1+z
4

)

Γ
(

3+z
4

) − 2

(z − 2)(4 + z + βz)

Γ
(

z+βz

8

)

Γ
(

z+4+βz

8

) ,

A2 =
1

(z + 3)(z + 2)

Γ
(

1+z
4

)

Γ
(

3+z
4

) , A3 =
1

2z(4 + z + βz)

Γ
(

z+βz

8

)

Γ
(

z+4+βz

8

) . (3.22)

Now defining the entanglement temperature as [8, 14, 20],

Tent =
2rztΓ

(

3
4

)

πΓ
(

1
4

)

A1
(3.23)

we can rewrite (3.21) as,

∆E = Tent∆S +
A2

A1
∆PxV − A3

A1
∆µQ (3.24)

where we have used Q = m2αV . This is the modified first law of entanglement thermo-

dynamics [14] for Lifshitz system with z 6= 2. Again this does not quite look like the first

law of thermodynamics and the reason for this discrepancy is precisely what we discussed

before for z = 2 around eq.(3.15). Note that in the expression of ∆E (both for z = 2 and

z 6= 2) only the x-component of the pressure, i.e., the component normal to the entangling

region appears. If we try to include the total pressure Px + Py, some of the parameters

in the ∆S expression in (3.9) and (3.17) can not be eliminated and we don’t get a first

law like relation. We would like to point out that even though we are considering an

arbitrary deformation of the original Lifshitz state whose dual geometry is the arbitrary

perturbation of the Lifshitz solution given in eqs.(2.5) and (2.6), the first law of entangle-

ment thermodynamics we obtain in eqs.(3.15) (for z = 2) and (3.24) (for z 6= 2) are valid

universally. The reason behind this can be understood as follows. The Lifshitz system has

the stress tensor complex and the function s0 given in eqs.(2.7) and (2.8) respectively. The

asymptotic behaviors of the various functions appearing in those expressions are dictated

by the linearized equations of motion as well as the finiteness of the expectation values

of the various components of the stress tensor complex and s0, i.e., the energy, pressure

and the chemical potential. This uniquely fixes the asymptotic behaviors of the various

functions j(r), f(r), k(r) and td(r) which in turn is responsible for the uniqueness of the

change in entanglement entropy as well as the first law of entanglement thermodynamics.

Let us see how we can recover the AdS or relativistic result from here. The relativistic

case can be obtained when z = 1. We note that for z = 1, Q = 0 and therefore, the

last term in (3.24) vanishes as expected. Also, note that for z = 1, A1 =
√
π/6 and

A2 =
√
π/12 and therefore, the coefficient of ∆PxV term is A2/A1 = 1/2 which can be

compared with eq. (2.33) of [14], where the coefficient has the form (d− 1)/(d+ 1) which

is precisely 1/2 for d = 3 as in our case. Finally we can check the form of entanglement

temperature given in (3.23) with that given in [14]. For z = 1, we get from (3.23) Tent =

24Γ2(3/4)/(πℓΓ2(1/4)) which differs by a factor of 2 with that given in ref. [14].
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4 Conclusion

To conclude, in this paper we have holographically computed the change in entanglement

entropy for the excitation of the ground state Lifshitz system. The gravity dual of the

excited state is given by the asymptotic perturbation of the (3+1) dimensional Lifshitz so-

lution. The holographic entanglement entropy of the excited state is calculated for a very

small strip-type subsystem from the metric by the standard method of Ryu and Takayanagi.

We have used the stress energy complex of the above mentioned asymptotic Lifshitz solu-

tion obtained in [15] and tried to express the change in entanglement entropy in terms of

change in energy and change in entanglement pressure. We found that unlike the relativis-

tic system with conformal symmetry, the change in entanglement entropy for the Lifshitz

system contains an additional term. We have attributed the origin of the additional term to

the presence of the massive gauge field and identified it, in analogy with thermodynamical

first law, with the change in entanglement chemical potential, which depends on the entan-

gling region, times a charge. We thus obtain a non-relativistic modification of first law of

entanglement thermodynamics. When conformal symmetry is restored or in the relativistic

case, i.e., when the dynamical exponent z → 1, our result reduces to the first law obtained

before for the AdS case in four dimensions. It is also worth noting that since Q ∼ (z − 1)

and z = 1 yields the relativistic limit, the parameter Q can be thought of as a measure of

the degree to which the system under consideration deviates from the relativistic point. In

the particular implementation of the Lifshitz symmetry, discussed here, Q is also associated

with a global U(1) symmetry in the broken phase. However, we expect that the new term

attributed to the presence of an entanglement chemical potential would be present for any

arbitrary Lifshitz system, irrespective of the presence of any U(1) gauge field. A similar

calculation for the entanglement entropy can be done for the spherical entangling region

to obtain the non-relativistic first law of entanglement thermodynamics. However, it will

not give any new physical content, only the coefficients of the various terms will change

due to the change in geometry of the entangling region. One can also consider the general

perturbations instead of the constant perturbations of the background and see how this

changes the first law of entanglement thermodynamics. Finally, it would also be of interest

to extend our analysis to more general backgrounds like Lifshitz black hole and background

having Lifshitz symmetry with hyperscaling violation.
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