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1 Introduction

The space of asymptotically flat spacetimes which satisfy Einstein’s equations is very rich.

For example, there is an infinite dimensional symmetry group associated to this space

which is known as BMS group [1, 2]. BMS group is intrinsically tied to the null boundary

of any asymptotically flat spacetime, which in turn has a topology of S2 ×R. The group

is a semidirect product of an abelian group of angle-dependent translations along the null

direction (referred to as ‘supertranslations’) times the group of global conformal transfor-

mations of the 2-sphere, the Lorentz group. As asymptotically flat spacetimes have future

as well as past null infinities, the complete group which can be associated to such spaces

is a direct product BMS+ ×BMS−. In a beautiful piece of work [3] Strominger introduced

a remarkable notion of “energy conserving” diagonal subgroup BMS0. It was then shown

in [4] that if we assume BMS0 is a symmetry group of the (perturbative) quantum gravity

S-matrix, then the Ward identities associated to supertranslations are in a precise sense

equivalent to Weinberg’s soft graviton theorem [5] which relates n-particle scattering am-

plitude with (n − 1)-particle scattering amplitude when one of the external particles is a

graviton of vanishing energy. We refer the reader to [3, 4] for more details and for the

precise definition of BMS0.
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A natural question then arises, namely if the subleading soft graviton theorem con-

jectured by Strominger and proved in [6–8]1 is also a manifestation of Ward identities

associated to some symmetry of the perturbative S matrix. In [12] it was argued that the

subleading soft theorem can yield Ward identities associated to ‘extended BMS’ symme-

tries [13, 14]. The extended BMS group is a semidirect product of local (as opposed to

global in the BMS case) conformal group of the two-sphere, also known as Virasoro group,

and supertranslations. However due to difficulties associated to the singular nature of local

conformal Killing vector fields (CKVs) on the conformal sphere, it was not clear how to

obtain the subleading soft theorem from Ward identities.

In [15], motivated by the precise equivalence between supertranslation Ward Identities

and Weinberg’s soft graviton theorem, we argued that the Cachazo-Strominger (CS) the-

orem2 was in fact equivalent to Ward identities associated not to the Virasoro group but

to the group of sphere diffeomorphisms Diff(S2) which belongs not to the ‘extended BMS’

group but to what we called ‘generalized BMS’ group G. This group has the same struc-

ture as the (extended) BMS group, but instead of (local) CKVs of the conformal sphere

one allows for arbitrary smooth sphere vector fields. That is, G is a semidirect product of

diffeomorphisms of the conformal sphere and supertranslations. Based on earlier literature

on radiative phase space and asymptotic symmetries [13, 14, 16–20] it was argued in [15]

that G is a symmetry of Einstein’s equations (with zero cosmological constant) if one al-

lows for arbitrary metrics on the conformal sphere. We then showed that if the charges3 of

the Diff(S2) generators states of the theory were exactly equal to the charges of Virasoro

generators given in [12] then the Cachazo-Strominger theorem was equivalent to the Ward

identities associated to Diff(S2).

A key question left unanswered in [15] was whether the proposed charges could be

derived from canonical methods. The difficulty stem from the fact that the action of G
does not preserve Ashtekar’s radiative phase space (see [21] for a recent review). More

in detail, the radiative phase space Γq depends an a given choice of sphere 2-metric qAB

or ‘frame’4 at null infinity. In contrast to the BMS group, G does not preserve Γq since

the Diff(S2) factor does not preserve the given frame qAB. Thus, the strategy that had

successfully lead to BMS charges [17] could not be applied here.

It is then natural to attempt to work in the space Γ ∼ ∪{q}Γ
q off all radiative phase

spaces on which G acts in a well defined manner. However we were so far lacking a

symplectic structure on Γ. It is here that we turn to covariant phase space methods [22, 23].

It is well known [24] that the symplectic structure on Γq corresponds to the GR co-

variant phase space symplectic structure Ωcov evaluated at null infinity. Here we will show

that Ωcov naturally defines a symplectic structure on (a suitable subspace of) Γ. By real-

izing Γq̊ as a symplectic subspace of Γ, we will be able to derive the G-charges that were

postulated in [15].

1In [6], this theorem was proved in the holomorphic limit. More general proofs were later given in [7, 8].

See [9–11] for earlier work on soft graviton amplitudes.
2Based on earlier papers, we refer to the subleading soft theorem as Cachazo-Strominger theorem.
3Here ‘charge’ refers to what is called ‘flux’ in the radiative phase space literature, i.e. it involves a three

dimensional integral over null infinity.
4We are deviating from the standard radiative phase space terminology in which ‘frame’ denotes a

conformal class of [(qab, n
a)] of metric and null normal [17].
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The outline of the paper is as follows. Section 2 provides the background material for

our discussion. In 2.1 we describe the class of spacetimes under consideration following

closely reference [14]. In 2.2 we review the definition of generalized BMS group G as a

symmetry group of such spacetimes. In 2.3 we recall the definition of radiative phase space

associated to an arbitrary ‘frame’ an introduce the total space Γ of all such radiative phase

spaces. We also introduce certain subspaces with stronger fall-offs in u that play a crucial

role in the later discussion.

Section 3 is the main part of the paper. 3.1 describes the general idea behind our

computation. In 3.2 we show that the covariant phase space symplectic structure induces

a symplectic structure on (suitable subspace of) Γ. In section 3.3 we use this symplectic

structure to derive the charges associated to the generators of Diff(S2). This represents

the main result of the paper. In 3.4 we summarize the analogue results at past null infinity

(our detailed calculations take place in future null infinity). Finally in 3.5 we give a brief

summary of the results presented in [15] on the equivalence between the Diff(S2) Ward

identities and the CS theorem.

In section 4 we argue that subleading soft gravitons can be thought of as Goldstone

modes of a spontaneous symmetry breaking G → BMS, in complete parallel to how leading

soft gravitons are thought as Goldstone modes of a spontaneous symmetry breaking from

supertranslations to translations [4].

We end with the conclusions in section 5.

2 Preliminaries

2.1 Spacetimes under consideration

As in [3, 4, 12] we are interested in spacetimes that are asymptotically flat at both future

and past null infinity. For concreteness we focus on the description from future null infinity;

similar considerations apply to the description from past null infinity. We follow closely

reference [14].

In Bondi coordinates (u, r, xA) the 4-metric is parameterized as

ds2 = (V/r)e2βdu2 − 2e2βdudr + gAB(dx
A − UAdu)(dxB − UBdu), (2.1)

with β, V/r, UA and gAB satisfying the r → ∞ fall-offs

β = r−2β̊ +O(r−3), V/r = V̊ + r−12M +O(r−2), UA = r−2ŮA +O(r−3) (2.2)

gAB = r2qAB + rCAB +
1

4
qABC

2 +O(r−1). (2.3)

Here C2 ≡ CABC
AB (sphere indices are raised and lowered with qAB) and the coefficients

of the 1/r expansion in (2.2) and (2.3) are functions of u and xA except for qAB which,

in contrast to [14], we assume to be u-independent. There is an additional gauge fixing

condition

det(gAB) = r4 det(qAB) (2.4)

– 3 –
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which in particular implies that qABCAB = 0 and that the trace part of the O(1) term of

gAB has the form given in (2.3). We take the trace-free O(1) part of gAB to be zero as in

the original treatment by Sachs (see discussion following eq. (4.38) in [14]).

An important difference with the treatment of [14] is that we do not demand qAB to

be proportional to the unit round metric q̊AB. So far it can be any sphere metric. One

can verify that Einstein equations still imply the relations given in Equations (4.42), (4.36)

and (4.37) of [14]:

V̊ = −1

2
R, β̊ = − 1

32
C2, ŮA = −1

2
DBC

AB, (2.5)

where R and DA are respectively the scalar curvature and covariant derivative of qAB.

Finally, as it will become clear in the next subsection, the natural space of metrics to

consider from the point of view of the generalized BMS group G is one where the area form

of qAB is fixed:
√
q =

√
q̊.

To summarize, we will be interested in spacetime metrics of the form (2.1) parametrized

by ‘free data’ (qAB, CAB)
5 satisfying

∂uqAB = 0,
√
q =

√

q̊, qABCAB = 0. (2.6)

In section 2.3 we describe conditions on CAB as u → ±∞.

2.2 Definition of G

As described in [15], from a spacetime perspective G can be characterized as the group of

diffeomorphisms generated by (non-trivial at null infinity) vector fields ξa preserving the

form of the metric (2.1) and such that they are asymptotically divergence-free (instead of

asymptotically Killing as in the BMS case). Such vector fields are parametrized by a sphere

function f(x̂) (supertranslation) and sphere vector field V A(x̂) according to [14, 15]:

ξaf = f∂u + . . . , ξaV = V A∂A + uα∂u − rα∂r + . . . (2.7)

where α = (DCV
C)/2 and the dots indicate subleading term in the 1/r expansion that

depend on f and V and in the 4-metric ‘free data’. The relations defining the algebra Lie(G)
are obtained by computing the leading terms of the Lie brackets of the vector fields (2.7).

One finds:

[ξf1 , ξf2 ] = 0, [ξV1
, ξV2

] = ξ[V1,V2], [ξV , ξf ] = ξLV f−αf . (2.8)

Thus as in the (extended) BMS case, Lie(G) has a semidirect sum algebra structure, where

supertranslations form an abelian ideal Lie(ST) and Lie(G)/Lie(ST) is the algebra of sphere
vector fields. Similarly to the BMS case, one can also characterize the group G as diffeo-

morphisms of an abstract I preserving certain structure (see section 4.1 of [15]).

By computing the Lie derivative of the metric (2.1) along the vector fields (2.7) one

obtains the following action of Lie(G) on the free data [14, 15]:

δfqAB = 0, δfCAB = fĊAB − 2(DADBf)
TF (2.9)

δV qAB = LV qAB−2αqAB, δV CAB = LV CAB−αCAB+αuĊAB−2u(DADBα)
TF, (2.10)

5This actually is not the totality of free data since there are additional u-independent sphere functions

that arise as integration ‘constants’ [14]. These however play no role in our analysis.
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where ‘TF’ denotes trace-free part with respect to qAB. In appendix A we verify this action

indeed reproduces the algebra (2.8):

[δf1 , δf2 ] = 0, [δV1
, δV2

] = −δ[V1,V2], [δV , δf ] = −δLV f−αf . (2.11)

Here δf and δV are understood as vector fields on the space of free data {(qAB, CAB)}
satisfying (2.6) (strictly speaking −δf and −δV are the vector fields that provide the rep-

resentation of the algebra (2.8)).

Similar analysis on past null infinity yields a generalized BMS group associated to I−.
Thus the total group acting on the spacetimes we are interested in is G+×G−, (G+ is what

we have been calling G). The proposed symmetry group of the gravitational S matrix is

the ‘diagonal’ subgroup G0 ⊂ G+ × G− defined in analogy to Strominger’s BMS0 [15].

2.3 Radiative phase spaces

We first recall the asymptotic conditions on CAB that ensure well-definedness of the radia-

tive phase spaces [17]. The radiative phase space Γq associated to a sphere metric qAB is

given by tensors CAB on I satisfying:

Γq := {CAB : qABCAB = 0, CAB(u, x̂) = u(ρAB)
TF + C±

AB(x̂) +O(u−ǫ)}, (2.12)

where ǫ > 0. Here ρAB is a fixed tensor that depends on qAB; its definition is reviewed

in section 4.1. The radiative phase space traditionally used in the literature is the one

associated to the unit round metric q̊AB on which (ρAB)
TF = 0.

We define Γ as the union of all Γq spaces with given area element
√
q =

√
q̊:

Γ :=
⋃

√
q=

√
q̊

Γq. (2.13)

The properties of ρAB in (2.12) ensure that the action (2.10) preserves the form of the

linear in u term in (2.12), so that indeed G has a well defined action on Γ. The precise

mechanism by which this occurs is described in section 4.1.

As in [15], due to infrared issues, the charges associated to (extended and) generalized

BMS group will be defined on the following subspace of Γq̊:

Γq̊
0 := {CAB ∈ Γq̊ : CAB(u, x̂) = O(u−1−ǫ) as u → ±∞}. (2.14)

We similarly define a subspace Γ on which the covariant phase space symplectic struc-

ture will turn out to be well-defined:

Γ0 :={(qAB, CAB) : ∂uqAB = 0,
√
q=

√

q̊, qABCAB=0, CAB(u, x̂)=O(u−1−ǫ)}. (2.15)

The spaces (2.14) and (2.15) will play an essential role in ensuring integrals in u are

finite. We would like to emphasize however that this way of avoiding IR divergences is

not entirely satisfactory: Γ0 is not preserved by G and Γq̊
0 is not preserved by super-

translations.6 There may be better ways of dealing with these IR issues, for instance by

introducing appropiate counterterms (see footnote 7). We hope to return to this point in

future investigations.

6The analogue of the space Γq̊
0
that was used in [15] actually allows for a u-independent term and hence

is invariant under supertranslations. The stronger condition (2.14) is used here in order to allow for certain

integration by parts in u.

– 5 –



J
H
E
P
0
4
(
2
0
1
5
)
0
7
6

3 Main section

3.1 General idea

In this section we show that starting from the covariant phase space derived from the

Einstein Hilbert action, one can obtain a phase space at null infinity which is coordinatized

not only by radiative degrees of freedom CAB but also by the 2-metric qAB on the conformal

sphere. It turns out that the radiative phase space is a symplectic subspace of this larger

space. This will allow us to compute the corresponding charge, which is well defined on a

(suitable) subspace of Γq̊, where q̊AB is the unit round-metric on the 2 sphere. This is the

main result of the paper, which combined with the result of [15] show that Ward identities

associated to G are equivalent to the CS soft theorem.

The main idea can be summarized as follows. Let

Ωt,g(δ, δ
′) :=

∫

Σt

dSaω
a
g (δ, δ

′), (3.1)

be the standard covariant phase space symplectic form [22, 23] evaluated on a t := r +

u =constant slice Σt. If we characterize 4-metrics gab by the free data (qAB, CAB), the

t → ∞ limit of (3.1) could correspond to a symplectic product defined at I+. However,

one needs to impose conditions on the given fields (qAB, CAB, δ, δ
′) in order for this limit

to be well defined. For instance, for variations δ, δ′ such that δqAB = δ′qAB = 0 and such

that δCAB, δ
′CAB satisfies appropriate fall-offs in u, this procedures reproduces Ashtekar’s

radiative phase space symplectic structure [24]. In section 3.2 we show that if CAB and its

variation are taken to be O(u−1−ǫ) and qAB is allowed to vary, then (3.1) also has a well

defined t → ∞ limit. In other words, the covariant phase space symplectic form induces a

well defined symplectic form on the space Γ0 defined in eq. (2.15).

This is not quite yet what we need, since δV /∈ TΓ0 due the linear in u term in (2.10).

We now explain the computation we are really interested in. Given the phase space Γq̊
0 and

given a symmetry generator V ∈ Lie(G), we would like to compute its associated charge HV

as a function on Γq̊
0. Now in general, given a Hamiltonian Vector field on any phase space,

we first compute the differential of the corresponding Hamiltonian function, which upon

integration yields the corresponding Hamiltonian. This implies that in our case, given the

action of δV what we would really like to compute is

Ω(δV , δ) =: δHV (3.2)

where the variation δ must be along Γq̊
0. As we will see, the symplectic product needed

in (3.2) is still well defined. In other words eq. (3.1) has also a well defined t → ∞ limit

when δ = δV and δ′ ∈ TΓq̊
0.

3.2 Symplectic structure on Γ0

In this section we evaluate the t → ∞ limit of (3.1) on Γ0. The computation simplifies by

working with the symplectic potential

Θt,(q,C)(δ) :=

∫

Σt

dSaθ
a, (3.3)

θa :=
1

2

√
g
(

gbcδΓa
bc − gabδΓc

cb

)

. (3.4)

– 6 –
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Recall t = r + u so that the relevant component will be θt = θr + θu. The limit is taken

t → ∞ with u constant. The variable r will be understood as given by r = t− u.

Before proceeding with the details, we summarize certain salient aspects of the com-

putation which critically use the fall-off conditions on CAB.

(a) We will see that in the limit t → ∞, conditions CAB = O(u−1−ǫ) and δ ∈ TΓ0 will

ensure finiteness of the integrals as well as cancellation of various boundary terms.7

We will discard total variation terms, since they do not contribute to the symplectic

form.

(b) We will find that θt has an 1/r expansion of the form:

θt = rθt1 + θt0 +O(r−1), (3.5)

which gives the following 1/t expansion:

θt = tθt1 + (θt0 − uθt1) +O(t−1). (3.6)

The would-be divergent term tθt1 will turn out to integrate to zero on the space of

C’s we are restricting attention to.

We now proceed with the details of the computation.

The form of the metric (2.1) implies the non-zero term appearing in θt are:

2θt =
√
qe2βr2

(

2gurδΓr
ur + grrδΓr

ur + 2gArδΓr
Ar + gAB(δΓr

AB + δΓu
AB)

− gur(δΓc
cu + δΓc

cr)− gArδΓc
cA

)

. (3.7)

There are 6 terms in (3.7), lets call them (1). . . (6). Setting to zero terms that are O(r−1)

we get:

(1) = −2
√
qδM, (2) = (3) = 0, (5) = 2

√
qδ

˙̊
β, (6) = ŮA∂Aδ(

√
q) . (3.8)

For the space we are interested where
√
q is fixed, the term (6) vanishes and the terms (1)

and (5) are total variations which do not contribute to the symplectic structure. The only

nonzero term is the fourth one in (3.7) so we rewrite θt as:

θt =
1

2

√
qe2βr2gAB(δΓr

AB + δΓu
AB). (3.9)

The relevant Christoffel symbols are (see [14]):

Γr
AB = D(AŮB) +

r

2
ĊAB +

1

8
qAB∂u(C

2) + V̊ rqAB +
1

2
V̊ CAB + 2MqAB +O(r−1) (3.10)

Γu
AB = −1

2
gur∂rgAB = rqAB +

1

2
CAB +O(r−1). (3.11)

7For slower fall-offs of the type which define Γ (eqs. (2.12), (2.13)) there may be a possibility of obtaining

a finite symplectic structure by supplementing the action with counterterms at i0, i±. We have not pursued

this direction here as it is not needed for our analysis.

– 7 –
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We now evaluate the first term in (3.9):

r2e2βgABδΓr
AB = qABδΓr

AB − r−1CABδΓr
AB +O(r−1). (3.12)

In evaluating (3.12) we will discard terms of the form qABδ(fqAB) for any quantity f since

they give a total variation by the identity

√
qqABδ(fqAB) = δ(

√
qf) (3.13)

that follows from qABqAB = 2 and 2δ
√
q =

√
qqABδqAB. Substituting (3.10) in (3.12) we

get

r2e2βgABδΓr
AB = qABδ(DAŮB)−

1

2
CABδĊAB − 1

2
V̊ CABδqAB +

r

2
qABδĊAB + δ()+O(r−1)

(3.14)

where δ() indicates a total variation term. When we substitute r = t − u, the linear in r

term in (3.14) gives a potential diverging linear in t term and a finite term

− u

2
qABδĊAB =

1

2
CABδqAB − ∂u(

u

2
δCAB)q

AB + δ() (3.15)

which we rewrote up to total derivative in u and a total variation. Now, the condition

CAB = O(u−1−ǫ) implies the total derivative in (3.15) as well as the potential diverging

term t
2q

ABδĊAB give a vanishing contribution upon integration.

The second term in (3.9) gives:

r2e2βgABδΓu
AB = qABδΓu

AB − r−1CABδΓu
AB +O(r−1) (3.16)

= −1

2
CABδqAB + δ() +O(r−1) . (3.17)

Note that this term cancels the term in (3.15). Collecting all terms and writing for later

convenience

qABδ(DAŮB) = DAŮBδqAB + δ() (3.18)

we obtain the following expressions for the symplectic potential Θ(δ) := limt→∞Θt(δ)

at I+:

Θ(δ) =
1

4

∫

I
du

√
q
(

−CABδĊAB +
[

2DAŮB − V̊ CAB
]

δqAB

)

. (3.19)

The corresponding symplectic form at I+ is then:

Ω(δ, δ′) =
1

4

∫

I
du

√
q
(

δCABδ′ĊAB − δ(2DAŮB − V̊ CAB)δ′qAB

)

− δ ↔ δ′. (3.20)

We have thus obtained a symplectic form on the space Γ0 defined in eq. (2.15). Clearly,

the radiative phase space Γq̊
0 is symplectic subspace of Γ0.

We conclude with the observation that (3.20) can actually be used for the evaluation

of the symplectic product between δV ∈ TΓ and δ0 ∈ TΓq̊
0.

By introducing a second variation in all steps above, one can verify that:

lim
t→∞

Ωt(δV , δ0) = Ω(δV , δ0), (3.21)

– 8 –
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with Ω given in (3.20). Indeed, there are only two potentially problematic terms in the com-

putation that are described after eq. (3.15). Their contribution to the density ωt(δV , δ0) is:

− t

2
δV q

ABδ0ĊAB + ∂u

(u

2
δ0CAB

)

δV q
AB, (3.22)

where we used that δ0qAB = 0. The condition δ0CAB = O(u−1−ǫ) implies that both terms

in (3.22) integrate to zero. In summary, the symplectic product between δV and δ0 ∈ TΓq̊
0

is well defined and given by evaluation on the form (3.20). This evaluation is used in the

next section to obtain the charge HV .

3.3 Diff(S2) charges

We now apply the above results to find the charge HV satisfying

δHV = Ω(δV , δ), (3.23)

for δV given in eq. (2.10) and for δ ∈ TΓq̊
0, i.e. δCAB = O(u−1−ǫ) and δqAB = 0. Since

we already have a candidate for HV , namely the one postulated in [15], we will just verify

that such HV indeed satisfies (3.23).

HV is a sum of a ‘hard’ quadratic in CAB term and a ‘soft’ linear in CAB term [15]:

HV = Hhard
V +Hsoft

V , (3.24)

Hhard
V :=

1

4

∫

du
√
q ĊAB(LV CAB − αCAB + αuĊAB) (3.25)

Hsoft
V :=

1

2

∫

du
√
q CABsAB, (3.26)

with sAB a symmetric trace-free tensor such that its components in (z, z̄) coordinates are

given by:

szz := D3
zV

z, (3.27)

and corresponding complex conjugated expression (the trace-free condition sets szz̄ = 0).

We now verify that HV satisfies (3.23).

For the r.h.s. of (3.23) we have

Ω(δV , δ) =
1

4

∫

du
√
q
(

δV C
ABδĊAB − δCAB∂u(δV CAB) + (2DAδŮB + δCAB)δV qAB

)

,

(3.28)

where we used that δqAB = 0 and V̊ = −R/2 = −1 since we are at qAB = q̊AB. Using (2.10)

and the corresponding transformations:

δV C
AB = LV C

AB + 4αCAB + αuĊAB − 2u(DADBα)TF (3.29)

δV q
AB = LV q

AB + 2αqAB, (3.30)

one verifies that the ‘hard’ terms in (3.28) combine to give δHhard
V . By integration by parts

one can bring all ‘soft’ terms in a form that is proportional to δCAB. The end result is:

Ω(δV , δ) = δHhard
V +

1

2

∫

du
√
q δCABs′AB (3.31)
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where

s′AB :=

(

2DADBα− 1

2
D(AD

MδV qB)M +D(AVB)

)TF

. (3.32)

We finally show that s′AB = sAB from which (3.23) follows.

From (2.10) and using the identity DMDBXM = XB + 2DBα one finds

DMδV qBM = ∆VB + VB. (3.33)

Using this we can rewrite (3.32) as

s′AB = (D(As
′
B))

TF (3.34)

with

s′A := DADMV M − 1

2
DMDMVA +

1

2
VA. (3.35)

Finally, writing (3.35) in (z, z̄) coordinates and using q̊zz̄[Dz̄, Dz]Vz = Vz one finds

s′z = D2
zV

z. (3.36)

Going back to (3.34) we conclude that s′AB = sAB as desired.

Comment. In order to highlight the role played by the ‘extra’ terms in the symplec-

tic structure (3.20), it is interesting to repeat the computation by writing the symplectic

structure as Ω(δ, δ′) = 1
4

∫

(

δCABδ′ĊAB + δ(2aD(AŮB) + bCAB)δ′qAB

)

− δ ↔ δ′ and set-

ting the correct values a = −1, b = V̊ = −1 at the end of the computation (for the δ

considered here δV̊ = 0 and so V̊ can be treated as a constant). Doing so one obtains:

s′z = D2
zV

z + (1 + a)DzDz̄V
z + (a− b)Vz.

3.4 Past null infinity

A similar analysis to the one given in the previous two subsections goes through for past

null infinity. The form of the metric in that case can be obtained by doing the substitution

v = −u in (2.1). The relevant component of the symplectic potential density is now

θt = −(θr − θv). Thus, the symplectic structure at past null infinity can be obtained by

the replacement u → −v (up to an overall sign). The result is:

Ω−(δ, δ′) =
1

4

∫

I
dv

√
q
(

δC−ABδ′Ċ−
AB + δ(2DAŮ−B − V̊ −C−AB)δ′q−AB

)

− δ ↔ δ′. (3.37)

On the other hand, the transformation rule for C−
AB is the same as for C+

AB except that

the soft factor comes with opposite sign:

δV C
−
AB = LV C

−
AB − αC−

AB + αvĊ−
AB + 2v(DADBα)

TF. (3.38)

The corresponding charge H−
V has thus the same form as (3.24), (3.25), (3.26), with an

opposite sign in the soft term:

s−zz = −D3
zV

z. (3.39)
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3.5 Diff(S2) Ward identities and CS soft theorem

We sketch here how the new symmetry relates to CS soft theorem. We refer to [12, 15] for

further details.

Given a vector field V A and corresponding charges H±
V at future and past null infinity,

the proposed Ward identities arise from assuming the S matrix satisfies:

H+
V S = SH−

V , (3.40)

or equivalently:

Hsoft+
V S − SHsoft−

V = −Hhard+
V S + SHhard−

V . (3.41)

When one takes the matrix element of (3.41) between a n+ particle state 〈out| and a

n− particle state |in〉, the r.h.s. of (3.41) becomes an operator on the scattering amplitude

〈out|S|in〉 that consists of a sum of differential operators acting on the individual particle

labels (momentum and helicity). On the other hand, the l.h.s. of (3.41) can be realized

as creation operators of gravitons with vanishing energy, where the helicity and smeared

momentum direction is determined by V A.

The choice

V A(z, z̄) = KA
(zs,z̄s)

(z, z̄) := (z̄ − z̄s)
−1(z − zs)

2∂z (3.42)

gives, in the first term of the l.h.s. of (3.41), the insertion of a negative helicity outgoing

soft graviton with momentum pointing in the direction determined by (zs, z̄s). By crossing

symmetry the second term in the l.h.s. of (3.41) can be shown to be equal to the first

one. Now, the differential operators arising on the r.h.s. of (3.41) for the choice (3.42)

reproduce those of the CS theorem. In short, for V A = KA
(zs,z̄s)

, eq. (3.41) reproduces

CS soft theorem for a negative helicity graviton (the positive helicity case is obtained by

choosing the complex conjugated vector, V A = K̄A
(zs,z̄s)

).

Conversely, the Ward identities associated to the vector fields (3.42) and its complex

conjugate (which we just argued are equivalent to CS theorem), can be shown to imply the

Ward identity (3.41) for any vector field V A. Essentially the vectors KA
(zs,z̄s)

(z, z̄) have the

role of elementary kernels, and by appropriate smearing in the (zs, z̄s) variables one can

reproduce any desired vector field.

4 Goldstone modes of G

In the case of supertranslation symmetry, it was argued in [4] that as supertranslations map

an asymptotic configuration CAB with zero news NAB = 0 to a distinct configuration

with zero news (by creating a soft graviton), the choice of a particular vacuum implies a

spontaneous breaking of supertranslation symmetry with soft gravitons playing the role of

Goldstone modes.

In this section we argue that one can interpret the subleading soft gravitons in a similar

manner and that they can be thought of as Goldstone modes associated to spontaneous

breaking of G to BMS. At first sight this statement looks obviously wrong as for a given
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choice of the sphere metric, such subleading changes in CAB are not gapless. This can be

seen as follows. Given (CAB, qCD) ∈ Γ, a vector field V ∈ Lie(G) maps it to

δV qAB=LV qAB−2αqAB, δV CAB=LV CAB−αCAB+αuĊAB−2u(DADBα)
TF (4.1)

Whence it naively appears as if a configuration C(0) which has zero news in say Bondi

frame (where the associated qAB = q̊AB) goes to a new configuration C(0)+ δV C
(0) whose

news is given by δNAB = 2(DADBα)
TF. However the above assertion is wrong as it relies

upon the definition of news given by

NAB(u, x̂) = −∂uCAB(u, x̂).

This definition of news is only valid when the metric on S2 is the unit metric q̊AB. In a

generic case there is a slight technicality regarding the news tensor.

Given an arbitrary sphere metric qAB there exists a unique symmetric tensor ρAB[q]

which is implicitly defined via [25]:

ρABq
AB = R[q], D[AρB]C = 0. (4.2)

It can be split into a trace-free part and the trace part as

ρAB = ρ
(0)
AB +

1

2
R[q]qAB, (4.3)

and as shown in [25] ρ(0) [̊q] = 0.

The news tensor associated to a configuration CAB ∈ Γq is then defined as (see for

instance eq. (23) of [26])

NAB(u, x̂) := −∂uCAB(u, x̂)− ρ
(0)
AB(x̂). (4.4)

We thus see that as V ∈ Lie(G) change CAB as well as qAB, the corresponding change in

news is given by

δV NAB(u, x̂) = −∂uδV CAB(u, x̂)− δV ρ
(0)
AB(x̂). (4.5)

In section 4.1 we show that δV ρ
(0)
AB(x̂) is precisely such that a zero news configuration is

mapped into a distinct zero news configuration. Whence the corresponding change in the

news vanishes. That is any element of V ∈ Lie(G) maps a configuration with zero news

to a configuration with zero news because the definition of the news before and after the

action of V refer to different frames. Hence choosing a qAB (and working with Γq) implies

breaking the G symmetry spontaneously to BMS and the subleading soft gravitons can

be thought of as goldstone modes associated to this symmetry breaking as they map one

family of vacua (associated to a given qAB) to a distinct family of vacua associated to a

different qAB.

– 12 –
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4.1 Evaluating δV NAB

From (2.10) and the definition of the news tensor (4.4) we have

δV NAB = −∂uδV CAB − δV ρ
(0)
AB (4.6)

= −LV ĊAB − αuC̈AB + 2(DADBα)
TF − δV ρ

(0)
AB. (4.7)

We now evaluate the last term in (4.7). From δV qAB = LV qAB−2αqAB we have that δV ρAB

is a sum of a Lie derivative term plus a scale transformation term. Since the behaviour of

ρAB under scale transformation is known [25] the effect of the second term can be obtained

explicitly. The total change is found to be:

δV ρAB = LV ρAB + 2DADBα, (4.8)

which in turn implies,

δV ρ
(0)
AB = LV ρ

(0)
AB + 2(DADBα)

TF. (4.9)

When substituting (4.9) in (4.7) the ‘soft’ factors cancel out and one obtains:

δV NAB = −LV ĊAB − αuC̈AB − LV ρ
(0)
AB (4.10)

= LV NAB + αuṄAB, (4.11)

where in the second line we used the definition of the news tensor (4.4) and the fact that

−C̈AB = ṄAB since ∂uρ
(0)
AB = 0.

Thus the news tensor transforms homogeneously. In particular if NAB = 0 then

δV NAB = 0.

5 Conclusions

Analyzing the symmetry structure of the quantum gravity S-matrix is of paramount im-

portance. It has been well known since the 60’s that (at least at the semiclassical level)

this symmetry group contains an infinite dimensional group known as the BMS group.

The relationship of BMS symmetry to infrared issues in Quantum Gravity (for instance

the existence of various superselection sectors) has been rigorously studied by Ashtekar

et al. in the beautiful framework of Asymptotic Quantization [16–20]. This relationship

(of BMS group to infrared issues in quantum gravity in asymptotically flat spacetimes)

got a new lease due to seminal work of Strominger et al. [3, 4, 12]. One of the outcomes

of this recent study is the universality concerning subleading corrections to soft graviton

amplitudes, referred to in this paper as Cachazo-Strominger (CS) soft theorem [6].

A natural question first posed in [12] was if the CS soft theorem could be understood

as Ward identities associated to certain symmetries of the semi-classical S matrix. It was

shown in [12] that the Ward identities associated to Virasoro symmetries contained in the

so-called extended BMS group can be derived from CS soft theorem. However, the question

of how to go in the reverse direction and derive the CS soft theorem from the Virasoro

Ward Identities remained unanswered. In [15] we argued in favor of a different possibility:
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if a different generalization of the BMS group (referred to unimaginatively as generalized

BMS) G was a symmetry of the gravitational S matrix, then the Ward identities associated

to Diff(S2) contained in G were shown to be equivalent to CS soft theorem. Our argument

however relied on an ad-hoc assumption that the charges associated to such symmetries had

the same form as the charges associated to Virasoro symmetries, which (modulo certain IR

issues) could be derived from first principles. The main block for computing such charges

was lack of a suitable phase space on which G acted in a well-defined manner and whose

corresponding charges were finite.

We have filled these gaps in the current paper. Starting from the covariant phase

space associated to Einstein Hilbert action, we derive a phase space at null infinity which

is coordinatized by the well known radiative degrees of freedom as well as the space of

metrics on the conformal sphere. The symplectic structure on this phase space can be used

to compute the charges associated to Diff(S2) which is, rather remarkably well-defined

on an appropriate subspace of the radiative phase space. Surprisingly these charges turn

out to be exactly equal to the charges corresponding to the Virasoro symmetries computed

in [12]. This proves the key assumption that we made in [15] and hence completes the

proof of the equivalence between Ward identities associated to the generators of Diff(S2)

and CS soft theorem.

One of the nice corollaries of our analysis is the representation of G on Γ. However

the symplectic structure arising from the Einstein Hilbert action is only well-defined in the

stronger fall-offs subspace Γ0 ⊂ Γ which unfortunately is not preserved under the action

of G. We believe however that the inclusion of appropriate counter-terms to the action

at i0, i± could yield a well-defined symplectic structure on Γ. If this were to be the case,

we could hope for the action of G to be symplectic on Γ. This would solve another issue

which arose in [15], namely that the charges on radiative phase space which correspond

to subleading soft factors do not close to form an algebra. We hope to come back to this

point in the near future. We finally wish to emphasize that the physical phase space of

the theory really is the radiative phase space (or an appropriate subspace thereof) and

the bigger phase space Γ is an “auxiliary” arena which however is an indispensable tool to

implement G in classical as well as quantum theory.
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A Closure of generalized BMS action

The first relation (2.11) is easily verified. We now show the second and third relations.

Let V3 := [V1, V2]. To shorten notation we will omit ‘V ’ labels and use only subscripts

1, 2, 3. Thus the second equation in (2.11) reads:

[δ2, δ1] = δ3, (A.1)

and Equations (2.10) for V1 become:

δ1CAB = L1CAB − α1CAB + α1uĊAB − 2u(DADBα1)
TF (A.2)

δ1qAB = L1qAB − 2α1qAB, (A.3)

and similarly for V2 and V3. For the computation it is important to keep in mind that the

α’s are in fact independent of the 2-metric qAB due to the condition
√
q =

√
q̊. This can

be seen explicitly by defining α purely in terms of
√
q according to:

LV
√
q = 2α

√
q. (A.4)

We first verify (A.1) along the δqAB direction:

[δ2, δ1]qAB = δ2(L1qAB − 2α1qAB)− 1 ↔ 2 (A.5)

= L1δ2qAB − 2δ2α1qAB − 2α1δ2qAB)− 1 ↔ 2 (A.6)

= L3qAB − 2(L1α2 − L2α1)qAB (A.7)

= δ3qAB. (A.8)

Here we used the fact that δ2α1 = 0 since α1 is independent of qAB as mentioned above

eq. (A.4). In the last equality we used

α3 = L1α2 − L2α1, (A.9)

which directly follows from the definition of α given in (A.4):

2α3
√
q = L3

√
q = (L1L2 − L2L1)

√
q = 2L1(α2

√
q)− 2L2(α1

√
q) = 2(L1α2 − L2α1)

√
q.

(A.10)

For the δCAB direction, one finds

[δ2, δ1]CAB = L1δ2CAB − α1δ2CAB + α1u∂uδ2CAB − 2uδ2(DADBα1)
TF − 1 ↔ 2

= L3CAB − α3CAB + uα3ĊAB − 2uL1(DADBα2)
TF

− 2uδ2(DADBα1)
TF − 1 ↔ 2 ,

(A.11)

where we used similar simplifications as when getting (A.8) above. The ‘hard’ term

in (A.11) corresponds to the hard term of δ3CAB. We now show that the ‘soft’ term

also matches. This amounts to show the equality:

δ2(DADBα1)
TF − L2(DADBα1)

TF − 1 ↔ 2 = (DADBα3)
TF. (A.12)
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The variation δ2 in (A.12) only involve variations along δqAB. It is convenient to write

them as an explicit sum of ‘Lie derivative’ and ‘scale’ terms:

δ2qAB = δL2 qAB + δS2 qAB; δL2 qAB := L2qAB, δS2 qAB := −2α2qAB. (A.13)

In this way, the first term in (A.12) takes the form:

δ2(DADBα1)
TF = δL21 AB + δS21 AB (A.14)

where:

δL21 AB := δL2 (DA)∂Bα1 −
1

2
δL2 (∆)α1qAB − 1

2
∆α1δ

L
2 qAB (A.15)

δS21 AB := δS2 (DA)∂Bα1 −
1

2
δS2 (∆)α1qAB − 1

2
∆α1δ

S
2 qAB . (A.16)

For the δS term one obtains:

δS21 AB = 2D(Aα1DB)α2 − qABDCα1D
Cα2 . (A.17)

Since it is symmetric under 1 ↔ 2 it does not contribute to the l.h.s. of (A.12). For the δL

term, we notice that from the definition of δL2 one has:

δL2 DA = [L2, DA], δL2 ∆ = [L2,∆], (A.18)

from which it follows that (A.15) can be written as:

δL21 AB := L2(DADBα1)
TF −DA∂B(L2α1) +

1

2
∆(L2α1)qAB. (A.19)

The first term in (A.19) cancels the Lie derivative term in (A.12). Including the 1 ↔ 2

term one recovers Equation (A.12) with α3 given in (A.9). This concludes the proof of

eq. (A.1).

We finally show the last relation in (2.11):

[δV , δf ] = −δLV f−αf . (A.20)

Along δqAB direction this relation trivializes to 0 = 0. Evaluating the commutator along

δCAB one finds

[δf , δV ]CAB = (LV f − αf)ĊAB + 2α(DADBf)
TF

+ 2f(DADBα)
TF + 2δV (DADBf)

TF − 2LV (DADBf)
TF. (A.21)

The ‘hard’ term in (A.21) matches the hard term of δLV f−αf . That the ‘soft’ term (dis-

played in the second line) also matches can be shown along similar lines as for the soft

term of [δV1
, δV2

] computed above. Writing δV qAB = δLV qAB + δSV qAB as in eq. (A.13) and

using relations as those given in eqs. (A.17) and (A.19) and finds that the last two terms

in (A.21) combine to

2δV (DADBf)
TF−2LV (DADBf)

TF = −2(DADBLV f)
TF+4D(AαDB)f−2qABDCαD

Cf.

(A.22)

The first term in the r.h.s. of (A.22) is the soft factor of δLV f . The remaining terms combine

to give the soft factor of δ−αf due to the identity:

(DADB(αf))
TF = α(DADBf)

TF + f(DADBα)
TF + (2D(AαDB)f)

TF. (A.23)
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