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1 Introduction

Entanglement entropy is an invaluable tool to explore various aspects of quantum

field theories (QFTs) in diverse dimensions, such as critical phenomena [1–8], confine-

ment/deconfinement phase transition [9–13] and renormalization group flow [14–18]. It

depends on a state of interest and the shape of an entangling surface Σ that divides a

space into a region A and its complement Ā. In the simplest case, Σ is chosen to be a

round sphere (or two endpoints of an interval in two dimensions) which allows us to use

a conformal transformation [5, 19] and obtain analytic results for conformal field theories

(CFTs). Multiple disjoint intervals for CFT2 are examined by [20–24], and small defor-

mations of an entangling surface in CFTd≥3 are perturbatively studied in [25–28] recently.

More general shapes, however, have not been fully understood so far because of the com-

putational complexity, especially in non-conformal field theories.1

A special case is a system with a large mass gap where entanglement entropy can be

expanded in powers of the inverse of the gap. The coefficients appearing in the expansion

1See e.g. [29, 30] for studies on non-conformal theories including finite temperature cases.
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are unknown in general, but are assumed to be integrals of the functions of the extrinsic

curvature and its derivatives of Σ [31]. The entanglement entropy for Σ diffeomorphic to

a circle is examined by [32] for free massive fields in three dimensions, showing that all

the coefficients can be systematically determined by the logarithmic divergences of higher-

dimensional theories that are the consequence of the conformal anomalies (see also [33]).

Similar argument holds for Σ diffeomorphic to multiple disjoint circles.

In this paper, we consider the entanglement entropy of an annulus in QFT3 as a guide

to investigate the phase structure of the ground state.2 For CFT, the finite part of the

entropy is a function of the ratio of the inner and outer radii R1 < R2. Unfortunately,

the conformal transformation used for a spherical entangling surface [19] does not help

us identify the function for the annulus. It, however, was shown in [35] that the strong

subadditivity [36] requires the function is concave with respect to log(R2/R1). In a gapped

system, the finite part of the entropy depends not only on the ratio, but also on the gap

scale, and thus there are no known constraints for the entropy from the strong subadditivity.

To check if the constraints from the strong subadditivity holds for CFT3, or more

generally to fix the dependence on the ratio and the gapped scale, we perform numerical

calculations of the entanglement entropy for a free massive scalar field theory. We put the

scalar field on radial lattice following [37] and compute the mutual information across the

annulus (see figure 2). The mutual information is better than entanglement entropy itself

in a sense that it is free from UV divergences and independent of the regularization scheme.

For a massless scalar field, the strong subadditivity constrains the mutual information to be

a convex function with respect to the ratio of the annulus. We confirm that the convexity

holds in our results and inspect the limits of R2/R1 → 1 and R2/R1 → ∞. In the former

limit, we approximate the thin annulus by a thin strip (see figure 5) and evaluate the

mutual information by dimensional reduction to an interval in (1 + 1) dimensions. In the

latter case, we can conformally map the annulus to two disjoint circles whose entanglement

entropy is studied both numerically and analytically in the large separation limit [38–40].

We find that our fittings are consistent with the analytic results within our numerical

precision. The implementation of the mass is straightforward numerically, and we observe

that the mutual information exponentially decays as the mass increases while fixing the

ratio R2/R1.

Another model we are able to tackle is a strongly coupled QFT holographically dual

to the gravity on the AdS space. The holographic calculation of entanglement entropy,

known as the Ryu-Takayanagi formula [6, 7, 41], associates the given region A in a QFTd

to a codimension-two minimal surface γA satisfying ∂γA = Σ in the AdSd+1 space, and

gives the entropy SA by the area of the surface, SA = Area(γA)/(4GN ). It can be applied

to disjoint regions and exhibits interesting transitions between different minimal surfaces

with the same boundary condition [22], each one of them corresponding to a specific phase

in the dual QFT.

We study the holographic entanglement entropy of the annulus by extending the

work [32] for a disk in a confining gauge theory with a gap described by the CGLP back-

2Refer to [34] as a related work on the fuzzy sphere.
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ground [42]. The entropy given by the area of a minimal surface [6, 7] shows a phase

transition due to the change of the topology [17]. There are four types of minimal surfaces

anchored on the annulus, namely, (1) hemi-torus, (2) two disk, (3) two cylinder, and (4)

one disk and one cylinder (disk-cylinder) types. The last three solutions are superpositions

of the disk- and cylinder-type solutions found in [32]. The first one was also constructed

by [35] in the AdS space. Since the mutual information vanishes for disconnected surfaces

only the hemi-torus solution has a non-zero value. Comparing their areas we classify the

four phases in the (R1, R2)-plane as shown in figure 11. The holographic model also ex-

hibits the exponential decay of the mutual information with respect to the gap with the

ratio R2/R1 fixed.

Based on the observations in the free massive scalar and the holographic models, we

speculate that the mutual information through an annulus decays exponentially as

Iannulus ∼ exp[−#m(R2 −R1)] , (1.1)

in any gapped system with a gap scale m.

2 Entanglement entropy of annulus

In this section, we review general properties of the entanglement entropy for an annulus A

in CFT and a gapped system. We discuss its relation to the mutual information between

the inner disk and the compliment of the outer disk.

2.1 Conformal field theory

In a three-dimensional CFT, the form of the entropy for an annulus A is fixed by the

conformal symmetry,

SA(R1, R2) = α
2π(R1 +R2)

ε
− f(R2/R1) , (2.1)

where the first term obeys the area law with the UV cutoff length ε and the second term

f is a function of the ratio R2/R1 of the radii. This function f should be monotonically

decreasing and convex

f ′(ρ) ≤ 0 , f ′′(ρ) ≥ 0 , (2.2)

with respect to the new variable ρ = log(R2/R1), due to the strong subadditivity

SB + SC ≥ SB∪C + SB∩C . (2.3)

In what follows, we review the derivation of (2.2) given by [35].

Let the regions B and C be a disk of radius R2 and an annulus of radii R1 and R3

with R1 < R2 < R3 as in figure 1 (a). The entanglement entropy for a disk of radius R

takes a form of

Sdisk(R) = α
2πR

ε
− F , (2.4)
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Figure 1. The subsystems B (in light gray) and C (in dark gray) to prove the monotonicity (a)

and the convexity (b) of the function f in (2.1). The striped regions are the intersections B ∩ C.

with a constant F .3 The strong subadditivity (2.3) together with (2.1) and (2.4) yields the

monotonicity in (2.2):

f(R3/R1) ≤ f(R2/R1) . (2.5)

The convexity in (2.2) can be derived similarly by taking both B and C as an annulus of

radii R2 and R4, and an annulus of radii R1 and R3 satisfying R1 < R2 < R3 < R4 as in

figure 1 (b). In the R4 → R3 limit, the strong subadditivity

f(R4/R2) + f(R3/R1) ≤ f(R4/R1) + f(R3/R2) , (2.6)

reduces to the monotonicity of f ′(ρ).

2.2 A gapped system

In theories with a mass gap of order m, the entanglement entropy of a region A has an

expansion in powers of 1/m:

SA = α
`Σ
ε

+ β m`Σ − γΣ +
∞∑
n=0

cΣ
2n+1

m2n+1
, (2.7)

with numerical constants α, β and the topological entanglement entropy γΣ [3, 4]. Here

the γΣ depends on only the topology of the entangling surface Σ = ∂A and detects long-

range order. The dimensionful coefficients cΣ
2n+1 are postulated [31] as local integrals of

3The constant equals to the free energy on S3, F = − logZ(S3) [19].
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functions of the extrinsic curvature and its derivatives on Σ. In other words, entanglement

contributing to cΣ
2n+1 localizes on the entangling surface in the large-m limit due to the

short correlation length of order 1/m.

Applying (2.7) to the annulus A of our interest, the entanglement entropy should take

the form of

SA(R1, R2,m) = α
2π(R1 +R2)

ε
+ 2πβ m (R1 +R2)− γΣ +

∞∑
n=0

cΣ
2n+1

m2n+1
, (2.8)

where Σ is two concentric circles of radii R1 and R2. The coefficients cΣ
2n+1 are polynomials

of the radii of order −(2n+ 1).

2.3 Mutual information

The mutual information between two disjoint regions B and C is defined out of the entan-

glement entropies as

I(B,C) ≡ SB + SC − SB∪C . (2.9)

It is always finite because the area law divergences cancel by definition, and non-negative

because of the subadditivity SB∪C ≤ SB +SC . In addition, the strong subadditivity yields

the monotonicity of the mutual information

I(B,C) ≤ I(B,C ∪D) , (2.10)

for any region D.

To extract the finite parts of the entanglement entropies (2.1) and (2.8) of the annulus

A, we take B and C to be two regions outside A, namely, a disk of radius R1 and the

complement of a disk of radius R2, respectively (see figure 2). We can interpret this mutual

information as how much quantum information is shared by B and C across the annulus

A. Since the entanglement entropy of a given region is equal to that of the complement, SC
and SB∪C equal the entropies of a disk of radius R2 and an annulus of inner and outer radii

R1 and R2, respectively. The mutual information I across the annulus A then reduces to

I(R1, R2) ≡ I(B,C) = Sdisk(R1) + Sdisk(R2)− SA(R1, R2) . (2.11)

In this setup, the inequality (2.10) translates into the monotonicity of I with respect

to the radii R1, R2:

∂

∂R1
I(R1, R2) ≥ 0 ,

∂

∂R2
I(R1, R2) ≤ 0 , (2.12)

which holds for any unitary QFT. The proof proceeds as follows: let B,C be the regions in

figure 2 and D be an annulus of radii R1 + ∆R1 and R2, then the monotonicity I(B,C) ≤
I(B∪D,C) yields I(R1, R2) ≤ I(R1 + ∆R1, R2). Similarly let D be an annulus of radii R1

and R2−∆R, then the monotonicity I(B,C) ≤ I(B,C ∪D) yields I(R1, R2) ≤ I(R1, R2−
∆R2).
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BC

A = B ∪ C

R1

R2

Figure 2. The entangling regions for the mutual information. The region B is a disk of radius R1.

The region C is the complement of a disk of radius R2. The complement of the union of the two

regions B ∪ C is the annulus A in the red colored region.

For CFT, the mutual information becomes

ICFT = f(R2/R1)− 2F , (2.13)

with the constant F in the disk entropy (2.4), and the inequalities (2.12) are equivalent to

the monotonicity of f that was already derived in (2.2).

On the other hand, applying (2.8) for a gapped system to (2.11) leads to

Igapped = γΣ − 2γdisk . (2.14)

Here the m-dependent terms cancel out due to the assumption that the dimensionful co-

efficients cΣ
2n+1 in (2.8) are integrals on the entangling region Σ. Note that the expres-

sion (2.14) would fail for small masses such as mR1 . 1 or m(R2 −R1) . 1 if there could

exist an exponential term like O (exp[−#m]) to (2.7) which can not be seen in the large

mass expansion. We will discuss such a correction in section 5.

In the following sections, we will use these mutual informations (2.13) and (2.14) to de-

termine the function f in CFT and to check whether the large mass expansion formula (2.7)

holds for the annulus.

3 Free massive scalar field

Let us apply the general discussion on the annulus entropy in section 2 to a free massive

scalar field whose action is defined by

I =
1

2

∫
d3x

[
(∂µφ)2 +m2φ2

]
. (3.1)

In this case, the coefficients β and γ in the entropy (2.8) are known to be β = −1/12 and

γ = 0.4 The coefficients cΣ
2n+1 are calculated [32, 33] up to n = 1, being local integrals of

4The topological entanglement entropy vanishes because there is an empty theory in the IR of the

massive scalar theory.
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(a) (b)

Figure 3. The mutual informations I across the annulus of radii R1 and R2 for the free massless

scalar field. (a) The mutual information I (the orange line) has the desired monotonicity and

convexity, and is well fitted by h/(R2/R1 − 1) (the black dotted line). (b) However, this coefficient

h is not a constant and increases with R2/R1 from h ' 1/4 (the black dotted line) to h ' 1/3 (the

blue dotted line).

functions of the extrinsic curvature κ and κ’s derivatives on the Σ. For example,

c1 = −
n0 + 3n1/2

480

∫
Σ
ds κ2 , (3.2)

for n0 free scalar fields and n1/2 free Dirac fermions. In the present case, the entangling

surface is two disjoint disks of radii R1, R2 whose extrinsic curvatures are κ = 1/R1, 1/R2.

Thus cΣ
1 = − π

240(1/R1 + 1/R2) for a single free scalar field. The constant term F of the

disk entropy (2.4) is analytically calculated as the free energy on a three-sphere, Fscalar =

(ln 2)/8− 3ζ(3)/16π2 ' 0.0638 [43]. The mutual informations (2.13) and (2.14) are

Imassless = f(R2/R1)− 2Fscalar , (3.3)

Imassive = 0 . (3.4)

3.1 Numerical results

We perform the numerical calculation by putting a free scalar field on the radial lattice

following [37, 44], whose details can be found in appendix A. The main results are presented

in figure 3 and 4.

Figure 3 shows the mutual information I (3.3) for the free massless scalar field.

The function f satisfies the desired monotonicity and convexity (2.2) with respect to

ρ = log(R2/R1) as is clear in figure 3 (a). The mutual information I asymptotically van-

ishes for large R2/R1, which means that the function f has a finite constant term 2Fscalar.

This suggests that the finite constant term is topological and additive for each connected

component of the entangling surfaces, namely, proportional to the 0-th Betti number b0[Σ]

of Σ. The numerical function I = I(R2/R1) is well approximated by h/(R2/R1 − 1) with

h ' 1/4 for small width, but h monotonically increases to h ' 1/3 for large R2/R1 (see

figure 3 (b)). We therefore propose that f is given by

f(R2/R1) =
h(R2/R1)

R2/R1 − 1
+ 2Fscalar , (3.5)
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Figure 4. The mutual informations I across the annulus of radii R1 and R2 for scalar fields with

different masses m. (a) I monotonically decreases with the mass m (orange→blue→green→red). (b)

In fact, it exponentially decreases with the dimensionless width m(R2 −R1). For m(R2 −R1) & 1,

it shows I ∝ m(R2 + aR1) exp[−bm(R2 −R1)] with a ' 2 ∼ 5 (a = 3 in the figure) and b ' 2.5.

where h(R2/R1) is a mild monotonically increasing function of R2/R1 such that h ' 1/4

for R2/R1 ∼ 1 and h ' 1/3 for R2/R1 � 1. These asymptotic values are consistent with

previous works [40, 45] as will be explained in the next subsections.

The mutual information (3.3) for the free massive scalar field is displayed in figure 4. It

is monotonically decreasing with the mass (i.e., decreasing with mR2 or mR1 while R2/R1

being fixed), and almost vanishes for large mass (figure 4 (a)) as is consistent with (3.4).

In fact, figure 4 (b) demonstrates that the mutual information decays exponentially with a

“dimensionless width” m(R2 −R1),

Imassive ∝ m(R2 + aR1) exp[−bm(R2 −R1)] , (3.6)

with constants a and b. This exponential behaviour satisfies the expected monotonic-

ity (2.12). We will find similar decay even in the holographic model in section 4 and

discuss their possible universality in a gapped phase in section 5.

3.2 Small and large width limits in CFT

The annulus with small width (R2/R1 ≈ 1) can be approximated by a thin strip of width

R2 − R1 extending along a circle of radius 2πR1 as in figure 5.5 The mutual information

for the thin strip of width δ is shown to obey [45, 46]

I ' κ A
δ
, (3.7)

where A is the area of the plane bounding the strip. This behavior was derived by di-

mensionally reducing the thin strip to an interval in (1 + 1) dimensions for free fields and

summing the mutual informations over the Kaluza-Klein modes.

The coefficient κ is calculated for a free massless scalar field [45] to be κ = 0.0397.

Applying (3.7) to our case, we find

I ' 0.0397
2πR1

R2 −R1
=

0.249

R2/R1 − 1
, (3.8)

5We thank T. Takayanagi for drawing our attention to this point.
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(a)

R1
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(b)

Figure 5. A thin annulus (a) can be approximated by a thin strip (b) with compactified direction.

which fits our numerical result in the small width limit (h ' 1/4 in (3.5)) very well. One

may wonder if the small width limit of the mutual information (3.7) is universal and the

coefficient κ counts the number of degrees of freedom in any QFT. We will come back to

this point in section 5 where we calculate κ in a holographic model.

Next, consider the opposite limit where the width is large. Let wi, zi (i = 1, 2) be the

two-dimensional Cartesian coordinates related by an inversion transformation

(z − z0)i = R2
T

(w − w0)i
|w − w0|2

, (3.9)

where w0 is the inversion point. The inverse map is obtained by exchanging the role of w

and z in the transformation with the inversion point at z = z0. RT is a constant which we

can tune arbitrarily.

Consider an annulus in the w-coordinates whose center is at the origin with radii

R1 < R2. Let the points at w2 = 0 on the outer circle be p1, p2 and on the inner circle be

q1, q2. We choose the inversion points w0 and z0 on the real axes at (w1, w2) = (R0, 0) and

(z1, z2) = (R′0, 0), respectively. We assume w0 is inside the annulus, R1 < R0 < R2. Under

the transformation (3.9), the annulus is mapped to two disjoint circles6 (see figure 6) and

the points p1, p2 and q1, q2 are at the intersections of the real axis and circles of radii R′1
and R′2 given by

R′1 = R2
T

R1

R2
0 −R2

1

, R′2 = R2
T

R2

R2
2 −R2

0

. (3.10)

The distance between the centers of the two circles is

r′ = R2
TR0

R2
2 −R2

1

(R2
2 −R2

0)(R2
0 −R2

1)
. (3.11)

6We thank K. Ohmori and Y. Tachikawa for the discussions on this map.
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R1
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w1q1q2 p1p2

w0 z1

R′1

R′2

q1q2p1 p2

z0

r′

Figure 6. The inversion map of an annulus to two disjoint circles. The region inside the annulus

in red color is mapped to the outside of the two circles in red color.

The conformal symmetry implies that the cross ratio7 x is invariant under the conformal

transformation,

x =
|p1 − p2||q1 − q2|
|p1 − q2||p2 − q1|

, (3.12)

which in our case is

x =
4R1R2

(R1 +R2)2
=

4R′1R
′
2

r′2 − (R′1 −R′2)2
. (3.13)

In this way, we can calculate the entanglement entropy of two disjoint circles from that

of the corresponding annulus. The former was studied in [38–40] in the widely separated

limit for a free massless scalar field. The mutual information between the two circles is [40]

I =
1

3

R′1R
′
2

r′2
+O

(
(R′1R

′
2/r
′2)2
)
. (3.14)

The inversion maps (3.10) and (3.11) convert it to the mutual information of the annulus,

I =
1

3

1

R2/R1
+ · · · , (3.15)

in the large width limit (R2/R1 � 1). What we observed in the previous subsection is

nothing but this asymptotic form consistent with numerical result shown in figure 3.

4 Holographic entanglement entropy

In this section, we examine the entanglement entropy of an annulus in CFT3 and a gapped

system holographically described by the Einstein-Hilbert gravity in the (asymptotically)

7There are two cross ratios for four points. The other one is

y =
|p1 − p2||q1 − q2|
|p1 − q1||p2 − q2|

.
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AdS4 space. The holographic formula [6, 7]

SA = min
∂γA=Σ

Area[γA]

4GN
, (4.1)

associates the entropy of a given region A to the area of a codimension-two minimal surface

γA homologous to the region A, i.e., ∂γA = Σ. Figure 9 illustrates the cases for A being

a disk.

If there are multiple extremal surfaces, we always pick one of them with least area

according to the formula (4.1), which yields a transition between minimal surfaces as we

vary a parameter such as a gap scale. In this sense, each extremal surface can be regarded

as a phase in QFT as we will see in the following.

4.1 The AdS4 background

We start with CFT3 dual to the AdS4 background

ds2 = L2dz
2 − dt2 + dr2 + r2dθ2

z2
, (4.2)

with the AdS radius L. The original CFT3 is interpreted to live on the boundary z = 0

(or at z = ε� 1 if UV regularization is needed).

The extremal surface respecting the rotational symmetry of the annulus is a solution

to the equation of motion for the action

I[r(z)] =
πL2

2GN

∫
dz

r(z)
√

1 + r′(z)2

z2
, (4.3)

with the boundary conditions r(0) = Ri (i = 1, 2) on its ends. There are two possible

extremal surfaces depending on their topologies:

• Two disk phase (figure 7 (2)): γA is the superposition of disconnected two disks,

each of them being given by

r(z) =
√
R2
i − z2 , (i = 1, 2) , (4.4)

respectively. This solution always exists independent of the size of the annulus.

• Hemi-torus phase (figure 7 (1)): γA is a connected extremal surface. The analytic

solution is obtained in the following way [47–49]. It consists of two branches in the

(r, z)-plane as

r =

{
R1 exp [−f−(z/r)] ,

R2 exp [−f+(z/r)] ,
(4.5)
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A
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z
z = ε

r

z

R1

R2
(z∗, r∗)

(1) Hemi-torus phase

A γA

z
z = ε

r

z

R2

R1

(2) Two disk phase

Figure 7. Two phases for the minimal surface in the AdS4 background: connected hemi-torus

phase (1) and disconnected two disk phase (2). Here the time t direction is suppressed.

where the functions f±(x) are defined using the incomplete elliptic integrals8 by

f±(x) =
1

2
log(1 + x2)± η xm

[
F
(
ω(x)|η2

)
−Π

(
1− η2, ω(x)|η2

)]
, (4.7)

with the range 0 ≤ x ≤ xm ≡
√

2η2−1
1−η2 and ω(x) = arcsin

[
x/xm√

1−η2(1−x/xm)

]
. The

parameter η in the range η ∈ [1/
√

2, 1] is related to the ratio R2/R1 of the inner and

outer radii of the annulus as

log(R2/R1) = 2η

√
2η2 − 1

1− η2

[
K(η2)−Π(1− η2|η2)

]
. (4.8)

This solution is available only for (1 ≤)R2/R1 < 2.724.

The two disk phase is realized for the large width R2/R1 > 2.724 where it is the unique

solution, while it compete with the hemi-torus phase when R2/R1 < 2.724. In order to

8The definitions of the incomplete elliptic integrals used here are

F(x|m) ≡
∫ x

0

dθ
1√

1−m sin2 θ
,

Π(n, x|m) ≡
∫ x

0

dθ
1

(1− n sin2 θ)
√

1−m sin2 θ
,

(4.6)

and K(m) ≡ F(π/2|m) and Π(n|m) ≡ Π(n, π/2|m).
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Figure 8. The holographic mutual information I across the annulus of radii R1 and R2 for CFT.

This mutual information I = I(R2/R1) has a phase transition at (R2/R1)critical ' 2.4, and vanishes

for R2/R1 > (R2/R1)critical because the disconnected two disk phase is realized.

fix the location of the phase transition, we calculate the mutual information I across the

annulus defined by (2.11). It is clear in the holographic setup that I > 0 signifies the

hemi-torus phase because I = 0 in the two disk phase.9 We benefit from the relevant result

of [49] to get the mutual information in the hemi-torus phase10

Ihemi-torus =
πL2

GN

[
E(η2)− (1− η2)K(η2)√

2η2 − 1− 1
− 1

]
, (4.10)

whose plot is displayed in orange color in figure 8. It is a two-valued function whose

lower branch is always negative and the upper branch intersects with I = 0 at R2/R1 =

(R2/R1)critical ≈ 2.4. Since the holographic formula (4.1) selects the non-negative I, the

physical mutual information is given by Ihemi-torus for R2/R1 < (R2/R1)critical and I = 0

for (R2/R1)critical < R2/R1. It has a kink at R2/R1 = (R2/R1)critical caused by the phase

transition of the extremal surface γA. Comparing with the general form (2.13) of the mutual

information in CFT, figure 8 demonstrates the monotonicity and convexity (2.2) of the

function f with respect to ρ = log(R2/R1). In other words, the holographic entanglement

entropy of an annulus satisfies the strong subadditivity as guaranteed by the holographic

proof based on the minimality of the surfaces [52].

4.2 The CGLP background

We move onto a gapped theory described by an asymptotically AdS geometry whose IR

region (away from the boundary) is capped off. As a concrete example, we use the CGLP

background [42] in M-theory dual to a (2 + 1)-dimensional QFT with a gap scale.

9The mutual information can vanish only in the large-N limit and there are O(1/N) corrections [50, 51]

for finite N . More generally, the mutual information is bounded from below.
10The elliptic integral of the second kind is defined by

E(m) ≡
∫ π/2

0

dθ
√

1−m sin2 θ . (4.9)
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The CGLP background is a (3 + 1)-dimensional geometry times a seven-dimensional

internal manifold, which asymptotes to the AdS4 space times the Stiefel manifold V5,2. In

the Einstein frame, the metric is given by

ds2 = α(u)
[
du2 + β(u)

(
−dt2 + dr2 + r2dθ2

)]
+ gijdy

idyj , (4.11)

where u is the holographic coordinate of the AdS4 ranging from the IR capped-off point

0 to the UV fixed point ∞. yi (i = 1, · · · , 7) are the coordinates of the internal manifold

with a volume

V (u) =

∫ 7∏
i=1

dyi
√

det g , (4.12)

vanishing at u = 0. The functions in the metric are given by

α(u) =
H(u)1/3c2(u)

4
, β(u) =

4

H(u)c2(u)
,

V (u) =
317/8π4ε21/4

2
H7/6(u)(2 + coshu)3/8 sinh3/2

(u
2

)
sinh3/2 u ,

H(u) =
L6

ε9/2
23/2311/4

∫ ∞
(2+coshu)1/4

dt

(t4 − 1)5/2
,

c2(u) =
37/4ε3/2 cosh3(u/2)

2(2 + coshu)3/4
,

(4.13)

with two dimensionful parameters L and ε. The parameter L is the AdS radius near

the boundary, determined by the number of M2-branes N and the Planck length `p as

L ≡ 3−2/32π1/3`pN
1/6. The parameter ε, defining the size of deformation [53], has mass

dimension −4/3, letting H be dimensionless. V appears to depend on ε, but does not

indeed. By rescaling the boundary coordinates (t, r) appropriately, one can remove ε

completely from the metric if one wishes.

Let us take a look at the UV behavior of the metric (4.11) for a moment. When u is

close to the UV cutoff u→ Λ� 1, the function H(u) becomes

H(u)→ 215/433/4 L6 e−9u/4 , (4.14)

and the other functions approach

α(u)→ 9

16
L2 , β(u)→ 23/23−5/2 L−6 e3u/2 ,

V (u)→ 33π4L21/2 , c2(u)→ 2−13/437/4e3u/4 .
(4.15)

The transformation z = 25/431/4L3e−3u/4 takes the metric to the Poincaré coordinates of

the AdS4 space near the boundary

ds2 → L2dz
2 − dt2 + dr2 + r2dθ2

z2
+ · · · . (4.16)
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γdisk

z
z = ε

r

z
z∗

R

(a) disk phase

γdisk

z

z = ε z = z0

r

z
z0

r∗R

(b) cylinder phase

Figure 9. Two phases of the extremal surface in calculating holographic entanglement entropy of

disks in the CGLP background: disk phase (a) and cylinder phase (b). In the Poincaré coordinate

z = 25/431/4L3e−3u/4, the UV boundary u = Λ corresponds to z = ε = 25/431/4L3e−3Λ/4 and the

IR capped-off point u = 0 corresponds to z = z0 = 25/431/4L3. In the cylinder phase, the extremal

surface terminates on the IR capped-off point z = z0.

Since the extremal surface for a small annulus localizes near the boundary, the entan-

glement entropy remains to have the previous two phases shown in figure 7 in the CGLP

background. In addition, there are new phases for a large annulus whose minimal surfaces

can reach and terminate on the IR cap-off as we describe below. These are superpositions

of disk- and cylinder-type solutions for a disk region [17, 32] depicted in figure 9. They have

different topologies as the names suggest, and the cylinder-type solution only exists and

dominates for a large radius. This resembles the situation for a strip region in a gapped

system, which is interpreted as a confinement/deconfinement phase transition [9, 10]. In

the present case, the minimal surface switches from the disk-type to the cylinder-type at

the critical radius R = Rcritical ' 0.72/m, where m = ε−3/4 is the gap scale determined

by the CGLP metric. Taking into account these facts, we end up with three superposed

phases; two disk phase, one disk and one cylinder (disk-cylinder) phase, and two cylinder

phase. The first one has already appeared for CFT in the previous subsection (see figure 7).

The second and third ones are drawn in figure 10. In total, there are the four phases for

the annulus in the CGLP background:

(1) the hemi-torus phase (figure 7 (1)) for R2 −R1 . 1/m.

(2) the two disk phase (figure 7 (2)) for R1, R2 < Rcritical,
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z
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(3) Disk-cylinder phase

A

γA

z

z = ε z = z0

r

z
z0

R2

R1

(4) Two cylinder phase

Figure 10. Two new disconnected phases for the minimal surface in the CGLP background:

disk-and-cylinder phase (3) and two cylinders phase (4). In the Poincaré coordinate z =

25/431/4L3e−3u/4, the UV boundary u = Λ corresponds to z = ε = 25/431/4L3e−3Λ/4 and the

IR capped-off point u = 0 corresponds to z = z0 = 25/431/4L3.

(3) the disk-cylinder phase (figure 10 (3)) for R1 < Rcritical < R2,

(4) the two cylinder phase (figure 10 (4)) for Rcritical < R1, R2,

There are apparently overlaps between the first phase and the others, where the one

with the least entropy is realized. To classify the phase structure, we calculate the holo-

graphic entanglement entropy in a similar way to the previous pure AdS case. The ro-

tational symmetry lets us assume the radial coordinate r of the extremal surface γA as a

(two-branched) function r± = r±(u) of the holographic coordinate u. The area functional

becomes

I [r(u)] =
π

2GN

∑
±

∫
du r±(u) g(u)

√
1 + β(u)(r′±(u))2 , (4.17)

with g(u) = V (u)α(u)β1/2(u). The extremal surface r = r(u) should satisfy the equation

of motion

2 g(u)
√

1 + β(u)(r′(u))2 = ∂u

[
r(u)g(u)β(u)r′(u)√

1 + β(u)(r′(u))2

]
, (4.18)

with the boundary conditions r+(∞) = R2 and r−(∞) = R1. In contrast to the CFT case,

the analytic solution remains to be known. Instead, we employ the numerical calculation

by the “shooting method”.
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• In the hemi-torus phase, we solve the equation of motion (4.18) from the tip (r, u) =

(r∗, u∗) where the two branches meet and have an expansion

r±(u) = r∗ ± 2

√
g(u∗)

g(u∗)β′(u∗) + 2g′(u∗)β(u∗)

√
u− u∗ +O((u− u∗)3/2) . (4.19)

The radii of the annulus (R2, R1) = (r+(u =∞), r−(u =∞)) are functions of (r∗, u∗),

respectively.

• In the three disconnected phases, the extremal surfaces γA for the annulus are ob-

tained just by summing the two extremal surfaces γdisk(R1) and γdisk(R2) for two disks

of radii R1 and R2. The extremal surface γdisk(R) for a disk in the CGLP metric was

obtained [32] as follows. The disk-type solution can be constructed by solving the

equation of motion (4.18) from the tip of the disk (r, u) = (0, u∗), where the extremal

surface shrinks as

r(u) = 2

√
2g(u∗)

2β(u∗)g′(u∗) + g(u∗)β(u∗)

√
u− u∗ +O((u− u∗)3/2) . (4.20)

On the other hand, the cylinder-type solution extends to the IR capped-off point

u = 0 and we solve the equation of motion (4.18) from (r, u) = (r∗, 0) where the

extremal surface terminates and behaves as

r(u) = r∗ +
1

8r∗β(0)
u2 +O(u3) . (4.21)

The disk radius R = r(∞) is given as a function of u∗ or r∗, respectively.

After solving the equation of motion numerically, we compare the holographic entan-

glement entropies (4.17) between the four phases. The resulting phase diagram is presented

in figure 11. It shows that the hemi-torus phase is realized when the width of the annulus

is small against the gap scale. Note that there is no phase for R2/R1 < 1 since R2 is the

outer radius of the annulus.

The mutual information (2.11) across the annulus vanishes in all the disconnected

phases, and I > 0 only in the hemi-torus phase. Figure 12 shows I as a function of

log(R2/R1) with mR2 fixed. It is positive and decreases as R2/R1 becomes large, but

vanishes at some point due to the phase transition from the hemi-torus phase to a discon-

nected phase. It is also monotonically decreasing with the mass for a fixed R2/R1. We will

discuss the mass dependence of the mutual information in the next section.

5 Universal behaviors

In the last two sections, we have dealt with the annulus entropies SA(R1, R2) or the mutual

informations I across the annulus for the free massive scalar theory and the holographic

model. In this section, we will compare these two cases, and attempt to identify universal

behaviors of entanglement entropy.

First we consider the small width limit of the mutual information in CFT. From the

field theory result, we anticipate (3.7) holds even in the holographic model. Since the hemi-

torus phase is always favored in the small width limit, we can make use of the relations (4.8)
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Figure 11. The phase diagram of the entanglement entropy for an annulus of radii R1 and R2.

The hemi-torus phase is favored when the width of the annulus is small compared to the gap scale.
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Figure 12. The holographic mutual information I across the annulus of radii R1 and R2 in a gapped

theory holographically described by CGLP metric. I = I(mR1,mR2) vanishes for large R2/R1

because the phase becomes disconnected, and monotonically decreases with the mass m increased.

and (4.10). A short calculation yields the small width behavior (3.7) with the coefficient

κhol given by11

κhol ≡
L2Γ[3/4]4

2πGN
. (5.1)

It is plausible that κ in (3.7) counts the effective degrees of freedom in a given QFT because

it is proportional to the number of fields in free field theories which characterize the UV fixed

point detected by the small width limit of the mutual information. Indeed, the κhol in the

holographic model decreases under any RG flow thanks to the holographic c-theorem [15,

16, 55, 56] that provides the constraint LUV ≥ LIR for the AdS radii in the UV and IR

11See [54] as a recent related work.
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Figure 13. The exponential decay of the holographic mutual information I with the dimensionless

width m(R2 − R1). For 0.1 . m(R2 − R1) . 0.3, it shows I ∝ mR2 exp[−b′m(R2 − R1)] with

b′ ' 10. For m(R2 − R1) & 0.3, this exponential behavior ends because of the phase transition to

the disconnected phases with I = 0.

fixed points. Similar story may hold for the mutual information through two concentric

(d− 2)-sphere separated by a short distance δ which behaves as I ' κArea(Sd−2)/δd−2 in

d ≥ 4 dimensions [45, 46]. We do not explore this possibility in this paper, but hope to

investigate it in the future.

In a gapped system, we observed the exponential decay of the mutual information (3.6)

for a free massive scalar field. It provides a strong evidence for the validity of the

ansatz (2.7) of the entanglement entropy expanded with respect to the inverse of the gap

scale, whose coefficients are the integrals of local invariants localized on the entangling sur-

face. It also implies the existence of an exponentially suppressed correction to the ansatz

that will never be seen in the large gap expansion. It is of interest to see to what extent the

ansatz (2.7) captures the feature of entanglement entropy in a gapped system. Actually,

our holographic calculation in the CGLP background exhibits the exponential decay of

the mutual information as in figure 13. These observations suggest that the entanglement

entropy in a system with a gap m has a power series expansion of 1/m with an exponential

correction

SA = α
`Σ
ε

+ β m`Σ − γΣ +
∞∑
n=0

cΣ
2n+1

m2n+1
+O(exp[−mδ]) , (5.2)

where δ is proportional to the shortest distance between disjoint entangling surfaces. This

is equivalent to the speculation (1.1) for the mutual information of the annulus where

δ ∝ R2−R1. We conjecture that (5.2) is a universal property in any gapped system. This

resembles the universal thermal corrections in entanglement entropy [57–61] and it would

be intriguing to find a relationship between them.
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A Details of numerical calculations

In this appendix, we summarize the numerical algorithm for calculating the entanglement

entropy of the annulus for a free massive scalar field whose action is given by (3.1).

A.1 Radial lattice discretization

We use the polar coordinates to put the theory on the radial lattice

ds2 = −dt2 + dr2 + r2dθ2 . (A.1)

The radial coordinate r is discretized to N points with lattice spacing a. After the Fourier

decomposition along the angular coordinate θ, the lattice Hamiltonian becomes

H =
1

2

∞∑
n=−∞

 N∑
i=1

π2
n,i +

N∑
i,j=1

φn,iK
i,j
n φn,j

 , (A.2)

where φn,i and πn,i are the discretized scalar field with angular momentum n on the i-th

site and its conjugate, respectively. The matrices Ki,j
n depend on the angular momentum

and the mass m

K1,1
n =

3

2
+n2+(ma)2 , Ki,i

n = 2+
n2

i2
+(ma)2 , Ki,i+1

n = Ki+1,i
n = − i+ 1/2√

i(i+1)
. (A.3)

These are related to the two-point functions of the scalar fields (Xn)ij = 〈φn,iφn,j〉 and the

momenta (Pn)ij = 〈πn,iπn,j〉 as Xn = 1
2K
−1/2
n and Pn = 1

2K
1/2
n .

The outer and inner radii of the annulus are chosen to be half-integers in units of the

lattice spacing, R1/a = r1 + 1/2 and R2/a = r2 + 1/2 with integers r1, r2. This choice

corresponds to the free boundary condition in the continuum limit. In our calculation, we

vary r2 from 100 to 120 and r1 from 5 to r2− 5. The entanglement entropy of the annulus

S(R1, R2) is obtained by using (r2− r1)× (r2− r1) submatrices (Xr1,r2
n )ij and (P r1,r2n )ij of

the correlation functions Xn, Pn with the ranges r1 + 1 ≤ i, j ≤ r2 as

S(R1, R2) = S0 + 2

∞∑
n=1

Sn , (A.4)

where Sn is the contribution from the n-th angular mode

Sn = tr [(Cn + 1/2) log(Cn + 1/2)− (Cn − 1/2) log(Cn − 1/2)] , (A.5)

with Cn ≡
√
Xr1,r2
n P r1,r2n . In the following, we describe how to perform this infinite

summation over n under controlled numerical errors.

A.2 Finite lattice size effect

To avoid the finite lattice size effect, we repeat the calculation of Sn (A.5) by changing the

lattice size N and fit the results Sn(N) with the asymptotic expansion for large N

Sn(N) = Sn(∞) +

kmax∑
k=1

ak
Nk

. (A.6)
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We then read off the constant part Sn(∞) as the value of Sn in the large-N limit. Starting

from N = 200, we increase the lattice size by ∆N = 20 until the resultant Sn(∞) stops

changing up to error δ = 10−6. We choose the fitting parameter kmax so that the maximum

lattice size N is as small as possible. Typically we find kmax = 3 ∼ 10.

The finite lattice size effect dominates only for small angular momenta n with small

masses ma. In our calculation, the maximum lattice size reaches N ∼ 1000 for n . 10 in

the massless case, but N = 200 is sufficiently large for n & 20 or ma & 0.1. The total

numerical error in (A.4) can be estimated to be O(20δ) . O(10−4).

A.3 Large angular momentum

In the large angular momentum limit n→∞, the correlation matrices Xn and Pn approach

almost diagonal matrices [32]. The products of the submatrices Xr1,r2
n P r1,r2n almost equal

to 1/4 times unit matrix up to order 1/n8. The nontrivial entries are at the upper-left

corners

(Xr1,r2
n P r1,r2n )r1+1,r1+1 =

1

4
+
r2

1(r1+1)2

16n4
− r

2
1(r1+1)2(2r1+1)2(m2+2)

32n6
+O(1/n8) ,

(Xr1,r2
n P r1,r2n )r1+1,r1+2 =

r3
1(r1+1)3/2(r1+2)3/2

64n6
+O(1/n8) ,

(Xr1,r2
n P r1,r2n )r1+2,r1+1 =

r2
1(r1+2)3/2(r1−1)1/2(3(r1+1)2−1)

64n6
+O(1/n8) ,

(A.7)

and at the lower-right corners

(Xr1,r2
n P r1,r2n )r2,r2 =

1

4
+
r2

2(r2+1)2

16n4
− r

2
2(r2+1)2(2r2+1)2(m2+2)

32n6
+O(1/n8) ,

(Xr1,r2
n P r1,r2n )r2,r2−1 =

r
3/2
2 (r2−1)3/2(r2+1)3

64n6
+O(1/n8) ,

(Xr1,r2
n P r1,r2n )r2−1,r2 =

r
1/2
2 (r2−1)3/2(r2+1)2(3r2

2−1)

64n6
+O(1/n8) .

(A.8)

Here we restrict the ranges of r1, r2 to 3 ≤ r1 and r1 + 3 < r2 to avoid the overlap between

the upper-left and lower-right corners, which is satisfied in our set up with 5 ≤ r1 ≤ r2−5.

The r2 − r1 − 2 eigenvalues of the matrix
√
Xr1,r2
n P r1,r2n are 1/2 + O(1/n8) and the

other two are given by

1

2
+ c(a)

n − c(a)
n

(2ra + 1)2(m2 + 2)

2n2
, c(a)

n ≡
r2
a(ra + 1)2

16n4
, a = 1, 2 . (A.9)

Therefore, most of the eigenvalues do not contribute to the n-th entanglement entropy (A.5)

up to order 1/n8 and we obtain

Sn =
∑
a=1,2

[
c(a)
n (1− log c(a)

n ) +
(2ra + 1)2(m2 + 2)

2n2
c(a)
n log c(a)

n

]
+O(1/n8) . (A.10)

This asymptotic formula is much faster than the direct calculation of (A.5).
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We perform the matrix trace calculation (A.5) for n less than some large angular

momentum n∗, and use this asymptotic formula (A.10) for n ≥ n∗ as long as Sn(=

O(log n/n4)) is larger than the machine precision. The other higher modes are ignored.

Our n∗ is determined as follows. Let the error of O(1/n8) in (A.10) be µ/n8 with

µ = µ(m, r1, r2). Then the total numerical error in (A.4) is estimated to be
∑∞

n∗
(µ/n8) ∼

µ/(7n7
∗). We take n∗ to be the angular momentum where the asymptotic formula (A.10)

agrees with the matrix trace calculation (A.5) up 7δ/n. Then µ/n8
∗ . 7δ/n∗ holds and the

total numerical error in (A.4) is bounded by
∑∞

n∗
(µ/n8) ∼ µ/(7n7

∗) . δ. In this way, we

can handle the numerical error within O(δ).
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal

field theory, Nucl. Phys. B 424 (1994) 443 [hep-th/9403108] [INSPIRE].

[2] G. Vidal, J.I. Latorre, E. Rico and A. Kitaev, Entanglement in quantum critical phenomena,

Phys. Rev. Lett. 90 (2003) 227902 [quant-ph/0211074] [INSPIRE].

[3] A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96 (2006)

110404 [hep-th/0510092] [INSPIRE].

[4] M. Levin and X.-G. Wen, Detecting Topological Order in a Ground State Wave Function,

Phys. Rev. Lett. 96 (2006) 110405 [INSPIRE].

[5] P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech.

0406 (2004) P06002 [hep-th/0405152] [INSPIRE].

[6] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT,

Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

[7] S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP 08 (2006)

045 [hep-th/0605073] [INSPIRE].

[8] T. Grover, A.M. Turner and A. Vishwanath, Entanglement Entropy of Gapped Phases and

Topological Order in Three dimensions, Phys. Rev. B 84 (2011) 195120 [arXiv:1108.4038]

[INSPIRE].

[9] T. Nishioka and T. Takayanagi, AdS Bubbles, Entropy and Closed String Tachyons, JHEP

01 (2007) 090 [hep-th/0611035] [INSPIRE].

[10] I.R. Klebanov, D. Kutasov and A. Murugan, Entanglement as a probe of confinement, Nucl.

Phys. B 796 (2008) 274 [arXiv:0709.2140] [INSPIRE].

[11] A. Pakman and A. Parnachev, Topological Entanglement Entropy and Holography, JHEP 07

(2008) 097 [arXiv:0805.1891] [INSPIRE].

[12] P.V. Buividovich and M.I. Polikarpov, Entanglement entropy in gauge theories and the

holographic principle for electric strings, Phys. Lett. B 670 (2008) 141 [arXiv:0806.3376]

[INSPIRE].

– 22 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/0550-3213(94)90402-2
http://arxiv.org/abs/hep-th/9403108
http://inspirehep.net/search?p=find+EPRINT+hep-th/9403108
http://dx.doi.org/10.1103/PhysRevLett.90.227902
http://arxiv.org/abs/quant-ph/0211074
http://inspirehep.net/search?p=find+EPRINT+quant-ph/0211074
http://dx.doi.org/10.1103/PhysRevLett.96.110404
http://dx.doi.org/10.1103/PhysRevLett.96.110404
http://arxiv.org/abs/hep-th/0510092
http://inspirehep.net/search?p=find+EPRINT+hep-th/0510092
http://dx.doi.org/10.1103/PhysRevLett.96.110405
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,96,110405
http://dx.doi.org/10.1088/1742-5468/2004/06/P06002
http://dx.doi.org/10.1088/1742-5468/2004/06/P06002
http://arxiv.org/abs/hep-th/0405152
http://inspirehep.net/search?p=find+EPRINT+hep-th/0405152
http://dx.doi.org/10.1103/PhysRevLett.96.181602
http://arxiv.org/abs/hep-th/0603001
http://inspirehep.net/search?p=find+EPRINT+hep-th/0603001
http://dx.doi.org/10.1088/1126-6708/2006/08/045
http://dx.doi.org/10.1088/1126-6708/2006/08/045
http://arxiv.org/abs/hep-th/0605073
http://inspirehep.net/search?p=find+EPRINT+hep-th/0605073
http://dx.doi.org/10.1103/PhysRevB.84.195120
http://arxiv.org/abs/1108.4038
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.4038
http://dx.doi.org/10.1088/1126-6708/2007/01/090
http://dx.doi.org/10.1088/1126-6708/2007/01/090
http://arxiv.org/abs/hep-th/0611035
http://inspirehep.net/search?p=find+EPRINT+hep-th/0611035
http://dx.doi.org/10.1016/j.nuclphysb.2007.12.017
http://dx.doi.org/10.1016/j.nuclphysb.2007.12.017
http://arxiv.org/abs/0709.2140
http://inspirehep.net/search?p=find+EPRINT+arXiv:0709.2140
http://dx.doi.org/10.1088/1126-6708/2008/07/097
http://dx.doi.org/10.1088/1126-6708/2008/07/097
http://arxiv.org/abs/0805.1891
http://inspirehep.net/search?p=find+EPRINT+arXiv:0805.1891
http://dx.doi.org/10.1016/j.physletb.2008.10.032
http://arxiv.org/abs/0806.3376
http://inspirehep.net/search?p=find+EPRINT+arXiv:0806.3376


J
H
E
P
0
4
(
2
0
1
5
)
0
7
2

[13] Y. Nakagawa, A. Nakamura, S. Motoki and V.I. Zakharov, Entanglement entropy of SU(3)

Yang-Mills theory, PoS(LAT2009)188 [arXiv:0911.2596] [INSPIRE].

[14] H. Casini and M. Huerta, A finite entanglement entropy and the c-theorem, Phys. Lett. B

600 (2004) 142 [hep-th/0405111] [INSPIRE].

[15] R.C. Myers and A. Sinha, Seeing a c-theorem with holography, Phys. Rev. D 82 (2010)

046006 [arXiv:1006.1263] [INSPIRE].

[16] R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions, JHEP 01 (2011)

125 [arXiv:1011.5819] [INSPIRE].

[17] H. Liu and M. Mezei, A refinement of entanglement entropy and the number of degrees of

freedom, JHEP 04 (2013) 162 [arXiv:1202.2070] [INSPIRE].

[18] H. Casini and M. Huerta, On the RG running of the entanglement entropy of a circle, Phys.

Rev. D 85 (2012) 125016 [arXiv:1202.5650] [INSPIRE].

[19] H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement

entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].

[20] P. Calabrese, J. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in

conformal field theory, J. Stat. Mech. 0911 (2009) P11001 [arXiv:0905.2069] [INSPIRE].

[21] P. Calabrese, J. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in

conformal field theory II, J. Stat. Mech. 1101 (2011) P01021 [arXiv:1011.5482] [INSPIRE].

[22] M. Headrick, Entanglement Renyi entropies in holographic theories, Phys. Rev. D 82 (2010)

126010 [arXiv:1006.0047] [INSPIRE].

[23] T. Hartman, Entanglement Entropy at Large Central Charge, arXiv:1303.6955 [INSPIRE].

[24] T. Faulkner, The Entanglement Renyi Entropies of Disjoint Intervals in AdS/CFT,

arXiv:1303.7221 [INSPIRE].

[25] V. Rosenhaus and M. Smolkin, Entanglement Entropy: A Perturbative Calculation, JHEP

12 (2014) 179 [arXiv:1403.3733] [INSPIRE].

[26] V. Rosenhaus and M. Smolkin, Entanglement entropy, planar surfaces and spectral functions,

JHEP 09 (2014) 119 [arXiv:1407.2891] [INSPIRE].

[27] A. Allais and M. Mezei, Some results on the shape dependence of entanglement and Rényi
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