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1 Introduction

Some time ago, a series of seminal papers [1–3], showed that the universe can undergo

quantum tunneling from one local minimum of a potential to another. Much more recently,

a classical mechanism for vacuum transitions was introduced by [4, 5] involving coherent

collisions between bubble universes. While these processes, both quantum and classical, are

of significant theoretical interest in and of themselves, their relevance may be far greater

due to the fact that models of inflationary cosmology typically yield numerous expanding

bubble universes whose centers of nucleation are sufficiently close to allow for such collisions.

Moreover, string theory offers the possibility of an enormous landscape of local minima,

making it important to determine if tunneling events and bubble collisions are essential

cosmological processes. These considerations have inspired numerous authors to study

transitions between collections of metastable vacua, with results of possible importance

to key outstanding issues, such as the cosmological constant problem and the search for

experimental signatures of a multiverse [6–15].

In this paper, we focus on aspects of bubble universe collisions. An important obser-

vation in this regard was reported in [4, 5] which found that at sufficiently high relative

velocity the physics vastly simplifies. Namely, at at high impact velocity, colliding bubble

walls are so Lorentz contracted that the time it takes them to pass through one another is

less than the time for interactions between the bubbles to contribute significantly. Thus,

the field configurations in such situations simply superpose — the “free passage” approx-

imation. As the relative velocity of colliding bubble walls increases with increasing initial

separation between their centers of nucleation, the free passage approximation becomes

ever more accurate for larger separations.

When free passage holds, there is thus a finite window of time during which the field’s

value in the widening spatial region through which both walls have passed in opposite

directions — the collision region — stays nearly homogeneous. The field’s value in this

region is given by the ambient background (the “parent field value”) plus the sum of the
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field value changes across each bubble wall, i.e. the sum of the bubble field values minus

the parent value. The general expectation is that post free passage, the field will be driven

by the slope of the potential at this shifted field value, causing it to settle into the nearest

local minimum. Thus if the free-passage-kicked field value is in the basin of attraction of a

different local minimum (neither bubble, nor parent) then the collision will have spawned

a new bubble universe in which the field has acquired the new value. To be sure, in [16] we

pointed out some subtleties in this picture (in which the strength of the forcing function

at the free passage induced field value can be sufficient to pull the field out of the new

basin of attraction, causing it to finally settle at the original field value and thus thwarting

the creation of a new bubble universe), but we anticipate that for many situations, these

subtleties will not arise.

To date, studies of bubble collisions have generally considered theories with a single

real scalar field described by canonical kinetic terms, and for the most part ignoring grav-

ity [4, 5, 9, 10].1 In many common theoretical scenarios, however, bubble collisions occur

in theories whose scalar fields parameterize a many-dimensional, curved manifold. For in-

stance, Calabi-Yau compactifications of string theory involve scalar fields which are local

coordinates on moduli spaces that are generally complex Kähler manifolds with nontrivial

curvature — so-called “moduli fields”. The string landscape is due, in part, to the various

local minima of flux potentials that govern the dynamics of these moduli.

A natural issue, then, is the impact of a nontrivial metric on bubble universe collisions,

which is the issue we take up in this paper. We address key subtleties in bubble collisions,

even at high relative velocity, that arise from the inherent nonlinearity of nontrivial curva-

ture, and find a satisfying geometrical interpretation of our result. Specifically, in section II

we generalize the notion of the free passage approximation from flat to curved field spaces.

We derive a geometrical interpretation of the result in terms of the parallel transport of

integral curves on moduli space. In section III we argue that there always exists a regime in

which our generalized free passage approximation applies, and in section IV we numerically

study some bubble collision examples (in the setting of 1+1D) and compare the results to

those from our analytic expressions in section II. Finally, we end with some conclusions

and suggestions for further work.

2 Generalization of free passage

We take as our starting point the action

S =

∫
d2x

(
1

2
gij∂µφ

i∂µφj − V (φ)

)
(2.1)

where gij is the generally curved metric on the field space. We assume the potential V (φ)

has three (or more) degenerate minima at the field space locations A, B, and C (the

minimum necessary to study collisions as a source of vacuum transitions, in general). The

Euler-Lagrange equation takes the form,

�φi + Γij k∂
µφj∂µφ

k = − ∂V
∂φi

(2.2)

1A notable exception is the paper [10]
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The A vacuum will play the role of the parent vacuum, and B and C those of the two

bubble vacua we seek to collide. Static solutions to (2.2) that interpolate between distinct

yet degenerate local minima of the potential are solitons. We define f i(x), and hi(x) as

the components of those solitons centered at x = 0 with the following asymptotics,

lim
x→−∞

f i(x) = Bi (2.3)

lim
x→+∞

f i(x) = Ai (2.4)

lim
x→−∞

hi(x) = Ci (2.5)

lim
x→+∞

hi(x) = Ai (2.6)

Our intent is to work out the formalism to describe the collisions between these solitons,

taking into account the curved moduli space metric. Of particular interest is the limiting

behavior that emerges at ultrarelativistic impact velocity.

The collision of two initially widely separated solitons, say, right-moving f i, and left-

moving hi (that interpolate between the parent vacuum A and the other local minima

B and C, respectively) is described by an observer in the center of the rest frame of the

collision by the following initial value problem:

�φi + Γij k∂
µφj∂µφ

k = − ∂V
∂φi

(2.7)

φi(−T, x) = f i(γ(x− u(−T ))) + hi(−γ(x+ u(−T )))−Ai (2.8)

∂tφ
i(−T, x) = −uγ

(
f i
′
(γ(x− u(−T ))) + hi

′
(−γ(x+ u(−T )))

)
(2.9)

where we’ve shifted the time coordinate so that the observer’s clock is zero when the

trajectories of the centers of the colliding solitons (given by xR,0 = ut for right-moving f i,

and xL,0 = −ut for left-moving hi) coincide.

In order to be a legitimate representation of a soliton collision, the solitons must be

widely separated at the initial time, −T . Thus, valid values of T are those for which uT is

much much greater than the width of all components of both Lorentz contracted solitons

(so the observer measures field value φi = Ai to an exceedingly good approximation ini-

tially, since outside this width the solitons approach their asymptotic values as decaying

exponentials). To make this precise we’ll define a positive constant w such that all compo-

nents of the solitons we wish to collide, f i(x) and hi(x), differ from the relevant vacuum

value by an insignificant amount outside of x ∈ [−w/2, w/2]. That is,

|Bi − f i(−w/2)|
|Ai −Bi|

� 1 (2.10)

|Ai − f i(w/2)|
|Ai −Bi|

� 1 (2.11)

|Ci − hi(−w/2)|
|Ai − Ci|

� 1 (2.12)

|Ai − f i(w/2)|
|Ai − Ci|

� 1. (2.13)
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So, the initial time −T is any time such that uT > w/2γ. We’ll view the collision as

commencing at time tstart = −w/2γ, and lasting until tend = +w/2γ. The “usefulness”

then of an approximation to the actual solution to the collision initial value problem (de-

fined by (2.7), (2.8), and (2.9)), at given impact velocity u, is proportional to the fraction of

the collision for which the approximation remains valid. Labeling the time until which an

approximation accurately captures the dynamics by tapprox, the approximation’s usefulness

is gleaned from tapprox/tend. The greater this is the more useful the approximation is, and

it will be deemed “fully realized” if tapprox ≥ tend.
The task of understanding the dynamics of collisions in the ultrarelativistic limit

amounts to finding a one parameter family of approximations — “free passage field config-

urations” we’ll denote by {φiFP (t, x;u)}u∈(0,1) — that are ever more useful approximations

to the collision initial value problem’s true solution as u is taken to 1. After construct-

ing {φiFP (t, x;u)}u∈(0,1) we conclude this section with a proof that there always exists an

impact velocity close enough to 1 to ensure that the free passage configuration is fully

realized.

We first perform a change of variables from t and x to the natural dynamical variables

of the problem, namely the spatial coordinates of the boosted observers riding on the soliton

walls, σ ≡ γ(x−ut), and ω ≡ γ(x+ut), which we’ll refer to as the Lorentz variables. This

choice of variables enables us to isolate the effect of one soliton, say, left-moving h, on the

field at a fixed location on the other soliton, in this case f . By holding σ constant and

letting ω vary from minus infinity to infinity one focuses on a fixed location on the right-

moving soliton and follows how the field evolves under the influence of the collision with

the left-moving soliton. Similarly, the impact of right-moving f on h can be ascertained by

holding ω constant and varying σ. Expressing φ in terms of these, the equation of motion

takes the form,

−4(1−ε)γ2

[
∂2φi

∂σ∂ω
+Γij k

∂φj

∂σ

∂φk

∂ω

]
−2γ2ε

[
∂2φi

∂σ2
+
∂2φi

∂ω2
+Γij k

(
∂φj

∂σ

∂φk

∂σ
+
∂φj

∂ω

∂φk

∂ω

)]
=−∂V

∂φi
(2.14)

where we’ve expanded in ε = 1 − u, since we are interested in the limiting dynamics that

emerge when u→ 1. Rearranging and using 1/γ2 = 2ε we have,

∂2φi

∂σ∂ω
+ Γij k

∂φj

∂σ

∂φk

∂ω
=
ε

2

∂V

∂φi
− ε

2

[
Γij k

(
∂φj

∂σ

∂φk

∂σ
+
∂φj

∂ω

∂φk

∂ω

)
+
∂2φi

∂σ2
+
∂2φi

∂ω2

]
. (2.15)

The initial conditions take the form,

φi(σ, ω)

∣∣∣∣
∂Ωγ

=
(
f i(σ) + hi(−ω)−Ai

) ∣∣∣∣
∂Ωγ

(2.16)

γu

(
∂

∂ω
− ∂

∂σ

)
φi
∣∣∣∣
∂Ωγ

=− γu
[
f i
′
(σ) + hi

′
(−ω)

] ∣∣∣∣
∂Ωγ

(2.17)
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or,

φi(σ, ω)

∣∣∣∣
∂Ωγ

=
(
f i(σ) + hi(−ω)−Ai

) ∣∣∣∣
∂Ωγ

(2.18)(
∂

∂ω
− ∂

∂σ

)
φi
∣∣∣∣
∂Ωγ

=−
[
f i
′
(σ) + hi

′
(−ω)

] ∣∣∣∣
∂Ωγ

(2.19)

where ∂Ωγ is the surface in the σ-ω plane of constant time t = −T . This boundary is simply

the line, ω = σ − 2γuT , which note lies only in the first, third, and fourth quadrants. Its

ω-intercept, −2γuT , is less than −w for any valid choice of T . We bisect ∂Ωγ at the point

(γuT,−γuT ) and name the half that lies in the third and lower fourth quadrants as ∂Ωf ,

and the half that lies in the first and upper fourth quadrants as ∂Ωh. These are indicated

in figure 1 by the highlighted yellow, and blue rays, respectively.

Since all points on ∂Ωf have σ ≤ γuT ≤ w/2, they satisfy,

ω

∣∣∣∣
∂Ωf

= (σ − 2γuT )

∣∣∣∣
∂Ωf

≤ −γuT ≤ −w/2

Similarly, all points on ∂Ωh have ω ≥ −γuT ≥ −w/2, so their corresponding σ coordinate

satisfies,

σ

∣∣∣∣
∂Ωh

≥ γuT ≥ w/2 .

The boundary conditions can then be rewritten as,

∂Ωf : σ ≤ w/2→ σ − 2γuT ≤ −w/2
φi(σ, σ − 2γuT ) = f i(σ) + hi(−(σ − 2γuT ))−Ai ≈ f i(σ) +Ai −Ai = f i(σ)(

∂

∂ω
− ∂

∂σ

)
φi(σ, ω) = −

(
f i
′
(σ) + hi

′
(−σ + 2γuT )

)
≈ −f i′(σ)

∂Ωh : ω ≥ −w/2→ ω + 2γuT ≥ w/2
φi(ω + 2γuT, ω) = f i(ω + 2γuT ) + hi(−ω)−Ai ≈ Ai + hi(−ω)−Ai = hi(−ω)(

∂

∂ω
− ∂

∂σ

)
φi(σ, ω) = −

(
f i
′
(ω + 2γuT ) + hi

′
(−ω)

)
≈ −hi′(−ω)

Thus, the entire collision initial value problem stated in the Lorentz variables takes the

approximate form:

∂2φi

∂σ∂ω
+ Γij k

∂φj

∂σ

∂φk

∂ω
=
ε

2

∂V

∂φi
+
ε

2

[
Γij k

(
∂φj

∂σ

∂φk

∂σ
+
∂φj

∂ω

∂φk

∂ω

)
− ∂2φi

∂σ2
− ∂2φi

∂ω2

]
(2.20)

φi(σ, ω)

∣∣∣∣
∂Ωf

≈ f i(σ) (2.21)

∂

∂σ
φi(σ, ω)

∣∣∣∣
∂Ωf

≈ f i
′
(σ) (2.22)

φi(σ, ω)

∣∣∣∣
∂Ωh

≈ hi(−ω) (2.23)

– 5 –



J
H
E
P
0
4
(
2
0
1
5
)
0
5
9

Figure 1. When a transformation from (t, x) to the Lorentz variables (σ = γ(x−ut), ω = γ(x+ut))

is performed, the initial conditions for the collision of solitons boosted to impact velocity u are given

by (2.18) and (2.19). The boundary where the initial data is given, the surface of constant time

t = −T , is a line in the σ-ω plane with slope 1 and ω-intercept −2γuT . We denote this boundary,

for a given Lorentz factor and choice for T , by ∂Ωγ (note that for the collision at a given u the valid

T values are those such that the boundary lies below the line ω = σ −w, indicated by the thin red

line). The center of the f soliton in the shifted superposition in the boundary conditions occurs

at the ω-intercept, and that of the h soliton in the superposition occurs at the σ-intercept. We’ve

named the halves of ∂Ωγ as ∂Ωf and ∂Ωh according to which soliton’s center lies on it. These

are indicated by the yellow and blue rays, respectively. In fact, the f soliton in the superposition

is almost entirely contained within only the two red points on the yellow half — the points on

∂Ωγ with σ ∈ [−w/2, w/2]. That is, to the left of this interval (in the third quadrant) f evaluates

to very nearly B, and to the right evaluates to very nearly A. Similarly the h soliton is almost

entirely contained within the two red points on the blue half. As γ is increased the boundary where

the field and its derivatives are specified moves along the diagonal with negative slope toward the

fourth quadrant, indicated by the black arrow. Thus, the intervals where the f and h solitons in

the superposition are approximately supported move further and further away from each other.

Consequently, the boundary data effectively splits into two independent pieces each involving a

single Lorentz variable. On the yellow half-boundary the field in the initial data evaluates ever

more closely to f(σ), and on the blue half-boundary evaluates ever more closely to h(−ω). In the

limit γ → 1 the ω values on the yellow half go to −∞, and the σ values on the blue half go to +∞.

∂

∂ω
φi(σ, ω)

∣∣∣∣
∂Ωh

≈ −hi′(−ω) (2.24)

Now we’ll obtain the limiting form of these equations when γ → 1. First we’ll turn

our attention to the boundary conditions. As γ is increased the boundary ∂Ωγ is pushed

along the diagonal with negative slope toward the fourth quadrant. This causes the ω

values of points on ∂Ωf to become increasingly negative, and the σ values on ∂Ωh to
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become increasingly positive. Consequently, the approximations made in the boundary

conditions (2.21), (2.22), (2.23), (2.24) become ever more accurate.

This can be seen visually as well. The center of the f soliton occurs, by definition, at

the ω-intercept of ∂Ωγ , and the center of the h soliton occurs at the σ-intercept. As ∂Ωγ is

pushed along the diagonal toward the fourth quadrant the intercepts move away from each

other. The distance between the center of each soliton and the place where the boundary

is bisected (the endpoint of both half boundaries) increases, resulting in ever more of the

f soliton fitting on ∂Ωf , and the h soliton fitting on ∂Ωh.2

Thus, the limiting form of the boundary conditions is obtained by replacing the ap-

proximate equalities in (2.21), (2.22), (2.23), and (2.24) with equalities. Further, note

that the two conditions involving the first derivatives (2.22), (2.24) no longer contain any

additional information than what is captured by the two conditions on φi, (2.21), (2.23).

Clearly the limit of the differential equation (2.15), is obtained by dropping the O(ε) term

on the righthand side.

At the risk of stating the obvious we’ll identify this limiting set of equations with

the appropriate collision — that of the non-Lorentz contracted profiles f i and hi each

propagating toward one another with speed u = 1 in the free theory. To see why this is

the case, take the equation of motion and initial conditions associated with this collision,

�φi + Γij k∂µφ
j∂µφk = 0 (2.25)

lim
t→−∞

φi(t, x) = f i(x− t) + hi(−(x+ t))−Ai (2.26)

and transform to the characteristics, ξ = x− t, and η = x+ t. Doing so yields,

∂2φi

∂ξ∂η
+ Γij k

∂φj

∂ξ

∂φk

∂η
= 0 (2.27)

φi(ξ,−∞) = f i(ξ) (2.28)

φi(∞, η) = hi(−η) (2.29)

Since the righthand side of the resulting differential equation is identically zero, we view

this problem as the limit of the original one (the collision of boosted solitons in the model

with nontrivial potential, V ). So, the approximation to the true solution of the u < 1

collision problem should be defined by obtaining the solution to the free problem ((2.27),

subject to (2.28), and (2.29)), and then evaluating it at the Lorentz variables as opposed

to the characteristics. If we denote the solution to the free problem by Φi(ξ, η), we mean

the approximation for impact velocity u ought to be defined by,

φiFP (t, x;u) ≡ Φi(γ(x− ut), γ(x+ ut)) . (2.30)

2If one is uncomfortable with this argument for the splitting of the boundary where the initial data

is given into two independent pieces, a conformal map can be performed before the limit that γ goes to

infinity is taken. Under a conformal transformation from σ and ω to α = tan−1(σ) and β = tan−1(ω), the

boundary ∂Ωγ becomes a hyperbola in the α-β domain (which is the square [−π/2, π/2]× [−π/2, π/2]). As

γ is increased the hyperbola is pushed further and further into the lower right of the square, and ultimately

becomes the union of the horizontal edge at β = −π/2 (σ varying edge), and the vertical at σ = π/2 (ω

varying edge). Though it provides a perhaps a more visually satisfying argument in favor of the split, we

do not view the conformal map as necessary.
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Turning our attention to Φi, we note that it maps R2 to a submanifold of the field space

manifold, N ⊂ M .3 The submanifold is a patch of field space, bounded by four curves.

Two of these are simply the original soliton curves (traced out in field space) that we are

colliding, since Φi(ξ,−∞) = f i(ξ) for ξ ∈ R, and Φi(∞, η) = hi(−η) for η ∈ R. Significant

insight is gained by viewing Φi as the coordinates of two sets of integral curves — those

of one set obtained by varying the first argument and fixing the second, and those of the

second set obtained by fixing the first argument and varying the second. Let us name the

two vector fields these sets of integral curves define as follows,

U ≡ ∂

∂ξ
=
∂Φi(ξ, η)

∂ξ
ei|Φ(ξ,η) (2.31)

W ≡ ∂

∂η
=
∂Φi(ξ, η)

∂η
ei|Φ(ξ,η) (2.32)

where we’ve expanded in the coordinate basis {ei} = { ∂
∂Φi
}. Expressed in terms of the

vector fields U and W , the boundary conditions for Φi simply indicate that the vector

fields at the relevant two edges of the submanifold line up with the tangent vectors to the

two original soliton curves. In an effort to minimize confusion with the negative signs we

explicitly point out where the vacuum locations are in the submanifold parameterized by

ξ and η: Φ(∞,−∞) = A, Φ(−∞,−∞) = B, and Φ(∞,∞) = C.

The differential equation takes the form,

0 =
∂2Φi

∂η∂ξ
+ Γij k

∂Φj

∂ξ

∂Φk

∂η
=
∂U i

∂η
+ Γij kU

j ∂Φk

∂η
(2.33)

=
∂Φ`

∂η

∂

∂Φ`
U i +

∂Φk

∂η
U jΓij k (2.34)

=
∂Φ`

∂η

(
e`U

i + U jΓij `
)

(2.35)

= W `
(
e`U

i + U jΓij,`
)

(2.36)

Since the equality holds for each component we have,

0 = W `
(
e`U

iei + U jΓij `ei
)

(2.37)

= W `
(
∇e`(U

iei)
)

(2.38)

= ∇W `e`
(U iei) = ∇WU (2.39)

Similarly, we obtain ∇UW = 0 by the analogous series of steps (when ξ and η are swapped,

since (2.27) is symmetric under exchange of these). We thus arrive at the geometrical

description of bubble collisions in the ultrarelativistic limit: the resulting field profiles

post-collision are determined by the mutual parallel transport of each soliton’s tangent

vector field along that of the other soliton. That is, the tangent vector fields of the soliton

profiles are parallel transported along each other everywhere in N .

3Technically Φi should be viewed as a map from the square [−s/2, s/2]2 in the limit that s→∞, with

boundary conditions given on the edges of the square defined by (ξ, η) = (ξ,−s/2) for ξ ∈ [−s/2, s/2], and

(ξ, η) = (s/2, η) for η ∈ [−s/2, s/2].
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Figure 2. The soliton collision initial value problem expressed in the Lorentz variables takes the

form (2.27), with (2.28), (2.29) when the limit that the impact velocity goes to 1 is taken. The

solution to this limiting set of equations, denoted by Φi, maps R2 to a submanifold, N , of the field

space M . Since the map is smooth the images of the ξ coordinate lines and the η coordinate lines

are the integral curves of two vector fields. The partial differential equation (2.27) indicates these

two vector fields are parallel transported along one another everywhere in N . The initial conditions

require that Φ(ξ, η) go to f(ξ) as η → −∞, and go to h(−η) as ξ → ∞. This is shown in the

schematic illustration above, where R2 is drawn as a (finite) square. The purple horizontal line in

the lower half of the ξ-η plane is mapped to the purple curve with endpoints at B and A in the

{φi} coordinate plane (f soliton), and the green vertical line in the right half plane is mapped to

the green curve with endpoints C and A (h soliton). The remaining two curves that form the rest

of the boundary of N are shown in blue and pink. They are the images of the ξ coordinate line

at η → ∞ and the η coordinate line at ξ → −∞. These are, in a sense, the curves obtained by

completing the transport of h along f and f along h. At sufficiently high impact velocity the field

in the collision region takes on value D, and the outgoing walls interpolate between D and the

original bubble vacua, B to the right and C to the left. For such a collision the parametric plot

of the two walls differs negligibly from the prediction via parallel transport — the blue and pink

curves.

The remaining two curves that together with Φi(ξ,−∞), and Φi(∞, η) form the bound-

ary of N are simply Φi(ξ,∞) and Φi(−∞, η). The first of these, Φi(ξ,∞), goes between

Ci when ξ = ∞, and the point Φi(−∞,∞) ≡ Di. The second, Φi(−∞, η), has endpoint

Bi when η =∞, and the other at Di as well, when η = −∞. This is shown schematically

in figure 2.

This result agrees with heuristic expectations motivated by the flat field space limit.

Namely, note that in the flat limit, a right moving soliton that interpolates between the

parent vacuum A and a local minimum B leaves in its wake (to the left of the soliton’s

transition wall) a field value shifted by ∆L = B − A, while a left moving soliton that

interpolates between the parent vacuum A and a local minimum C leaves in its wake (to

the right of the soliton’s transition wall) a field value shifted by ∆R = C −A. Thus, after

a free passage collision, the collision region — which, by definition is to the left of the

right-mover and to the right of the left-mover — is shifted by ∆L + ∆R (which equals
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B + C − 2A). In the case of curved field space, we divide the field shifts, both ∆L and

∆R, into infinitesimals, which geometrically are the tangent vector fields of the soliton field

profiles. Each such infinitesimal leaves in its immediate wake a field whose value is parallel

transported along the infinitesimal shift vector, thus resulting in the geometrical picture

we’ve described. When all tangent vectors of nontrivial magnitude have been mutually

transported, they leave a widening interior of field in φ = D.

This type of reasoning indicates that (2.39) is the simplest partial differential equation

that reduces to free passage in the flat field space limit. Namely, in the flat limit, the

infinitesimal description is clearly the requirement that the directional derivatives of U

with respect to W , and those of W with respect to U , vanish. The covariant version of

these statements is just (2.39). This heuristic argument is suggestive but not sufficient since

it is insensitive to any terms in the limiting form of the partial differential equation that

vanish in the flat field space limit but which could nonetheless be present in the curved

case. The analysis we’ve performed so far, together with that in the following section

verifies that there are no such terms.

It is worth confirming that our free passage field configuration (2.30), does indeed

have the qualitative features outlined above. First note that the configuration correctly

approaches the B vacuum asymptotically to the left, and the C vacuum to the right for

any finite time t, since this amounts to evaluating Φ at (γ(x−ut), γ(x+ut))→ (−∞,−∞),

and (∞,∞), respectively. At a fixed time before collision, any time t . −w/2γu, the free

passage field differs from B vacuum by an insignificant amount at x < ut − w/2γ since

we’d effectively be evaluating Φi in (2.30) at (−∞,−∞). As we march rightward the first

argument increases, and reaches zero at x = ut while second argument remains essentially

unchanged. Φ(0,−∞) is simply the center of the f soliton. So, as one moves between

the positions −ut− w/2γu, and −ut+ w/2γu in free passage field configuration they run

through the f soliton’s field configuration. If they continue moving rightward they’ll reach

a stretch of x values where both the arguments of Φi in (2.30) are effectively negative

infinity, and so the A vacuum is measured.

If we continue on rightward the analogous procedure leads us to realize that the free

passage field configuration interpolates between the A and C vacua by the (reflected)

h soliton, centered at −ut. So, pre-collision the spatial profile of the free passage field

configuration looks like the usual linear superposition: a nearly homogeneous interior of

diminishing size in the parent vacuum, separated from the bubble vacua by the relevant

solitons, whose centers lie at ut, and −ut.
The same line of reasoning can be used to deduce that post-collision, any time t &

w/2γu, the free passage configuration again consists of three approximately homogeneous

regions: a widening interior, or “collision region” with field components ≈ Di, separated

from regions of original bubble vacua on either side, by walls whose centers follow the same

trajectories x = ±ut. The shapes however of the spatial profiles of the field components

across the walls are not in general the same as those of the incoming solitons. A parametric

plot of the free passage configuration at a given time (with the spatial variable as the

parameter) in the {φi} coordinate plane would consist of the composition of a curve that

interpolates between B and D, together with the one between C and D. These would be
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nearly identical those obtained by completing parallel transport, and approaches the union

of these two curves, Φi(−∞,∞), and Φi(∞,∞) asymptotically as t→∞.

We claim that there always exists an impact velocity sufficiently close to the speed of

light such that the actual solution to (2.7) is well approximated by the above free passage

evolution throughout the entirety of the collision — i.e. for longer than the amount of time

it would take for the incoming Lorentz contracted walls to fully pass through each other.

We prove this in the following section.

3 Proof of realization of free passage

The solution to the parallel transport problem, Φi, and the free passage evolution function

defined from it, φiFP , is, of course, only useful in predicting the outcome of a particular

collision if deviations from φiFP remain sufficiently small throughout the entirety of the

collision (or longer). As we’ve mentioned previously, the amount of time it takes the

solitons to fully pass through each other is w/γu, and since we’ve chosen to set our t = 0

at the middle of the collision we’re interested in the time period, t ∈ [−w/2γu,w/2γu].

We begin by expanding the actual solution (to (2.7)) about the free passage configu-

ration,

φi(t, x;u) = φiFP (t, x;u) + ψi(t, x;u) (3.1)

Simply substituting (3.1) into the equation of motion and expanding in powers of ψ yields,

�ψi =− ∂V

∂φi

∣∣∣∣
φFP

− ∂2V

∂φ`∂φi

∣∣∣∣
φFP

ψ` +O(ψ2)−
[
�φiFP + Γijk|φFP ∂µφ

j
FP∂

µφkFP

]
(3.2)

− 2Γijk|φFP ∂µφ
j
FP∂

µψk − Γijk,`|φFPψ
`∂µφ

j
FP∂

µφkFP +O(ψ(∂ψ)) +O((∂ψ)2) (3.3)

=− ∂V

∂φi

∣∣∣∣
φFP

−
[
�φiFP + Γijk|φFP ∂µφ

j
FP∂

µφkFP

]
+O(ψ) (3.4)

We can write an implicit expression for ψi(t, x) by integrating the right hand side of (3.4)

as follows,

ψi(t, x) =

∫ t

−w/2γu
dt′
∫ x+t′

x−t′
dx′Gi(t′, x′) (3.5)

We now truncate at zeroth order in ψ, and bound the above integral. The term in the

square brackets in (3.4) is,

−
[
�φiFP + Γijk|φFP ∂µφ

j
FP∂

µφkFP

]
=4(1− ε)γ2

[
∂2Φi

∂σ∂ω
+ Γij k

∂Φj

∂σ

∂Φk

∂ω

]
(3.6)

− 2γ2ε

[
∂2Φi

∂σ2
+
∂2Φi

∂ω2
+Γij k

(
∂Φj

∂σ

∂Φk

∂σ
+
∂Φj

∂ω

∂Φk

∂ω

)]
where we’ve expressed the operators � and ∂µ in terms of the the Lorentz variables, and

retained terms up to first order in ε. This is identical to the step we took at the outset to

obtain (2.14). Note that the first term in square brackets on the righthand side of (3.6)

is, by definition, zero. The second term, however, does not vanish. It results from the
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mismatch between the Lorentz variables and the characteristics. The nonvanishing piece

can be expressed in terms of the vector fields U and W as follows,

−2γ2ε

[
∂2Φi

∂σ2
+ Γij k

∂Φj

∂σ

∂Φk

∂σ
+
∂2Φi

∂ω2
+ Γij k

∂Φj

∂ω

∂Φk

∂ω

]
= −2γ2ε

[
(∇UU)i + (∇WW )i

]
(3.7)

A bound on the magnitude of ψi can now be computed straightforwardly,

|ψi(t, x)| ≤
∫ t

−w/2γ
dt′
∫ x+t′

x−t′
dx′|Gi(t′, x′)| (3.8)

≤
∫ t

−w/2γ
dt′
∫ x+t′

x−t′
dx′
∣∣∣∣ ∂V∂φi

∣∣∣∣+ 2γ2ε
∣∣∣(∇UU)i

∣∣∣+ 2γ2ε
∣∣∣(∇WW )i

∣∣∣ (3.9)

where the terms involving the vector fields are evaluated at (γ(x′− ut′), γ(x′+ ut′)). Now,

we’re only interested in the deviation at points x in the collision region (outside of here

the field persists very nearly equal to the bubble vacuum field values), and times t ∈
[−w/2γu,+w/2γu]. For this time period the collision region is always contained within

[−w/γ,+w/γ]. This means the x′ interval we need to integrate over in our expression for

ψi(t, x) is always contained within [−3w/2γ,+3w/2γ]. So we can write,

|ψi(t, x)| ≤
∫ t

−w/2γ
dt′
∫ 3w/2γ

−3w/2γ
dx′|Gi(t′, x′)| (3.10)

≤

{
sup
φ∈N

(∣∣∣∣ ∂V∂φi
∣∣∣∣)+2γ2ε sup

(σ,ω)∈R2

(∣∣∣(∇UU(σ, ω))i
∣∣∣+∣∣∣(∇WW (σ, ω))i

∣∣∣)}∫ t

−w/2γu
dt′
∫ 3w/2γ

−3w/2γ
dx′

(3.11)

= (ki1 + 2γ2εki2)
w(t/T + 1/2)

γu

3w

γ
≤
(
ki1
γ2

+ 2εki2

)
3w2 =

(
2εki1 + 2εki2

)
3w2 (3.12)

So,

|ψi(t, x)| ≤ kiε (3.13)

where the positive constants,

ki ≡ 6w2

{
sup
φ∈N

(∣∣∣∣ ∂V∂φi
∣∣∣∣)+ 2γ2ε sup

(σ,ω)∈R2

(∣∣∣(∇UU(σ, ω))i
∣∣∣+
∣∣∣(∇WW (σ, ω))i

∣∣∣)} , (3.14)

are finite due to the smoothness of the potential and the field space manifold.

Since the difference in the coordinates of the true field configuration and free passage

configuration can be made arbitrarily small, we conclude that the post collision field (for

any two solitons in any curved multi-scalar field theory) successfully realizes the late-time

free passage field configuration, provided the impact velocity was sufficiently relativistic.

The threshold above which the impact velocity ought to be is dependent on both the

model and the choice of the two colliding solitons. This threshold can be estimated by

requiring that the distance in field space between the free passage field, say, for the center

of the collision region at time t, and the free passage plus deviation location be much much
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Geometry gij Parent and Bubble Vacua Free Passage

A B C D

Sphere gθθ = 1 ( π12 ,
2π
15 ) ( 5π

12 ,
2π
11 ) ( 3π

12 ,
6π
13 ) (1.77,1.08)

gφφ = sin2(θ)

Teardrop gθθ = cos2(θ)+
[
sin(θ)

2 +(θ−π)
]2

( 7π
60 ,

π
13 ) ( 118π

327 ,−
π
13 ) ( 73π

327 ,
35π
109 ) (1.52,0.33)

gφφ = sin2(θ)

Torus guu = (1 + .7 cos(v))2 ( 145π
654 ,

−20π
109 ) (− 145π

654 ,
20π
109 ) (− 35π

654 ,
235π
654 ) (1.36,0.09)

gvv = .72

Table 1. Metric Components and Vacuum Locations.

smaller than the length of the path taken through field space until time t by the observer

at the center of the collision region. Since the walls of bubbles nucleated via Coleman-

De Luccia tunneling accelerate as they move outwards, we expect our parallel transport

procedure to be a useful means of predicting the field configuration following the collision

of two bubbles, provided they were nucleated sufficiently far apart (and their radii upon

nucleation is sufficiently small compared to the separation distance such that high enough

impact velocity is reached upon collision).

4 Numerical simulations

We simulated soliton collisions at a variety of impact velocities in three different models

with actions of the form (2.1). Each model featured a different two dimensional curved

field space. We reiterate that the field space is curved in the sense that the matrix of

{φi} dependent functions, gij , in the noncanonical kinetic term in the Lagrangian is the

coordinate representation of the metric on a curved manifold (clearly the field components

{φi} are identified as coordinates on the manifold). The particular manifolds we considered

were the sphere, the ring torus, and the “teardrop” — our own creation named for obvious

reasons.

For both the sphere and teardrop we used the polar angle and azimuthal angle as our

two coordinates. For the torus we used the angles about the major axis, and the minor axis.

To minimize the possibility for confusion we adopt standard naming conventions used for

these coordinate systems, and refer to the field components (φ1, φ2) as (θ, φ) for the sphere

and teardrop, and as (u, v) for the torus. For the explicit form of the metric components,

as well as vacuum locations refer to table 1.

We numerically approximated the solutions to the initial value problem (2.7) associ-

ated with the collision of two non-identical solitons in the given theory, as well as solutions

to the mutual parallel transport of two tangent vector fields problem (2.27)–(2.29), using

Mathematica’s finite difference partial differential equation solver, NDSolve. The potential

was engineered to have three degenerate vacua with generic looking wells and barriers by

using the product of two trigonometric functions, and then isolating only three minima

by multiplying by a superposition of hyperbolic tangents which served as smooth approx-

imations to characteristic functions and hat functions. For the explicit form of the three

potentials see table 2.
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Figure 3. Plot of the potential for the teardrop model. Note the cylindrical well carved out of the

plateau at D. This addition does not change the solitons f , and h.

We wanted the potential to be flat outside the neighborhood immediately surrounding

the three vacua so as to minimize the influence of the potential on field dynamics, both

throughout the collision and after, so that the free passage behavior could feasibly be

extracted. Though we absolutely assert that parallel transport is generic (there always

exists a speed high enough such that it is fully realized), we wanted to design a nontrivial

scenario where the boost needed was small enough, and so the grid size large enough, that

we’d have a hope of resolving this in Mathematica, and on a desktop computer.

There is a final step to designing a potential that enables us to extract the free passage

dynamics — the placement of a fourth degenerate vacuum at the free passage location, D,

which of course is not known a priori. Had the potential been left as a plateau outside

the three vacua the post collision field dynamics would be tainted by the pressure gradient

across outgoing walls resulting from the energy density in the collision region differing

from that in the surrounding region (which is still simply that of the degenerate bubble

vacua). In order to prolong the amount of time after which free passage would remain a

good approximation, without unduly biasing the field toward the free passage field location

we carved a cylindrical well out of the plateau at the free passage field location, for each

model. Clearly then, the parallel transport solution for each geometry was obtained before

any collisions were simulated, so that each of their potentials could be modified in the

manner described.

Note that the parallel transport solution, Φ, is by definition independent of the po-

tential provided that the soliton curves between the parent and two bubble vacua remain
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Model Potential

Sphere V (θ, φ)=V0 sin(6θ) sin
(
(3θ−4π)φ

π

)
∗χsphere(θ, φ)

−V0

2 tanh(40((θ −Dθ)
2+(φ−Dφ−.3)2)) +2.5)

+V0

2 tanh(40((θ −Dθ)
2 + (φ−Dφ − .3)2)− 2.5

Teardrop V (θ, φ) = V0 sin(4φ− 1.2θ + .3π) sin(6θ − 1.5π + 1.8φ) ∗ χtear(θ, φ)

−V0

2

[
tanh(2.7− 60(((θ −Dθ)

2 + (φ−Dφ)2))) + 1
]

Torus V (u, v) = V0 sin(2v − .6u) sin(3u+ .9v) ∗ χtorus(u, v)

−V0

2

[
tanh(3− 30((u−Du)2 + (v −Dv)

2))) + 1
]

Table 2. Above is the explicit form of the potentials we used in our simulations of solitons collisions

for each of the field space geometries we considered.

unchanged (since these are the boundary conditions in the parallel transport problem).

Clearly the potential in the neighborhood of the three original vacua is unaffected by the

addition of the narrow cylindrical well placed out on the plateau away from the original

three vacua. A plot of the potential in the teardrop model is included as an example in

figure (3), and the explicit form of the potentials used for all three geometries can be found

in table 2.4

Lastly it is necessary to discuss how the initial conditions and boundary conditions

were formulated. Both are defined in terms of the components of the two solitons we

are colliding. Solitons are, by definition, static solutions to the equations of motion (2.2)

that approach two distinct (obviously degenerate) minima of the potential asymptotically.

In a multi-scalar field theory solitons are unique to the vacua they interpolate between,

and furthermore are the minimum energy field configurations that satisfy the given pair

of boundary conditions. Since the coupled ordinary differential equations that define the

solitons are nonlinear, analytic solutions generally cannot be found. However, if an initial

profile that satisfies the boundary conditions is evolved in time by the equations of motion

plus a damping term, the profile ultimately settles down to the soliton, provided the initial

guess was sufficiently close to the true soliton and the damping coefficient was not too

large. We performed this relaxation procedure numerically, once again with NDSolve in

Mathematica.5

4where,

χsphere(θ, φ)=(1−tanh((θ−.25φ−5π/12−.2)30)))(1−tanh((φ+1.5θ−3.2)30))/4

χtear(θ, φ)=
1

26
(1+tanh[40(−0.05+(−1.56+u)2+(0.06+v)2)])(1+tanh[20(−0.5+(−2.42+2u)2+(−2.3+2v)2)])

∗ (1+tanh[20(−0.75+(−0.07+2u)2+(−2+2v)2)])(1+tanh[10(−3.2+(−3.87+2u)2+1/2(−1.9+2v)2)])

∗ (1+tanh[20(−1+(−2.27+2u)2+(−1+2v)2)])(1+tanh[10(2.1−(−1.77+2u)2−1/2(−0.8+2v)2)])

χtorus(u, v) =
1

26
(tanh(10(2.1−(v−.8)2/2−(u−.2)2))+1) ∗ (1−tanh(30((.15v+u)−.9)))

∗ (tanh(10((v−1.9)2/2+(u−2.3)2−3.2))+1) ∗ (tanh(20((v−1)2+(u−.7)2−1.2))+1)

∗ (tanh(20((v−2.3)2+(u−.85)2−.5))+1) ∗ (tanh(20((v−2)2+(u+1.5)2−.75))+1)

5It is important to mention how the initial guesses for the soliton components in relaxation were chosen.

Since the (true) soliton is defined by both the geometry and the potential, we sought to allow both to play
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Note that analytic expressions for the four soliton components, f i, and hi, were needed

in order for simulations of the collision to be feasible. At such small grid spacing time

evolving initial conditions constructed out of the interpolating functions relaxation yielded

was not possible. So the final step was to engineer analytic expressions that approximated

each of the soliton components from relaxation (four total, f1, f2, h1, h2). All were

modifications of (scaled and shifted) hyperbolic tangents, typically with the addition of

small gaussians and nonlinear terms in the argument of the hyperbolic tangent.

The free passage field configuration was indeed fully realized in all three models at

sufficiently large impact velocity. Snapshots of the spatial profile of each field components

during such collisions can be found in figures 4. Note that each field component’s collision

region is homogenous, with the precise value predicted by the parallel transport solution,

indicated by the contrasting dashed line. Furthermore, the shapes of the outgoing soliton

profiles matched the prediction as well, as shown in figures 5, 6, and 7.

5 Discussion

In this paper we pushed the understanding of bubble universe collisions one step forward by

considering the impact of working in the context of a curved field space. Far from an esoteric

exercise, this situation arises in prominent contexts such as inflation on the string landscape,

in which the relevant fields can be taken to be moduli on Calabi-Yau compactifications.

The moduli fields generally span Kähler manifolds with nontrivial curvature, and so the

results of this paper would directly apply.

We have found a simple generalization of the free passage approximation developed

in the flat space limit, which admits a satisfying geometrical interpretation. Namely, the

free passage evolution is described in field space by a double family of field profiles that

interpolate from the two initial solitons along a set of curves, each of whose tangent vectors

is parallel transported along the tangent vector field of the other. We have analyzed the

conditions under which this curved field space free passage approximation holds and also

illustrated its utility in a number of numerical examples.

a role in our guesses. For a given pair of vacua we first parameterized the geodesic connecting them by

writing one field component in terms of the other (for instance, in the case of the sphere the geodesics

were great circles and the polar angle was parameterized in terms of the azimuthal). The potential was

then evaluated along the geodesic, and the resulting function was approximated as a double well potential,

which has a single free parameter after the distance between the minima is fixed. This parameter was tuned

such that the approximate potential not only qualitatively resembled the true one along the geodesic, but

also so that their integrals of the inverse square root of the difference between the vacuum value, −V0, and

the potential, between the minima were nearly identical for the. For example, for the sphere initial guess

we’d compute ∫ φB

φA

dφ/
√
Vsphere(cgeo,AB(φ), φ) + V0 (4.1)

numerically and tune the double well potential’s curvature parameter until its integral matched this. The

double well approximation then provides us with an initial guess, a (scaled and shifted) hyperbolic tangent,

for one of the two soliton components — that which the geodesic is parameterized in terms of. To obtain

a guess for the remaining component the expression for the geodesic was simply evaluated at the guess

function that was just obtained for the former component — resulting in a spatial profile.
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Figure 4. Here we show snapshots of each field component of the configuration during a collision

simulated in the teardrop model at impact velocity u = .995 (the θ component is on the top row,

and the φ on the bottom row). The prediction of each component’s value inside the collision region

obtained by parallel transport, Di, are indicated by the dashed teal and purple horizontal lines

for θ, and φ, respectively. Note both the homogeneity of the field in the collision region, and its

extraordinarily strong agreement with the free passage prediction.

A natural next step in this program is to include the effects of gravity on bubble

collisions, an issue to which we intend to shortly return.
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Figure 5. Pictured here is a comparison of the results of a collision at impact velocity u = .995

in the sphere model with the prediction from parallel transport. On the left we plot the field

configuration at various times throughout the collision parametrically in the {φi} coordinate plane

(by treating the spatial variable as the parameter) with solid purple curves. We identify the field at

the origin, x = 0, throughout the collision with the dot-dashed dark purple line. This is the path

taken through field space over the course of the collision by an observer at the center of the collision’s

rest frame. The solution to the parallel transport problem is shown with dashed lines. Those in pink

are lines of constant η, those in orange are lines of constant ξ, i.e. the integral curves of the vector

fields U and W . The curves that form the boundary of the submanifold are drawn brighter and

are overlaid so that they can easily be compared to the results of the collision. On the right these

results are plotted on the field space manifold embedded in three space (the {φi} coordinate lines

are shown in light green). The field configuration in the collision problem is again shown in solid

purple for a variety of times. The post collision prediction made by parallel transport (that is, the

integral curves obtained by completing the parallel transport procedure which yields the remaining

two curves that form the boundary of N) are shown in dashed orange. The path taken through

field space by an observer at the origin is shown in dashed pink. The fact that the boundary of

N lines up nearly perfectly with the parametric plots of the initial and final field configuration in

the collision problem indicates that there is extraordinarily good agreement between the prediction,

computed via parallel transport, and the actual outcome of the collision.
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Figure 6. Pictured here is a comparison the results of a collision at impact velocity u = .995 in

the teardrop model with the prediction from parallel transport. The same coloring scheme is the

same as that in figure 5.

Figure 7. Pictured here is a comparison the results of a collision at impact velocity u = .985 in

the torus model with the prediction from parallel transport. The same coloring scheme is the same

as that in figure 5.
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