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1 Introduction

The recent measurement of the reactor mixing angle by the Daya Bay [1], RENO [2],

and Double Chooz [3] collaborations has heralded the beginning of the age of precision

lepton measurements and has opened the door for direct observation of CP violation in

the lepton sector. With the assumption of three light neutrino species, the pattern of

the lepton mixing angles of the Maki-Nakagawa-Sakata-Pontecorvo (MNSP) lepton mixing

matrix, UMNSP [4] is now on firm experimental ground, with two large angles associated

with atmospheric and solar neutrino oscillations, and the reactor mixing angle, which is of

the order of the Cabibbo angle of the quark sector, modulo O(1) factors. While there are

no direct experimental limits on the CP-violating phases of UMNSP, global fits to lepton

mixing parameters [5–7] may already be providing compelling hints for the existence of

“Dirac”-type CP violation in the lepton mixing, begging theorists to be prepared for its

possible future measurement.

Of the possible theoretical approaches to explaining the origin of lepton family mixing,

perhaps the most provocative in the case that neutrinos are Majorana particles is the

assumption of a high scale discrete flavor symmetry group that is spontaneously broken

to a residual Klein symmetry at low energies. This residual Klein symmetry completely

fixes the elements of UMNSP in the diagonal charged lepton basis (up to charged lepton

rephasing), though it fails to provide concrete predictions for the Majorana phases, α21 and

α31 [4]. However, recent work [8] concerning the consistent implementation of a generalized

CP symmetry alongside such a flavor symmetry has changed this situation. As such many

models and analyses of CP and flavor symmetries have been studied, e.g. A4 [9]/∆(3n2) [10,

11], S4 [12–16]/∆(6n2) [11, 17–19], Σ(nφ) [20], and T ′ [21].1 In this context, the goal of

the present work is not to construct a specific top-down model of this type, but instead

to understand how the measured lepton mixing parameters shape the residual CP and

1CP has also been studied “model-independently” with a single preserved Z2 residual neutrino flavor

symmetry [22–26].
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flavor symmetries from a bottom-up perspective, which can provide a useful guideline for

theoretical model-building within this general framework.2

This paper is structured as follows. In section 2, after reviewing the existence of a resid-

ual Klein symmetry for Majorana neutrinos, we determine its group elements and the gen-

eral Majorana neutrino mass matrix as functions of the observed leptonic mixing parame-

ters. In section 3, the residual CP symmetries consistent with such a remnant Klein symme-

try are found and expressed in terms of mixing angles and CP-violating phases. We also dis-

cuss the possible origins of nontrivial CP-violating phases for scenarios in which generalized

CP and flavor symmetries are nontrivially connected. In section 4, we demonstrate how our

model-independent results reproduce key results in previous literature, and also elucidate a

new example based on a particular golden ratio mixing pattern [32, 33] that can be obtained

e.g. in A5 models [34–36]. Finally in section 5, we summarize and present our conclusions.

2 Klein symmetry and the neutrino sector

We begin with an overview of the Klein symmetry in lepton mixing, which relies on the

assumption that the neutrinos are Majorana fermions (for a review, see ref. [37]). If neu-

trinos are Majorana, the neutrino mass matrix Mν is complex symmetric, i.e., Mν = MT
ν ,

and hence can be diagonalized by a unitary matrix, Uν , as follows:

UT
ν MνUν = MDiag

ν = Diag(m1,m2,m3) = Diag(|m1|e−iα1 , |m2|e−iα2 , |m3|e−iα3), (2.1)

in which the α1,2,3 are Majorana phases [38–40]. Here we emphasize that for reasons which

will become apparent shortly, we choose to leave the neutrino mass eigenvalues as complex

parameters, and hence our expression for Uν is related to the standard version in which

the neutrino masses are real and positive by the replacement of Uν → UνPMaj, in which

PMaj = Diag(eiα1/2, eiα2/2, eiα3/2).

Notice the lack of complex conjugation in eq. (2.1). This is in contrast to the di-

agonalization of the charged lepton mass matrix me, or more precisely of the Hermitian

combination Me = mem
†
e, which takes the form

U †
eMeUe = MDiag

e = Diag(|me|2, |mµ|2, |mτ |2). (2.2)

Eqs. (2.1)–(2.2) have suppressed unphysical phase redundancies that can be restored with

the introduction of phase matrices

Qe = Diag(eiβ1 , eiβ2 , eiβ3), Qν = Diag(±1,±1,±1), (2.3)

in which the β1,2,3 are arbitrary phases associated with the freedom to rephase the charged

lepton fields, and the entries of Qν are constrained by the lack of complex conjugation in

eq. (2.1) to be only ±1. Hence, eq. (2.1) can be re-expressed as

MDiag
ν = QT

ν U
T
ν MνUνQν , (2.4)

2Refs. [27–31] have used similar methods as described in this work to find flavor symmetry groups

containing viable flavor subgroups.
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while eq. (2.2) becomes

MDiag
e = Q†

eU
†
eMeUeQe. (2.5)

Using eqs. (2.4)–(2.5), the lepton mixing matrix UMNSP then takes the form

UMNSP = Q†
eU

†
eUνQν . (2.6)

From the above, it is tempting to identify the nonzero entries of Qν as contributions to

the Majorana phases, but we prefer to keep Qν separate from α1,2,3 so that we can later

identify the two phase differences (α2,3 − α1)/2 with the Majorana phases of the PDG

parametrization of UMNSP [4] (recall these phases are encoded here in the neutrino mass

eigenvalues). A further simplification of eq. (2.6) clearly occurs when we work in a basis in

which the charged leptons are diagonal. In this case, UMNSP = UνQν , up to charged lepton

rephasing. For the time being, we will work for simplicity in the diagonal charged lepton

basis, and comment later on the effects of charged lepton corrections, which can occur at

a subleading level in many scenarios in the literature.

With these assumptions, it is insightful to analyze the residual symmetries of the

neutrino sector to understand the possible symmetries involved in lepton mixing. We

begin with the diagonalized Majorana neutrino mass matrix in eq. (2.1), MDiag
ν , which

obeys the following relation (as seen from eq. (2.4)):

MDiag
ν = QT

ν M
Diag
ν Qν . (2.7)

The eight possible Qν thus represent residual symmetry transformations in the basis in

which the neutrino mass matrix is diagonal. Further requiring that these transformations

have Det(Qν) = +1 reduces this set to only four remaining transformations (the set with

Det(Qν) = −1 is clearly physically redundant): the identity GDiag
0 = 13×3, and

GDiag
1 =







1 0 0

0 −1 0

0 0 −1






, GDiag

2 =







−1 0 0

0 1 0

0 0 −1






, GDiag

3 =







−1 0 0

0 −1 0

0 0 1






. (2.8)

These transformations satisfy

(GDiag
i )2 = 1 , for i = 0, 1, 2, 3,

GDiag
0 GDiag

i = GDiag
i , for i =1, 2, 3,

GDiag
i GDiag

j = GDiag
k , for i 6= j 6= k 6= 0.

(2.9)

Hence, these matrices furnish a representation of the Klein symmetry group, K4
∼= Z2×Z2.

Using this information and the diagonalization condition of eq. (2.1), it is straightforward

to see that the (undiagonalized) neutrino mass matrix Mν also possesses a Klein symmetry:

Mν = GT
i MνGi, (2.10)

in which the Gi is related to GDiag
i by

Gi = UνG
Diag
i U †

ν . (2.11)

Therefore, the Gi form another representation/basis of K4 that is related to the diagonal

representation/basis of eq. (2.8) through eq. (2.11).3 Due to the form of the transforma-

3G1, G2, G3 are also known in the literature as SU , S, and U respectively.
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tion defined in eq. (2.11), each of the Gi=1,2,3 has a nondegenerate +1 eigenvalue and two

degenerate -1 eigenvalues with the eigenvectors associated with the nondenerate +1 eigen-

values forming columns of Uν .
4 Therefore, eq. (2.11) provides the mapping of the diagonal

Z2×Z2 Klein elements to the more “useful” basis associated with the leptonic mixing angles

of Uν . This change of basis will allow the use of low energy mixing parameters as inputs

to reveal the residual Klein generators, neutrino mass matrix, and allowed generalized CP

symmetries.

We begin by discussing the Klein generators. As previously mentioned, the diagonal

elements of the residual low energy Klein symmetry may be transformed into a new set of

Klein elements which are functions of the angles in the lepton mixing matrix, Uν , by virtue

of eq. (2.11). To this end, we will first parametrize Uν as follows:

Uν = PRx(θ23, δx)Ry(θ13, δy)Rz(θ12, δz), (2.12)

in which

Rx(θ23, δx) =







1 0 0

0 c23 s23e
−iδx

0 −s23e
iδx c23






, Ry(θ13, δy) =







c13 0 s13e
−iδy

0 1 0

−s13e
iδy 0 c13






,

Rz(θ12, δz) =







c12 s12e
−iδz 0

−s12e
iδz c12 0

0 0 1






, P =







1 0 0

0 1 0

0 0 −1






.

(2.13)

(The advantage of introducing the matrix P will be discussed shortly.) Upon expanding

eq. (2.12), Uν takes the form

Uν =







c12c13 c13s12e
−iδz s13e

−iδy

−c23s12e
−iδz − c12s13s23e

−i(δx−δy) c12c23 − s12s13s23e
−i(δx−δy+δz) c13s23e

−iδx

c12c23s13e
iδy − s12s23e

i(δx+δz) c23s12s13e
i(δy−δz) + c12s23e

iδx −c13c23






,

(2.14)

in which sij = sin(θij) and cij = cos(θij). In this symmetric parametrization, each mixing

angle comes with an associated phase, cf. eq. (2.13); we choose this as the starting point

because it clearly captures the phase degrees of freedom in Uν . However, the ensuing discus-

sion can be simplified with a judicious choice of rephasings, as follows. First, let us define

P ′ = Diag (1, exp (−iδz) , exp (−i(δz + δx))) .

Then, it is easy to see that

P ′Uν(θ23, θ13, θ12, δ)P
′∗ =







c12c13 c13s12 s13e
−iδ

−c23s12 − c12s13s23e
iδ c12c23 − s12s13s23e

iδ c13s23
−s12s23 + c12c23s13e

iδ c12s23 + c23s12s13e
iδ −c13c23






,

(2.15)

4We also note that if one applies eq. (2.11), to the unphysical phase matrices Qν with -1 determinant,

the resulting matrices are −G0,−G1,−G2,−G3, justifying their earlier dismissal.
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in which we have defined the quantity δ = δy − δx − δz. Notice that left multiplication

by P and P ′ in eqs. (2.12) and (2.15) is possible by charged lepton phases redefinition.

Additionally, multiplication by P ′∗ on the right is equivalent to redefining the Majorana

phases on the (complex) neutrino masses.

Using the above parametrization of Uν , the definitions for the diagonal generators

GDiag
i given in eq. (2.8), and the relation between diagonal and angle dependent represen-

tations of the Z2 × Z2 symmetry in eq. (2.11), allows for the explicit calculation of the

Hermitian matrices Gi=1,2,3:

G1 =







(G1)11 (G1)12 (G1)13
(G1)

∗
12 (G1)22 (G1)23

(G1)
∗
13 (G1)

∗
23 (G1)33






, G2 =







(G2)11 (G2)12 (G2)13
(G2)

∗
12 (G2)22 (G2)23

(G2)
∗
13 (G2)

∗
23 (G2)33






,

G3 =







−c′13 e−iδs23s
′
13 −e−iδc23s

′
13

eiδs23s
′
13 s223c

′
13 − c223 −c213s

′
23

−eiδc23s
′
13 −c213s

′
23 c223c

′
13 − s223






,

(2.16)

where sij = sin(θij), cij = cos(θij), s
′
ij = sin(2θij), c

′
ij = cos(2θij), and

(G1)11 = c213c
′
12 − s213,

(G1)12 = −2c12c13

(

c23s12 + e−iδc12s13s23

)

,

(G1)13 = 2c12c13

(

e−iδc12c23s13 − s12s23

)

,

(G1)22 = −c223c
′
12 + s223

(

s213c
′
12 − c213

)

+ cos(δ)s13s
′
12s

′
23,

(G1)23 = c23s23c
2
13 + s13

(

i sin(δ)− cos(δ)c′23
)

s′12 +
1

4
c′12

(

c′13 − 3
)

s′23,

(G1)33 =
(

s213c
′
12 − c213

)

c223 − s223c
′
12 − cos(δ)s13s

′
12s

′
23,

(G2)11 = −c′12c
2
13 − s213,

(G2)12 = 2c13s12

(

c12c23 − e−iδs12s13s23

)

,

(G2)13 = 2c13s12

(

e−iδc23s12s13 + c12s23

)

,

(G2)22 = c′12c
2
23 − s223

(

c213 + s213c
′
12

)

− cos(δ)s13s
′
12s

′
23,

(G2)23 = e−iδs13s
′
12c

2
23 +

1

4
s′23

(

2c213 − c′12
(

c′13 − 3
))

− eiδs′12s13s
2
23,

(G2)33 = −c223
(

c213 + s213c
′
12

)

+ s223c
′
12 + cos(δ)s13s

′
12s

′
23.

(2.17)

Hence, for any choice of the mixing angles and Dirac phase, we can obtain a representation

of the Klein group elements that are responsible for this prediction, cf. eq. (2.16). Note that

these results are independent of the Majorana phases, as can be seen from the fact that

eq. (2.11) is invariant under the transformation Uν → UνPMaj. This feature is the reason

why we choose to keep the neutrino mass eigenvalues complex and eliminate the Majorana

phases in Uν . We further comment that with the inclusion of the as yet unexplained matrix

P in eq. (2.12), the eigenvector associated with the +1 eigenvalue of each of the above Gi

is exactly the ith column of Uν in eq. (2.15), up to redefinition of Majorana phases.

– 5 –
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To conclude this section, we will explicitly construct the form of the complex symmetric

neutrino mass matrix that is invariant under the Klein group elements in eq. (2.16) and

diagonalized by eq. (2.1), resulting in the complex neutrino mass eigenvalues m1,2,3. This

is of course easily done by rewriting eq. (2.1) in the form Mν = U∗
νM

Diag
ν U †

ν , and using the

form of Uν derived in eq. (2.15). The results are as follows:5

(Mν)11 = c213m2s
2
12 + c212c

2
13m1 + e2iδm3s

2
13,

(Mν)12 = c13(c12m1(−c23s12 − c12e
−iδs13s23) +m2s12(c12c23 − e−iδs12s13s23)+

+ eiδm3s13s23),

(Mν)13 = c13(−c23m3s13e
iδ +m2s12(c12s23 + c23e

−iδs12s13)+

+ c12m1(−s12s23 + c12c23e
−iδs13)),

(Mν)22 = m1(c23s12 + c12e
−iδs13s23)

2 +m2(c12c23 − e−iδs12s13s23)
2 + c213m3s

2
23,

(Mν)23 = m1(s12s23 − c12c23e
−iδs13)(c23s12 + c12e

−iδs13s23)+

+m2(c12s23 + c23e
−iδs12s13)(c12c23 − e−iδs12s13s23)− c213c23m3s23,

(Mν)33 = m2(c12s23 + c23e
−iδs12s13)

2 +m1(−s12s23 + c12c23e
−iδs13)

2 + c213c
2
23m3.

(2.18)

In the above, there is still the freedom to globally rephase masses and remove the phase

from m1 to render it real and positive. If this redefinition is performed, the number of

phases is reduced to 3, i.e., the 2 Majorana phases on m2 and m3 and the Dirac phase

δ. Notice that the phase δ is identified easily as the Dirac CP-violating phase from our

above parametrization, as can be checked from the calculation of the Jarlskog invariant [41]

(see [42–54] for other possible weak basis invariants).

3 General residual CP symmetries

Since we have constructed the form of the Klein symmetry for arbitrary mixing parameters

and the most general neutrino mass matrix consistent with this symmetry, we now turn to

the determination of the generalized CP transformations, X, that are consistent with this

residual Klein symmetry. This is done first by noting that the generalized CP symmetries,

X, must satisfy the low energy condition [42]

XTMνX = M∗
ν . (3.1)

By rotating Mν to the basis in which it is diagonal, it is straightforward to derive that

X = UνX
DiagUT

ν , (3.2)

5Recall that the power of the residual Klein symmetry is that it fixes all of the mixing parameters ex-

cept the Majorana phases. In contrast, if only a subgroup of this Klein symmetry is retained, there is an

additional freedom to shift some of the mixing parameters. For example, if the subgroup retained is the

Z2 symmetry given by the identity and G2, then the fact that GDiag
2 is invariant under the transformation

G
Diag
2 → R†

y(θ, η)G
Diag
2 Ry(θ, η) for any value of θ, η will mean that the corresponding mixings can shift non-

trivially as functions of these parameters; see e.g. ref. [9] for an explicit example of the type within A4 models.

Clearly, however, this freedom to shift the mixings is not permitted if the full Klein symmetry is intact.

– 6 –
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in which XDiag is given by

XDiag =







±eiα1 0 0

0 ±eiα2 0

0 0 ±eiα3






. (3.3)

where α1,2,3 are the Majorana phases as given in eq. (2.1). Equivalent expressions for X

have been given previously in the literature [12, 55], in which the Majorana phases that

appear in eq. (3.3) have been absorbed into the definition of Uν .

We pause here to comment on the role of overall phases of the X transformation. If a

global phase redefinition is performed on Mν , i.e., Mν → eiθMν , then X → e−iθX to keep

eq. (3.1) invariant. This global rephasing of Mν does not affect the mixing angles or the

observable CP phases of the lepton sector, and hence it is unphysical. However, the form of

X in eq. (3.3) is provided to keep the role of the individual Majorana phases in generalized

CP transformations explicit, even though the freedom still exists to remove an overall phase.

The Majorana assumption also introduces unphysical ±1 phases on each entry of the

mass matrix, allowing eq. (3.3) to be rewritten in terms of the Klein symmetry elements as

XDiag
i = GDiag

i ×Diag(eiα1 , eiα2 , eiα3) for i = 0, 1, 2, 3, (3.4)

in which the redundant negative determinant solutions have been discarded as previously

was done when deriving the Klein symmetry elements. Importantly, from the above equa-

tion it is possible to see that the XDiag
i represent a complexification of the GDiag

i of eq. (2.8).

From eq. (2.9) and eq. (3.4), it is straightforward to deduce that

XDiag
i (XDiag

i )∗ = G0 = 1 for i = 0, 1, 2, 3,

XDiag
0 (XDiag

i )∗ = GDiag
i for i = 1, 2, 3,

XDiag
i (XDiag

j )∗ = GDiag
k for i 6= j 6= k 6= 0.

(3.5)

Then, it becomes clear from eq. (3.5) that

XiX
∗
i = G0 = 1 for i = 0, 1, 2, 3,

X0X
∗
i = Gi for i = 1, 2, 3,

XiX
∗
j = Gk for i 6= j 6= k 6= 0.

(3.6)

Hence,6

XiX
∗
i = 1 for i = 0, 1, 2, 3,

(X0X
∗
i )

2 = 1 for i = 1, 2, 3,

(XiX
∗
j )

2 = 1 for i 6= j 6= 0

(3.7)

must always be conditions fulfilled by the generalized CP symmetries that are to be con-

sistent with a residual Klein flavor symmetry group.

6Eq. (3.6), can also be obtained by demanding that two subsequent generalized CP transformations

leave the mass matrix unchanged. Namely, X†
jX

T
i MνXiX

∗
j = Mν .
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We comment here that if XiX
∗
j = G′ 6= Gk but instead some other symmetry transfor-

mation, then the residual symmetry group of the neutrino mass matrix will be larger than

the original Z2×Z2 Klein symmetry. Recall that a Klein symmetry completely determines

the lepton mixing matrix UMNSP (up to charged lepton rephasing) in the diagonal charged

lepton basis, while leaving the complex neutrino masses as arbitrary parameters. Therefore,

a residual symmetry larger than a Klein symmetry introduces additional constraints on the

neutrino mass matrix that lead to unphysical predictions for the masses and mixings, such

as degeneracy of one more of the neutrino masses, cf. eq. (2.7). It is also worthwhile to

remark here that if only part of the Klein symmetry is preserved, then mixing will not com-

pletely be determined and additional free parameters will enter the neutrino mixing matrix.

Either of these cases will not be considered in the approach outlined in this work because a

phenomenologically viable framework in which the mixings are completely determined by

the residual symmetry is the focus of this work (see ref. [55] for an alternative treatment

of a partially broken Klein symmetry consistent with a generalized CP symmetry).

In order to obtain more useful forms for the Xi, eq. (3.2) should be expanded to reveal

the most general CP symmetry consistent with an unbroken Klein symmetry. Performing

this expansion reveals the most general form of the symmetric Xi = XT
i , as follows:

X11 = (−1)aeiα1c212c
2
13 + (−1)beiα2c213s

2
12 + (−1)cs213e

i(α3−2δ),

X12 = (−1)a+1eiα1c12c13(c23s12 + c12s13s23e
iδ) + (−1)beiα2c13s12(c12c23−

− s12s13s23e
iδ) + (−1)cc13s13s23e

i(α3−δ),

X13 = (−1)a+1eiα1c12c13(s12s23 − c12c23s13e
iδ) + (−1)beiα2c13s12(c12s23+

+ c23s12s13e
iδ) + (−1)c+1c13c23s13e

i(α3−δ),

X22 = (−1)aeiα1(c23s12 + c12s13s23e
iδ)2 + (−1)beiα2(c12c23 − s12s13s23e

iδ)2+

+ (−1)ceiα3c213s
2
23,

X23 = (−1)aeiα1(s12s23 − c12c23s13e
iδ)(c23s12 + c12s13s23e

iδ)+

+ (−1)beiα2(c12s23 + c23s12s13e
iδ)(c12c23 − s12s13s23e

iδ) + (−1)c+1eiα3c23c
2
13s23,

X33 = (−1)aeiα1(s12s23 − c12c23s13e
iδ)2 + (−1)beiα2(c12s23 + c23s12s13e

iδ)2+

+ (−1)ceiα3c213c
2
23.

(3.8)

in which we have introduced the parameters a, b, c defined by the relations (−1)a =

(GDiag
i )11, (−1)b = (GDiag

i )22, (−1)c = (GDiag
i )33, cf. eq. (3.4), to parametrize all four

Xi in one compact form that we have collectively denoted as X.

From the form of X as given in eq. (3.8), it is straightforward to show that the Xi and

the Gj always satisfy the known relation [12]:

XiG
∗
j −GjXi = 0 for i, j = 0, 1, 2, 3, (3.9)

for arbitrary values of CP phases.7 However if δ = 0, π, the relationship between the

7Eq. (3.9) is directly attainable from simultaneously considering eq. (2.10) and eq. (3.1). It also serves

as a check on the explicit form of X in eq. (3.8), as well as the Gi in eqs. (2.16)–(2.17).
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residual flavor and CP symmetries in eq. (3.9) reduces to

[Xi, Gj ]δ=0,π = 0 for i, j = 0, 1, 2, 3. (3.10)

This can be easily understood by realizing that Gi = G∗
i when δ = 0, π, cf. eq. (2.16). Thus,

even if the unbroken residual generalized CP symmetry Xi has an order different than 2, it

will always commute with the elements of the Klein group if the Dirac CP phase is trivial.

Therefore, in order to generate a nontrivial Dirac phase when the residual generalized CP

and flavor symmetries commute in a specific model, the Dirac phase must have a separate

origin, such as from charged lepton corrections as in refs. [16, 18, 19, 21].

An additional bit of information concerning the relationship between the Xi and Gi

results if all of the Majorana phases are let to vanish. If this occurs, then

(Xi −Gi)mn ∝ (e2iδ − 1) for i = 0, 1, 2, 3. (3.11)

Clearly, there is only equality between the Xi and Gi in eq. (3.11) if δ = 0, π (without

choosing special values for the angles, e.g. a vanishing reactor mixing angle.)

Hence, by comparing eqs. (3.9)–(3.11), it is clear that if a nonvanishing Dirac phase

in the neutrino sector is desired, then the residual flavor and CP symmetries must not

commute and certainly not be equal. However, if one wants such commutation and/or

equality, then the nontrivial Dirac phase cannot originate in the Klein symmetry itself but

can be obtained from corrections to the charged lepton mixing, as previously mentioned

(see text following eq. (3.10)). Perhaps more importantly, the residual CP and flavor

symmetries can commute with nontrivial Majorana phases, but they should not be equal

unless vanishing Majorana (and Dirac) phases are desired. Therefore, it is clear that the

key to understanding the Majorana phases in this framework is to understand the possible

forms of the generalized CP symmetries, Xi.

To this end, let us consider the situation in which Xi is an element of a discrete symme-

try group of finite order m. In this case, there will exist an integer n dividing m such that

Xn
i = 1. (3.12)

Satisfying eq. (3.12) will then impose nontrivial relations on the parameters of the theory.

For example, one feature that can result is that the Majorana phases are allowed to take

only specific discrete values. As a trivial (but unrealistic) example of this phenomenon, we

see that if the neutrino mass matrix was diagonal, the Majorana phases α1, α2, and α3

must have values

α1 =
2πk1
n

, α2 =
2πk2
n

, α3 =
2πk3
n

, (3.13)

where k1, k2, k3 = 0, 1 . . . , n−1 to satisy eq. (3.12). Another example concerning the values

of the Majorana phases can be deduced if the Xi is assumed originate in SU(3). In this

case, the determinant condition of SU(3) implies that

α1 + α2 + α3 = 0 mod 2π. (3.14)

Clearly, the above relation constrains the relative values of the Majorana phases, providing

another prediction for the possible values of the Majorana phases.
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Hence, making assumptions concerning the possible origins of the Xi symmetries can

lead to predictions concerning the values of the Majorana phases, as in eqs. (3.13)–(3.14).

Such predictions can theoretically be probed at current and future neutrinoless double beta

decay experiments and used to constrain the entries of XDiag
i , assuming such a framework

that is outlined in this work. However, if the low energy mixing parameters are not taken

as inputs for understanding the structure of the residual symmetry elements, it is possible

to generate predictions for these parameters by constructing a model that spontaneously

breaks a flavor group Gf to Z2 × Z2 in the neutrino sector and to Zp (p an integer) in the

charged lepton sector, while also breaking a consistently defined generalized CP symmety

HCP to the Xi. Of course, the scale of such breaking is presumed to be around the Grand

Unified Theory (GUT) scale. However, then the predictions for the mixing parameters can

become subject to model-dependent corrections resulting from charged lepton corrections,

renormalization group evolution, and canonical normalization considerations. One may

expect such corrections to be subleading, as renormalization group and canonical normal-

ization effects are expected to be small in realistic models with hierarchical neutrino masses,

and the charged lepton corrections in these models are typically at most Cabibbo-sized [56–

63].8 Nonetheless, such corrections can in principle have nontrivial effects, particularly for

the origin of Dirac-type CP violation in lepton mixing, since in many known examples the

constraints due to the Klein symmetry as described above result in trivial values for δCP

at leading order.

As an example of the effects of such corrections, consider the T ′ model of ref. [21]. In

this model a T ′ flavor symmetry is simultaneously implemented alongside its correspond-

ing CP symmetry and broken to remnant symmetries that commute with each other at

leading order. Hence, this model’s Dirac CP phase vanishes at leading order, cf. eq. (3.10).

However by using model-dependent next-to-leading-order corrections to the charged lepton

mass matrix, a non-diagonal form for the charged lepton mixing is obtained. This addi-

tional charged lepton rotation on Uν provides the appropriate correction to render the CP

phases as all nonzero. In this example, it is the charged lepton corrections that source a

nontrivial δCP. However, in principle it should be possible to construct scenarios in which

leptonic Dirac CP violation results from other classes of corrections, such as from nontrivial

Majorana phases at the high scale through renormalization group evolution, or through

nontrivial Kahler metrics for the matter fields in supersymmetric theories. A thorough

classification of such corrections is beyond the scope of this current work.

4 Applications

We now turn to applying our method to specific examples, starting with the known exam-

ples in the literature of tribimaximal mixing [67–70] and bitrimaximal [71–73] mixing, and

then turning to a new analysis of golden ratio mixing [32–36] models.

Before discussing these specific examples, however, we note that a survey of the existing

literature reveals that models with a preserved Klein symmetry based on an A4 or S4 flavor

8If Uν is taken as a starting point for UMNSP, relying only on Ue for corrections to bring Uν to the

experimentally measured values, the resulting charged lepton corrections can be large [64–66].
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symmetry mostly predict θ13 = 0 and yield trivial predictions for the CP-violating phases

when no corrections are considered [9, 12–16]. By considering corrections, e.g. charged

lepton corrections, a nontrivial value of the Dirac CP phase can be generated even though

there is no contribution originating in the neutrino sector [16, 18, 19, 21]. Similarly, notice

that if the Klein symmetry is broken or incomplete, then Uν is not fully constrained,

i.e., it must contain at least one additional free parameter. This additional freedom can

lead to nontrivial predictions [9–16, 18, 21]. However even though the Klein symmetry

can be broken or incomplete, trivial CP phases can still result from the preservation of

identical residual flavor and CP symmetry elements [9, 10, 12, 13, 15, 16, 18]. Thus, if

nontrivial CP phases are desired, then the preserved flavor and CP symmetries must not

be identical, e.g. a trivial Dirac phase and a nontrivial Majorana phase prediction can result

from a mismatch between the preserved flavor and generalized CP symmetries [11, 17, 19].

Rather than providing a comprehensive review of all known examples, which is far beyond

the scope of this work, our aim in this section is to explore a few of these simple scenarios

in some detail, and to illustrate the utility of our approach.

• Tribimaximal mixing scenarios. Perhaps the best example to begin the discussion

of the applicability of the formalism presented here to the existing literature, is that of

tribimaximal mixing [67–70], for which

θTBM
12 = tan−1

(

1√
2

)

, θTBM
23 =

π

4
, θTBM

13 = 0, δTBM = 0. (4.1)

In this context, the MNSP matrix, cf. eq. (2.15), is clearly the tribimaximal (TBM) mixing

matrix (up to charged lepton rephasing), which takes the following well-known form

UTBM =









√

2
3

1√
3

0

− 1√
6

1√
3

1√
2

− 1√
6

1√
3
− 1√

2









. (4.2)

Then by applying the values for the mixing angles given in eq. (4.1) to eq. (2.16), the

nontrivial Klein elements associated with tribimaximal mixing are

GTBM
1 =

1

3







1 −2 −2

−2 −2 1

−2 1 −2






, GTBM

2 =
1

3







−1 2 2

2 −1 2

2 2 −1






,

GTBM
3 =







−1 0 0

0 0 −1

0 −1 0






,

(4.3)

which are the canonical SU , S, and U elements of the Klein subgroup of S4 associated with

tribimaximal lepton mixing. Furthermore, notice that the most general mass matrix asso-

ciated with such a tribimaximal Klein symmetry can be found by using the tribimaximal
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mixing angles as inputs for eq. (2.18):

MTBM
ν =

1

3







(2m1 +m2) (m2 −m1) (m2 −m1)

(m2 −m1)
1
2 (m1 + 2m2 + 3m3)

1
2 (m1 + 2m2 − 3m3)

(m2 −m1)
1
2 (m1 + 2m2 − 3m3)

1
2 (m1 + 2m2 + 3m3)






. (4.4)

Next, all possible generalized CP symmetries consistent with such a tribimaximal Klein

symmetry can found by utilizing eq. (3.8). Doing this reveals the symmetry elements of X

to be

XTBM
11 =

1

3

(

2(−1)aeiα1 + eiα2(−1)b
)

,

XTBM
12 =

1

3

(

(−1)a+1eiα1 + eiα2(−1)b
)

,

XTBM
13 =

1

3

(

(−1)a+1eiα1 + eiα2(−1)b
)

,

XTBM
22 =

1

6

(

(−1)aeiα1 + 2eiα2(−1)b + 3eiα3(−1)c
)

,

XTBM
23 =

1

6

(

(−1)aeiα1 + 2eiα2(−1)b − 3eiα3(−1)c
)

,

XTBM
33 =

1

6

(

(−1)aeiα1 + 2eiα2(−1)b + 3eiα3(−1)c
)

,

(4.5)

where the parameters a, b, and c have been defined below eq. (3.8). It is trivial to show that

the above solutions for XTBM and the mass matrix of eq. (4.4) satisfy the low energy condi-

tion for generalized CP symmetries, i.e., eq. (3.1). Additionally, notice that the generalized

CP symmetries given in eq. (4.5) are functions of the three Majorana phases. When working

in a top-down approach these parameters will be given by elements of the automorphism

group of the flavor symmetry group [8]; however, in the bottom-up approach taken in this

work, these Majorana phases become inputs for the Xi. Therefore, let us here assume that

the Majorana phases have been measured and are consistent with 0 or π. Applying these

trivial values to eq. (4.5), reveals that the generalized CP symmetries XTBM
i to be identical

to the Klein elements 1, S, U , and SU , members of the automorphism group of S4 [12–14].

On the other hand, it is more likely that the measured Majorana phases will not be trivial.

Even if this is the case, XTBM will still give the allowed CP symmetries consistent with

tribimaximal mixing. However, XTBM will no longer be an element of the automorphism

group of S4, but perhaps of the automorphism group of some other flavor symmetry group

that can also predict tribimaximal neutrino mixing (see e.g. refs. [27–31] for examples of

scans over possible flavor symmetry groups that contain viable flavor subgroups).

• Bitrimaximal mixing scenarios. Let us now consider an example from the literature

that predicts a nonzero reactor mixing angle and a non-maximal atmospheric mixing angle

at leading order, e.g. bitrimaximal mixing [71–73]. The bitrimaximal mixing pattern is

θBTM
12 = θBTM

23 = tan−1(
√
3− 1), θBTM

13 = sin−1

(

1

6
(3−

√
3)

)

, δBTM = 0. (4.6)
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Using these values as inputs, the bitrimaximal MNSP matrix can be shown to have the

form

UBTM =







1
6

(

3 +
√
3
)

1√
3

1
6

(

3−
√
3
)

− 1√
3

1√
3

1√
3

1
6

(

−3 +
√
3
)

1√
3

1
6

(

−3−
√
3
)






. (4.7)

Applying the values for the mixing angles given in eq. (4.6) to eq. (2.16), reveals the

nontrivial Klein elements associated with bitrimaximal mixing to be

GBTM
1 =







1√
3
− 1

3 −1
3 − 1√

3
−1

3

−1
3 − 1√

3
−1

3
1√
3
− 1

3

−1
3

1√
3
− 1

3 −1
3 − 1√

3






, GBTM

2 =
1

3







−1 2 2

2 −1 2

2 2 −1






,

GBTM
3 =







−1
3 − 1√

3
1√
3
− 1

3 −1
3

1√
3
− 1

3 −1
3 −1

3 − 1√
3

−1
3 −1

3 − 1√
3

1√
3
− 1

3






.

(4.8)

The above bitrimaximal Klein elements match those found in the literature [71–73]. The

most general symmetric mass matrix invariant under bitrimaximal symmetry is also easily

found by using eq. (2.18) with the angles given in eq. (4.6) as input. This matrix is

(MBTM
ν )11 =

1

6
((2 +

√
3)m1 + 2m2 − (−2 +

√
3)m3),

(MBTM
ν )12 =

1

6
(−(1 +

√
3)m1 + 2m2 + (−1 +

√
3)m3),

(MBTM
ν )13 =

1

6
(−m1 + 2m2 −m3),

(MBTM
ν )22 =

1

3
(m1 +m2 +m3),

(MBTM
ν )23 =

1

6
((−1 +

√
3)m1 + 2m2 − (1 +

√
3)m3),

(MBTM
ν )33 =

1

6
(−(−2 +

√
3)m1 + 2m2 + (2 +

√
3)m3).

(4.9)

Finally, it is straightforward to calculate the bitrimaximal generalized CP symmetries using

eq. (3.8) and the bitrimaximal angle values of eq. (4.6). For this example, X is given by

XBTM
11 =

1

6

(

(−1)c+1eiα3

(

−2 +
√
3
)

+ (−1)a
(

2 +
√
3
)

eiα1 + 2(−1)beiα2

)

,

XBTM
12 =

1

6

(

(−1)ceiα3

(

−1 +
√
3
)

+ (−1)a+1
(

1 +
√
3
)

eiα1 + 2(−1)beiα2

)

,

XBTM
13 =

1

6

(

(−1)a+1eiα1 + 2(−1)beiα2 + (−1)c+1eiα3

)

,

XBTM
22 =

1

3

(

(−1)aeiα1 + (−1)beiα2 + (−1)ceiα3

)

,

XBTM
23 =

1

6

(

(−1)aeiα1

(

−1 +
√
3
)

+ 2(−1)beiα2 + (−1)c+1
(

1 +
√
3
)

eiα3

)

,

XBTM
33 =

1

6

(

(−1)a+1eiα1

(

−2 +
√
3
)

+ 2(−1)beiα2 + (−1)c
(

2 +
√
3
)

eiα3

)

.

(4.10)
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As in the previous tribimaximal mixing case, if the Majorana phases are taken to be

trivial, then these generalized CP transformations are identical to the Klein symmetry

elements associated with bitrimaximal mixing and can be consistent with a ∆(96) flavor

symmetry, and its corresponding automorphism group [17, 18] that makes up the elements

of the bitrimaximal generalized CP symmetry. However, if the Majorana phases are not

taken to be trivial but instead (for example) α1 = α3 = π
6 , α2 = −π

3 with a = −1, b =

1, c = −1, then XBTM → XBTM
2 becomes an order 4 element of the automorphism group of

∆(96) [17, 18]. Of course, all of the other bitrimaximal generalized CP solutions consistent

with the automorphism group of ∆(96) can be found in this manner as well as additional

possibilities for XBTM that could exist if the bitrimaximal Klein symmetry was taken as

the subgroup of a larger flavor symmetry group than ∆(96). However, we note that even

though this second case predicts nonzero Majorana phases, it still requires a vanishing

Dirac CP phase to be consistent with the (real) bitrimaximal Klein symmetry.

• Golden ratio mixing. Until this point, we have focused in this section on demonstrat-

ing that the formalism here is consistent with existing works in the literature. However, the

remainder of this section is devoted to making predictions on the possible generalized CP

symmetries using another well-known mixing pattern, i.e., the specific golden ratio mixing

pattern discussed in refs. [32–36], which is often called the “GR1” pattern in the literature.

The GR1 mixing pattern has a vanishing reactor angle, a maximal atmospheric angle,

and a solar mixing angle related to the golden ratio, φ, of Grecian lore, as follows:

θGR1
12 = tan−1

(

1

φ

)

, θGR1
23 =

π

4
, θGR1

13 = 0, δGR1 = 0, (4.11)

in which the golden ratio φ = (1+
√
5)/2. Hence the lepton mixing matrix associated with

this mixing pattern is given in the diagonal charged lepton basis by

UGR1 =











√

φ√
5

√

1√
5φ

0

− 1√
2

√

1√
5φ

1√
2

√

φ√
5

1√
2

− 1√
2

√

1√
5φ

1√
2

√

φ√
5
− 1√

2











. (4.12)

As before the Klein elements responsible for golden ratio lepton mixing can be calculated,

cf. eq. (2.16), to be

GGR1
1 =

1√
5







1 −
√
2 −

√
2

−
√
2 −φ φ− 1

−
√
2 φ− 1 −φ






, GGR1

2 =
1√
5







−1
√
2

√
2√

2 1− φ φ√
2 φ 1− φ






,

GGR1
3 =







−1 0 0

0 0 −1

0 −1 0






,

(4.13)

matching results in refs. [34–36]. As before in the previous examples, it is trivial to find

the most general symmetric mass matrix invariant under this golden ratio Klein symmetry
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by using eq. (2.18) with the angles given in eq. (4.11) as input. This “golden” mass matrix

is

MGR1
ν =

1√
5









m1φ2+m2

φ
m2−m1√

2
m2−m1√

2
m2−m1√

2

(m2+m3)φ2+m1+m3

2φ
m2φ2−

√
5m3φ+m1

2φ

m2−m1√
2

m2φ2−
√
5m3φ+m1

2φ
(m2+m3)φ2+m1+m3

2φ









. (4.14)

Finally, it is straightforward to calculate the symmetric golden ratio generalized CP sym-

metries using eq. (3.8) and the golden ratio mixing values of eq. (4.11). They are

XGR1
11 =

(−1)aeiα1φ2 + eiα2(−1)b√
5φ

,

XGR1
12 =

(−1)a+1eiα1 + eiα2(−1)b√
10

,

XGR1
13 =

(−1)a+1eiα1 + eiα2(−1)b√
10

,

XGR1
22 =

(−1)aeiα1 + eiα2(−1)bφ2 +
√
5eiα3(−1)cφ

2
√
5φ

,

XGR1
23 =

(−1)aeiα1 + eiα2(−1)bφ2 +
√
5eiα3(−1)c+1φ

2
√
5φ

,

XGR1
33 =

(−1)aeiα1 + eiα2(−1)bφ2 +
√
5eiα3(−1)cφ

2
√
5φ

.

(4.15)

Clearly from the above equation, when all of the Majorana phases vanish, then the non-

trivial XGR1
i=1,2,3 are equivalent to the Klein symmetry elements in eq. (4.13). Said again

explicitly, when α1,2,3 = 0 in eq. (4.15), then the golden ratio Klein elements can be ob-

tained by applying the relevant values for a, b, c to eq. (4.15). For example (in the limit

that all Majorana phases vanish), using a = 0, b = 1, c = 1 yields exactly GGR1
1 ; using

a = 1, b = 0, c = 1 yields exactly GGR1
2 ; and using a = 1, b = 1, c = 0 yields exactly GGR1

3 .

Taking this logic one step further, it is possible to obtain the golden ratio Klein sub-

group from an A5 flavor symmetry group [34–36]. However, it need not be A5. In fact,

the golden ratio prediction could come from a larger, different group all together. In either

case, any phenomenologically viable model predicting golden ratio mixing will have a set of

“golden” generalized CP symmetries obtainable from eq. (4.15), demonstrating the power

of the bottom-up approach contained in this work.

We close this section by noting that each of these examples predict trivial Dirac CP

violation (here δ = 0). Certainly one possibility is that leading order mixing patterns

of this type, once corrected appropriately so as to be phenomenologically viable, are an

appropriate starting point for flavor model-building, which in turn has been quite fruitful

in terms of considering possible discrete non-Abelian family symmetry groups that can lead

to these predictions. However, one utility of the bottom-up approach advocated here is

that by considering the mixing parameters as inputs and constructing the Klein elements

and the generalized CP transformations, we can identify specific representations that may

help in elucidating more general possibilities for the underlying family symmetry group.

In this way, this approach can provide a helpful guideline for future flavor model-building.
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5 Conclusions

If neutrinos are Majorana particles, the possibility exists that there is a high scale flavor

symmetry that is spontaneously broken to a residual Klein symmetry at low energies. If

such a Klein symmetry is preserved, then it completely determines the mixing angles of the

neutrino sector and it also produces specific relations between the entries of the neutrino

mass matrix, Mν , but it is unable to provide predictions for the Majorana phases of the

neutrinos. In order to produce such predictions, a popular method is to implement a gener-

alized CP symmetry consistently alongside of the flavor symmetry and spontaneously break

both symmetries within specific, top-down scenarios. Within this top-down approach the

exact roles that the generalized CP symmetry and flavor symmetry play in predicting the

lepton mixing parameters are not easy to clarify, and can appear quite model-dependent.

In this work, we have constructed a bottom-up approach that clarifies the roles of the

flavor and generalized CP symmetries in lepton mixing, by expressing the residual, unbro-

ken Klein and generalized CP symmetries in terms of the lepton mixing parameters. By

doing this, it becomes clearly seen that a nonzero prediction for “Dirac”-type CP violation

in the neutrino sector must originate in the Klein symmetry unless model-dependent cor-

rections are utilized. Perhaps more importantly is that, by keeping the neutrino masses as

complex, we see that the generalized CP symmetries are the harbingers for Majorana phase

predictions. We have shown that this formalism is able to reproduce results in the literature

based on tribimaximal and bitrimaximal neutrino mixing and have demonstrated its power

by predicting the generalized CP symmetries consistent with a certain type of golden ratio

mixing (the GR1 pattern). This method can serve as guidance for future model-building

by identifying the appropriate symmetries and breaking patterns which need to occur to

generate desired predictions for the lepton mixing angles and CP phases.
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