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1 Introduction

Both before and after the discovery of a new resonance at the Large Hadron Collider

(LHC) [1, 2], much attention has been focused on how to efficiently determine its spin

and couplings [3–43]. Deviations from Standard Model (SM) behaviour would signal the

presence of new physics beyond the Standard Model (BSM), and there are significant

motivations for expecting such deviations to be present at some level, not the least given

that new physics is expected to explain or clarify the nature of electroweak symmetry

breaking. There are two main approaches for addressing BSM corrections to the Higgs

sector. The first is to postulate the existence of a specific theory, and analyse how the

particle content leads to corrections to SM observables. This approach must necessarily

be used for collider experiments whose energy exceeds the lowest energy scale associated

with the new physics (e.g. a new particle mass). The second possibility is to use effective

field theory techniques to write down possible corrections to the SM Lagrangian in the

form of additional operators, which ultimately arise from integrating out the new degrees

of freedom in a particular BSM model. One may systematically classify these operators

according to their mass dimension, such that higher-dimensional ones are suppressed by

increasing powers of the new physics scale. For a given mass dimension, there is a finite

set of possible independent operators. By including all of these (in a chosen basis), one
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allows for the most general corrections to the SM. This approach has the benefit of being

completely model-independent, but at the price of being applicable only for energy scales

which are below the lowest new physics scale. This is a reasonable assumption to make,

given that current studies (such as those referred to above) appear to show only small

deviations, if any, from the Standard Model.

In this paper, we focus on the coupling of the Higgs to vector bosons V = W , Z. The

operators relevant for these interactions have been classified in [44–46]. It is important

to understand that bounds derived on the hZZ vertex, do not automatically translate to

bounds on the hWW vertex. For example, as argued in ref. [38], violation of custodial sym-

metry can arise naturally in new physics models. While higher dimension operators may be

constrained from precision tests as well as Higgs rates [41, 47, 48], the constraints depend

on various assumptions. Unambiguous and definitive constraints can only be determined

by directly probing the nature of the hZZ and hWW vertices separately. In order to deter-

mine whether or not the higher dimension operators are present in nature, one must study

various scattering processes that involve the hZZ and hWW vertices. The decay of the

Higgs boson to Z boson pairs at the LHC has been studied in [13, 14, 16, 24, 49–54], which

focused on the fully leptonic decay channel. Combined with LHC data, this disfavours the

possibility that the recently discovered boson is purely pseudoscalar at ∼ 2 − 3σ signifi-

cance [55–59]. The decay of the Higgs to W boson pairs is more difficult in principle, due

to the limited kinematic resolution inherent in having missing energy in the final state.

This mode has been investigated in [13, 15, 19, 21, 60, 61]. As ref. [15] in particular makes

clear, the kinematic cuts used to select events in this case may overly diminish the signal

for BSM effects.

Another possibility is to study the production of the Higgs boson via vector boson

fusion, and angular observables exist for distinguishing various BSM scenarios [62–65].

However, a deficiency of this mode is that it is not possible to unambiguously separate

BSM contributions to the hWW and hZZ vertices. Furthermore, ref. [26] argued that the

momentum dependence associated with an anomalous hV V vertex can have a dramatic

effect on the rapidities of the quarks that emit the vector bosons, and consequently of the

acceptance of the event selection cuts.

Given the above difficulties, the possibility has been explored of using a future electron-

positron collider, such as the proposed International Linear Collider (ILC) or equiva-

lent [66–70]. The different BSM corrections have different CP properties, which manifest

themselves in different angular decay products of the Higgs and associated particles. An

e+e− collider can explore this in detail using polarised beams. In addition, the partonic

centre of mass energy is known precisely in such a collider, and one may distinguish differ-

ent contributions to the V V h vertices using the fact that they lead to different power-like

growths of associated Higgs production cross-sections near threshold [66]. However, it is

still not possible to unambiguously determine BSM corrections to the WWh and ZZh

vertices separately at such a collider.1 Whilst this is possible at the LHeC (a proposed e−p

facility) [71, 72], it is clearly advantageous to use the LHC itself to achieve this.

1It is not easy to study the anomalous WWh couplings via the process e+e− → νν̄h since there are large

irreducible backgrounds to this process and a high degree of beam polarization as well as measurements of

the polarization of the final states are required. See ref. [68] for details.
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In this paper, we show that one can indeed distinguish the presence of higher dimen-

sional operators at the LHC, using the associated production of a Higgs with a vector boson

(V h production), where the Higgs boson decays to a pair of b quarks. For many years, it

was thought to be impossible to analyse this mode, due to the presence of large QCD back-

grounds. This situation has changed due to the development of jet substructure techniques,

as pioneered in [73]. By requiring the Higgs boson to be boosted, the b quark pair from its

decay will be approximately collinear. One may then distinguish the boosted Higgs signal

by looking for a fat jet, containing two smaller subjets (modulo a filtering procedure) each

of which reconstructs the b mass. Subsequently, a number of approaches for utilising jet

substructure have been developed [74–78], together with analytic understanding [79, 80]

and applications in experimental analyses [81–91]. As the present authors already pointed

out in [27], reconstructing both the Higgs momentum and the associated vector boson

opens up the use of polarisation-related methods for V h production, analogous to those

used in the e+e− studies mentioned above: the spin state of the associated vector boson

is influenced by the presence of higher dimensional operators in the Higgs sector, so that

angular observables involving the vector boson decay products can be used to constrain

BSM physics. Furthermore, this can be done separately for the Zh and Wh channels,

allowing one to independently elucidate the nature of the hZZ and hWW vertices.

The structure of our paper is as follows. Throughout the remainder of this intro-

duction, we discuss the framework we are using for higher dimensional operators in more

detail. In section 2, we describe the details of our simulations and the selection cuts. We

also make a note of higher order effects in both Wh and Zh production and describe kine-

matic reconstruction issues. In section 2.6 we describe the increased sensitivity to non-SM

couplings of the hV V vertex, mentioned earlier. In section 3 we construct and describe

various angular observables that are able to discriminate the different non-SM couplings

of the hV V vertex. In section 4 we construct likelihoods out of various observables and

estimate the required luminosity for the 14 TeV LHC to constrain the anomalous hV V

couplings. In section 5 we construct a CP-odd asymmetry that is linearly sensitive to the

CP-odd coupling and hence to CP violating effects in the hV V vertex. Finally in section 6

we summarize and conclude.

1.1 Higher dimensional operators

As already mentioned in the introduction, one may encapsulate the structure of BSM

physics in a model-independent way by adding higher dimensional operators to the SM

Lagrangian. One starts by classifying all possible higher-dimensional operators that can

serve as corrections to the Standard Model Lagrangian and that are gauge-invariant, an

exercise which was first carried out in [44, 92, 93]. There is a single dimension five oper-

ator which, after electroweak symmetry breaking, is responsible for neutrino masses and

mixings. One is then motivated to proceed to dimension six operators, of which there are

many — ref. [44] lists over a hundred. However, not all of these are independent, as one

may use equations of motion to relate them. To this end, ref. [46] showed that there are

59 independent operators. Reference [45] expressed these in a basis more directly suited to

Higgs boson physics, and also discussed how the coefficients of these operators scale differ-
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ently if electroweak symmetry breaking is weakly or strongly coupled. Effective operators

for a hypothetical spin one or spin two Higgs boson have been presented in [94], which also

discusses their implementation in a computational framework inclusive of next-to-leading

order matrix element corrections and parton shower effects. A pedagogical review of the

literature may be found in section 2 of ref. [95].

Since our objective is to study the Lorentz structure of the hV V vertex for massive

gauge bosons, we will only concern ourselves with a subset of the operators. It is sufficient

to consider the following three operators2

OWW =
g22 bWW

4Λ2
Φ†ΦW i

µνW
iµν , ÕWW =

g22 cWW

4Λ2
Φ†ΦW i

µνW̃
iµν ,

OhW =
ig2 bhW

Λ2
(DνWµν)k

(
Φ†σk

←→
D µΦ

)
.

Here Λ is the scale of new physics and the multiplicative Wilson coefficients bWW , cWW

and bhW parametrize the relative strengths of these operators. Writing the coupling in the

form iΓµν(k1, k2)εµ(k1)ε
∗
ν(k2), where {εµ(ki)} (i = 1, 2) are the polarization vectors of the

two gauge bosons, the HV V vertices one obtains are

iΓµνhWW (k1, k2) = i (g2mW )

[
ηµν

(
1 + aW −

bW1

m2
W

(k1 · k2) +
bW2

m2
W

(
k21 + k22

))
+
bW1

m2
W

kν1k
µ
2 −

bW2

m2
W

(kµ1 k
ν
1 + kµ2 k

ν
2 )

+
cW
m2
W

εµνρσk1ρk2σ

]
; (1.1)

iΓµνhZZ(k1, k2) = i

(
g2mZ

cos θw

)[
ηµν

(
1 + aZ −

bZ1
m2
Z

(k1 · k2) +
bZ2
m2
Z

(
k21 + k22

))
+
bZ1
m2
Z

kν1k
µ
2 −

bZ2
m2
Z

(kµ1 k
ν
1 + kµ2 k

ν
2 )

+
cZ
m2
Z

εµνρσk1ρk2σ

]
, (1.2)

where we have introduced the rescaled parameters

bW1 =
2 m2

W bWW

Λ2
, bW2 =

2 m2
W bhW
Λ2

, cW =
2 m2

W cWW

Λ2
, (1.3)

bZ1 =
2 cos2 θw m2

W bWW

Λ2
, bZ2 =

2m2
W bhW
Λ2

, cZ =
2 cos2 θw m2

W cWW

Λ2
, (1.4)

and also rescaled the ηµν contribution by a factor 1 + aV in each case, to allow for full

generality (i.e. sensitivity to rescalings of the Standard Model contribution). Note that

while the terms in the first two lines of each of eqs. (1.1), (1.2) are CP-even, the terms in

the third lines are CP-odd. Terms which are not proportional to ηµν may be generated

within the SM at higher orders of perturbation theory, although the resulting couplings

are likely to be very small. Significantly large values of these couplings would be a signal

for BSM physics.

2These correspond to the operators OΦW , OΦW̃ and O′DW in ref. [37].
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One should note that, since we will always consider this vertex in processes where

the V bosons are connected to external fermions, the terms (bW2 (kµ1 k
ν
1 + kµ2 k

ν
2 )) and

(bZ2 (kµ1 k
ν
1 + kµ2 k

ν
2 )) vanish due to current conservation and we will not consider them

any further. Note that the extra factors of cos θw in (bZ1, cZ) as compared to (bW1, cW )

signal violation of custodial symmetry. These factors disappear when the corresponding

OBB, ÕBB and OhB operators are of equal strength.

The aim of this paper is to perform a detailed study of angular observables designed

to distinguish the three contributions to each hV V vertex: SM, BSM CP even, and BSM

CP odd, building upon the preliminary study of [27]. In what follows we will present

results in terms of the vertex parameters appearing in eqs. (1.1) and (1.2), rather than the

coefficients of the higher dimensional operators directly, in order to be more general. The

choice of operators is not unique, and different choices will result in different translations

between the two sets of parameters (eqs. (1.3) and (1.4)). We discuss the details of our

analysis framework in the following section.

2 Event simulation and selection

We consider V h production (V = Z,W±), where the V decays leptonically, and the h

boson to a bb̄ pair. Further, we use jet substructure algorithm techniques to not just sep-

arate QCD backgrounds but use it to reconstruct the parton-parton CMS frame for V h

production. In this section we describe the tools and methods used for our analysis, includ-

ing the selection cuts utilised for both Wh and Zh production. We simulate all processes

using MadGraph5 [96], having implemented the effective Lagrangian in FeynRules [97, 98].

The output is interfaced with Pythia6 [99] for showering and hadronization. We use the

‘Z2Star’ tune for Pythia6, including initial and final state radiation along with effects of

multiple interactions, and use the CTEQ6L1 parton distribution functions [100]. We use

FastJet [101] to cluster jets. Note that cross-checks were carried out at the parton level

using analytic expressions.

Our selection cuts for these signal processes are as follows.

2.1 Zh production

For Zh production we require:

1. A fat jet of radius R =
√

∆y2 + ∆φ2 = 1.2 and transverse momentum pT > 200 GeV.

After applying the mass drop and filtering procedure of [73] on this fat jet, we

require no more than three sub-jets with pT > 20 GeV, |η| < 2.5, and radius

Rsub = min(0.3, Rbb), where Rbb is the separation of the two hardest subjets, both of

which must be b-tagged. In addition, we also require that the invariant mass of this

jet system reconstructs the Higgs mass in the range 110–140 GeV.

2. Exactly 2 leptons (transverse momentum pT > 20 GeV, pseudo-rapidity |η| < 2.5) of

same flavour and opposite charge, with invariant mass within 10 GeV of the Z mass

mZ . These should be isolated.

3. The reconstructed Z has a pT > 150 GeV, with azimuthal angle satisfying

∆φ(Z, h) > 1.2.
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Channel V hSM V+jets tt̄ Single top bW1 = 0.2 cW = 0.25 bW2 = 0.03

W±h 0.355 0.28 0.13 0.06 1.45 2.14 7.11

bZ1 = 0.23 cZ = 0.30 bZ2 = 0.08

Zh 0.12 0.23 0 0 0.48 0.73 2.22

Table 1. Cross-sections (fb) evaluated at leading order for the 14 TeV LHC after applying all cuts.

V+jets corresponds to the Z+jets background for the Zh process and W+jets for the Wh process.

For the last three columns the SM contribution was set to zero and each of the values of bV 1, bV 2, cV
were set to reproduce the SM total cross-section before applying cuts.

The first selection requirement listed above is used to reconstruct the decaying Higgs. The

requirement for a fat jet with large transverse momentum means that we are looking at

events with a highly boosted Higgs. Note that by allowing for a third hard jet inside the

fat jet, the procedure allows for an extra jet other than the two b-jets originating from the

radiation of a gluon from the b-quarks. The second requirement allows for reconstruction

of the Z boson, where the isolation criterion removes most of the tt̄ and QCD background.

The third requirement ensures that the Higgs and the Z boson lie in almost the same

plane of production as is expected for the signal. Note that the above selection criteria are

applied after simulating a detector response to be described in section 2.3.

After cuts, the only significant surviving background process is Z + jets. Cross-

sections at Leading Order (LO) after cuts are shown in table 1. The h → bb̄ branching

ratios were taken from ref. [102]. The cross-sections for backgrounds, the SM, the pure

CP-odd operator cV 6= 0 and the two BSM CP-even operators bV 1 6= 0 and bV 2 6= 0 are

shown, with all other couplings set to zero in each case. The values of the BSM couplings

are chosen so as to reproduce the SM total cross-section, without any selection cuts. Note

that in spite of this choice of couplings, the cross-sections after cuts for the BSM cases

are much higher than the SM, implying a greater acceptance for the BSM cases. We will

elaborate on this point later.

2.2 Wh production

For Wh production we require the following:

1. The Higgs reconstructed as above.

2. Exactly one hard lepton (pT > 30 GeV, |η| < 2.5), isolated as above.

3. Missing transverse momentum 6pT > 30 GeV.

4. The reconstructedW has pT>150 GeV and azimuthal angle satisfying ∆φ(h,W )>1.2.

5. No additional jet activity with pjetT > 30 GeV, and rapidity |y| < 3 (to suppress single

and top pair production backgrounds).

The difference between Zh and Wh is that in the latter case only the transverse momentum

of the W boson can be determined in the detector. However, it is possible to some extent
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to reconstruct the neutrino momentum as will be discussed in what follows. The LO cross-

section for the signal and major backgrounds are detailed in table 1. Once again, the choice

of couplings (bW1, bW2, cW ) is such that the total cross-section (before any kinematic cuts)

is identical to the SM total cross-section. As in the case of Zh, we see that in this case also,

the cross-section after cuts is larger for the BSM couplings, indicating a higher acceptance

of the selection cuts to BSM physics. In the following we describe certain detector effects

that we have considered in our analysis.

2.3 Detector effects

While a full detector simulation is beyond the scope of this study, it is still important to

check whether the inefficiencies of a detector do not dilute the effects that are observable

with exact reconstruction. To this end we use the Delphes 3 package [103] for a fast

simulation of detector response. We set the parameters of the detector simulation tuned

for the CMS detector, with some modifications:

• The lepton isolation radius R is set to a reduced value of 0.3, to allow for isolation

of leptons in high transverse momentum events where the leptons will be collimated.

• We modify the jet reconstruction algorithm for the detection of a boosted Higgs

as described above and set the b-tagging efficiency to be 0.6 while the mis-tagging

efficiency for c-jets is 0.2 and for all other jets is 0.001.

We use the Delphes package since it has been shown to give good agreement with data [103].

However, we do not carry out any validation with experiment for our choice of parameters

as this is beyond the scope of the discussion presented here.

2.4 Higher order effects

At LO and at NLO in QCD, V h production occurs through quark-initiated processes.

The NLO (QCD) correction to the LO order process is given entirely by corrections to

the Drell-Yan process [104–106]. The NLO process produces extra QCD radiation in the

initial state thus affecting observables such as the transverse momentum of the final state

particles. It should be noted that such effects are large only near the threshold of the

transverse momentum cuts due to collinear and/or soft initial state radiation [107]. In

fact the use of asymmetric transverse momentum cuts on the V-boson (pVT > 150 GeV)

and Higgs (phT > 200 GeV) transverse momenta means that most of this effect will be

concentrated in the region (pVT < 200 GeV). However, the contribution to the cross-section

from this region of phase space is small and hence we neglect this effect.

The K-factor (ratio to the LO order cross-section) for NLO (QCD) is about 1.2, see for

example ref. [107]. In the special kinematic region of the boosted analysis the K-factor for

both Zh and Wh was found to be ∼ 1.5 in ref. [73]. For the Zbb̄ background the K-factor

was found to be about the same while for Wbb̄ the K factor is higher and about 2.5. The

other main background, tt̄ production, was found to have a K-factor ∼ 2. We will use these

values of the K-factor in our analysis of likelihoods in section 4.

– 7 –



J
H
E
P
0
4
(
2
0
1
5
)
1
0
3

Figure 1. Plots showing the transverse momentum dependence of the W boson in Wh production

after applying the selection cuts listed in section 2. Left : pure SM or BSM (all other couplings zero);

Right : three cases of admixtures of the SM and BSM couplings (all other couplings set to zero).

Furthermore, we simulate the kinematics of an extra jet using the MLM matching

procedure [108] with one additional jet for both signal and background. We have checked

that our results do not vary significantly with the addition of this extra jet. For Wh

production, since we veto events with additional hard jets to remove backgrounds, the

effect of extra radiation on the observables we consider is negligible.

2.5 Reconstructing the neutrino momentum

One must reconstruct the neutrino in Wh production to determine our angular observables.

We identify the neutrino transverse momentum pT ν with the missing transverse momentum

6pT . As explained previously, the missing transverse momentum is approximated by taking

the negative vector sum of the transverse momentum of all particles that can be detected

(> 0.5 GeV). In order to evaluate the full four momentum of the neutrino, we demand

that the squared sum of the neutrino and lepton momenta be equal to the squared W

boson mass ((pν + pl1)2 = M2
W ), and solve the resulting quadratic equation. Comparing

with the “true” Monte-Carlo generated neutrino momentum, we find that choosing a given

solution out of the two possible ones, reconstructs the true neutrino momentum 50% of

the time, with ' 5% giving imaginary solutions. One may improve on this by comparing

the boosts of the Higgs βhz and reconstructed W βWz in the z direction. The solution with

the minimum value for |βWz − βhz | gives the true neutrino momentum in 65% of cases. We

thus present all our results using the latter algorithm.

2.6 Sensitivity to anomalous couplings

It has been observed that the momentum dependence of the BSM couplings of the hV V

vertex push the pT and invariant mass (
√
ŝV h) distributions to larger values [25, 26, 109],

due ultimately to the extra momentum factors present in the BSM vertices. This is con-

firmed in the distributions shown in the plots in figure 1. The plot on the left shows the

transverse momentum distribution of the W boson in Wh production in the SM (black
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Figure 2. The ratio of the cross-sections R− (mixture of SM and CP odd) (red stars) and R+

(mixture of SM and the BSM CP even term) (blue boxes) both before (hollow markers) and after

(bold markers) applying selection cuts for the Wh channel for 14 TeV LHC. The x-axis corresponds

to the strength of each of the couplings bW1 or cW .

solid line) compared each of the pure BSM couplings (with the SM contribution set to

zero), using the selection cuts described in the previous section. The values of the cou-

plings have been chosen so that they reproduce the SM cross-section when no cuts are

applied. We see that the effect of all the BSM couplings is to push the pWT distribution

to larger values. The effect is even more pronounced for the coupling bW2 while the bW1

and cW couplings have a strong but less pronounced effect on this distribution. In the

right plot we show the same distribution but this time for admixtures of the SM coupling

(aW = 0) with each of the BSM couplings. The effect of the BSM couplings is still easily

discernible, though less prominent than compared to the plot on the left. The larger pT
distributions of the V h system also lead to larger Higgs boosts and a reduced separation

Rll and Rbb between the leptons (from the decay of the gauge bosons) and b jets (from the

decay of the Higgs) respectively. As mentioned in the previous section, this effect is further

quantified by the results of table 1, in which the cross-section for pure BSM processes after

cuts is significantly higher than the SM result, after imposing that the cross-sections agree

before cuts.

In figure 2, we consider the SM coupling aW = 0 supplemented by either the cW (CP-

odd) coupling or the bW1 coupling applied to the Wh channel. We show the ratio of the

SM+BSM and SM cross-sections both for the total cross-section
(
R±tot = σSM+BSM±

tot /σSMtot

)
and the cross-section after applying selection cuts

(
Rjetsub± = σSM+BSM±

jetsub /σSMjetsub

)
. Here

R+ and R− correspond to the case (aW = 0, bW1 6= 0) and (aW = 0, cW 6= 0) respectively.

As is expected, both ratios decrease with the strength of the BSM couplings and approach

unity as the BSM couplings tend to zero. R+
tot shows a faster rise with coupling strength

than R−tot. This is because the interference term in the matrix element squared for the

– 9 –
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CP-odd coupling does not contribute to the cross-section.3 Importantly, Rjetsub (for both

couplings) increases at a faster rate than Rtot with increasing values of the correspond-

ing couplings. Similar results also hold for the second CP-even anomalous coupling bW2.

These ratios are therefore quite sensitive to the presence of anomalous couplings. Whilst

not directly experimentally measurable, they can be determined by comparing an exper-

imental measurement of the V h signal with a precise theoretical prediction for the SM

only contribution. If this lies away from unity, this constitutes a strong indication of BSM

physics. Another feature that should be noted is that the ratio of the ratios (R±jetsub/R
±
tot)

increases at a faster rate for the CP-odd coupling than it does for the CP-even coupling.

This is in agreement with the results of table 1, where it was observed that the acceptance

to the selection cuts of the pseudo-scalar state was higher than a scalar with anomalous

coupling bW2.

3 Angular observables

In this section, we consider differential observables that can distinguish between the differ-

ent BSM vertices occurring in the hV V interaction. One such observable, the transverse

mass of the V h system, has been used at the Tevatron to probe the hWW vertex [110],

however, it has been shown to be ineffective at the LHC [25]. Furthermore, the CP-odd

coupling contributes to this observable only through quadratic terms in the matrix element

squared and therefore is not the most sensitive observable.4 Angular observables, as we

will show, can be linearly sensitive to the anomalous couplings. This is useful in that one

may construct asymmetry parameters that are manifestly zero for the SM, such that any

non-zero measurement constitutes discovery of new physics. Note that in the context of ef-

fective theory analysis, constructing observables that are linear in the anomalous couplings

is of paramount importance.

The tensor structure of the BSM vertices will be reflected in the angular distribution

of the decay products of the gauge boson.5 To this end, we construct various angular

observables that could discriminate between the different vertex structures. The momenta

of the V and Higgs bosons are reconstructed from the leptons and jets as follows:

pV = pl1 + pl2 , ph = pb1 + pb2 + pj , (3.1)

where {pbi} are the momenta of the b jets, pj is the momentum of the third jet if it is

reconstructed and pl1 and pl2 are the momenta of the lepton and the anti-lepton respectively

3In practice, if the squared term is larger than the interference term, this is an indication that the

effective theory framework is breaking down. Here, however, we are merely quantifying the effect by which

selection cuts enhance BSM effects, by fixing the BSM cross-section to be artificially high (equivalent to an

unphysically low cut-off scale).
4Care must be taken if such quadratic terms become important, as this signals a potential breakdown

of the effective theory description.
5Note, the Higgs has spin zero; angular distributions of its decay products are uncorrelated from produc-

tion and hence do not carry any information about the hV V vertex in V h production. Angular correlations

of the decay products of the Higgs would reflect the properties of the decay vertex and not the production

vertex; as in h→ V (∗)V (∗) decays.
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Figure 3. Plot of the distribution of the angle cos θ∗ for W+h production, for pure SM and

BSM operators. The values of the couplings are chosen as in table 1, so as to reproduce the SM

cross-section (before cuts).

(for Wh, pl1 corresponds to the lepton momentum and pl2 to the neutrino). With these

momenta, we may define

cos θ∗ =
p
(V )
l1
· pV

|p (V )
l1
| |pV |

. (3.2)

Here p
(Y )
X corresponds to the three momentum of the particle X in the rest frame of the

particle Y . If Y is not specified then the momentum is defined in the lab frame. The

parameter cos θ∗ corresponds to the angle between the direction of the decaying lepton in

the rest frame of the V boson with the direction of flight of the V boson in the lab frame.

This angle, first defined in [66], encodes the W boson polarization.

The SM and BSM couplings lead to mostly longitudinal and transverse W bosons

respectively. That cos θ∗ then effectively distinguishes SM and BSM effects can be seen in

figure 3. We see that the SM distribution (black solid line) peaks at cos θ∗ = 0 and vanishes

at cos θ∗ = ±1. The distribution for the BSM coupling bW2 (green dot-dashed line) closely

follows the SM distribution. This is expected since the tensor structure of the vertex in

both these cases is the same. In contrast, the couplings bW1 and cW produce distributions

that have minima at cos θ∗ = 0. They too appear to vanish at cos θ∗ = ±1, however this is

the effect of the selection cuts.6 Without applying any selection cuts the distribution for

these two cases peak at cos θ∗ = ±1.

The behaviour of this distribution for each of the couplings can be understood as

follows. For a transversely polarized W boson, the decay lepton spins align themselves

perpendicular to the direction of motion of the W boson and gives rise to a distribution of

6All the selection cuts deplete this region of phase space, with strongest effects coming from the transverse

momentum and rapidity cuts of the lepton.
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Figure 4. Plot of the distribution of the angle cos θ∗ for W+h production, for admixtures of SM

and BSM couplings.

the form (1 ± cos θ∗)2, while in the case of a longitudinally polarized W boson, the spins

of the decay leptons align themselves along the direction of the W boson and give rise

to a distribution of the form sin2 θ∗. The two BSM couplings bW1 and cW produce more

transversely polarized W boson states while the SM coupling and the coupling bW2 produce

more longitudinally polarized W bosons. Using this distribution, it is therefore possible to

differentiate between vertex structures with couplings bW1 or cW from the vertex structure

with couplings aW or bW2, but not between bW1 and cW or between aW and bW2.

In figure 4 we present plots of the same observable cos θ∗ for admixtures of the SM

coupling with each of the BSM couplings. We present three cases corresponding to (aW =

0, bW1 = 0.1), (aW = 0, cW = 0.1) and (aW = 0, bW2 = 0.01). We see that differences,

though reduced, are still discernible in this distribution. Similar results also hold for Zh

production.

To fully distinguish the CP even (bW1) and odd (cW ) BSM contributions, one must con-

struct CP-odd observables, which is difficult in principle for a proton-proton collider [111].

For Zh production, ref. [112] considered two such observables, although these are sensitive

to radiation and hadronization corrections; ref. [113] defined observables which are insen-

sitive to the CP nature of BSM contributions. Ref. [49] examined CP-odd asymmetries in

Wh production with the decay h→W (∗)W ∗, though the effect of the BSM CP even term

was not considered. The hint for possible CP-odd observables comes from looking at the

matrix element squared for the process q(k1)q̄
′(k2) → W+(pW )h(ph) → l+(p1)ν̄l(p2)h(ph)

shown in appendix A. The interference term between the CP-odd coupling and the SM cou-

pling (aW cW ), is proportional to εµνρσk
µ(ph−k1)νpρW pσ1 , where k = k1+k2 and εµνρσ is the

anti-symmetric Levi-Civita tensor. Such a term depends on the angle between the plane of

production of the Wh and the direction of flight of the lepton. This is depicted in figure 5.
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Figure 5. The angle (φ) between the plane of production and the lepton from the decay of the

W boson.

Figure 6. Plots showing the distribution of the angle cos δ+ defined in eq. (3.4). Left : pure SM

and BSM couplings, chosen as in table 1, so as to reproduce the SM cross-section (before cuts).

Right : various admixtures of SM and BSM operators, with all other couplings set to zero.

We now construct the following angles based on the observation made above.

cos δ+ =
p
(V )
l1
· (ph × pV )

|p (V )
l1
| |ph × pV |

, cos δ− =

(
p
(h−)
l1

× p
(h−)
l2

)
· pV

|
(
p
(h−)
l1

× p
(h−)
l2

)
||pV |

, (3.3)

∆φlV = ∆φ
(
p

(V )
l1

, pV

)
. (3.4)

We use the same notation for the momenta as described below eq. (3.2). For an e+e−

collider where the direction (as well as the energy) of the lepton and anti-lepton are well

known, it is sufficient to define the normal to the plane of production with the cross-product

between any one of the leptons and the direction of flight of the Higgs or gauge boson. Note

that the choice of vectors in e+e− collisions completely fixes whether the normal points

‘below’ or ‘above’ the plane of production. At the LHC, the information about the direction

of the quark or anti-quark is not known and hence it is difficult to fix the direction of the

normal to the plane of production. However, it is known that the valence quarks are likely

to carry a larger fraction of the proton momentum. The direction of the normal to the

plane of production can then be fixed by the momenta of the V and Higgs bosons. We use

this fact to construct the first angle in eq. (3.4), cos δ+, which corresponds to the angle
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between the direction of flight of the lepton (with the momentum evaluated in the rest

frame of the V boson) and the plane formed by the V boson and the Higgs. In an e+e−

collider, where the centre-of-mass and lab frames coincide, the gauge and Higgs bosons will

be produced back to back. However, at the LHC one can take advantage of the asymmetric

collision energies of the partons which results in the difference between the centre-of-mass

and lab frame. For asymmetric collisions, the plane defined by the cross-product between

the V boson and Higgs directions, coincides with the plane of production. In figure 6 we

show the distribution of this observable for SM as well as for the anomalous couplings.

In the plot on the left, the SM prediction is compared to the prediction for each of the

anomalous couplings: bW1 6= 0 (blue dotted line), bW2 (green dot-dashed) and cW (red

dashed) with all other couplings set to zero in each case. All distributions show a dip at

cos δ+ = 0. This is created by the transverse momentum cut on the leptons, since low pT
leptons will always be perpendicular to the normal to the plane of production.

We see from this distribution that for bW1 6= 0 leptons are produced mostly in the plane

of production, while for cW 6= 0 the leptons tend to be produced mostly perpendicular to

the plane of production. For two cases, the SM and for bW2 6= 0, the distribution is flat

(without cuts) and has a slight dip at cos δ+ = 0 due to the pT cuts, as explained above.

This observable clearly discriminates between the bW1 6= 0 and cW 6= 0 cases, a feature

that was absent in the distributions of observables discussed earlier.

More interesting effects can be seen in this observable when we consider admixtures of

each of the anomalous couplings with the SM. In the right plot of figure 6 the distribution

of three cases are compared with the SM expectation: (aW = 0, bW1 = 0.1) (blue dotted

line), (aW = 0, bW2 = 0.01) (green dot-dashed) and (aW = 0, cW = 0.1) (red dashed), with

all other couplings set to zero in each case. As expected, the distribution for the case (aW =

0, bW2 = 0.01) follows the SM distribution closely. The CP-even (aW = 0, bW1 = 0.1) case

is similar to the pure anomalous coupling case (aW = −1, bW1 6= 0 ). We have checked that

the interference term alone for the case (aW = 0, bW1 = 0.1) produces a similar distribution

to the case (aW = −1, bW1 6= 0) and is therefore linearly sensitive to bW1. For the CP

violating case (aW = 0, cW = 0.1) the distribution is skewed towards positive values of

cos δ+. This is due to the presence of the Levi-Civita tensor in the interference term of

the matrix element squared as described above. Note that the distribution will peak for

negative values of cos δ+ if the sign of the coupling cW were changed. This observable is

therefore, linearly sensitive to cW and hence to its sign. We will use this fact to construct

asymmetries in the next section.

The second observable we consider is slightly more complicated in construction. The

momenta of the two leptons from the decay of the gauge boson are evaluated in the frame

in which the Higgs would be at rest, were its three momentum reversed.7 Then cos δ− is

the angle between the plane formed by the two leptons in this frame and the V boson in the

lab frame. This angle is related to the angle φ depicted in figure 5. The distribution of this

observable for SM is compared with three other cases in the left plot of figure 7: bW1 6= 0

7If the four momentum of the Higgs is written as (Eh,ph), then this is the frame defined by the boost

such that (Eh,−ph)→ (mh, 0).
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Figure 7. Plots showing the distribution of the angle cos δ− defined in eq. (3.4). Left : pure SM

and BSM couplings, chosen as in table 1, so as to reproduce the SM cross-section (before cuts).

Right : various admixtures of SM and BSM couplings, with all other couplings set to zero.

(blue dotted line), bW2 6= 0 (green dot-dashed) and cW 6= 0 (red dashed) with all other

couplings set to zero in each case. The right plot of figure 7 compares the distribution of

the SM expectation with admixtures of the SM couplings and the BSM coupling as given

in the figure (and other couplings set to zero). The behaviour of this angle is very similar

to that of cos δ+. There are two noticeable differences. Firstly in the case cW 6= 0 the

distribution of cos δ− appears to show a more heightened difference from SM as compared

to the distribution for cos δ+. For the case when bW1 6= 0 the opposite is true and cos δ+

appears to show a greater difference from the SM distribution. This is also true when we

set (aW = 0, bW1 = 0.1). For the CP-violating case, the same skewed behaviour of the

distribution that was observed for cos δ+, reappears here. As usual the distribution for the

coupling bW2 in both the pure and mixed cases of the left and right plots of figure 7, follow

closely the SM expectation.

The last observable we consider (∆φlV ) is the azimuthal angle difference of the lep-

ton momenta (evaluated in the rest frame of the V boson) and the V boson momentum.

The distribution for this observable is shown in figure 8. The left plot compares the SM

expectation with three cases of the pure BSM couplings. The right plot compares the SM

prediction with admixtures of SM with each of the BSM couplings. For all the cases we

consider, there is a significant difference from the SM distribution of this observable. The

most striking difference, however, is for the pure CP-even case (bW1 6= 0) which displays

a minimum in this distribution at ∆φlV unlike the other cases. Differences between the

distributions remain, although reduced, when considering admixtures of the SM coupling

(aW = 0) with each of the BSM couplings.

We also show in figure 9 distributions of the observables described above for the back-

grounds to Wh production listed in table 1. The distribution of the various angles follow

the SM distribution except for the angles ∆φlV and cos θ∗. For completeness, we also show

the distributions of the various angles defined in eq. (3.2) and eq. (3.4) for Zh production.

In figure 10, the SM distribution (black solid line) is compared with the predictions of the
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Figure 8. Plots showing the distribution of the angle ∆φlV defined in eq. (3.4). Left : pure SM

and BSM couplings, chosen as in table 1, so as to reproduce the SM cross-section (before cuts).

Right : various admixtures of SM and BSM couplings, with all other couplings set to zero.

Figure 9. Normalized distribution of the observables defined in eq. (3.2) and eq. (3.4) for the

backgrounds (blue dashed) to Wh production listed in table 1 and SM predictions (black solid lines).
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Figure 10. Normalized distribution of the observables defined in eq. (3.2) and eq. (3.4) for Zh

production. The SM distribution (black solid line) is compared with the predictions of the three

different BSM couplings: (aZ = −1, bZ1 6= 0) (blue dotted line) with all other couplings set to zero,

(aZ = −1, bZ2 6= 0) (green dot-dashed) with all other couplings set to zero and (aZ = −1, cZ 6= 0)

(red dashed) with all other couplings set to zero. The values of the couplings are chosen as in

table 1, so as to reproduce the SM cross-section (before cuts).

three different BSM couplings. The values of the couplings are chosen as in table 1, so as

to reproduce the SM total cross-section (before cuts). The distributions display a similar

behaviour as compared to the analogous distributions in Wh production.

In figure 11, the SM distribution (black solid line) is compared with three cases which

involve admixtures of the SM and BSM couplings The asymmetries in the distributions

of cos δ+ and cos δ− that one observes in Wh production for the CP-violating case (aZ =

1, cZ = 0.1), although present, are far less prominent in Zh production. The reason for this

difference can be ascertained by looking at the CP violating term in the matrix element

squared. For Wh production, as described earlier, this term was simply proportional to

a Levi-Civita tensor of the form εµνρσk
µ(ph − k1)νpρW pσ1 . The CP violating term in the

matrix element squared for Zh production has several instances of the Levi-Civita tensor

that come with opposite signs. These do not cancel out (as they do in Wh production)

since they are multiplied by axial and vector couplings (which are of different strengths).
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Figure 11. Normalized distribution of the observables defined in eq. (3.2) and eq. (3.4) for the Zh

production. Various admixtures of SM and BSM operators are shown, with all other couplings set

to zero.

As a result, the distributions of cos δ+ and cos δ− receive contributions from Levi-Civita

tensors of opposite sign and hence display a reduced skewness in distribution in comparison

to the analogous distribution in Wh production.

We now have a set of observables that can discriminate not only the SM coupling

from BSM couplings but also between the various BSM couplings, as evidenced by the

distributions presented in this section. In order to fully assess the discriminating power

of these observables and to estimate the typical luminosities that one would require at

a 14 TeV LHC to rule out the various anomalous couplings, we perform a multi-variable

likelihood analysis in the next section.

4 Multi-variable likelihood analysis

In the previous section we described the various observables that one could use in order to

probe anomalous couplings in V h production. We found that the transverse momentum

of the V boson (or the Higgs), the angle cos θ∗ and any one of the correlated observables

defined in eq. (3.4) can be used for this purpose. It is well known that the maximized
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log likelihood ratio provides the strongest test statistic according to the Neyman-Pearson

lemma. Therefore in order to assess the sensitivity of these observables to probe anomalous

couplings at the LHC, we perform a three dimensional extended binned-likelihood analysis.

The procedure we follow is outlined below.

We set the SM expectation (aW = 0) plus backgrounds as our null hypothesis. The

alternate hypotheses are chosen to be the various cases which involve any one of the BSM

couplings along with backgrounds. We define our likelihood as functions of a set of three

observables. These are pWT , cos θ∗ and any one of the observables defined in eq. (3.4). In

fact, we perform this analysis for three different definitions of the likelihood (L) which

depend on the choice of observable, namely L(pWT , cos θ∗, cos δ+), L(pWT , cos θ∗, cos δ−)

and L(pWT , cos θ∗, ∆φlV ). As a first step we produce three dimensional histograms with

the various combination of observables listed above. The choice of range and bins for each

of the observables is listed below.

• pWT : range (200, 1000) GeV, 10 bins

• cos θ∗: range (−1, 1), 10 bins

• cos δ−: range (−1, 1), 10 bins

• ∆φlV : range (0, π), 10 bins.

The histograms are binned with at least 104 events after applying all selection cuts.

Using these histograms we can now determine the Likelihood function. Let ti be the

expected bin height (or number of events) of the ith bin derived from theory (in our case

from Monte Carlo simulations). The probability that the ith bin will have ni observed

events (observed bin height) is a Poissonian probability given by

tni
i e
−ti

ni!
. (4.1)

We can now proceed to determine the probability of generating the full distribution for

all of the histogram bins by multiplying the probability for each of the bins. The binned

likelihood is then given by a Poisson distribution

LX =
N∏
i

tni
i e
−ti

ni!
. (4.2)

Here N is the number of bins, ti is the expected number of events under the hypothesis X

and ni is the number of observed events. The likelihood ratio is then defined as

Q = −2Log

(
L(X|data)

L(SM|data)

)
. (4.3)

We now use these three dimensional histograms to generate “pseudo-data”. This is done

by using the theoretically determined ti to generate Poisson distributed random numbers

which correspond to our pseudo-data. We repeat this procedure for all bins in order to

generate pseudo-data. We then determine the distribution of the likelihood ratio Q by

generating 5× 103 “pseudo-events”. A typical distribution for Q is shown in figure 12.
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Figure 12. The distribution of Q from the generation of 1×103 pseudo-events. For two hypotheses

X=SM (right curve) and X=CP-odd (left curve).

Using the distribution Q, we can determine the p-value of excluding the alternate

(BSM hypothesis).8 We include the effects of backgrounds completely but only profile over

the various nuisance parameters that arise from detector effects and selection cuts.

The results of this procedure are shown in figure 13 for the pure BSM cases, where we

show the variation of the p-value of the BSM hypothesis against the luminosity. To assess

the sensitivity of each of the observables, we set the coupling strengths to values so that

they reproduce the SM cross-section after applying all the cuts, i.e. (aW = −1, bW1 = 0.1),

(aW = −1, cW = 0.1) and (aW = −1, bW2 = 0.007) with all other couplings set to zero

for each of these cases. This choice of couplings hence eliminates the rate information

from the analysis. We stress that this is done to check the discriminating power of the

observables under consideration. The horizontal line indicates exclusion of the alternate

hypothesis at 95% confidence level. A second horizontal line is shown in some cases below

the first one and this indicates exclusion of the alternate hypothesis at 3σ confidence level.

For two of the couplings cW and bW1 we observe that the likelihood constructed with

the ∆φlV observable provides a slightly stronger discriminant. In both cases we find that

exclusion of the pure BSM hypothesis at 95% confidence level is possible with ∼ 50 fb−1

luminosity. The coupling bW2 can be excluded with even less data with exclusion 95%

confidence level possible with just 30 fb−1 luminosity. All the likelihoods produce similar

results in this case. This is as expected since, the strongest discriminator for this coupling

is the transverse momentum distribution, while angular observables for bW2 are not very

different from SM predictions. An important point to note is that we have set the couplings

to very small values. This does not correctly reproduce the Higgs partial decay widths. For

example, if the Higgs were a pseudo-scalar, then in order to reproduce the SM decay width

in h→ V (∗)V (∗) decays, the coupling cV should have a value ∼ 3. For such a large value of

8We use the median value of the null hypothesis to determine the p-value of the alternate hypothesis.

This corresponds to twice the p-value in the CLs method used in LEP.
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the coupling, the V h production channel can easily rule out the pseudo-scalar hypothesis

with ∼ 20 fb−1 of data. We would like to emphasize that although a pure pseudoscalar

hypothesis has been ruled out by an analysis of the Higgs decaying to four lepton channel,

the same is not true for the hWW coupling [52].9 Since it is not easy to reconstruct the

kinematics of the final state in the case of higgs decaying through W bosons, what we

suggest is that it is possible to use only the rate information from the decay coupled with

an analysis of Wh production (as prescribed here) to easily rule out the pure pseudoscalar

hypothesis for the hWW coupling with a relatively small amount of luminosity.

We are, however, more interested in the case where there are admixtures of the SM

coupling and the BSM couplings. In figure 14 we show the variation of the p-value for

the alternate hypothesis with luminosity for 14 TeV LHC. For the case when (aW =

0, bW1 = 0.1), we find that the likelihood function constructed with ∆φlV does slightly

better than the other two likelihood functions. We find that the BSM hypothesis for this

choice of coupling strengths can be excluded at 95% confidence level with about 100 fb−1

luminosity. For the CP violating case, (aW = 0, cW = 0.1), as expected, the two likelihood

functions constructed with cos δ+ and cos δ− appear to be the strongest discriminators

with 95% confidence level exclusion of the BSM hypothesis is possible with about 100 fb−1

of data. Finally for the case when (aW = 0, bW2 = 0.01), we observe, once again, that

those likelihoods constructed with cos δ+ and cos δ− do slightly better than the likelihood

constructed with ∆φlV . We find that 95% confidence level exclusion of this BSM hypothesis

possible with about 50 fb−1 luminosity.

We also perform this analysis for Zh production. The variation of the p-value of

the alternate hypothesis with luminosity for a 14 TeV LHC is shown in figure 15. Once

again we compare the results of three different likelihood functions constructed out of three

different combination of observables, namely L(pZT , cos θ∗, cos δ+), L(pZT , cos θ∗, cos δ−)

and L(pZT , cos θ∗, ∆φlV ). In contrast to Wh production we find that all three likelihoods

have a discriminating power not very different from one another. The smaller cross-section

for Zh production implies that the luminosities at which various hypotheses can be excluded

is higher than for the corresponding hypotheses in Wh production. The luminosities at

which we find exclusion of the BSM hypothesis at 95% confidence level are as follows:

• bZ1 = 0.12, with all other couplings set to zero: ∼ 100 fb−1.

• cZ = 0.12, with all other couplings set to zero: ∼ 90 fb−1.

• bZ2 = 0.019, with all other couplings set to zero: ∼ 50 fb−1.

• (aZ = 0, bZ1 = 0.1), with all other couplings set to zero: ∼ 100 fb−1.

• (aZ = 0, cZ = 0.1), with all other couplings set to zero: ∼ 120 fb−1.

• (aZ = 0, bZ2 = 0.01), with all other couplings set to zero: ∼ 150 fb−1.

9While it is expected that the hWW and hZZ couplings should not be to different, from a model

independent approach it is important to test both couplings independently.
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Figure 13. Plots showing the p-values for the BSM hypothesis in Wh production as a func-

tion of luminosity with three different likelihood functions: L(pWT , cos θ∗, cos δ+) (red-dashed),

(L(pWT , cos θ∗, cos δ−))(blue dotted) and (L(pWT , cos θ∗, ∆φlV )) (black solid line). Top left :

bW1 = 0.1 with all other couplings set to zero. Top right : cW = 0.1 with all other couplings

set to zero. Bottom: bW2 = 0.007 with all other couplings set to zero. The coupling strengths are

chosen so that they reproduce the SM cross-section after applying the selection cuts. The horizontal

line on top indicates exclusion of the alternate hypothesis at 95% confidence level. A second hori-

zontal line below (if shown) indicates exclusion of the alternate hypothesis at 3 σ confidence level.

The luminosities listed in this section are all within the projected value of 300 fb−1 for

the LHC [114]. We reiterate here that an analysis of the hV V vertex in the V h production

mode was not conceived before due to the small cross-section in this channel. We have

shown that such an analysis is indeed possible. The increased acceptance to BSM physics

to the cuts employed in a boosted analysis plays a crucial role in improving the sensitivity

of V h production to BSM physics. We have constructed observables that are linearly

sensitive to BSM couplings. Further, in this section we have shown that our observables

are quite powerful and exclusion of various BSM hypotheses is possible with a relatively
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Figure 14. Plots showing the p-values for the BSM hypothesis in Wh production as a func-

tion of luminosity with three different likelihood functions: L(pWT , cos θ∗, cos δ+) (red-dashed),

(L(pWT , cos θ∗, cos δ−))(blue dotted) and (L(pWT , cos θ∗, ∆φlV )) (black solid line). Top left :

(aW = 0, bW1 = 0.1) with all other couplings set to zero. Top right : (aW = 0, cW = 0.1) with

all other couplings set to zero. Bottom: (aW = 0, bW2 = 0.01) with all other couplings set to zero.

The horizontal line on top indicates exclusion of the alternate hypothesis at 95% confidence level.

A second horizontal line below (if shown) indicates exclusion of the alternate hypothesis at 3 σ

confidence level.

small amount of data. The importance of our analysis is that it provides a direct method

of studying the hWW vertex. As mentioned earlier, other production modes such as VBF

and h → W (∗)W ∗ do not provide clean probes of the same.10 It should be noted that

a likelihood analysis has several nuisance parameters (from detector effects and selection

cuts) that are a source of uncertainties in this analysis. In order to reduce the uncertainties

in probing anomalous couplings, we look at the possibility of constructing asymmetries in

10For example, currently, CMS manages to exclude the pure pseudoscalar hypothesis at only ∼ 65% CL

using the WW decay channel with leptonic final states [52].
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Figure 15. Plots showing the p-values for the BSM hypothesis in Zh production as a func-

tion of luminosity with three different likelihood functions: L(pZT , cos θ∗, cos δ+) (red-dashed),

(L(pZT , cos θ∗, cos δ−))(blue dotted) and (L(pZT , cos θ∗, ∆φlV )) (black solid line). Top row left :

bZ1 = 0.12 with all other couplings set to zero. Top row right : cZ = 0.12 with all other couplings

set to zero. Middle row left : bZ2 = 0.019 with all other couplings set to zero. Middle row left :

(aZ = 0, bZ1 = 0.1) with all other couplings set to zero. Bottom row left : (aZ = 0, cZ = 0.1) with

all other couplings set to zero. Bottom row right : (aZ = 0, bZ2 = 0.01) with all other couplings set

to zero. The horizontal line on top indicates exclusion of the alternate hypothesis at 95% confidence

level. A second horizontal line below (if shown) indicates exclusion of the alternate hypothesis at

3 σ confidence level.
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the next section. This is best suited for the CP violating case where it is easy to construct

asymmetries that would vanish in case of CP conservation. Note that it is possible to

construct asymmetries that are non-zero for the SM and are also linear in the anomalous

couplings.11 However, here we focus our attention on CP-violation.

5 Asymmetries

In this section, we define asymmetry parameters related to the angular observables of

section 3. There are a number of motivations for this. Firstly, asymmetry parameters

defined in terms of ratios are typically theoretically cleaner than kinematic distributions,

due to cancellation of PDF and scale uncertainties, as well as reduced sensitivity to radiative

corrections. They are also experimentally easier and cleaner to measure, being related to

simple counting experiments, recording the number of events in well defined regions of

phase space.

Such asymmetries can be constructed using the observables cos δ+ and/or cos δ− de-

fined in eq. (3.4). In this section we will consider the asymmetry constructed out of the

observable cos δ+ only12 as follows. For W+ events (tagged using the sign of the decay

lepton) one defines

A(cos δ+) =
σ(cos δ+ > 0)− σ(cos δ+ < 0)

σ(cos δ+ > 0) + σ(cos δ+ < 0)
, (5.1)

defining minus this quantity for W− events. For (aW = 0, cW = 0.1), we find the value

of this asymmetry, after applying all selection cuts, to be A(cos δ+) = 0.315 for W+h

production. We also verify that the value of the asymmetry for all other cases (BSM, SM

and backgrounds) is less that 1 × 10−3 which is within the statistical uncertainty limits

of our procedure and can be safely assumed to be vanishing. We emphasize that the

vanishing of this asymmetry holds true even after including detector effects. This makes it

a robust observable to probe CP violation. Since the transverse momentum cuts increase

the acceptance of the BSM vertex, the value of the asymmetry depends on this kinematic

cut. The asymmetry also depends on rapidity cuts since the observable depends on the

cross-product of the Higgs and gauge boson momenta. We perform a simple parton level

analysis of W+h production with the W+ decaying leptonically and the Higgs decaying to

a b-quark pair. In order to mimic the cuts of a boosted analysis, we apply the following

cuts at the parton level:

1. Transverse momentum of the leptons plT > 30 GeV; rapidity |yl| < 2.5; separation

from b-quarks ∆Rlb > 0.3, where l = {e+, µ+}.

2. Missing transverse energy 6pT > 30 GeV.

3. Transverse momentum of the b-quarks pbT > 30 GeV; rapidity |yb| < 2.5; separation

between b-quarks ∆Rlb > 0.1.

11For an e+e−, see for example ref. [115].
12We have checked that the analogous asymmetry constructed out of the observable cos δ− gives similarly

large values for the asymmetry. This is expected since these two observables, as described earlier, are

correlated.
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Figure 16. Variation of the asymmetry (thick red line) defined in eq. (5.1) with the strength of

the coupling cW . Here aW = 0. The shaded region denotes the 1 σ uncertainty in the evaluation

of the asymmetry using 100 fb−1 of data at LHC. The asymmetry and the uncertainty have been

evaluated at the parton level (as described in the text) without taking into account the effect of

backgrounds.

4. Transverse momentum of reconstructed Higgs phT > 200 GeV.

5. Transverse momentum of W+, pW
+

T > 150 GeV and ∆φ(W+, h) > 1.2.

6. A b-tagging efficiency of 0.6 is used and both b-jets are tagged.

We note that the value of the asymmetry calculated at the parton level is in very good

agreement with the asymmetry calculated using the full boosted analysis simulation de-

scribed in the previous sections.13 We evaluate the variation of this asymmetry with the

strength of the coupling cW using a parton level analysis. The variation of this asymme-

try is shown in figure 16. We see that the sign of the asymmetry depends on the sign of

cW . We also observe that the asymmetry peaks for a value of cW ∼ 0.1 while a minima

is observed for cW ∼ −0.1. The extrema signify regions where the interference plays an

important role. For larger values of cW the quadratic term (in the matrix element squared)

starts contributing more strongly to the total cross-section, thus reducing the value of this

asymmetry. However, this would correspond to a kinematic region where one no longer

trusts the effective theory framework.

In Zh production, with (aZ = 1, cZ = 0.1) the asymmetry is found to be ∼ 0.02, an

order of magnitude less than the asymmetry in case of Wh production. The much smaller

value is due to the presence of different vector and axial-vector couplings of the quarks and

leptons with the Z boson, as explained earlier. Stronger probes of CP violation in the hZZ

vertex can be found in ref. [116].

13We have only tested this for three specific values of cW .
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6 Conclusion

The ongoing attempts to pin down the nature of the recently discovered Higgs-like particle

constitute a major global effort in contemporary particle physics. In this paper, we have

considered the associated production of the Higgs with a massive gauge boson at the LHC

as an alternative to VBF production or Higgs decays, in probing anomalous contributions

to the hWW vertex. Similar analyses in VBF can be quite difficult due to large back-

grounds and our inability to reconstruct the final state momenta. Furthermore, in VBF

production there is a significant contribution from the hZZ vertex, reducing the ability to

cleanly distinguish this from the hWW vertex. We have shown that such a separation is

indeed possible in V h production, despite the smaller cross-section. This has been made

possible with the use of modern jet-substructure techniques. Consistent with previous

studies [25, 26, 109], we find that the very same selection criteria that are applied to elim-

inate backgrounds, also enhance the sensitivity to BSM physics. This is ultimately due

to the additional momentum factors that correct the hV V vertices in an effective theory

framework, which boost the Higgs to higher transverse momenta on average.

Building on the preliminary work of ref. [27], we constructed angular observables that

are sensitive to new physics. To test the ability of these observables to probe the tensor

structure of the hV V vertex, we performed a log likelihood analysis. Three dimensional

likelihood functions were constructed with different combinations of the observables. We

found that with a relatively small amount of data (less than 150 fb−1 luminosity), it is

possible to exclude all the different cases of couplings we have considered. For example we

found that the CP-violating case (aW = 0, cW = 0.1) could be excluded at 95% confidence

level with ∼ 90 fb−1 luminosity for 14 TeV LHC.

Finally we constructed an asymmetry that is sensitive to the amount of CP violation in

hWW interactions. The asymmetry vanishes for all CP-conserving cases — in particular,

it is zero in the SM, such that any non-zero measurement consitutes unambiguous discovery

of new physics. We checked that the asymmetry is robust against hadronization, radiation

and detector effects.

The results of our paper merit further investigation, including implementation in future

experimental analyses. We furthermore anticipate other useful applications that may result

from combining jet substructure methods with polarisation ideas. Work in this regard is

ongoing.
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Figure 17. The Feynman diagram for the process ud̄→W+h→ e+νeh.

A Matrix elements for V h production

In this appendix, we collect the matrix elements for V h production at leading order, in-

cluding the effects of the higher-dimensional operators described in section 1.

We evaluate the squared matrix element for the Feynman diagram shown in figure 17.

We do not consider decay of the Higgs boson since we assume it to be spin zero and

therefore its decay products will not carry information about the hWW vertex. We evaluate

the matrix element squared for this process. We use the following notation to identify

parts of the matrix element that are proportional to each of the anomalous couplings of

eqs. (1.1), (1.2).

|Mtot|2 = (MaW +MbW1
+MbW2

+McW )×(MaW +MbW1
+MbW2

+McW )† , (A.1)

where Mi, i = {aW , bW1, bW2, cW } are the matrix elements generated from the coupling

with coefficient i. In keeping with the philosophy of the effective field theory approach, we

keep only terms which are at most linear in the BSM couplings (constituting the interference

of the BSM physics with the SM). Quadratic terms would necessitate the inclusion also of

dimension eight operators. The results are:

MaW = αp|MaW ×M
†
aW
| = (1 + 2aW )g62m

2
Wk1 · p2k2 · p1 (A.2)

MaW bW1
= αp|MbW1

×M†aW | =
(
bW1

m2
W

)
g62m

2
W (k1 · p2 + k2 · p1)

(k1 · p2k2 · p1 − k1 · p1k2 · p2 + k1 · k2p1 · p2) (A.3)

MaW cW = αp|McW ×M
†
aW
| =

(
cW
m2
W

)
g62m

2
W ε
{k1,k2,p1,p2}(k1 · p2 + k2 · p1) (A.4)

MaW bW2
= αp|MaW ×M

†
bW2
| =

(
bW2

m2
W

)
g62m

2
Wk1 · p2k2 · p1(p1 · p2 + k1 · k2) . (A.5)

Here ε{k1,k2,p1,p2} = εµνρσk1µk2νp1ρp2σ with εµνρσ the Levi-Civita tensor, and

αp =
(
2k1 · k2 −m2

W

)2 ((
2p1 · p2 −m2

W

)2 − (mWΓW )2
)

corresponds to the propagators for the W bosons. Note that the SM contribution is included

in eq. (A.2).
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