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1 Introduction

The quasinormal modes of a black hole spacetime encode important aspects of its dynam-

ics [1]. In particular, the AdS/CFT correspondence implies that the quasinormal modes

of Anti-de Sitter black holes describe the relaxation to thermal equilibrium in the dual

field theory [2]. As argued in [3] and further elaborated in this article, the limit of large

number of dimensions D isolates a subset of quasinormal modes associated to particu-

larly interesting black hole dynamics, and allows efficient analytic computation of their

frequencies.

In more detail, when D is very large the gravitational field of a black hole gets strongly

localized close to the horizon [4, 5]. The existence of a well-defined ‘near-horizon region’ [6]

splits the quasinormal spectrum into two distinct sets that capture very different black

hole dynamics. The most numerous set (∝ D2) are ‘non-decoupling’ modes that straddle

between the near-horizon zone and the asymptotic zone; they are largely insensitive to the

peculiarities of the black hole, which for these modes is simply a hole in a background

spacetime [7]. In contrast, the much smaller set (∝ D0) of ‘decoupled’ quasinormal modes
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have support only in the near-horizon region, where they are normalizable states to all

orders in 1/D; they capture properties specific to each black hole, such as the instabilities

of certain higher-dimensional black holes and black branes, and the hydrodynamic modes

of black branes [5, 8].1

Due to the simple form of the near-horizon geometry, the decoupled quasinormal fre-

quencies can be calculated perturbatively in analytic form to several orders in 1/D. Fur-

thermore, the universality of the leading-order near-horizon geometry implies that the

structure of the calculation is essentially the same for all static neutral black holes, be they

asymptotic to de Sitter, Minkowski, or Anti-de Sitter, with spherical, flat or hyperbolic

horizons. This allows us to obtain unified analytical formulas for their frequencies, valid

up to next-to-next-to-next-to-leading order (3NLO) in 1/D, and for planar horizons up to

4NLO. Via the AdS/Ricci-flat correspondence [10, 11], the latter also give the unstable

Gregory-Laflamme (GL) frequencies of Ricci-flat black branes [12] to two higher orders in

1/D than in [5].

For AdS black branes a hydrodynamic gradient expansion has been applied to obtain

the sound- and shear-mode dispersion relations ω(k) analytically (exactly in D) up to k3

for the sound mode, and up to k4 for the shear mode [13]. Where there is overlap, our

calculations perfectly match these results. As we will see, the regime of applicability for

the large D expansion is not essentially different than for the hydrodynamic expansion.

However, the large D expansion allows a much simpler calculation of higher orders in k:

our results extend up to k9 for the sound mode, and up to k8 for the shear mode.

It is natural to ask whether these higher-order corrections always increase the accuracy

of the results when finite, possibly low, values of D are substituted. In other words, is

the 1/D expansion for the decoupled quasinormal spectrum a convergent series? We will

explain that it is not, but is instead only asymptotic. The decoupling condition, which

holds to all perturbative orders, is violated by effects that are not perturbative in 1/D.

Nevertheless, we obtain excellent agreement for certain quantities, such as the GL critical

wavelength, even down to D = 6, which we reproduce within ∼ 2% accuracy.

In the next section we introduce the class of black holes we study and their large

D limit. In section 3 we explain qualitatively the appearance of the decoupled spectrum

and its main features. The main results, namely the scalar and vector decoupled frequency

spectra and the GL unstable frequencies, are given in section 4. Section 5 examines the lack

of convergence of the 1/D series for decoupled modes. Section 6 compares our results with

those obtained exactly in D in the hydrodynamic expansion at low momenta. We conclude

in section 7. Appendices A to D contain further technical details and lengthy results. In

particular, appendix D gives explicit expressions for the frequencies for spherical horizons.

2 Set up

We consider (A)dS black holes with metric

ds2 = −f(r)dt2 + f(r)−1dr2 + r2 dσ2
K,D−2, (2.1)

1The decoupled spectrum at large D was first identified numerically in [9].
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with

f(r) = K − λr
2

r2
0

−
(r0

r

)D−3
, (2.2)

and where

λ =
2Λr2

0

(D − 1)(D − 2)
(2.3)

parametrizes the cosmological constant Λ in units of the black hole size-scale r0. The

solution has another, discrete parameter,

K = ±1, 0 (2.4)

for the curvature of the metric dσ2
K,D−2 on the ‘orbital’ space KD−2: a unit sphere, a plane,

or a hyperboloid, for K = +1, 0,−1 respectively.

It is convenient to use

n = D − 3 (2.5)

instead of D as the perturbation parameter, and

R =

(
r

r0

)n
(2.6)

as the radial variable appropriate for the near-horizon region, which is defined by R� en.

In terms of it, the metric (2.1) is

ds2 = −f(R)dt2 +
r2

0

n2
R2/n dR2

R2f(R)
+ R2/nr2

0 dσ
2
K,D−2 (2.7)

with

f(R) = K − λR2/n − 1

R
. (2.8)

The horizon at R = RH such that f(RH) = 0, has surface gravity κ given by

κr0 =
nK

2R
1/n
H

−
(n

2
+ 1
)
λR

1/n
H . (2.9)

Taking n → ∞ with R and λ finite, to leading order the geometry in the (t,R) direc-

tions is2

ds2
(2d) = −

(
1

R0
− 1

R

)
dt2 +

r2
0

n2

dR2

R2

(
1

R0
− 1

R

)−1

(2.10)

with

R0 =
1

K − λ
. (2.11)

If we rescale (t,R) → (R0t,R0R) the metric becomes the same for all values of K and

λ. However, subleading corrections distinguish among them, as we can see in the horizon

location which is at

RH = R0 +
2λR2

0 lnR0

n
+O

(
n−2

)
. (2.12)

2We omit here the KD−2, whose size plays the role of the dilaton for the effective two-dimensional

gravity [6].
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In the planar case K = 0 all values of λ < 0 are equivalent to λ = −1. In the hyperbolic

case (K = −1, λ < 0), when n is finite there exist black hole solutions with negative mass

parameter rn0 < 0, with the lowest negative mass corresponding to an extremal black hole.

It is easy to see, however, that as n→∞ the range of allowed negative masses shrinks to

zero, and as a consequence λ is bounded above by λ < −1. More generally, the large n

limit yields a good near-horizon geometry only when

R0 > 0 . (2.13)

Note that the hyperbolic slicing of AdS (obtained for rn0 = 0) lies outside our study, which

is expected since there is no strong localization of the field close to an acceleration horizon.

3 Decoupled spectrum: qualitative aspects

Before entering the calculational details, let us explain the existence and basic properties

of the decoupled quasinormal spectrum at large D.

At first sight, one would not expect any decoupled dynamics in the near-horizon region

of neutral static black holes: this region has only a very short radial extent ∼ r0/D away

from the horizon, in contrast to the long throats of (near-)extremal black holes which

support excitations that can propagate inside them without ever leaving. Indeed, the

excitations with frequencies ωnh ∼ D/r0 characteristic of the near zone are not decoupled:

they are non-normalizable states of the near-horizon geometry [3]. However, as we will see

presently, this geometry supports a few modes that, to leading order, are not dynamical :

in near-horizon scales they are zero-modes with frequency ∼ ωnh/D → 0. Furthermore,

the universality of the leading-order near-horizon geometry implies that these modes are

present in all neutral black holes.

Such leading-order zero-modes exist for gravitational perturbations which are vectors

or scalars of the space KD−2, and are absent for gravitational tensors (and also for free

massless scalar fields, which satisfy the same equation). To see this point, note that the

wave equation can in all cases be written in the form [14](
d2

dr2
∗

+ ω2 − Vs(r∗)
)

Ψs(r∗) = 0 (3.1)

where r∗ =
∫
dr/f(r) is the conventional tortoise coordinate and

s = 0, 1, 2 (3.2)

denote gravitational scalars, vectors and tensors, respectively. The explicit form of the po-

tentials Vs will be given later below; their form at large D is presented in figure 1 for vectors

and scalars, zooming in around the most interesting region, r∗ = O(1), where the near and

far zones meet. At large r∗ the potentials reflect the properties of the background: decaying

for asymptotically dS and flat space, and growing (‘bounding box’) for asymptotically AdS.

In contrast, near the horizon the form of the potential becomes the same independently of

the cosmological constant or the horizon curvature. In the direction of decreasing r∗, as we
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Figure 1. Radial potentials V (r∗) of gravitational vector (left) and scalar (right) perturbations,

for n = 500 and harmonic eigenvalue q2 = 2n, for representative examples of (A)dS black holes.

The plots show the potential around the region where the near and far zones meet (the horizon is

at r∗ → −∞). Decoupled quasinormal modes are localized around the minima in the near-zone.

The potentials for tensor perturbations differ only in the absence of these minima.

enter the near-horizon zone the potential drops exponentially from a height ∼ D2/r0. In

this near-horizon region the potentials for gravitational scalars and vectors have negative

minima, which are absent for tensors.3 These minima allow the existence of non-trivial

solutions to the equation (3.1) with ω = 0. Since at large D both d2/dr2
∗ and Vs scale

like D2/r2
0, these zero-modes are actually leading-order solutions to (3.1) for modes with

frequency ω = o(D/r0).

These leading-order static modes become dynamical, i.e., their frequency is non-zero

ω ∼ 1/r0, at the next order in the 1/D expansion. At this order, the differences between

black holes (due to the cosmological constant or the horizon curvature) make themselves

present and therefore the frequencies differ for each of them. However, the structure of the

perturbation expansion is the same for all of them since it is controlled by the leading-order

solution.

4 Decoupled spectrum: analytic results

Henceforth in this section we use units where

r0 = 1 . (4.1)

The explicit form of the potentials Vs is [14]

Vs=2 =
f(R)

R2/n

(
q2 + 2K +

n(n+ 1)

2
R
df(R)

dR
+
n2 − 1

4
f(R)

)
, (4.2)

Vs=1 =
f(R)

R2/n

(
q2 +

n2 + 3

4
K − 3(n+ 1)2

4

1

R
− n2 − 1

4
λR2/n

)
, (4.3)

3Figure 1 leads one to expect that the 1/n expansion is more accurate for vectors than for scalars, which

indeed appears to be the case.
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and

Vs=0 =
f(R)

R2/n

Q(R)(
4m+ 2(n+1)(n+2)

R

)2 , (4.4)

where m = q2 − (D − 2)K and

Q(R) =
(n+ 1)4(n+ 2)2

R3

+
(n+ 1)(n+ 2)

R2

(
4m(2n2 + n+ 3) + (n+ 2)(n− 3)(n2 − 1)K

)
−12(n+ 1)m

R

(
(n− 3)m+ (n+ 2)(n2 − 1)K

)
(4.5)

+4(n+ 3)(n+ 1)Km2 + 16m3

−
(

(n+ 3)(n+ 2)2(n+ 1)3

R2
− 12(n+ 3)(n+ 2)(n+ 1)m

R
+ 4(n− 1)(n− 3)m2

)
λR2/n .

We use q2 to denote the eigenvalues of the Laplacian on Kn+1. It is easy to see that

the minima of the potentials and hence the decoupled modes only exist for s = 0, 1 and

for eigenvalues such that q2/n2 → 0 [3]. Thus we take q2 = O(n) and introduce finite

renormalized eigenvalues

q̂2 =
q2

n
. (4.6)

In particular,

q̂2 =

{
`
(
1 + `

n

)
− s

n (K = 1) ,
k2

n (K = 0) ,
(4.7)

where ` = O(n0) is the angular momentum number on Sn+1 and k = O(
√
n) is the

momentum along Rn+1. For K = −1, if the hyperboloid is not compactified the spectrum

is continuous like in the planar case, but we will not be more specific about this.

Quasinormal modes are solutions to (3.1) that satisfy specific boundary conditions.

For decoupled modes, these are as follows. At large distance in the near-horizon geometry,

where 1� R� en, we impose

Ψs(R→∞)→ 1√
R

(4.8)

at all orders in the 1/n expansion. This expresses that the mode is normalizable in this

geometry (non-normalizable modes are ∝
√
R at large R). Since it is (perturbatively)

shielded from the far zone, it can be matched to a purely outgoing wave in a Minkowski

background [3] or to other suitable function for other asymptotics.

The solution must be ingoing at the future horizon. This is achieved when

Ψs(R) = (R− RH)−iω/(2κ) φs(R) (4.9)

where φs(R) is regular at R = RH .
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Observe that

• the condition at R→∞ is independent of the asymptotics in the far zone;

• since κ ∝ n, the horizon condition to leading order in 1/n is simply finiteness of

Ψs(R0).

These two properties, together with the universal character of the geometry (2.10), imply

that the leading order solutions (the zero modes) are the same for all values of K and λ,

which allows to study these quasinormal modes in a unified manner for all the metrics (2.1).

The perturbative calculation of the decoupled quasinormal frequencies now proceeds

as for Schwarzschild black holes (K = 1, λ = 0,R0 = 1) in ref. [3]. Like in that instance, for

the scalar perturbations it is more convenient to use a formulation in other variables than

Ψs=0(R), which we give in appendix A. We omit the lengthy but straightforward details of

the calculations and just give the final results. Writing

ω =
∑
i≥0

ω(i)

ni
(4.10)

we obtain

Vector-type quasinormal frequencies:

ω(0) = i
(
K − q̂2

)
, (4.11)

ω(1) = −i
(
K − q̂2

)
(lnR0 + 2) , (4.12)

ω(2) = − i
6

(
K − q̂2

) (
2R0

(
λ
(
6 lnR0 + π2

)
− π2q̂2

)
− 3 lnR0 (lnR0 + 4) + 2

(
π2 − 12

))
, (4.13)

ω(3) = − i
6

(
K − q̂2

) [(
lnR0 (lnR0 + 6)− 2π2 + 24

)
lnR0 − 8

(
π2 − 6

)
+2R0

(
12R0ζ(3)

(
λ− q̂2

) (
K − q̂2

)
+ π2q̂2 (lnR0 + 4− 2λR0 (lnR0 + 2))

+2λ2R0 (lnR0 + 2)
(
3 lnR0 + π2

)
+
(
π2 − 12

)
λ lnR0

)]
. (4.14)

Vector modes are purely imaginary. For K = 1 a perturbation with q̂2 = 1, i.e., ` = 1, is

not a quasinormal mode but corresponds to adding angular momentum to the black hole.
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Scalar-type quasinormal frequencies:

Reω(0) =

√
q̂2

R0
−K2 , (4.15)

Reω(1) =

(
K − q̂2

) (
K (lnR0 + 2)− q̂2

)
− q̂2

2R0√
q̂2

R0
−K2

, (4.16)

Reω(2) = − 1

24
(
q̂2

R0
−K2

)3/2

[
8K3R0

(
K − q̂2

) (
2K

(
3 lnR0 + π2

)
− π2q̂2

)
−4

(
3K4 (lnR0 (lnR0 + 8) + 8) + 6K3q̂2

(
−2 lnR0 + π2 − 7

)
−K2q̂4

(
3 lnR0 (lnR0 + 8) + 8π2 + 3

)
+2Kq̂6

(
3 lnR0 + π2 + 9

)
− 3q̂8

)
+

4q̂2

R0

(
3K2 (lnR0 (2 lnR0 + 11) + 11)

+Kq̂2
(
−3 lnR0 (2 lnR0 + 17) + 2π2 − 69

)
+q̂4

(
12 lnR0 − 2π2 + 33

))
− 9q̂4

R2
0

]
, (4.17)

Imω(0) = K − q̂2 , (4.18)

Imω(1) = q̂2 (lnR0 + 3)−K (lnR0 + 2) , (4.19)

Imω(2) =
R0

3

(
K − q̂2

) (
π2q̂2 − 2K

(
3 lnR0 + π2

))
+
K

2
(lnR0 (lnR0 + 8) + 8)

− q̂
2

2
(lnR0 (lnR0 + 10) + 14) . (4.20)

The expressions for ω(3) are very lengthy and we defer them to appendix C. The K = 1

scalar modes with ` = 1 are gauge modes.

These results are valid for all K and λ satisfying (2.13). For ease of reference, we give

the expressions for the particular case of K = 1, i.e., (A)dS Schwarzschild black holes in

appendix D. For λ = 0 Schwarzschild black holes, these results reproduce those of [3].

Large black hole limit vs. large n limit. At any finite n, the large black hole limit

−λ ≡ r2
0/L

2 →∞ of the AdS Schwarzschild solution, with K = 1, results in the AdS black

brane. However, when we compute modes of AdS Schwarzschild black holes in the 1/n

expansion we assume that r0/L remains finite as n → ∞ (more precisely, we require that

r2
0/L

2 � en). Thus the two limits n → ∞ and r0/L → ∞ need not commute. Indeed,

while the leading order terms ω(0) for AdS black branes are correctly obtained as the limit

r0/L→∞ of AdS Schwarzschild frequencies, the next-to-leading order corrections are not.

4.1 AdS black branes

For planar horizons it is possible to perform the analysis in a different manner [15] (see ap-

pendix B): given a momentum vector ka along Rn−1, one can decompose the perturbations

– 8 –
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into scalars, vectors and tensors of its little group SO(n). This has allowed us to carry out

the expansion to one higher order than the previous results, up to 1/n4.

For this case, the expansion parameter is more appropriately 1/(D − 1) = 1/(n + 2)

rather than 1/n. So here we introduce

n̄ = D − 1 = n+ 2 , (4.21)

and

k̂2 =
k2

n̄
= q̂2

(
1− 2

n̄

)
, (4.22)

and express results as an expansion in 1/n̄. We find:

Vector (shear) mode:

ω = −ik̂2
[

1 +
π2k̂2

3n̄2
− 4k̂2(1 + k̂2)ζ(3)

n̄3
+

4π4k̂2(1 + 7k̂2 + k̂4)

45n̄4
+O(n̄−5)

]
,

= −ik̂2
[

1 + 2ζ(2)
k̂2

n̄2
− 4ζ(3)

k̂2 + k̂4

n̄3
+ 8ζ(4)

k̂2 + 7k̂4 + k̂6

n̄4
+O(n̄−5)

]
. (4.23)

Scalar (sound) mode:

Reω± = ±k̂

[
1 +

1 + 2k̂2

2n̄
+

1

n̄2

(
3

8
− k̂2

2
+
π2k̂2

3
− k̂4

2

)

+
1

n̄3

(
5

16
− k̂2

(
9

8
+
π2

6
+ 4ζ(3)

)
+ k̂4

(
3

4
+ π2 − 2ζ(3)

)
+
k̂6

2

)

+
1

n̄4

(
35

128
+ k̂2

(
−25

16
− 3π2

8
+

4π4

45
+ 2ζ(3)

)
+ k̂4

(
13

16
− 3π2

2
+

29π4

45
− 5ζ(3)

)

+ k̂6

(
−5

4
− 5π2

6
+
π4

15
− 22ζ(3)

)
− 5k̂8

8

)
+O(n̄−5)

]
, (4.24)

and

Imω± = −k̂2
[

1− 1

n̄
+

1

n̄2

(
−1 +

π2k̂2

3

)
+

1

n̄3

(
−1− k̂2

(
4π2

3
+ 8ζ(3)

)
− 4k̂4ζ(3)

)

+
1

n̄4

(
−1− k̂2

(
π2

3
− π4

9
− 16ζ(3)

)
+ k̂4

(
31π4

45
+ 36ζ(3)

)
+

4π4k̂6

45

)
+O(n̄−5)

]
.

(4.25)

The appearance of the ζ function in these series will be explained in section 6.

4.2 Gregory-Laflamme unstable frequencies

The AdS/Ricci-flat correspondence of [10, 11] relates the quasinormal spectrum of D = n̄+1

AdS black branes to the spectrum of fluctuations of Ricci-flat black p-branes in dimension

D = n̄+ p+ 3 . (4.26)

The scalar sector of the latter is known to contain unstable modes [12].
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According to [10, 11], the map requires replacing n̄→ −n̄, so we also have k̂ → ik̂. By

applying this to eqs. (4.24), (4.25), we find the imaginary frequencies Ω± = iω∓ as

Ω± = ±k̂ − k̂2 − k̂

2n̄

(
±1 + 2k̂ ∓ 2k̂2

)
+

k̂

24n̄2

(
±9 + 24k̂ ± 12k̂2 ∓ 8π2k̂2 + 8π2k̂3 ∓ 12k̂4

)
+

k̂

48n̄3

[
∓15− 48k̂ ∓ 2(27 + 4π2 + 96ζ(3))k̂2 + 64(π2 + 6ζ(3))k̂3

∓12(3 + 4π2 − 8ζ(3))k̂4 − 192ζ(3)k̂5 ± 24k̂6
]

+
k̂

n̄4

[
± 35

128
+ k̂ ± k̂2

(
25

16
+

3π2

8
− 4π4

45
− 2ζ(3)

)
+ k̂3

(
−π

2

3
+
π4

9
+ 16ζ(3)

)
±k̂4

(
13

16
− 3π2

2
+

29π4

45
− 5ζ(3)

)
− k̂5

(
31π4

45
+ 36ζ(3)

)
±k̂6

(
5

4
+

5π2

6
− π4

15
+ 22ζ(3)

)
+

4π4k̂7

45
∓ 5k̂8

8

]
+O(n̄−5). (4.27)

Ω+ is the unstable mode on the black brane. We have also obtained this same result by

solving directly the perturbations of the Ricci-flat black brane, thus managing to extend

the calculation in [5] to two higher orders.

Using (4.27) we can find the critical wavenumber at the threshold of the instability,

i.e., kGL = k̂GL

√
n̄ such that Ω+(k̂GL) = O(n̄−5). We find

kGL =
√
n̄

(
1− 1

2n̄
+

7

8n̄2
+

(
2ζ(3)− 25

16

)
1

n̄3
+

(
363

128
− 5ζ(3)

)
1

n̄4
+O(n̄−5)

)
. (4.28)

In figure 2 we compare this result to the values found in [4] from the numerical solution of

the problem. For n̄ = 2, e.g., a black string in D = 6, the numerical value is kGL = 1.269,

while (4.28) gives kGL = 1.238, which is off by 2.4%.

5 Non-perturbative breakdown of decoupling

We now argue that the 1/D expansion for decoupling modes does not converge but is

instead only asymptotic, since effects non-perturbative in 1/D arise from the breakdown

of decoupling at finite D.

Considering for simplicity static perturbations of a Ricci-flat black brane, the solution

in the far zone is, up to normalization, given by a modified Bessel function,

Ψ(r) =
√
rK n̄+2

2
(kr) . (5.1)

The Bessel function at large order has the asymptotic expansion

Kν(x) ∼ x−ν
∑
i≥0

ν−iai(x) (ν � 1) (5.2)

– 10 –
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1 2 3 4 5 6
n

0.5

1.0

1.5

2.0

kGL

Figure 2. Wavenumber kGL of the marginally stable mode of black p-branes as a function of

n̄ = D − p − 3. We plot successive approximations to eq. (4.28): to 1/n̄ (purple dotted line);

to 1/n̄2 (red dash-dotted line); to 1/n̄3 (blue dashed line); to 1/n̄4 (black solid line). Dots are

numerical values from [4]. Units are r0 = 1.

where ai is a polynomial in x, behaving like ai ∼ xi so in the overlap zone we have,

schematically,

Ψ(r) ∼ 1√
R

∑
i≥0

(
kr0

n̄

)i
Ri/n̄ . (5.3)

We see that

kr0 � n̄ , (5.4)

is required for Ψ(r) to satisfy the condition (4.8) that the mode decouples. This is a limit

on the range of momenta to which the large n̄ expansion for black branes is applicable,

and it is valid at all orders in the 1/n̄ expansion. This bound is indeed consistent with the

fact that in eqs. (4.23), (4.24), (4.25) each additional order in 1/n̄ brings in an additional

power k̂2.

However, large orders in the expansion (5.3), with i = n̄+O(1), give a behavior Ψ ∼
√
R

which violates the decoupling condition (4.8). This breakdown is non-perturbative in 1/n̄,

and gives a value of

non-perturbative corrections = O
((

kr0

n̄

)n̄)
. (5.5)

Generically, for planar horizons (Ricci-flat and AdS black branes) we have kr0 ∼
√
n̄ so we

expect

non-perturbative corrections = O
(
n̄−n̄/2

)
(K = 0) , (5.6)

This implies that, for n̄ sufficiently large, the perturbative expansion is reliable only for

orders m such that

m .
n̄

2
+O(1) . (5.7)

– 11 –



J
H
E
P
0
4
(
2
0
1
5
)
0
8
5

This rough estimate agrees fairly well with the fact (not shown here) that the inclusion of

the 1/n̄4 correction in eq. (4.27) gives a better overall fit to numerical calculations of the

curve Ω+(k) only when n̄ & 8.4 Note however that (5.5) implies that the accuracy at small

k can be considerably better than indicated by (5.7). We elaborate this point in the next

section.

For spherical black holes, a similar argument applies replacing kr0 → ` = O(1), so the

expected corrections in this case are

non-perturbative corrections = O
(
n−n

)
(K = 1) . (5.8)

These are smaller than (5.6), which agrees well with the good accuracy found at low n in [3]

for the computation of decoupled quasinormal frequencies of Schwarzschild black holes.

To finish, let us mention that the numerical calculations for AdS black branes in [15]

of the sound (scalar) frequency in D = 5 suggest that at large momenta, Reω+ → k and

that |Imω±| decreases. This is not visible in our results, so presumably these effects are

non-perturbative in 1/n̄.

6 Comparison to hydrodynamics

Although the 1/D series of quasinormal frequencies is not convergent, certain terms in

them can be resummed to all orders in 1/D. This is the case at least for vector and scalar

frequencies when expanded at low momenta. Indeed these terms have been computed

exactly in D in the hydrodynamic expansion [13].5 The vector (shear) mode frequency for

an AdS black brane in D = n̄+ 1 dimensions (n̄ ≥ 3) is6

ω = −ik
2

n̄

(
1 +

k2

n̄2
H2/n̄

)
+O(k6) (6.1)

where Hm is the m-th ‘harmonic number’. The scalar (sound) mode frequency is

ω± = ± k√
n̄− 1

− i n̄− 2

n̄(n̄− 1)
k2 ±

(n̄− 2)
(
1 +H2/n̄

)
n̄2(n̄− 1)3/2

k3 +O(k4) . (6.2)

These results can be expanded at large n̄ using

H2/n̄ = −
∞∑
j=1

ζ(j + 1)

(
− 2

n̄

)j
, (6.3)

which is a convergent series for |n̄| > 2, and then we find perfect agreement with our large

n̄ calculations in eqs. (4.23), (4.24), (4.25). It is amusing to note that the appearance of

4However, the best approximation to kGL (although not to Ω+(k) overall) for n̄ = 2, 3 is the fourth-order

one, as figure 2 shows. This might be a fortunate accident at low n̄, since for 4 . n̄ . 8 the second-order

result for kGL is (slightly) better than the fourth-order one. The third-order correction does not improve

on the second-order result until n̄ & 12.
5Of course the hydrodynamic expansion is not convergent itself [16].
6In order to put the results of [13] in this form, we use the identity Hm = m−1 + Hm−1.
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the function H2/n̄ in these dispersion relations could have been obtained by resumming

(using (6.3)) the natural guess for the entire 1/n̄ series from the terms present in (4.23).7

Since the temperature of the black brane (with r0 = 1) is T ∝ n̄, the range of appli-

cability of the hydrodynamic expansion, namely k � T , coincides parametrically with the

range of momenta to which the large n̄ results apply (5.4). In this view, the large n̄ ex-

pansion does not afford a larger regime of applicability than the hydrodynamic expansion.

The main advantage of the large n̄ expansion is that it allows a simpler computation of

higher powers of the momenta (in our case, up to k9 for the sound mode, and k8 for the

shear mode), some of which can be relevant (barring non-perturbative effects) at relatively

low dimensions. These results also contain information about the transport coefficients at

higher orders in the gradient expansion.

7 Conclusions

The large D expansion of black hole perturbations provides a natural means to isolate the

sector of quasinormal modes that usually contains the most interesting dynamics of the

black hole. This is the decoupled spectrum. In this article we have shown that the large

D expansion allows efficient calculation of these modes giving unified, analytic expressions

for all the neutral, static black holes whose solutions are known in closed form,8 up to

relatively high orders in the expansion.

These results have allowed us to examine the lack of convergence of the series. This

is not surprising, since the property of decoupling holds to all perturbative orders in 1/D

but is obviously absent at finite values of D. However, it is less clear whether calculations

for non-decoupling modes are equally affected by these limitations.
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A Scalar-type perturbations

For scalar-type perturbations in the ‘Regge-Wheeler’ formulation of (3.1), the minimum of

the potential is at R ∼ D. Although this is within the near-horizon zone, it requires one

7A naive attempt at resumming the highest powers of k in this series gives a result that does not agree

well with the large-k behavior in [15].
8We have not considered static black rings nor other static blackfolds in de Sitter space [17, 18], which

are not known in closed exact form.
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to deal separately with two (overlapping) regions, one with R = O(1) and another with

R = O(D). Although this can be done [3], it is simpler to work instead with a different set

of gauge invariant variables, X, Y and Z, in terms of which the equations are [14]

X ′(r) =
D − 4

r
X(r) +

(
f ′(r)

f(r)
− 2

r

)
Y (r) +

(
q2

r2f(r)
− ω2

f(r)2

)
Z(r) , (A.1)

Y ′(r) =
f ′(r)

2f(r)
(X(r)− Y (r)) +

ω2

f(r)2
Z(r), (A.2)

Z ′(r) = X(r) (A.3)

together with the consistency condition[
ω2r2 +Kλr2 +

1

2R

(
(D − 2)(D − 3)K − (D − 1)(D − 2)λr2 − (D − 1)(D − 3)

2R

)]
X(r)

+
[
ω2r2 − q2f(r) + (D − 2)K2 − (D − 3)Kλr2 − 2(D − 2)

R
+

(D − 1)2

4R2

]
Y (r)

−1

r

[
(D − 2)ω2r2 − q2

(
1

2R
− λr2

)]
Z(r) = 0.

(A.4)

If we introduce two variables P (R) and Q(R) as

X(R) = P (R) +
R

R− R0
Q(R), Y (R) = P (R)− R

R− R0
Q(R), (A.5)

then the perturbation equations in the near-horizon zone decouple in these variables at

each order in 1/D. Then they can be solved to yield decoupled quasinormal modes without

needing to split into two zones.

B Another perturbative formulation for AdS black branes

The perturbation equations for AdS black branes can be analyzed in a different manner,

as described in [15].

We write the background metric as

ds2 = r2(−f̂(r)dt2 + δabdx
adxb) +

dr2

r2f̂(r)
, (B.1)

where f̂(r) = 1− r−(D−1) and the coordinates xa span RD−2. For linearized perturbations

we can always choose a coordinate z aligned with the momentum of the perturbation,

kax
a = kz, so the dependence on xa takes the form ∼ eikz. Then perturbations can

be decomposed into scalars, vectors and tensors with respect to the little group of ka,

SO(D− 3). In the following we write

xa = (z, xi) (i = 1, . . . , D − 3). (B.2)
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It is easy to check the equivalence between these perturbations and those of [14]. For

example, the metric perturbation for a RD−2-scalar perturbation in [15] is, in momentum

space,

hST
ab = ST (t, r)

(
kakb −

k2δab
D − 2

)
. (B.3)

When we align ka with kz the only non-vanishing component of hST
ab is hST

zz , which is scalar-

type with respect to SO(D − 3). One can find similar relations for other variables in the

two decompositions.

The perturbation equations can be written in terms of master variables Zs. For tensors

(s = 2) and vectors (s = 1) these are

Zs=2τij = hij , (B.4)

Zs=1∂i = khti + ωhzi, (B.5)

while for scalars (s = 0)

Zs=0 = 4ωkhtz + 2ω2hzz

+
1

D − 3

(
k2((D − 1)− (D − 3)f̂(r))− 2ω2

)
δijhij + 2k2htt, (B.6)

Here τij is a symmetric traceless tensor. Note that since we choose Zs ∼ eikz there are no

scalar-derived tensor or vector perturbations, nor vector-derived tensor perturbations.

The perturbation equation for tensors Zs=2 is

Z ′′s=2 +
D − 1 + f̂(r)

rf̂(r)
Z ′s=2 +

ω2 − k2f̂(r)

r4f̂(r)2
Zs=2 = 0, (B.7)

where the prime is derivative with respect to r.

The equations for the vectors and scalars are

Z ′′s=1 +

(
D

r
+

f̂ ′(r)ω2

f̂(r)(ω2 − q2f̂(r))

)
Z ′s=1 +

ω2 − k2f̂(r)

r4f̂(r)2
Zs=1 = 0 (B.8)

and

Z ′′s=0 +
Y1k

2 + Y2ω
2

rf̂(r)X
Z ′s=0 +

Y3k
2 + Y4k

4 + 2(D − 2)ω4

r4f̂(r)2X
Zs=1 = 0, (B.9)

where

X = 2(D − 2)ω2 − ((D − 1) + (D − 3)f̂(r))k2,

Y1 = −(2D − 1)(D − 3)f̂(r)2 − (D − 1)(D − 1− (D − 4)f̂(r)),

Y2 = 2(D − 2)(D − 1 + f̂(r)),

Y3 = −(D − 3)r4(f̂ ′(r))2f̂(r)− ((3D − 7)f̂(r) + (D − 1))ω2,

Y4 = ((D − 1) + (D − 3)f̂(r))f̂(r).

(B.10)

These equations can now be solved perturbatively in 1/D in the near-horizon zone in the

usual manner, yielding the results in section 4.1.

– 15 –



J
H
E
P
0
4
(
2
0
1
5
)
0
8
5

C ω(3) for scalar modes

Reω(3) =
1

48R3
0

(
q̂2

R0
−K2

)5/2
[

24q̂12R3
0

−4q̂10R2
0

(
2KR0

(
9 lnR0 + 24ζ(3) + 2π2 + 27

)
− 3

(
8 lnR0 − 8ζ(3) + 4π2 + 21

))
+2q̂8R0

(
8K3R3

0

(
24ζ(3) + π2

)
+12K2R2

0

(
3 ln2 R0 +

(
21 + 2π2

)
lnR0 + 48ζ(3) + 2π2 + 21

)
−4KR0

(
18 ln2 R0 + 3

(
47 + 2π2

)
lnR0 − 12ζ(3) + 31π2 + 159

)
+48 ln2 R0 − 8

(
2π2 − 45

)
lnR0 − 96ζ(3)− 60π2 + 477

)
−q̂6

(
15 + 192K5R5

0ζ(3) + 16K4R4
0

((
6 + 5π2

)
lnR0 + 2

(
63ζ(3) + 5π2

))
+24K3R3

0

(
ln3 R0 + 17 ln2 R0 +

(
23 + 2π2

)
lnR0 + 72ζ(3)− 7π2 + 1

)
−4K2R2

0

(
12 ln3 R0 + 195 ln2 R0 + 8

(
60 + 7π2

)
lnR0 + 192ζ(3) + 184π2 + 57

)
−2KR0

(
−16 ln3 R0 − 252 ln2 R0 +

(
16π2 − 969

)
lnR0 + 96ζ(3) + 52π2 − 819

))
+2K2q̂4R0

(
16K4R4

0

(
π2 lnR0 + 30ζ(3) + 2π2

)
+8K3R3

0

(
18 ln2 R0 + 12

(
3 + π2

)
lnR0 + 198ζ(3) + 17π2

)
−12K2R2

0

(
− ln3 R0 + 11 ln2 R0 +

(
63 + 10π2

)
lnR0 + 8ζ(3) + 37π2 + 2

)
−4KR0

(
4 ln3 R0 + 18 ln2 R0 +

(
22π2 − 135

)
lnR0 + 96ζ(3) + 61π2 − 234

)
+16 ln3 R0 + 180 ln2 R0 + 501 lnR0 + 324

)
−4K4q̂2R2

0

(
24K3R3

0

(
ln2 R0 +

(
2 + π2

)
lnR0 + 2

(
8ζ(3) + π2

))
+4K2R2

0

(
6 ln2 R0 +

(
π2 − 12

)
lnR0 − 9

(
π2 − 8ζ(3)

))
−2KR0

(
− ln3 R0 + 51 ln2 R0 + 6

(
13 + 5π2

)
lnR0 + 10

(
12ζ(3) + 8π2 − 9

))
+4 ln3 R0 + 99 ln2 R0 + 354 lnR0 + 234

)
+8K6R3

0

(
4K2R2

0

(
3 ln2 R0 + 2

(
3 + π2

)
lnR0 + 4

(
6ζ(3) + π2

))
−4KR0

(
6 ln2 R0 + 3

(
6 + π2

)
lnR0 + 12ζ(3) + 8π2

)
+ ln3 R0 + 18 ln2 R0 + 72 lnR0 + 48

)]
, (C.1)
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Imω(3) = 4q̂6R2
0ζ(3)

+
q̂4R0

3

(
3
(
π2 lnR0 + 8ζ(3) + 4π2

)
− 2KR0

(
π2 lnR0 + 30ζ(3) + 2π2

))
+
q̂2

6

(
12K2R2

0

(
ln2 R0 +

(
2 + π2

)
lnR0 + 2

(
8ζ(3) + π2

))
−2KR0

(
12 ln2 R0 +

(
42 + 9π2

)
lnR0 + 48ζ(3) + 29π2

)
+ ln3 R0 + 21 ln2 R0 + 102 lnR0 + 90

)
−K

6

(
4K2R2

0

(
3 ln2 R0 + 2

(
3 + π2

)
lnR0 + 4

(
6ζ(3) + π2

))
−4KR0

(
6 ln2 R0 + 3

(
6 + π2

)
lnR0 + 12ζ(3) + 8π2

)
+ ln3 R0 + 18 ln2 R0 + 72 lnR0 + 48

)
. (C.2)

D Results for (A)dS-Schwarzschild black holes

In this case K = 1 and the eigenvalue q̂2 must be expanded in 1/n like in (4.7). All the

dependence on the cosmological constant is included in

R0 =
1

1− λ
=

L2

L2 + r2
0

, (D.1)

where in the last expression we employ λ = −r2
0/L

2, which is convenient for AdS with

radius L.

Vector-type:

ωr0 = −i(`− 1)

[
1 +

1

n
(`− 1− lnR0)

+
1

n2

((
π2R0

3
− 2

)
(`− 1)− (`− 3 + 2R0) lnR0 +

1

2
(lnR0)2

)
+

1

6n3

(
4(`− 1)

(
π2R0(2R0 + `− 3)− 6R2

0(`− 1)ζ(3)− 6R0ζ(3) + 6
)

+2 lnR0

(
−2
(
6 + π2

)
R2

0 + 3
(
10 + π2

)
R0 +

(
2π2R2

0 − 3
(
2 + π2

)
R0 + 12

)
`− 24

)
+3(lnR0)2

(
−4R2

0 + 8R0 + `− 5
)
− (lnR0)3

)
+O(n−4)

]
, (D.2)
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Scalar-type:

Reω±r0 = ±
√
`− R0

R0

[
1 +

`− 1

2(`− R0)n
((2R0 + 1)`− 4R0 − 2R0 lnR0)

+
`− 1

24(`− R0)2n2

(
16R2

0

(
π2R0 − 6

)
− 3

(
4R2

0 − 12R0 + 1
)
`3

+
(
4
(
3 + 2π2

)
R2
0 −

(
132− 8π2

)
R0 − 9

)
`2 − 4R0

(
2π2R2

0 + 6
(
π2 − 3

)
R0 − 33

)
`

+ 12R0 lnR0

(
4(R0 − 2)R0 + (2R0 − 5)`2 + (11− 4R0)`

)
− 12R0(lnR0)2(R0 + (R0 − 2)`)

)
+

`− 1

48(`− R0)3n3

((
3
(
8R3

0 − 20R2
0 + 6R0 + 1

)
`5 − 2`4(−12

(
π2 − 15

)
R0

+ 8R3
0

(
12ζ(3) + 6 + π2

)
− 12R2

0

(
−4ζ(3) + 15 + 3π2

)
− 3)

+ `3(−4
(
51 + 64π2

)
R2
0 + 16R4

0

(
24ζ(3) + π2

)
− 24R3

0

(
−40ζ(3)− 1 + π2

)
− 2R0

(
96ζ(3)− 447 + 52π2

)
+ 15)

− 8R0`
2(24R4

0ζ(3) + 2R3
0

(
102ζ(3) + 7π2

)
+ R2

0

(
96ζ(3)− 6− 31π2

)
+ R0

(
−96ζ(3) + 114− 61π2

)
+ 81)

+ 8R2
0`
(
8R3

0

(
12ζ(3) + π2

)
+ 2R2

0

(
96ζ(3) + 7π2

)
−2R0

(
60ζ(3)− 21 + 40π2

)
+ 117

)
− 128R3

0

(
π2(R0 − 2)R0 + 6R2

0ζ(3)− 3R0ζ(3) + 3
))

− 2R0 lnR0(16R2
0

(
2
(
3 + π2

)
R2
0 − 3

(
6 + π2

)
R0 + 18

)
+
(
36R2

0 − 84R0 + 69
)
`4

− 2
(
4π2

(
3R2

0 − 3R0 − 2
)

+ 3
(
24R2

0 − 66R0 + 67
))
`3

+
(
8
(
6 + 5π2

)
R3
0 − 36R2

0 − 4
(
45 + 22π2

)
R0 + 501

)
`2

− 4R0

(
4π2R3

0 + 2
(
24 + 7π2

)
R2
0 − 30

(
5 + π2

)
R0 + 177

)
`)

+ 12R0(lnR0)2(−4R2
0

(
2R2

0 − 4R0 + 3
)

+
(
6R2

0 − 13R0 + 10
)
`3 +

(
−24R2

0 + 44R0 − 30
)
`2

+ R0

(
24R2

0 − 46R0 + 33
)
`)− 8R0(lnR0)3

(
R2
0 +

(
3R2

0 − 6R0 + 4
)
`2 − 2R0`

))
+O(n−4)

]
, (D.3)

and

Imω±r0 = −i(`− 1)

[
1 +

1

n
(`− 2− lnR0)

+
1

n2

(
4− 3`+ (`− 2)

π2R0

3
− (2R0 + `− 4) lnR0 +

(lnR0)2

2

)
+

1

n3

((
2R0`

2

(
π2

3
− 2R0ζ(3)

)
+ `

(
8R0(2R0 − 1)ζ(3) + 7− π2

3
R0(13− 4R0)

)
+8

(
π2

3
(2− R0)R0 − R0(2R0 − 1)ζ(3)− 1

))
− lnR0

(
4

(
1 +

π2

3

)
R2
0 − 2

(
6 + π2

)
R0 −

(
2R2

0π
2

3
−
(
2 + π2

)
R0 + 5

)
`+ 12

)
+

1

2
(lnR0)2

(
−4R2

0 + 8R0 + `− 6
)
− (lnR0)3

6

)
+O(n−4)

]
. (D.4)
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