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1 Introduction

Initiated by the seminal work of Green and Gutperle [1], the analysis of higher derivative

corrections to the low energy effective action of flat type II string vacua with maximal

supersymmetry has been an invaluable source of insight into the non-perturbative structure

of string theory. In dimension D = 10 − d, the moduli space of scalars in these vacua is

locally a symmetric space G/K, where G is a split real group of type Ed+1 and K is

its maximal subgroup [2]. Globally, there is by now overwhelming evidence that vacua

related by the action of an arithmetic discrete subgroup G(Z) — known as the U-duality
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group — are physically equivalent, as anticipated in [3]. This U-duality group unifies the

T-duality group SO(d, d,Z) associated to the d- dimensional internal torus with the global

diffeomorphism group SL(d + 1,Z) manifest in the M-theory description [4] (see table 1

and [5] for a review). Requiring that the low-energy effective action is invariant under G(Z)

puts strong constraints both on the possible perturbative and non-perturbative corrections.

For the leading terms in the low energy expansion, supersymmetry further constrains

the possible dependence on the moduli [6–11], to the extent that they can sometimes be

completely determined, to all orders in the string coupling, in terms of suitable auto-

morphic functions on G/K. This approach has led to the complete determination of the

four-graviton R4 and D4R4 couplings in the low-energy effective action of type II strings

compactified on a d-dimensional torus down to any dimension D ≥ 3 [8, 12–19]. Indeed,

the functions of the moduli multiplying these interactions, denoted conventionally by E(d)
(0,0)

and E(d)
(1,0), are identified as suitable Langlands-Eisenstein series for the U-duality group (or

residues thereof, depending on the normalization convention). As required by supersym-

metry, these automorphic forms are eigenmodes of the Laplace operator on G/K, up to

certain harmonic anomalies [8],(
∆Ed+1

− 3(d+ 1)(2− d)

(8− d)

)
E(d)

(0,0) = 6π δd,2 , (1.1)(
∆Ed+1

− 5(d+ 2)(3− d)

(8− d)

)
E(d)

(1,0) = 40 ζ(2) δd,3 + 7 E(0,0) δd,4 . (1.2)

The anomalous terms on the r.h.s. arise in dimensions where ultraviolet divergences in

supergravity set in [20]. Moreover, the asymptotic expansion of the Eisenstein series at

weak coupling regime reproduces the known perturbative corrections [21–23], along with an

infinite series of non-perturbative contributions coming from Euclidean D-branes wrapping

cycles of the internal manifold, preserving the expected number of supersymmetries [17,

19]. In the limit where the radius of one circle in T d becomes infinite, E(d)
(0,0) and E(d)

(1,0)

relate to their higher-dimensional counterparts E(d−1)
(0,0) , E(d−1)

(1,0) as required by unitarity,

whereas, in the limit where the M-theory torus T d+1 decompactifies, they can be matched

to perturbative computations in eleven-dimensional supergravity [24–30].

While the next term in the low-energy expansion, D6R4, is still protected by super-

symmetry, the exact determination of the function E(d)
(0,1) multiplying it has been possible

so far only in dimension D ≥ 8, and in quite an implicit way [8, 18, 20, 27, 31, 32]. Part

of the difficulty lies in the fact that it receives rather complicated two-loop and three-loop

corrections, which have been computed only recently [33–35]. A second difficulty is that,

unlike the R4 and D4R4 cases, supersymmetry does not require E(d)
(0,1) to be an eigenmode

of the Laplacian, rather it must satisfy the Poisson equation [8, 27](
∆Ed+1

− 6(4− d)(d+ 4)

8− d

)
E(d)

(0,1) =−
(
E(d)

(0,0)

)2

− β6 δd,4 − β5 E(5)
(0,0) δd,5 − β4 E(6)

(1,0) δd,6

(1.3)

where the right-hand side involves the square of the R4 coupling, plus anomalous terms

when ultraviolet logarithmic divergences appear in supergravity. We shall later on deter-
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D d G = Ed+1 K dim(G/K) E(d)
(0,0) E(d)

(1,0) E(d)
(0,1)

10 0 SL(2) U(1) 2 3
4

15
4 12

9 1 R+ × SL(2) U(1) 3 6
7

30
7

90
7

8 2 SL(3)× SL(2) SU(2)×U(1) 7 0 10
3 12

7 3 SL(5) SO(5) 14 −12
5 0 42

5

6 4 SO(5, 5) SO(5)× SO(5) 25 −15
2 −15

2 0

5 5 E6(6) USp(8) 42 −18 −70
3 −18

4 6 E7(7) SU(8) 70 −42 −60 −60

3 7 E8(8) SO(16) 128 −120 −180 −198

Table 1. U-duality group in type IIB string theory compactified on T d. The last three columns

tabulate the ‘eigenvalues’ of the R4, D4R4 and D6R4 couplings under the Laplacian on the moduli

space G/K. The boldface highlights degenerate or zero eigenvalues, which are correlated with the

onset of infrared divergences, manifested by an anomalous term on the r.h.s. of the Laplace equation.

mine the numerical coefficients βD to be1

β6 = −40ζ(3) , β5 = −55

3
, β4 = − 85

2π
. (1.4)

Due to the occurrence of the square of the Eisenstein series E(d)
(0,0) on the r.h.s. of (1.3),

the D6R4 coupling cannot be a (residue of) Langlands-Eisenstein series, but must instead

involve a new kind of automorphic object, which does not seem to have been discussed in

the mathematics literature.

The main goal of the present work is to determine the exact D6R4 couplings in di-

mension D = 6, by making profit of the fortunate coincidence that the U-duality group in

D = 6, SO(5, 5,Z), is also the T-duality group in D = 5. Namely, we claim that the exact

D6R4 couplings in type II string theory compactified on T 4 is given by

E(4)
(0,1) = π

∫
F2

dµ2 Γ5,5,2 ϕ(Ω) +
8

189
Ê

SO(5,5)
[00001],4 , (1.5)

where the first term involves an integral over the fundamental domain of the Siegel upper-

half plane of degree 2 of the product of Γ5,5,2, the genus 2 Siegel-Narain partition function

of the unique even-self dual lattice of signature (5, 5), times ϕ(Ω), the Kawazumi-Zhang

invariant of genus 2 Riemann surfaces [37, 38]. The first term is nothing else but the

two-loop contribution to the D6R4 couplings in D = 5 [33, 34]. The second term Ê
SO(5,5)
[00001],4

is an ordinary Langlands-Eisenstein series in the spinor representation of SO(5, 5). As we

shall explain, the Ansatz (1.5) satisfies the Poisson equation (1.3) by construction and

1The value of α6 (see (2.20)) and β6 were announced in [34], and are confirmed by the independent

analysis of [36].
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reproduces the expected tree-level, one-loop, two-loop and three-loop contributions. It

predicts the Euclidean D-brane instanton contributions in principle, although we shall not

attempt to extract them in this work. The exact D6R4 couplings in dimension D = 7 can

be obtained by degenerating SO(5, 5) into SL(5).

While the weak coupling expansion of the Eisenstein series in (1.5) can be obtained

straightforwardly from Langlands’ constant term formula, the analogous expansion of the

genus 2 modular integral in (1.5) is challenging, as it depends on the asymptotics of the

Kawazumi-Zhang invariant, and will be considered elsewhere [39]. Our strategy in this

paper will be instead to obtain it from the large radius expansion of the two-loop contribu-

tion to the D6R4 couplings in D = 5, which follows from general constraints on the circle

decompactification limit of D6R4 couplings [18, 19]. For this purpose, we shall reanalyze

systematically the weak coupling and large radius limits of R4, D4R4 and D6R4 couplings

in all dimensions D ≥ 3, filling in some gaps and correcting various inconsistencies in the

literature. We hope that the results in this work can serve as a jumping board to determine

the exact D6R4 couplings in dimension D < 6 or other exact couplings in string theory.

The outline of this work is as follows. In section 2 we review the structure of the

R4, D4R4 and D6R4 couplings in string perturbation theory, the differential equations

which constrain them, and their behavior under circle decompactification. In particular,

we determine the anomalous terms appearing on the r.h.s. of the differential equations for

special values of the dimension, and the coefficients of the logarithmic terms which appear

in the weak coupling and large radius limit. In section 3, we show that the proposal (1.5)

for the exact D6R4 amplitude in D = 6 passes all available consistency checks, includ-

ing differential equation, weak coupling and large radius expansion. In appendix A, we

collect definitions and useful properties of Langlands-Eisenstein series for SL(d), SO(d, d)

and exceptional groups. In appendix B, we provide explicit weak coupling and large ra-

dius expansions of R4, D4R4 and D6R4 couplings in all dimensions D ≥ 3. The boot-

strap computation fixing the anomalous coefficients and the constant terms of the relevant

Langlands-Eisenstein series and D6R4 couplings can be found in Mathematica worksheets

submitted to arXiv along with this article.

2 Revisiting the D2pR4 couplings in various dimensions

In this section, we perform a systematic re-analysis of the perturbative expansion and

large radius limit of the R4, D4R4 and D6R4 couplings in all dimensions D ≥ 3, closing

some gaps in the literature (a brief review was included in [34], but was restricted to

D ≥ 6). Following [21], we denote by E(d)
(m,n) with (m,n) = (0, 0), (1, 0), (0, 1) the coefficients

multiplying R4, D4R4 and D6R4 in the local part of the 1-PI action in Einstein frame.

The notation refers to the fact that these interactions correspond to term proportional

to (s2 + t2 + u2)m(s3 + t3 + u3)nt8t8R4 in the low energy expansion of the four-graviton

scattering amplitude, where t8t8R4 is the standard contraction of four Riemann tensors

which arises at tree level [40, 41]. The 1-PI action also contains non-local terms due to the

exchange of massless states, which can mix with the local part for particular values of the

space-time dimension. Since the Einstein frame metric is invariant under U-duality, the
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couplings E(d)
(m,n) must be automorphic functions of the moduli in G/K. We shall focus on

their expansion at weak coupling and at large radius. The M-theory limit is also interesting

but unnecessary for our purposes.

2.1 Weak coupling limit

In the weak coupling limit, the scalar moduli space decomposes into

G/K = R+ × SO(d, d)

SO(d)× SO(d)
× Rdim(G/K)−d2−1 , (2.1)

where the first factor corresponds to the string coupling gD, the second to the constant

metric and two-form ρd = G + B on the torus T d, and the last factor to the Ramond

potentials when D > 4, as well as dual of the Neveu-Schwarz fields when D ≥ 4. The

D-dimensional string coupling gD is related to ten-dimensional type IIB string coupling gs
via 1/g2

D = Vd/(l
d
sg

2
s), where Vd is the volume of the torus, and is invariant under T-duality.

In string perturbation theory, the four-graviton scattering amplitude is an infinite sum

of genus h amplitudes, weighted by g2h−2
D , invariant under T-duality at each loop order.

After expanding at low energy, and transforming from the string frame to the Einstein

frame, the weak coupling expansions of the four-graviton couplings are of the form

E(d)
(0,0) = E(d),non.an.

(0,0) (gD, ρd) + g
2d−4
d−8

D

∞∑
h=0

g−2+2h
D E(d,h)

(0,0) (ρd) +O(e−2π/gD) (2.2)

E(d)
(1,0) = E(d),non.an.

(1,0) (gD, ρd) + g
2d+4
d−8

D

∞∑
h=0

g−2+2h
D E(d,h)

(1,0) (ρd) +O(e−2π/gD) (2.3)

E(d)
(0,1) = E(d),non.an.

(0,1) (gD, ρd) + g
2d+8
d−8

D

∞∑
h=0

g−2+2h
D E(d,h)

(0,1) (ρd) +O(e−2π/gD) (2.4)

where E(d,h)
(m,n)(ρd) denotes the h-loop contribution and the last term denotes non-

perturbative D-brane instanton corrections (along with NS-brane instantons when D ≤ 4)

. The first term E(d),non.an.
(m,n) is a non-analytic term in the string coupling gD, which may

arise in the process of transforming from string frame to Einstein frame in the particular

dimensions where the non-local and local part of the 1-PI effective action mix [20]. Each of

these terms are separately invariant under T-duality. From a mathematical viewpoint, the

expansions (2.2)–(2.4) correspond to the constant term of the automorphic forms E(d)
(m,n)

with respect to the maximal parabolic subgroup P1, obtained by deleting the simple root

α1 associated to the ‘string multiplet’.

2.1.1 Perturbative contributions

As far as the perturbative contributions are concerned, it is by now firmly established that

they vanish but for the first few loop orders, namely

E(d,h>1)
(0,0) = E(d,h>2)

(1,0) = E(d,h>3)
(0,1) = 0 . (2.5)
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The tree-level contributions are known since [40, 41], and are independent of the

torus moduli,

E(d,0)
(0,0) = 2ζ(3) , E(d,0)

(1,0) = ζ(5) , E(d,0)
(0,1) =

2

3
ζ(3)2 . (2.6)

The one-loop contributions are given by modular integrals over the fundamental domain

F1 of the Poincaré upper-half plane,

E(d,1)
(0,0) (ρd) = π

∫
F1

dµ1 Γd,d,1(ρd; τ) (2.7)

E(d,1)
(1,0) (ρd) = 2π

∫
F1

dµ1 Γd,d,1(ρd; τ)E?(2, τ) (2.8)

E(d,1)
(0,1) (ρd) =

π

3

∫
F1

dµ1 Γd,d,1(ρd; τ) (5E?(3, τ) + ζ(3)) (2.9)

where Γd,d,1 is the partition function of the Narain lattice at genus 1, and

E?(s, τ) =
1

2
π−sΓ(s)ζ(2s)

∑
(c,d)=1

( Im τ)s

|cτ + d|2s
(2.10)

is the non-holomorphic Eisenstein series of SL(2,Z), in the normalization of [42]. In defining

these divergent integrals we use the renormalization prescription of [42, 43], and normalize

the integration measure dµh as in [34].

At two-loop, the corrections to R4 couplings vanish, but the corrections to D4R4

and D6R4 are given by modular integrals over the fundamental domain F2 of the Siegel

upper-half plane of degree 2, which parametrizes genus 2 Riemann surfaces, [22, 33],

E(d,2)
(1,0) (ρd) =

π

2

∫
F2

dµ2 Γd,d,2(ρd; Ω) (2.11)

E(d,2)
(0,1) (ρd) = π

∫
F2

dµ2 Γd,d,2(ρd; Ω)ϕ(Ω) (2.12)

where Γd,d,2 denotes the partition function of the Narain lattice at genus 2, and ϕ(Ω) is

the Kawazumi-Zhang invariant introduced in [37, 38].

Finally, at three-loop the corrections to R4 and D4R4 couplings vanish, but the cor-

rection to D6R4 is given by a modular integral over the fundamental domain F3 of the

Siegel upper-half plane of degree 3, parametrizing genus 3 Riemann surfaces, [34, 35]:

E(d,3)
(0,1) (ρd) =

5

16

∫
F3

dµ3 Γd,d,3 (2.13)

where Γd,d,3 denotes the partition function of the Narain lattice at genus 3. The normal-

ization here has been fixed by requiring for d = 0 the correct value 4ζ(6)/27 demanded by

S-duality [32].

In all cases but the two-loop D6R4 amplitude, the modular integrals appearing above

can be expressed in terms of residues of Langlands-Eisenstein series for the T-duality
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group SO(d, d,Z) [8, 15, 42, 44]. Using the conventions for Eisenstein series spelled out in

appendix A, we have

E(d,1)
(0,0) = 2π2− d

2 Γ

(
d

2
− 1

)
E

SO(d,d)

[10d−1], d
2
−1

(d 6= 2) (2.14)

E(d,1)
(1,0) =

2

45
π2− d

2 Γ

(
1 +

d

2

)
E

SO(d,d)

[10d−1], d
2

+1
(d 6= 4) (2.15)

E(d,1)
(0,1) =

ζ(3)

3
E(1)

(0,0) +
4

567
π2− d

2 Γ

(
d

2
+ 2

)
E

SO(d,d)

[10d−1], d
2

+2
(d 6= 6) (2.16)

E(d,2)
(1,0) =

2

3

(
Ê

SO(d,d)

[0d−11],2
+ Ê

SO(d,d)

[0d−210],2

)
(d ≤ 4) (2.17)

E(d,3)
(0,1) =

2

27

(
Ê

SO(d,d)

[0d−11],3
+ Ê

SO(d,d)

[0d−210],3

)
(d ≤ 6) (2.18)

If the Eisenstein series has a pole at the stated value of the parameter s, these equations

continue to hold after subtracting the pole, i.e. by replacing E → Ê. In the last two

equations, one should instead replace Ê → E and drop the second Eisenstein series when

s does not correspond to a pole, i.e. for d ≥ 5 and d ≥ 7, respectively.

2.1.2 Non-analytic contributions

As far as the non-analytic terms are concerned, they occur in cases where the non-local

and local parts of the action can mix. In practice, this can happen when the eigenvalue of

E(d)
(m,n) vanishes, or when it becomes degenerate with that of a coupling E(d)

(m′,n′) with fewer

derivatives. Looking at table 1, we see that this occurs in dimension D = 8 for R4 terms,

D = 7, 6 for D4R4 and D = 6, 5, 4 for D6R4, along with D = 8 due to the presence of

[E(2)
(0,0)]

2 on the r.h.s. of the equation (1.3). Thus, we expect

E(d),non−an.
(0,0) =

4π

3
log g8 δd,2

E(d),non−an.
(1,0) =

16π2

15
log g7 δd,3 + E(4)

(0,0) log g6 δd,4

E(d),non−an.
(0,1) =

(
4π2

27
log2 g8 +

2π

9

(π
2

+ E(2),an
(0,0)

)
log g8

)
δd,2

+ α6 log g6 δd,4 + α5 E(5)
(0,0) log g5 δd,5 + α4 E(6)

(1,0) log g4 δd,6

(2.19)

The coefficients αD are unknown at this stage, but we shall determine them later on to be

α6 = 5ζ(3) , α5 =
20

9
, α4 =

5

π
. (2.20)

The numerical coefficients in the first three lines have been fixed from the known exact

results, although they could be kept as free parameters and fixed in the same way as

the coefficients αD. The coefficient α6 was erroneous in [20], which caused an apparent

discrepancy with the 3-loop supergravity computation of [45], but the value 5ζ(3) obtained

herein resolves this discrepancy, as already announced in [34]. It would be interesting to

similarly check the coefficients α5 and α4 against supergravity computations. In (2.19), we

have also omitted possible constant terms, which can be absorbed in the definition of gD,

or equivalently into a different splitting of the 1PI action into local and non-local parts.
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2.1.3 Differential equations at fixed loop order

Given the weak coupling expansions (2.2)–(2.4), it is straightforward to translate the dif-

ferential equations (1.1)–(1.3) into Laplace or Poisson equations for the perturbative con-

tributions E(d,h)
(m,n). The anomalous terms on the r.h.s. of the resulting equations depend on

the a priori unknown coefficients αD and βD in (1.3) and (2.19) (as well as the ‘known’

coefficients in (1.1), (1.2) and (2.19), which we could keep as free parameters at this stage).

For convenience, we shall display the result only for the relevant values stated in (1.4)

and (2.20), which we will derive later on.

Decomposing the Laplacian ∆Ed+1
in terms of the SO(d, d,R) subgroup,

∆Ed+1
=

8− d
8

∂2
φ +

d2 − d+ 4

4
∂φ + ∆SO(d,d) + · · · (2.21)

and using

∆Ed+1
(F log gD) = log gD ∆Ed+1

F +

(
d2 − d+ 4

4
+

8− d
4

gD∂gD

)
F (2.22)

we find the following differential equations for the perturbative terms E(d,h)
(m,n):

• The perturbative corrections to R4 couplings satisfy

∆SO(d,d) E
(0,0)
(0,0) = 0(

∆SO(d,d) + d(d− 2)/2
)
E(d,1)

(0,0) = 4π δd,2 (2.23)

• The perturbative corrections to D4R4 couplings satisfy

∆SO(d,d) E
(0,0)
(1,0) = 0(

∆SO(d,d) + (d+ 2)(d− 4)/2
)
E(d,1)

(1,0) = 12ζ(3) δd,4(
∆SO(d,d) + d(d− 3)

)
E(d,2)

(1,0) = 24ζ(2) δd,3 + 4E(d,1)
(0,0) δd,4 (2.24)

• The perturbative corrections to D6R4 couplings satisfy(
∆SO(d,d) − 6

)
E(d,0)

(0,1) = −
(
E(d,0)

(0,0)

)2

(
∆SO(d,d) − (d+ 4)(6− d)/2

)
E(d,1)

(0,1) = −2E(d,0)
(0,0) E

(d,1)
(0,0) +

2π

3
ζ(3) δd,2 +

25

π
ζ(5)δd,6(

∆SO(d,d) − (d+ 2)(5− d)
)
E(d,2)

(0,1) = −
(
E(d,1)

(0,0)

)2
−
(
π

3
E(d,1)

(0,0) +
7π2

18

)
δd,2

+
70

3
ζ(3)δd,5 +

20

π
E(6,1)

(1,0) δd,6(
∆SO(d,d) − 3d(4− d)/2

)
E(d,3)

(0,1) = 20ζ(3) δd,4 +
25

3
E(5,1)

(0,0) δd,5 +
15

π
E(6,2)

(1,0) δd,6

(2.25)
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D d E(d,1)
(0,0) E(d,1)

(1,0) E(d,2)
(1,0) E(d,1)

(0,1) E(d,2)
(0,1) E(d,3)

(0,1)

9 1 1
2

9
2 2 25

2 12 9
2

8 2 0 4 2 12 12 6

7 3 −3
2

5
2 0 21

2 10 9
2

6 4 −4 0 −4 8 6 0

5 5 −15
2 −7

2 −10 9
2 0 −15

2

4 6 −12 −8 −18 0 −8 −18

3 7 −35
2 −27

2 −28 −11
2 −18 −63

2

2 8 −24 −20 −40 −12 −30 −48

1 9 −63
2 −55

2 −54 −39
2 −44 −135

2

Table 2. Eigenvalues of the perturbative contributions under the T-duality invariant Laplacian

∆SO(d,d). The degeneracies between different eigenvalues, or their vanishing, are highlighted in

boldface, and correlated with the appearance of anomalous terms on the r.h.s. of the Laplace or

Poisson equation.

The ‘eigenvalues’ appearing on the l.h.s. of these equations are tabulated in table 2. Ex-

cept for the two-loop correction to D6R4, these equations can all be checked against the

Eisenstein series representation of the corresponding amplitude. The equations satisfied

by the two-loop modular integrals (2.11), (2.12) will be checked elsewhere [39].

2.2 Circle decompactification limit

We now turn to the limit in which the radius of one circle in T d, say rd, becomes very large

in units of the D + 1-dimensional Planck scale lD+1. This limit is particularly important,

as it allows to recursively determine the constant parts of the D2pR4 couplings in any

dimension from their value in ten-dimensional type IIB theory (or conversely, determine

all of them from their value in D = 3). As explained in [8], in this limit the coupling E(d)
(m,n)

reduces to its higher-dimensional counterpart E(d−1)
(m,n) (up to a power of rd/lD+1 determined

by dimensional analysis), plus a combination of couplings E(d−1)
(m′,n′) with fewer derivatives,

E(d)
(0,0) =

(
rd
lD+1

) 6
8−d
[
E(d−1)

(0,0) + ad

(
rd
lD+1

)d−3
]

+ . . . (2.26)

E(d)
(1,0) =

(
rd
lD+1

) 10
8−d
[
E(d−1)

(1,0) + bd

(
rd
lD+1

)d−5

E(d−1)
(0,0) + cd

(
rd
lD+1

)d+1
]

+ . . . (2.27)

E(d)
(0,1) =

(
rd
lD+1

) 12
8−d
[
E(d−1)

(0,1) + ed

(
rd
lD+1

)d−7

E(d−1)
(1,0) + fd

(
rd
lD+1

)d+3

+pd

(
rd
lD+1

)d−3

E(d−1)
(0,0) + qd

(
rd
lD+1

)2d−6
]

+ . . . (2.28)
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From a mathematical viewpoint, these expansions correspond to the constant term of

the automorphic forms E(d)
(m,n) with respect to the maximal parabolic subgroup Pd+1, ob-

tained by deleting the simple root αd+1 associated to the ‘particle multiplet’. From a

physics point of view, the additional terms beyond E(d−1)
(m,n) combine with an infinite series

of higher-derivative corrections and a non-local term in dimension D to reproduce the

necessary non-local term in dimension D + 1 due to massless thresholds. In particular,

the terms proportional to ad, cd, fd are the first terms k = 0, 2, 3 in an infinite series of

local interactions

A = rd−3
∑
k≥0

πk

k!
ζ?(2k + d− 2) (r2s)kR4 , (2.29)

which can be resummed into

A = rd−3
∑
k≥0

∞∑
m=1

π1− d
2
−kΓ(k + d−2

2 )

k!m2k+d−2
(πr2s)kR4

=
πrd−3

sin[π2 (d− 2)]

∑
k≥0

∞∑
m=1

(−1)k π1− d
2
−k

k! Γ(4−d
2 − k)m2k+d−2

(πr2s)kR4

=
π2− d

2

r sin[π2 (d− 2)] Γ(2− d
2)

∞∑
m=1

(
m2

r2
− s
)1− d

2

R4

(2.30)

where we used Γ(x)Γ(1−x) = π/ sinπx. The sum over m in the last line can be interpreted

as the sum over massive thresholds due to Kaluza-Klein states. The missing term m = 0 in

the sum is provided by the one-loop massless threshold s(2−d)/2R4 in the non-local action

in dimension D. At large r, we can approximate the sum by an integral, and recover the

non-local term s(3−d)/2R4 in dimension D + 1. This fixes, for generic d,

ad = 4π ζ?(d− 2) , cd = 8π ζ?(4) ζ?(d+ 2) , fd =
20π

3
ζ?(6) ζ?(d+ 4) . (2.31)

Similarly, the terms proportional to bd and ed are part of an infinite series of terms which

reproduces the subleading massless threshold in D + 1 dimensions generated from the

product of a tree-level and R4 interactions, while the term proportional to ed enters in an

infinite series which sums up to the massless threshold in D+ 1 dimensions generated from

the product of a tree-level and D4R4 interactions. This fixes, for generic d,

bd = 2ζ?(d− 4) , ed =
5

π
ζ?(d− 6) , pd =

2π

3
ζ?(d− 2) . (2.32)

The term proportional to qd should similarly be part of an infinite series which sums up to

the two-loop supergravity threshold in dimension D + 1. Its value (as well as the value of

pd) is fixed from the differential equation (1.3) to be

qd =
16π2[ζ?(d− 2)]2

(d+ 1)(6− d)
. (2.33)

Using the decompactification limit of the Laplacian,

∆Ed+1
→ ∆Ed +

8− d
2(9− d)

(rd∂rd)
2 +

d2 − 17d+ 12

2(9− d)
rd∂rd (2.34)
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it is straightforward to check that the differential equations (1.1)–(1.3) hold in generic

dimension d, provided they hold in dimension d− 1.

For particular values of d, the coefficients ad . . . qd become singular, at the same time as

powers of (rd/lD+1) become equal in (2.26)–(2.27). This signals the presence of logarithmic

terms, whose coefficient is a priori unknown. Using

∆Ed+1
(F log rd) = (log rd) ∆Ed+1

F +

[
8− d
9− d

rd∂rd +
d2 − 17d+ 12

2(9− d)

]
F , (2.35)

we see that the anomalous terms on the r.h.s. of (1.1)–(1.3) in dimension d are related

to the anomalous terms in the same equations in dimension d − 1 and to the coefficients

of these logarithms. In appendix B, we provide the detailed decompactification limits,

including the logarithmic terms, in any dimension D ≥ 3.

2.2.1 Interplay of weak coupling and decompactification limits

It is also useful to analyze the limit of each term E(d,h)
(m,n) in the perturbative expansions (2.2)–

(2.4) in the limit where the radius of one circle of T d becomes large in string units. This

allows to relate the log gD terms in the weak coupling expansion to the log rd/lD+1 terms

in the large radius limit. For this purpose, we need to express the D-dimensional coupling

gD and the Planck length in D+ 1 dimensions in terms of the D+ 1-dimensional coupling

gD+1 and string length ls,

gD = gD+1(ls/rd)
1/2 , lD+1 = ls g

2/(9−d)
D+1 . (2.36)

Clearly, all tree level coefficients are independent of R ≡ rd/ls. Using (2.26)–(2.28)

and (2.2)–(2.4), one finds that the one-loop corrections to R4, D4R4 and D6R4 couplings

behave as

E(d,1)
(0,0) =R E(d−1,1)

(0,0) + adR
d−2

− 4π logRδd,2 + 4πR logRδd,3

E(d,1)
(1,0) =R E(d−1,1)

(1,0) + 2ζ(3) bdR
d−4 + cdR

d+2

− 4ζ(3) logRδd,4 + 4ζ(3)R logRδd,5

E(d,1)
(0,1) =R E(d−1,1)

(0,1) + ζ(5) edR
d−6 + fdR

d+4 + 2ζ(3) pdR
d−2

+

(
−4π

3
ζ(3) logR+

π

18
ζ(3)

)
δd,2 +

(
4π

3
ζ(3)R logR− π

18
ζ(3)R

)
δd,3

− 5

π
ζ(5) logRδd,6 +

5ζ(5)

π
R logRδd,7

(2.37)

where the terms proportional to ad, bd, etc are to be omitted in the dimensions where they

are singular, and replaced by the explicit logarithmic terms displayed on the subsequent

line. These large radius expansions can be checked from the Eisenstein series representa-

tions (2.14)–(2.16), or just as well from the modular integral representation (2.7)–(2.9),

using e.g. the techniques in [42].
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Similarly, the two-loop corrections to D4R4 and D6R4 behave as

E(d,2)
(1,0) =R2 E(d−1,2)

(1,0) + bdR
d−3 E(d−1,1)

(0,0)

− 4π2

3
logRδd,3 +

(
4π2

3
R2 − 2RE(3,1)

(0,0)

)
logRδd,4 + 2R2 logR E(4,1)

(0,0) δd,5

E(d,2)
(0,1) =R2 E(d−1,2)

(0,1) + edR
d−5 E(d−1,1)

(1,0) + pdR
d−1 E(d−1,1)

(0,0) + qdR
2d−4

+

[
4π2

3
(logR)2 − π2

3
logR+

(
−2π

3
R logR+

π

36
R

)
E(1,1)

(0,0) +
37π2

216

]
δd,2

+

(
4π2

3
(R logR)2 +

2π

3
R2 logR (E(2,1)

(0,0) +
1

3
) +

5π2R2

72
− πR2

36
E(2,1)

(0,0)

)
δd,3

− 10

3
ζ(3) logRδd,5 +

(
10

3
R2ζ(3)− 5

π
R E(5,1)

(1,0) −
4π6

14175
R8

)
logRδd,6

+
5

π
R2 logR E(6,1)

(1,0) δd,7

(2.38)

The large radius expansion of E(d,2)
(1,0) can be checked using the Eisenstein series represen-

tation (2.17). The expansions can also be checked directly using the genus 2 modular

integral representations (2.11)–(2.12), although for the latter detailed information about

the asymptotics of the Kawazumi-Zhang invariant is required [39].

Finally, the three-loop D6R4 correction behaves as

E(d,3)
(0,1) =R3 E(d−1,3)

(0,1) + edR
d−4 E(d−1,2)

(1,0) − 10

3
ζ(3) logRδd,4

+

(
10

3
ζ(3)R3 − 5

3
R E(4,1)

(0,0)

)
logRδd,5 +

(
5

3
R3E(5,1)

(0,0) −
5

π
R2E(5,2)

(1,0)

)
logRδd,6

+
5

π
E(6,2)

(1,0) R
3 logRδd,7 (2.39)

as can be checked using the Eisenstein series representation (2.13).

2.3 Bootstrap

In the previous subsections, we have assumed specific values for the coefficients of the

logarithms appearing in the weak coupling and large radius expansions, and consequently

for the anomalous terms in the partial differential equations. We now comment on how

these values have been obtained. For what concerns the large radius, fixed loop order

behavior, we have already mentioned that the coefficients of the logarithms could be fixed

from the Eisenstein series representations (2.14)–(2.18), except for the D6R4 two-loop

correction, which cannot be represented as an Eisenstein series. Also, the coefficients of the

non-analytic terms in (2.19) are a priori unknown, although they could in principle be fixed

by a supergravity computation. By requiring the consistency of the weak coupling and large

radius expansions, it turns out that all coefficients are fixed uniquely to the values stated

above. We refer the interested reader to the Mathematica worksheet d6r4bootstrap.nb

submitted along with this article on arXiv for details.
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2.4 Dimensional regularization: a puzzle

While we have followed the bootstrap strategy to fix the coefficients of the logarithms, one

could also try to use dimensional regularization to determine these coefficients. For this

purpose, let us denote by Ẽ(d)
(m,n) the R4, D4R4 and D6R4 couplings in generic dimension2

D = 10 − d, and assume that they satisfy the differential equations (1.1)–(1.3) with no

anomalous terms (but still with the quadratic source term in (1.3)). Similarly, we assume

that the genus h contributions Ẽ(d,h)
(m,n) are expected to satisfy (2.23)–(2.25) with no anoma-

lous terms. We expect Ẽ(d)
(m,n) to have a pole at values of d where the non-local and local

actions mix. Defining the finite coupling E(d)
(m,n) by subtracting the pole, the differential

equation for E(d)
(m,n) will pick up an anomalous term proportional to the residue at the pole.

For example, the anomalous term on the r.h.s. of the differential equation (1.1) for the R4

coupling in D = 8 follows if Ẽ(d)
(0,0) has a simple pole at d = 2,

Ẽ(d)
(0,0) = − 4π

d− 2
+ E(2)

(0,0) +O(d− 2) (2.40)

such that (
∆Ed+1

− 3(d+ 1)(2− d)

(8− d)

)
Ẽ(d)

(0,0) = 0 . (2.41)

The singularity of Ẽ(d)
(0,0) at d = 2 can be further assigned to a simple pole in the one-loop

contribution,

Ẽ(d,1)
(0,0) = − 4π

d− 2
+ E(2,1)

(0,0) +O(d− 2) , (2.42)

producing the correct anomalous term on the r.h.s. in the second line of (2.23). Taking

into account the poles in the coefficient ad appearing in (2.26) for d = 2 and d = 3,

ad ∼ −
4π

d− 2
, ad ∼

4π

d− 3
, (2.43)

we recover the logR terms in the second line of (2.37) with the correct coefficient, as well

as the log r terms in (B.19) and (B.33).

Similarly the anomalous terms in (1.2) seem to imply that Ẽ(d)
(1,0) has poles at d = 3

and d = 4,

Ẽ(d)
(1,0) = − 4π2

3(d− 3)
+ E(3)

(1,0) + . . . (2.44)

Ẽ(d)
(1,0) = −56

85

E(4)
(0,0)

d− 4
+ E(4)

(1,0) + . . . , (2.45)

The pole at d = 3 originates from simple pole in the two-loop contribution, consistently

with the anomalous term in the second line of (2.24). It is also consistent with (2.27)

2Dimensional regularization is tricky to implement in string theory, but the anomalous terms are expected

to be determined in supergravity supplemented with suitable counterterms.
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and (B.36), upon noting that b3 = π/3. The pole at d = 4 is on the other hand puzzling:

indeed the anomalous terms in the differential equations (2.24) seem to require

Ẽ(d,1)
(1,0) = −4ζ(3)

d− 4
+ . . . , Ẽ(d,2)

(1,0) = −4

5

E(4,1)
(1,0)

d− 4
+ . . . (2.46)

in disagreement with (2.45). Moreover, using bd ∼ −2/(d − 4), the decompactification

limit (2.27) seems to require a coefficient −2 in (2.45), rather than −56/85, while the

coefficients of r
3/2
4 log r4 and r

3/2
5 log r4 in (B.44) differ from the ones predicted by (2.27).

As for the D6R4 couplings, the differential equations (1.3) seem to imply that Ẽ(d)
(0,1)

has poles at d = 2, 4, 5, 6,

Ẽ(d)
(0,1) =

4π2

3(d− 2)2
− 2π

3

E(2)
(0,0) + cte

d− 2
+ E(2)

(0,1) =
10ζ(3)

3(d− 4)
+ E(4)

(0,1) + . . .

= − 55

78

E(5)
(0,0)

d− 5
+ E(5)

(0,1) + · · · = − 85

132π

E(6)
(1,0)

(d− 6)
+ E(6)

(0,1) + . . .

(2.47)

however the coefficients of the pole in d = 5 and d = 6 are in conflict with the fixed order

differential equations and decompactification limits. We leave it as an open problem to

resolve these discrepancies, and adopt the results of the bootstrap method, which have

been checked thoroughly.

3 Non-perturbative D6R4 couplings in D = 6 and D = 7

In Type II string theory compactified on T 4, the T-duality symmetry SO(4, 4,Z) and the

diffeomorphism group SL(5,Z) of the M-theory T 5 torus combine into the U-duality group

SO(5, 5,Z). The U-duality invariant quadratic form in the fundamental representation is

given by

M2 =
l3M
V5

(mI + CIKnK)gIJ(mJ + CJLnL) +
V5

l3M
nIg

IJnJ . (3.1)

where gIJ is the metric on T 5, CIJ = εIJKLMCKLM is the 3-form, V5 =
√

det gIJ , and

lM is the 11-d Planck scale. This quadratic form provides (up to an overall factor of

1/l46 = V5/l
9
M ), the square of the tension of a string made out of M2-branes wrapping the

1-cycle mI and M5-branes wrapping the 4-cycle εIJKLMnM . Decomposing T 5 = T 4 × S1

and reducing M-theory along the circle S1 with radius rs, one arrives at type IIA string

theory with rs = gsls, l
3
M = gsl

3
s . In the weak coupling limit gs → 0, the lattice Γ5,5 of

string charges decomposes into Γ4,4 × Γ1,1, with (for CIJ = 0)

M2 = g2
6(ms)2 +

1

g2
6

(ns)
2 +

l2s
V4
migijm

j +
V4

l2s
nig

ijnj ,
1

g2
6

=
V5

r2
s l

3
M

=
V4

g2
s l

4
s

. (3.2)

so the effective radius along Γ1,1 is 1/g6. Upon dualizing the charge ni into nijk, we see

that (mi, nijk) transform as a spinor of SO(4, 4).

The same arithmetic group SO(5, 5,Z) also arises as the T-duality group of string

theory compactified on T 5. In that case, the degeneration Γ5,5 → Γ4,4 × Γ1,1 arises upon

– 14 –



J
H
E
P
0
4
(
2
0
1
5
)
0
5
7

decompactifiying a circle. In this case, the mass formula for the winding and momentum

states (in string units) decomposes into

M2 =
l2s
r2

5

(m5)2 +
1

l2s
maγabm

b + l2s naγ
abnb +

r2
5

l2s
(n5)2 . (3.3)

Now, (ma, na) transform as a vector of SO(4, 4). The two mass formulae provided we

identify r5/ls = 1/g6 and γab with the image of gij under triality, such that the spinor

(mi, nijk) is mapped to the vector (ma, na). This opens the possibility that an automorphic

form for SO(5, 5,Z) might represent both a perturbative contribution in type II string

theory on T 5 at fixed loop order, or a non-perturbatively exact coupling in type II string

theory on T 4.

The first example of this arises for R4 couplings. Indeed, the non-perturbative R4

coupling in D = 6 is equal to the Eisenstein series

E
SO(5,5)
[10000],3/2 =

2ζ(3)

g3
6

+
2

g6
E

SO(4,4)
[1000],1 (3.4)

This is also equal to the one-loop contribution to the R4 coupling in D = 5, which decom-

poses in the large radius limit as

E
SO(5,5)
[10000],3/2 = 2ζ(3) r3

5 + 2r5E
SO(4,4)
[1000],1 (3.5)

This is indeed related to the weak coupling limit under (r5/ls) = 1/g6 and SO(4, 4) triality,

since E
SO(4,4)
[1000],1 happens to be invariant under triality [46].

Let us apply the same idea to the D6R4 coupling in D = 6. The two-loop contribution

to the D6R4 coupling in D = 5 satisfies

∆SO(5,5)E
(5,2)
(0,1) = −

[
E(5,1)

(0,0)

]2
+

70

3
ζ(3) . (3.6)

On the other hand, the exact D6R4 coupling in D = 6 satisfies

∆SO(5,5)E
(4)
(0,1) = −

[
E(4)

(0,0)

]2
+ 40ζ(3) (3.7)

We can therefore decompose

E(4)
(0,1) = E(5,2)

(0,1) + F (3.8)

where

∆SO(5,5)F =
50

3
ζ(3) . (3.9)

The behavior of E(5,2)
(0,1) in the decompactification limit r5 →∞,

E(5,2)
(0,1) =

2

3
ζ(3)2 r6

5 +
ζ(3)

3
r4

5 E
(4,1)
(0,0) + r2

5 E
(4,2)
(0,1) +

5

6
E(4,1)

(1,0) −
10

3
ζ(3) log r5 + . . . (3.10)

is interpreted as a weak coupling expansion

E(5,2)
(0,1) =

2

3
ζ(3)2 g−6

6 +
2ζ(3)

3
g−4

6 E
SO(4,4)
[1000],1 +g−2

6 Ě
(4,2)
(0,1) +

2

27
Ê

SO(4,4)
[0001],3 +

10

3
ζ(3) log g6 + . . . (3.11)
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where Ě(4,2)
(0,1) denotes the image of E(4,2)

(0,1) under triality, and we have again used the fact that

E
SO(4,4)
[1000],1 (but not Ê

SO(4,4)
[0001],3 ) was invariant under triality.

Comparing with the desired result (B.45),

E(4)
(0,1) =

2

3
ζ(3)2 g−6

6 + g−4
6

[
2ζ(3)

3
E

SO(4,4)
[1000],1 +

8

189
E

SO(4,4)
[1000],4

]
+ g−2

6 E
(4,2)
(0,1)

+
2

27

[
Ê

SO(4,4)
[0001],3 + Ê

SO(4,4)
[0010],3

]
+ 5ζ(3) log g6 + . . .

(3.12)

we see that E(5,2)
(0,1) correctly reproduces the tree-level term, part of the one-loop and three-

loop terms, and the two-loop term, under the condition that

E(4,2)
(0,1) = Ě(4,2)

(0,1) . (3.13)

Indeed, one can check that the constant term of E(4,2)
(0,1) with respect to the Borel subgroup

of SO(4, 4) is invariant under triality. The remainder F must then produce

F =
8

189
g−4

6 E
SO(4,4)
[1000],4 +

2

27
Ê

SO(4,4)
[0010],3 +

5

3
ζ(3) log g6 + . . .

=
8

189
r4

5E
SO(4,4)
[0001],4 +

2

27
Ê

SO(4,4)
[0010],3 −

5

3
ζ(3) log r5 + . . .

(3.14)

Thus F is proportional to the Eisenstein series

Ê
SO(5,5)
[00001],4 = r4

5E
SO(4,4)
[0001],4 +

7

4
Ê

SO(4,4)
[0010],3 −

315

8
ζ(3) log r5 (3.15)

Altogether, we have therefore obtained the exact D6R4 coupling in type II string theory

compactified on T 4,

E(4)
(0,1) = π

∫
F2

dµ2 Γ5,5,2 ϕ(Ω) +
8

189
Ê

SO(5,5)
[00001],4 . (3.16)

It would be very interesting to extract the instanton effects in the weak coupling limit, but

this will require detailed knowledge of the asymptotics ϕ(Ω).

To obtain the corresponding result in D = 7, we should take the limit r4/l7 →∞, and

extract the term of order (r4/l7)3 in (B.46). In this limit, the SO(5, 5,Z) duality group is

broken to SL(5,Z). the Eisenstein series decomposes into

8

189
Ê

SO(5,5)
[00001],4 =

16

189
ζ(8)

(
r4

l7

)10

+
5π

378
E

SL(5)
[0010],7/2

(
r4

l7

)3

+
5ζ(3)

4π2
Ê

SL(5)
[1000],5/2 −

5

2
ζ(3) log

r4

l7
,

(3.17)

reproducing part of the terms in (B.46). As for the genus 2 modular integral, viewing

SO(5, 5,Z) as the T-duality group in D = 5, we have to study the limit when the volume

V5/l
5
s is scaled to infinity, and extract the term of order (r4/l7)3 = (V5/l

5
s)

6/5. The torus

decompactification limit can be analyzed by applying the orbit method on the genus 2

Narain partition function Γ5,5,2, following [44]. The zero and rank one orbits reproduce the

O(r5
4) and O(r4

4) terms in (B.46), while the rank 2 orbits contributes to the O(r3
4) term.
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For the rank 2 orbits, the winding numbers can be set to zero at the cost of extending the

integration domain from F2 to the ‘generalized strip’ GL(2,Z)\(P2 × [−1/2, 1/2[3), where

the first factor corresponds to the imaginary part Ω2 of the period matrix, valued in the

space of positive definite 2× 2 matrices P2, while the second factor corresponds to the real

part Ω1 whose entries are restricted to the interval [−1/2, 1/2[. The integral over Ω1 then

projects the Kawazumi-Zhang invariant to its supergravity limit, given by [34]

ϕL(Ω2) =
π

6

(
L1 + L2 + L3 −

5L1L2L3

L1L2 + L2L3 + L1L3

)
, (3.18)

where 0 < L3 ≤ L1 ≤ L2 parametrize Ω2 in the fundamental domain of GL(2,Z)\P2,

Ω2 =

(
L1 + L3 L3

L3 L2 + L3

)
. (3.19)

Thus, we arrive at

E(3)
(0,1) =

4π2

3

∫
GL(2,Z)\P2

d3Ω2

|Ω2|3
∑
M i
α

exp(−πĝijM i
α [Ω−1

2 ]αβM i
β)ϕL(Ω2) +

5π

378
E

SL(5)
[0010],7/2

(3.20)

where ĝij is the 5 × 5 unit-determinant positive definite matrix parametrizing the moduli

space SL(5)/SO(5) in D = 7, and the sum runs over 5×2 rank two integer matrices M i
α (the

dual momenta). This can be rewritten as an integral over R+×F1, using the same change

of variables as in [26, 27]. It would be interesting to analyze the D-instanton effects, and

make contact with the proposal in [8, 31] in D = 8 by a further circle decompactification.

In the other direction, it is a challenge to generalize the proposal (3.16) in dimension D < 6,

where the U-duality group becomes exceptional.
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A A compendium on Langlands-Eisenstein series

In this section we briefly review the definitions and main properties of Langlands-Eisenstein

series associated to maximal parabolic subgroups, following [18, 47], and collect useful facts

about Eisenstein series for SL(d), SO(d, d), and for the exceptional groups E6, E7, E8.
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A.1 Generalities on Langlands-Eisenstein series

The general Langlands-Eisenstein series for a finite simply laced Lie group G with arith-

metic subgroup G(Z) in split real form is defined by

EG(λ; g) =
∑

γ∈B(Z)\G(Z)

e〈λ+ρ,H(γg)〉 (A.1)

where λ is a vector in weight space, B(Z) is the intersection of the Borel subgroup B

with G(Z), ρ is the Weyl vector (the sum of all fundamental weights, or half the sum

of all positive roots), and H(g) = (log t1, . . . log tr) is the logarithm of the Abelian part

in the Iwasawa decomposition G = KAN . The sum is absolutely convergent when the

real part of λ has sufficiently large positive inner product with all simple roots, and it

can be meromorphically continued to all λ. The meromorphic continuation satisfies the

functional equation

EG(λ; g) = M(w, λ) EG(w · λ; g) (A.2)

for any w in the Weyl group W of G. Here, M(w, λ) is the reflection coefficient

M(w, λ) =
∏

α∈∆+,w·α∈∆−

ζ?(〈λ, α〉)
ζ?(1 + 〈λ, α〉)

, (A.3)

where ∆+ is the set of positive roots, ∆− = −∆+, and ζ?(s) = π−s/2Γ(s/2)ζ(s) is the

completed Riemann zeta function, invariant under s 7→ 1− s. The Weyl reflection w with

respect to the root αj acts by λ 7→ λ − (λ, αj)αj . Using αj = Cjiλi where λi are the

fundamental weights and Cij is the Cartan matrix, the action in weight basis and root

basis is given by, respectively,

wj :
∑
i

xiλi →
∑

(xi − Cjixj)λi ,
∑
i

yiαi →
∑

(yi − ykCkjδij)αi (A.4)

The reflection coefficients satisfy the cocycle identity

M(w1 · w2, λ) = M(w1, w2 · λ)M(w2, λ) . (A.5)

An important characteristic of any automorphic form under G is its constant term with

respect to the Borel subgroup B, i.e. its average under the action of the nilpotent subgroup

N of B = AN , generated by positive roots. For EG(λ; g) it is given by Langlands’ formula,∫
N(Z)\N(R)

EG(λ; g n) dn =
∑
w∈W

M(w, λ) e〈(w·λ)+ρ,H(g)〉 . (A.6)

This formula is consistent with the functional equation, thanks to (A.5).

The Langlands-Eisenstein series (A.9) satisfies the Laplace equation

∆G EG(λ; g) =
1

2
(〈λ, λ〉 − 〈ρ, ρ〉) EG(λ; g) (A.7)

Acting on monomials in the ti’s, the Laplace-Beltrami operator reduces to

∆G =
1

2
tρCij ti∂titj∂tj t

−ρ − 1

2
〈ρ, ρ〉 (A.8)
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where tρ =
∏r
i=1 ti and Cij is the inverse of the Cartan matrix. Thus all constant terms

are eigenmodes with the same eigenvalue. More generally, Eisenstein series are eigenmodes

of all invariant differential operators, with eigenvalue determined by the infinitesimal char-

acter λ.

For applications to BPS amplitudes in string theory, we are interested in the special

case λ = 2sλi∗ − ρ, where λi∗ is a fundamental weight associated to a representation R.

In that case, 〈λ, αi〉 = −1 for all simple roots αi with i 6= i∗, and the corresponding factor

in M(w, λ) vanishes. The sum over B(Z)\G(Z) then reduces to a sum over Pi∗(Z)\G(Z),

where Pi∗ is the maximal parabolic subgroup G obtained by deleting the simple root αi∗
from the list of simple roots. We denote by EGR(s; g) the resulting ‘maximal parabolic Eisen-

stein series’, whereR is the finite-dimensional representation associated to the fundamental

weight λi∗ :

EGR(s; g) =
∑

γ∈PR(Z)\G(Z)

e〈λ+ρ,H(γg)〉 (A.9)

The formula for the constant term with respect to the Borel subgroup reduces to∫
N(Z)\N(R)

EGR(s; g n) dn =
∑

w∈W/WR

M(w, λ) e〈(w·λ)+ρ,H(g)〉 , (A.10)

where WR is the Weyl group of the Levi subgroup Li∗ of Pi∗ , or equivalently the stabilizer

of λi∗ in W . The sum therefore runs over the Weyl orbit3 of λi∗ . For s = 0, all terms

vanish except for w ∈WR, so that the constant term is equal to 1. In fact [18, Thm 2.7],

EGR(0) = 1 . (A.11)

It is also of interest to extract the constant terms with respect to a maximal parabolic

subgroup Pi (where i could be the same as i∗). One way to do this is to scale tj = uC
ij
t′j

and collect the constant terms with respect to the Borel subgroup into powers of u times

constant terms of Langlands-Eisenstein series EG′R′ (s′; g′) associated to the Levi subgroup

G′ of Pi = G′Ni. The result can be written as a sum over double cosets4∫
Ni(Z)\Ni(R)

EGR(s; g n) dn =
∑

w∈Wi\W/WR

M(w, λ) e〈[(w·λ)+ρ]‖i ,H(g)〉 EGi
(
(w · λ)⊥i, g

′)
(A.12)

where λ‖i , λ⊥i denote the projection of λ along and orthogonal to the fundamendal weight

λi. Note that the Eisenstein series appearing on the r.h.s. are not necessarily associated to

maximal parabolic subgroups.

In order to simplify the functional equations and analytic structure, it is convenient to

consider the ‘completed’ Langlands-Eisenstein series

EG,?(λ; g) = LG(λ) EG(λ; g) (A.13)

3The elements of W/WR are conveniently generated in LiE [48] using the command for r row

W orbit(λi∗) do print(W word(r));print(","); od.
4The elements of Wi\W/WR can be generated in LiE using double cosets(Li, Li∗), where Li and Li∗

are the list of simple roots in the parabolic subgroups Pi and Pi∗ .

– 19 –



J
H
E
P
0
4
(
2
0
1
5
)
0
5
7

where

LG(λ) =
∏

α∈∆+,wL·α∈∆−

ζ?(1 + 〈λ, α〉) (A.14)

where wL is the longest element in the Weyl group. EG,?(λ; g) is then invariant under Weyl

reflections,

E?,G(λ; g) = E?,G((w · λ); g) . (A.15)

Similarly, for maximal parabolic Eisenstein series, we denote

E?,GR (s) = LGR(s) EGR(s) (A.16)

where

LGR(s) =
∏

α∈∆+,wR·α∈∆−

ζ?(1 + 〈λ, α〉) (A.17)

and wR is the longest element in the Weyl orbit of λR. E?,GR (s) has a functional equation

E?,GR (s) = E?,GR′ (κ− s) , κ =
〈ρ, λR〉
〈λR, λR〉

(A.18)

(where R′ is equal to R or to its image under an outer automorphism). Moreover, unlike

EGR(s), its meromorphic continuation in s has only a finite number of poles.

In the physics literature, yet another normalization is commonly used:5

EGR,s = 2ζ(2s)EGR(s) . (A.19)

When EGR,s has a pole at s = s0, we denote by ÊGR,s0 the regularized Eisenstein series,

where the pole has been subtracted before taking the limit s→ s0. For s = 0, one has, in

view of (A.11),

EGR,0 = 2ζ(0) = −1 . (A.20)

In the remainder of this section, we collect useful results about maximal parabolic

Eisenstein series for SL(d), SO(d, d), E6, E7 and E8. We label the simple roots using

the same numbering as in LiE [48]. Formulae for the constant terms can be found in the

Mathematica file EisensteinDefs.m available from arXiv.

A.2 G = SL(d), R = Λh[10d−2]

For h ≤ d, the representation of highest weight [0h−110d−h] is the totally antisymmetric

tensor with h indices. One has

∆SL(d)E
SL(d)

Λh[10d−2]
(s) =

hs(d− h)(2s− d)

d
ESL(d)

Λh[10d−2]
(s) (A.21)

L
SL(d)

Λh[10d−2]
(s) =

min(h,d−h)∏
k=1

ζ?(2s+ 1− k) , (A.22)

E?,SL(d)

Λh[10d−2]
(s) = E?,SL(d)

Λh[0d−21]

(
d

2
− s
)

(A.23)

5This is denoted by EGR,s in [8], except for G = SL(n),R = [010n−3] where an additional factor of

ζ(2s− 1) was inserted.
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For h = 1 the only poles of E?SL(d)

[10d−2]
(s) are at s = 0 (originating from the normalizing factor)

and s = d/2, with residue

Ress=d/2E
?SL(d)

[10d−2]
(s) =

1

2
(A.24)

hence

Ress=d/2E
SL(d)

[10d−2],s
=

πd/2

Γ(d/2)
, ∆SL(d)Ê

SL(d)

[10d−2],d/2
=

(d− 1)πd/2

Γ(d/2)
(A.25)

For d = 2, the regularized Eisenstein series Ê
SL(2)
[1],1 = lims→1

(
E

SL(2)
[1],s −

1
s−1

)
is given by the

Kronecker limit formula,

Ê
SL(2)
[1],1 = −π log τ2|η(τ)|4 + cte (A.26)

where η(τ) is the Dedekind eta function.

For h = 2 the only poles of E?SL(d)

[010d−3]
(s) are at s = 0 (originating from the normalizing

factor) and s = d/2, with residue

Ress=d/2E
?SL(d)

[010d−3]
(s) =

1

2
ζ?(2) (A.27)

hence

Ress=d/2E
SL(d)

[010d−3],s
=

(2π)d

24Γ(d− 1)ζ(d− 1)
, (A.28)

∆SL(d)Ê
SL(d)

[010d−3],d/2
=

(2π)d

12Γ(d− 2)ζ(d− 1)
(A.29)

The decompactification limit SL(d)→ SL(d− 1) is obtained by setting

t1 = rd−1 , t2≤i≤d−1 = rd−it′i−1 (A.30)

The Laplacian decomposes as

∆SL(d) = ∆SL(d−1) −
1

2
r∂r +

1

2d(d− 1)
(r∂r)

2 (A.31)

The constant term of the Eisenstein series with respect to the maximal parabolic subgroup

P1 are given, for h = 1, 2, d− 2, d− 1, by

E?SL(d)

[10d−2]
(s)→rd−2s E?SL(d−1)

[10d−30]

(
s− 1

2

)
+ r2(d−1)s ζ?(2s)

E?SL(d)

[0d−21]
(s)→r2s E?SL(d−1)

[0d−31]
(s) + r(d−1)(d−2s) ζ?(2s− d+ 1)

E?SL(d)

[010d−3]
(s)→r2(d−2)s ζ?(2s− 1) E?SL(d−1)

[10d−3]
(s) + r2(d−2s)E?SL(d−1)

[010d−4]

(
s− 1

2

)
E?SL(d)

[0d−310]
(s)→r(d−2)(d−2s) ζ?(2s− d+ 2) E?SL(d−1)

[0d−31]

(
s− 1

2

)
+ r4sE?SL(d−1)

[0d−410]
(s)

(A.32)
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A.3 G = SO(d, d), R = Λh[10d−1]

For h < d, the representation of highest weight [0h−110d−h+1] is the totally antisymmetric

tensor with h indices. One has

∆SO(d,d)E
SO(d,d)

Λh[10d−1]
(s) = hs(2s+ h+ 1− 2d) ESO(d,d)

Λh[10d−1]
(s)

L
SO(d,d)

Λh[10d−1]
(s) = ζ?(2s+ h+ 1− d)

h−1∏
k=0

ζ?(2s− k)

[h/2]∏
j=1

ζ?(4s+ 2h+ 2− 2d− 2j)

E?,SO(d,d)

Λh[10d−1]
(s) = E?,SO(d,d)

Λh[10d−1]

(
d− h+ 1

2
− s
)

(A.33)

In particular, for 1 ≤ h ≤ 3,

L
SO(d,d)

[10d−1]
(s) =ζ?(2s)ζ?(2s+ 2− d) ,

L
SO(d,d)

Λ2[10d−1]
(s) =ζ?(2s) ζ?(2s− 1) ζ?(2s+ 3− d) ζ?(4s+ 4− 2d)

L
SO(d,d)

Λ3[10d−1]
(s) =ζ?(2s) ζ?(2s− 1) ζ?(2s− 2) ζ?(2s+ 4− d) ζ?(4s+ 6− 2d)

(A.34)

For h = d, we define

E?,SO(d,d)

Λd[10d−1]
(s) =

d∏
k=0

ζ?(2s+ 1− k)
[
E?,SO(d,d)

[0d−11]
(2s) + E?,SO(d,d)

[0d−210]
(2s)

]
(A.35)

We do not attempt to define the series ESO(d,d)

Λh[10d−1]
for h > d. The cases d = 1 and d = 2 are

exceptional,

E?,SO(1,1)
[1] (s) = ζ?(2s) ζ?(2s+ 1) (R2s +R−2s) (A.36)

E?,SO(2,2)
[10] (s) = E?(s;T ) E?(s;U) , E

SO(2,2)
V (s) =

1

2ζ(2s)
E(s;T )E(s;U) . (A.37)

For d = 3, one has

E
SO(3,3)
[100],s (t1, t2, t3) = E

SL(4)
[010],s(t2, t1, t3) (A.38)

The only poles of E?SO(d,d)

[10d−1]
(s) are at s = 0, d2 −1, d2 , d−1, with the first two originating

from the normalizing factor. The residues at s = d
2 , and d

2 − 1 are proportional to the

minimal theta series. The residues at s = 0 and s = d− 1 are constant,

Ress=d−1E
?SO(d,d)

[10d−1]
(s) =

1

2
ζ?(d− 1) (A.39)

hence

Ress=d−1E
SO(d,d)

[10d−1],s
=
πd−1ζ?(d− 1)

Γ(d− 1) ζ?(d)
, (A.40)

∆SO(d,d)Ê
SO(d,d)

[10d−1],d−1
=

2πd−1(d− 1)ζ?(d− 1)

Γ(d− 1) ζ?(d)
(A.41)
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Analysis of the constant terms shows that E?,SO(d,d)

Λ2[10d−1]
(s) has simple poles at

s = 0,
1

2
,
d− 3

2
,
d− 2

2
,
d− 1

2
,
d

2
, d− 2, d− 3

2
(A.42)

and double poles whenever these values coincide (except for d = 3, s = 1
2 and s = 1).

The first four values arise from poles of the normalizing factor. Similarly, E?,SO(d,d)

Λ3[10d−1]
(s) has

simple poles at

s = 0,
1

2
, 1,

d− 4

2
,
d− 3

2
,
d− 1

2
,
d

2
, d− 3, d− 5

2
, d− 2 (A.43)

and double poles whenever these values coincide. The first four values arise from poles of

the normalizing factor.

The circle decompactification SO(d, d)→ SO(d− 1, d− 1) is obtained by defining

t1 = R , t2≤i≤d−2 = R t′i−1 , td−1 = R1/2 t′d−2, td−2 = R1/2 t′d−1 (A.44)

The Laplacian decomposes as

∆SO(d,d) = ∆SO(d−1,d−1) + (1− d)R∂R +
1

2
(R∂R)2 (A.45)

The constant terms of the Eisenstein series with respect to the maximal parabolic subgroup

P1 are given by

E?,SO(d,d)

[10d−1]
(s)→ ζ?(2s) ζ?(2s+ 2− d)R2s + ζ?(2s+ 1− d) ζ?(2s+ 3− 2d)R2d−2−2s

+R E?,SO(d−1,d−1)

[10d−2]

(
s− 1

2

)
E?,SO(d,d)

Λ2[10d−1]
(s)→ R2 E?,SO(d−1,d−1)

Λ2[10d−2]

(
s− 1

2

)
+ ζ?(2s− 1) ζ?(4s+ 4− 2d)R2s E?,SO(d−1,d−1)

[10d−2]
(s)

+ ζ?(2s+ 5− 2d) ζ?(4s+ 3− 2d)R2d−3−2s E?,SO(d−1,d−1)

[10d−2]

(
s− 1

2

)
E?,SO(d,d)

Λ3[10d−1]
(s)→ R3 E?,SO(d−1,d−1)

Λ3[10d−2]

(
s− 1

2

)
+ ζ?(2s− 2)R2s E?,SO(d−1,d−1)

Λ2[10d−2]
(s)

+ ζ?(2s+ 7− 2d)R2(d−2−s) E?,SO(d−1,d−1)

Λ2[10d−2]

(
s− 1

2

)
(A.46)

The torus decompactification SO(d, d)→ SL(d) is instead obtained by taking

t1≤i≤d−2 = V i/d t′i, td−1 = V (d−2)/(2d) t′d−1 , td = V 1/2 . (A.47)

The Laplacian decomposes as

∆SO(d,d) = ∆SL(d) +
d(1− d)

2
V ∂V +

d

2
(V ∂V )2 (A.48)
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The constant terms of the Eisenstein series with respect to the maximal parabolic subgroup

Pd are given by

E?,SO(d,d)

[10d−1]
(s)→ V 2s/dζ?(2s+ 2− d) E?,SL(d)

[10d−1]
(s)

+ V 2− 2s+2
d ζ?(2s+ 1− d) E?,SL(d)

[0d−11]

(
s+ 1− d

2

)
E?,SO(d,d)

Λ2[10d−1]
(s)→ V 4s/d ζ?(2s− d+ 3) ζ?(4s− 2d+ 4)E?,SL(d)

Λ2[10d−2]
(s)

+ V (4d−6−4s)/dζ?(2s− d+ 1) ζ?(4s− 2d+ 3) E?,SL(d)

Λ2[0d−21]

(
s+

3− d
2

)
+ V (2d−4)/d ζ?(2s− d+ 2) E?,SL(d)

[s− 1
2
,0d−3,s− d−3

2
]

E?,SO(d,d)

Λ3[10d−1]
(s)→ V 6s/d ζ?(2s− d+ 4) ζ?(4s− 2d+ 6)E?,SL(d)

Λ3[10d−2]
(s)

+ V 6(d−2−s)/dζ?(2s− d+ 1) ζ?(4s− 2d+ 3) E?,SL(d)

Λ3[0d−21]

(
s+ 2− d

2

)
+ V (2s+2d−6)/d E?,SL(d)

[0,s− 1
2
,0d−4,s− d

2
+2]

+ V (4d−10−2s)/d E?,SL(d)

[s−1,0d−3,s− d
2

+2]

(A.49)

Notice that the terms on the last line in the equation for h = 2 and h = 3 are not maximal

parabolic Eisenstein series.

A.4 G = SO(d, d), R = [0d−11] and R = [0d−210]

For the Eisenstein series attached to the spinor representations, one has

∆SO(d,d)E
SO(d,d)

[0d−11]
(s) =

1

2
sd(s− d+ 1) ESO(d,d)

[0d−11]
(s) (A.50)

L
SO(d,d)

[0d−11]
(s) =

[d/2]∏
k=1

ζ?(2s+ 2− 2k) , (A.51)

The functional relation exchanges the two spinors when d is odd,

E?,SO(d,d)

[0d−11]
(s) = E?,SO(d,d)

[0d−11]
(d− 1− s) d even (A.52)

E?,SO(d,d)

[0d−11]
(s) = E?,SO(d,d)

[0d−210]
(d− 1− s) d odd (A.53)

The series E?,SO(d,d)

[0d−11]
(s) has first order poles at s = 0, 1, 2, . . . , d − 1 (except at d−1

2 , if this

happens to be integer). The poles at s = 0, 1, . . . , [d/2]− 1 originate from the normalizing

factor. It is important to note that E?,SO(d,d)

[0d−11]
(s) − E?,SO(d,d)

[0d−210]
(s) is an entire function of s.

E
SO(d,d)

[0d−11],s
(ti) and E

SO(d,d)

[0d−210],s
(ti) are finite and coincide when s takes any integer or half-

integer value from s = 1 to s = d−1
2 . They have first order poles at integer values in the

interval d−1
2 < s ≤ d− 1.

For d = 2, the Grassmannian SO(2, 2)/SO(2)× SO(2) decomposes into the product of

two Poincaré upper half planes, parametrized by complex moduli T and U . We have

E?,SO(2,2)
[10] (s) = E?,SL(2)

[1] (s;T ) , E?,SO(2,2)
[01] (s) = E?,SL(2)

[1] (s;U) . (A.54)
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For d = 4, triality relates the vector and spinor Eisenstein series at different points,

E
SO(4,4)
[0001],s (t1, t2, t3, t4) = E

SO(4,4)
[0010],s (t1, t2, t4, t3) = E

SO(4,4)
[1000],s (t4, t2, t3, t1) (A.55)

For s = 1, triality further equates the vector and spinor Eisenstein series at the same point,

E
SO(4,4)
[1000],1 (t1, t2, t3, t4) = E

SO(4,4)
[0010],1 (t1, t2, t3, t4) = E

SO(4,4)
[0001],1 (t1, t2, t3, t4) (A.56)

The constant terms with respect to maximal parabolic subgroups P1 and Pd are

E?,SO(d,d)

[0d−11]
(s)→ Rs E?,SO(d−1,d−1)

[0d−21]
(s)

+Rd−1−sE?,SO(d−1,d−1)

[0d−310]
(s− 1) (d odd)

E?,SO(d,d)

[0d−11]
(s)→ Rsζ?(2s+ 2− d) E?,SO(d−1,d−1)

[0d−21]
(s)

+Rd−1−sζ?(2s+ 1− d) E?,SO(d−1,d−1)

[0d−21]
(s− 1) (d even)

E?,SO(d,d)

[0d−11]
(s)→

∑
k=0...d
k even

V
k(k−1)+s(d−2k)

d Lk(s) E
?,SL(d)

Λd−k[10d−2]

(
s− k − 1

2

)

E?,SO(d,d)

[0d−210]
(s)→

∑
k=0...d
k odd

V
k(k−1)+s(d−2k)

d Lk(s) E
?,SL(d)

Λd−k[10d−2]

(
s− k − 1

2

)
(A.57)

where

Lk(s) =

[d/2]∏
`=k+1

ζ?(2s+ 2− 2`)

[d/2]∏
`=d−k+1

ζ?(2s+ 2`+ 1− 2d) (A.58)

A.5 E6

E?,E6

[100000](s) (corresponding to one of the two irreducible representations of dimension 27)

has normalizing factor

LE6

[100000](s) = ζ?(2s) ζ?(2s− 3) , (A.59)

and simple poles at s = 0, 3/2, 9/2, 6. The constant term with respect to P6 yields the

decompactification limit

E?,E6

[100000](s)→ R
4
3
s ESO(5,5),?

[10000] (s) +R5− 2
3
s ESO(5,5),?

[00010]

(
s− 3

2

)
+R−

8
3

(s−6) ζ?(2s− 8) ζ?(2s− 11) ,

(A.60)

while the constant term with respect to P1 yields the weak coupling limit,

E?,E6

[100000](s)→ g
−8s/3
5 ζ?(2s) ζ?(2s− 3) + g

−3− 2
3
s

5 ESO(5,5),?
[00001]

(
s− 1

2

)
+ g

4
3

(s−6)

5 ESO(5,5),?
[10000] (s− 2)

(A.61)

The functional equation is

E?,E6

[100000](s) = E?,E6

[000001](6− s) . (A.62)
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A.6 E7

E?,E7

[1000000](s) (corresponding to the irreducible representation of dimension 133) has normal-

izing factor

LE7

[1000000](s) = ζ?(2s) ζ?(2s− 3) ζ?(2s− 5) ζ?(4s− 16) , (A.63)

is invariant under s 7→ 17
2 − s, and has simple poles at s = 0, 3/2, 5/2, 4, 9/2, 6, 7, 17/2. The

constant term with respect to P7 yields the decompactification limit

E?,E7

[1000000](s)→ R2s ζ?(2s− 5) ζ?(4s− 16) E?,E6

[100000](s)

+R17−2sζ?(2s− 11) ζ?(4s− 17) E?,E6

[000001]

(
s− 5

2

)
+R6 E?,E6

[010000]

(
s− 3

2

) (A.64)

while the constant term with respect to P1 yields the weak coupling limit

E?,E7

[1000000](s)→ g−8
4 E?,D6

[010000](s− 2)

+ g−4s
4 ζ?(2s) ζ?(2s− 3) ζ?(2s− 5) ζ?(4s− 16)

+ g4s−34
4 ζ?(2s− 6) ζ?(2s− 8) ζ?(2s− 10) ζ?(4s− 17)

+ g−2s−1
4 ζ?(4s− 16) E?,D6

[000001]

(
s− 1

2

)
+ g2s−18

4 ζ?(4s− 17) E?,D6

[000001](s− 3)

(A.65)

E?,E7

[0000001](s) (corresponding to the irreducible representation of dimension 56) has nor-

malizing factor

LE7

[0000001](s) = ζ?(2s) ζ?(2s− 4) ζ?(2s− 8) , (A.66)

is invariant under s 7→ 9− s, has simple poles at s = 0, 2, 4, 5, 7, 9. The constant term with

respect to P7 is

E?,E7

[0000001](s)→ R3s ζ?(2s) ζ?(2s− 4) ζ?(2s− 8)

+Rs+1 ζ?(2s− 8) EE6,?
[000001]

(
s− 1

2

)
+R10−s ζ?(2s− 9) EE6,?

[100000]

(
s− 5

2

)
+R3(9−s)ζ?(2s− 9) ζ?(2s− 13) ζ?(2s− 17)

(A.67)

while the constant term with respect to P1 is

E?,E7

[0000001](s)→ g−2s
4 ζ?(2s− 8) E?,E6

[100000](s) + g2s−18
4 ζ?(2s− 9) E?,E6

[100000](s− 4)

+ g−6
4 E

?,E6

[000010](s− 2)
(A.68)
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A.7 E8

E?,E8

[00000001](s) (corresponding to the irreducible representation of dimension 248) has nor-

malizing factor

LE8

[00000001](s) = ζ?(2s) ζ?(2s− 5) ζ?(2s− 9) ζ?(4s− 28) , (A.69)

is invariant under s 7→ 29
2 − s, and has simple poles at 0, 5

2 ,
9
2 , 7,

15
2 , 10, 12, 29

2 . The constant

term with respect to P8 yields the decompactification limit

E?,E8

[00000001](s)→ R4s ζ?(2s) ζ?(2s− 5) ζ?(2s− 9) ζ?(4s− 28)

+R2s+1 ζ?(4s− 28) E?,E7

[0000001]

(
s− 1

2

)
+R12 E?,E7

[1000000](s− 3)

+R2(15−s) ζ?(4s− 29) E?,E7

[0000001](s− 5)

+R2(29−2s)ζ?(2s− 19) ζ?(2s− 23) ζ?(2s− 28) ζ?(4s− 29)

(A.70)

while the constant term with respect to P1 gives the weak coupling limit

E?,E8

[00000001](s)→ g−20
3 E?,D7

[0100000]

(
s− 9

2

)
+ g−4s

3 ζ?(2s− 9) ζ?(4s− 28) E?,D7

[1000000](s)

+ g4s−58
3 ζ?(2s− 9) ζ?(4s− 29) E?,D7

[1000000]

(
s− 17

2

)
+ g−7−2s

3 ζ?(4s− 28) E?,D7

[0000001]

(
s− 5

2

)
+ g2s−36

3 ζ?(4s− 29) E?,D7

[0000010](s− 6)

(A.71)

E?,E8

[10000000](s) (corresponding to the irreducible representation of dimension 3875) has

normalizing factor

LE8

[10000000](s) = ζ?(2s) ζ?(2s− 3) ζ?(2s− 5) ζ?(2s− 6) ζ?(2s− 9) ζ?(4s− 16) ζ?(4s− 22) ,

(A.72)

is invariant under s 7→ 23
2 − s, and has simple poles at

0, 3
2 ,

5
2 , 3, 4,

9
2 , 5,

11
2 , 6,

13
2 , 7,

15
2 ,

17
2 , 9, 10, 23

2 . The constant term with respect to P8 is

E?,E8

[10000000](s)→R
4s ζ?(2s− 6) ζ?(2s− 9) ζ?(4s− 22) E?,E7

[1000000](s)

+R46−sζ?(2s− 13) ζ?(2s− 16) ζ?(4s− 23) E?,E7

[1000000](s− 3)

+R2s+7ζ?(4s− 22) E?,E7

[0100000]

(
s− 3

2

)
+R30−2sζ?(4s− 23) E?,E7

[0100000](s− 3)

+R18 ζ?(2s− 11) E?,E7

[0000010]

(
s− 5

2

)
(A.73)

– 27 –



J
H
E
P
0
4
(
2
0
1
5
)
0
5
7

while the constant term with respect to P1 is

E?,E8

[10000000](s)→ g−8s
3 ζ?(2s) ζ?(2s− 3) ζ?(2s− 5) ζ?(2s− 6) ζ?(2s− 9)

× ζ?(4s− 16) ζ?(4s− 22) + g8s−92
3 ζ?(2s− 13) ζ?(2s− 16)

× ζ?(2s− 17) ζ?(2s− 19) ζ?(2s− 22) ζ?(4s− 23) ζ?(4s− 29)

+ g
−4(s+2)
3 ζ?(2s− 9) ζ?(4s− 22) E?,D7

[0010000](s− 2)

+ g−1−6s
3 ζ?(2s− 6) ζ?(2s− 9) ζ?(4s− 16) ζ?(4s− 22) E?,D7

[0000010]

(
s− 1

2

)
+ g−70+6s

3 ζ?(2s− 13) ζ?(2s− 16) ζ?(4s− 23) ζ?(4s− 29) E?,D7

[0000001](s− 5)

+ g4s−54
3 ζ?(2s− 13) ζ?(4s− 23) E?,D7

[0010000]

(
s− 9

2

)
+ g−28

3 ζ?(2s− 9) ζ?(4s− 20) E?,D7

[0001000]

(
s− 7

2

)
+ g−34

3 ζ?(2s− 6) ζ?(2s− 9) ζ?(2s− 11)

× ζ?(2s− 13) ζ?(2s− 16) E?,D7

[1000000]

(
2s− 17

2

)
+ g−18−2s

3 E?,D7

[1000010](s− 3) + g2s−41
3 E?,D7

[s−5,00000,s− 7
2

]
(A.74)

Note that the last term is not a maximal parabolic Eisenstein series.

B Weak coupling and large radius expansions for D ≥ 3

In this appendix we provide the weak coupling and large radius expansions of R4, D4R4

and D6R4 couplings in all dimensions D ≥ 3. These expansions agree by and large with

the results in [8, 17–19] when available, except for certain important numerical coeffi-

cients. For R4 and D4R4 couplings, we also recall the known expressions in terms of

Langlands-Eisenstein series of the U-duality group. Detailed computations can be found

in the Mathematica worksheet d6r4eisenstein.nb available on arXiv.

B.1 D = 10, d = 0

In ten-dimensional type IIB string theory, the moduli space SL(2,R)/U(1) is parame-

trized by the axiodilaton τ = C0 + i
g , identified under SL(2,Z) S-duality. In contrast,

ten-dimensional type IIA string theory has only one real modulus, the string coupling,

and trivial S-duality group. The perturbative contributions to R4, D4R4 and D6R4 are

identical in type IIA and type IIB, as they do not receive contributions from odd-odd spin

structures. Type IIA has no D-instantons, accordingly these couplings do not receive any

non-perturbative corrections. The decompactification to D = 11 can be analyzed using

gls = R11, gsl
3
s = l3M .
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B.1.1 R4

The R4 coupling in type IIB theory in 10 dimensions is given by [1]

E(0)
(0,0) = E

SL(2)
[1],3/2 . (B.1)

At weak coupling, this produces the expected tree-level and one-loop corrections, along

with an infinite series of D-instanton corrections,

g−1/2 E(0)
(0,0) =

2ζ(3)

g2
+ 4ζ(2) + n.p. (B.2)

In type IIA string theory, only the two perturbative terms are present. Under decompacti-

fication to 11 dimensions, the tree-level R4 term is suppressed as 1/R2
11, while the one-loop

R4 term scales as R11/l
3
M , so corresponds to a one-loop correction in the 11-dimensional

local effective action.

B.1.2 D4R4

The D4R4 coupling in type IIB theory in 10 dimensions is given by [26]

E(0)
(1,0) = E

SL(2)
[1],5/2 (B.3)

At weak coupling, this produces the expected tree-level, one-loop (vanishing) and two-loop

corrections [21, 22], along with an infinite series of D-instanton corrections,

g1/2 E(0)
(1,0) =

ζ(5)

g2
+ 0 +

4

3
ζ(4)g2 + n.p. (B.4)

In type IIA string theory, under decompactification to 11 dimensions, the tree-level D4R4

term is suppressed as l6M/R
4
11, while the two-loop D4R4 term scales as R2

11, corresponding

to the first term in an infinite series of terms which sum up to a non-local term in D = 11.

Thus, there is no D4R4 term in the local action in D = 11, for the same reason that a

term R6 cannot appear [49].

B.1.3 D6R4

The perturbative corrections to the D6R4 coupling in type IIB theory in 10 dimensions

have been computed in [21, 23, 27, 33]. Based on an extensive analysis of loop amplitudes

in 11D supergravity [26, 29, 34], it is believed that there are no perturbative corrections

beyond 3-loop:

g E(0)
(0,1) =

2ζ2(3)

3g2
+

4

3
ζ(2)ζ(3) +

8

5
ζ2(2)g2 +

4

27
ζ(6)g4 + n.p. (B.5)

A non-perturbative completion satisfying the Poisson equation (1.3) was proposed in [27],

and the resulting non-perturbative effects were analyzed in [32].

In type IIA string theory, only the four perturbative terms are present. Under decom-

pactification to 11 dimensions, the tree-level and one-loop D6R4 terms are suppressed as

l9M/R
5
11 and l6M/R

2
11, respectively, while the two-loop term scales as l3MR11, corresponding

to a two-loop correction in the 11-dimensional local effective action [27]. The three loop

term scales as R4
11, corresponding again to the first term in an infinite series of terms which

sum up to a non-local term in D = 11.
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B.2 D = 9, d = 1

In type II string theory compactified on S1, the moduli space is R+ × SL(2,R)/U(1),

identified under SL(2,Z) leaving the first factor inert. The first factor is parametrized by

ν =

(
r

ls

)7/4√
g9 =

(
l10B

r̃

)2

, (B.6)

where r is the radius of the type IIA circle, g9 is the string coupling in D = 9, while r̃ = l2s/r

is the radius of the type IIB circle and l10B = lsg
1/4 is the Planck length in ten-dimensional

type IIB. The second factor is parametrized by the type IIB axiodilaton

τ = C0 +
i

g
= C1 + i

√
r/ls
g9

. (B.7)

The decompactification to ten-dimensional type IIB corresponds to V → 0 keeping τ finite.

The decompactification to ten-dimensional type IIA theory instead corresponds to V, τ2 →
∞ keeping τ3

2 /V = g
−7/2
10A fixed.

B.2.1 R4

The exact R4 coupling is given by [12, 24]

E(1)
(0,0) = ν−3/7E

SL(2)
[1],3/2(τ) + 4ζ(2) ν4/7 (B.8)

The two contributions can be separated by considering different kinematics [13]. At weak

coupling, this Ansatz produces the expected tree-level and one-loop contributions, along

with an infinite series of D-instanton corrections,

g
−2/7
9 E(1)

(0,0) =
2ζ(3)

g2
9

+ 4ζ(2)

(
r

ls
+
ls
r

)
+ n.p. (B.9)

Decompactifying from D = 9 to D = 10B, with r1 = r̃, one has, in agreement with (2.26),

E(1)
(0,0) →

(
r1

l10B

)6/7

E(0)
(0,0) + 4ζ(2)

(
r1

l10B

)−8/7

(B.10)

B.2.2 D4R4

The exact D4R4 coupling is given by [26]

E(1)
(1,0) =

1

2
ν−5/7E

SL(2)
[1],5/2 +

2

15
ζ(2) ν9/7E

SL(2)
[1],3/2 +

4ζ(2)ζ(3)

15
ν−12/7 (B.11)

This produces the expected tree-level, one-loop and two-loop contributions

g
6/7
9 E(1)

(1,0) =
ζ(5)

g2
9

+
4

15
ζ(2)ζ(3)

(
r3

l3s
+
l3s
r3

)
+

4

3
ζ(4) g2

9

(
r2

l2s
+
l2s
r2

)
+ n.p. (B.12)

Decompactifying from D = 9 to D = 10 [8, 4.8], one has, in agreement with (2.27),

E(1)
(1,0) →

(
r1

l10B

)10/7
(
E(0)

(1,0) +
2

15
ζ(2)

(
r1

l10B

)−4

E(0)
(0,0) +

4

15
ζ(2)ζ(3)

(
r1

l10B

)2
)

(B.13)
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B.2.3 D6R4

The exact D6R4 coupling is believed to be given by [8]

E(1)
(0,1) = ν−

6
7E(0)

(0,1) +
2

3
ζ(2)ν

1
7E

SL(2)
[1]3/2 +

2

63
ζ(2)ν

15
7 E

SL(2)
[1]5/2 +

4

63
ζ(2)ζ(5)ν−

20
7 +

8

5
ζ(2)2ν

8
7

(B.14)

where the first term is proportional to the D6R4 coupling in 10 dimensions. At weak

coupling, this produces the expected perturbative terms up to three-loops,

g
10/7
9 E(1)

(0,1) =
2ζ(3)2

3g2
9

+

[
4

3
ζ(2)ζ(3)

(
r +

1

r

)
+

4

63
ζ(2)ζ(5)

(
r5 +

1

r5

)]
+ 8ζ(2)2

[
1

3
+

1

5

(
r2 +

1

r2

)]
g2

9 +
4

27
ζ(6)

(
r3 +

1

r3

)
g4

9 + n.p.

(B.15)

Decompactifying from D = 9 to D = 10, one has, in agreement with (2.28),

E(1)
(0,1) →

(
r1

l10B

)12/7
(
E(0)

(0,1) +
4

63
ζ(2)

(
r1

l10B

)−6

E(0)
(1,0) +

2

3
ζ(2)

(
r1

l10B

)−2

E(0)
(0,0)

+
8

5
ζ2(2)

(
r1

l10B

)−4

+
2π2

189
ζ(5)

(
r1

l10B

)4
) (B.16)

B.3 D = 8, d = 2

In type II string theory compactified on T 2, the moduli space is a product SL(3)/SO(3)×
SL(2)/U(1), identified under E3 = SL(3,Z) × SL(2,Z). In type IIA, the first factor

parametrizes the dilation, Kähler modulus T and RR axions, while the second corresponds

to the complex modulus U of the two-torus. In type IIB, the role of T and U is exchanged.

B.3.1 R4

The exact R4 coupling is given by a linear combination of two Eisenstein series [13]

E(2)
(0,0) = Ê

SL(3)
[10],3/2 + 2Ê

SL(2)
[1],1 (U) (B.17)

The hat indicates that the simple poles at s = 3/2 and s = 1, respectively, have been

subtracted. The two Eisenstein series can be disentangled by considering different kine-

matics in the four-graviton scattering. They produce the expected tree-level and one-loop

contributions,

E(2)
(0,0) =

2ζ(3)

g2
8

+ 2(Ê
SL(2)
[1],1 (T ) + Ê

SL(2)
[1],1 (U)) +

4π

3
log g8 + n.p. (B.18)

Decompactifying from D = 8 to D = 9, one obtains, in agreement with (2.26)

E(2)
(0,0) →

r2

l9
E(1)

(0,0) −
14π

3
log

r2

l9
, (B.19)

This is consistent with the non-analytic term 4π
3 log g8 in (2.19), using l9 = lsg

2/7
9 .
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B.3.2 D4R4

The exact D4R4 coupling is given by [8, 16]

E(2)
(1,0) =

1

2
E

SL(3)
[10],5/2 − 4E

SL(2)
[1],2 (U)E

SL(3)
[10],−1/2 (B.20)

At weak coupling, this produces the expected tree-level, one-loop and two-loop

contributions,

g
4/3
8 E(2)

(1,0) =
ζ(5)

g2
8

+
2

π3
E

SL(2)
[1],2 (T )E

SL(2)
[1],2 (U) +

2

3
g2

8

(
E

SL(2)
[1],2 (T ) + E

SL(2)
[1],2 (U)

)
+ n.p. (B.21)

Decompactifying from D = 8 to D = 9, one has, in agreement with (2.27),

E(2)
(1,0) →

(
r2

l9

)5/3
(
E(1)

(1,0) +
1

π
ζ(3)

(
r2

l9

)−3

E(1)
(0,0) +

4π

45
ζ(4)

(
r2

l9

)3
)

(B.22)

B.3.3 D6R4

The exact D6R4 coupling was proposed in [8], building on [31]:

E(2)
(0,1) = ESL(3)

(0,1) + ESL(2)
(0,1) +

1

3
Ê

SL(3)
[10],3/2 Ê

SL(2)
[1],1 +

π

36
Ê

SL(3)
[10],3/2 +

π

9
Ê

SL(2)
[1],1 +

ζ(2)

9

+
40

9
E

SL(3)
[10],−3/2E

SL(2)
[1],3

(B.23)

Here, ESL(2)
(0,1) is the solution to

(∆U − 12) ESL(2)
(0,1) = −4

[
Ê

SL(2)
[1],1 (U)

]2
(B.24)

which behaves in the limit U2 →∞ as

6 ESL(2)
(0,1) =

π2

180
(65− 20πU2 + 48π2U2

2 ) +
ζ(3)ζ(5)

πU3
2

− 2ζ(2) (4πU2 − 6 logU2 + 1) logU2 +O(e−U2)

(B.25)

while ESL(3)
(0,1) is a solution to

(∆SL(3) − 12)ESL(3)
(0,1) = −

(
Ê

SL(3)
[10],3/2

)2
(B.26)

behaving in the limit g8 → 0 as

g2
8 E

SL(3)
(0,1) =

2ζ(3)2

3g2
8

+
2

3
ζ(3)Ê

SL(2)
[1],1 (T ) +

(
f(T ) +

π

18
Ê

SL(2)
[1],1 (T )

)
g2

8 +
2

27
E

SL(2)
[1],3 (T )

+
4π2

27
g2

8 log2 g8 + 2 log g8

[
2πζ(3)

9
+ g2

8

(
6π

27
Ê

SL(2)
[1],1 (T ) +

π2

27

)]
+

7π2

216
+ n.p.

(B.27)

This Ansatz ensures that E(2)
(0,1) satisfies the Poisson equation (1.3), the last term in (B.23),

proportional to E
SL(3)
[10],−3/2E

SL(2)
[1],3 , being a solution to the homogeneous equation.
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At weak coupling, (B.23) exhibits the expected perturbative contributions, up to

three loops,

g2
8 E

(2)
(0,1) =

2ζ(3)2

3g2
8

+

[
2

3
ζ(3)

(
Ê

SL(2)
[1],1 (T ) + Ê

SL(2)
[1],1 (U)

)
+

20

3π5
E

SL(2)
[1],3 (T )E

SL(2)
[1],3 (U) +

π

18
ζ(3)

]
+

[
2

3
Ê

SL(2)
[1],1 (T )Ê

SL(2)
[1],1 (U) + f(T ) + f(U)

+
π

9

(
Ê

SL(2)
[1],1 (T ) + Ê

SL(2)
[1],1 (U)

)
+

11

36
ζ(2)

]
g2

8

+
2

27

(
E

SL(2)
[1],3 (T ) + E

SL(2)
[1],3 (U)

)
g4

8 +
2π

9

(
π

2
+ E(2),an

(0,0)

)
g2

8 log g8

+
4π2

27
g2

8 log2 g8 + n.p. (B.28)

Decompactifying from D = 8 to D = 9, one has, in agreement with (2.28)

E(2)
(0,1) →

(
r2

l9

)2
(
E(1)

(0,1) +
15

4π3
ζ(5)

(
r2

l9

)−5

E(1)
(1,0) +

π

36

(
r2

l9

)−1

E(1)
(0,0) +

37

36
ζ(2)

(
r2

l9

)−2

+
16π

567
ζ(6)

(
r2

l9

)5
)

+
49

27
π2(log

(
r2

l9

)
)2 − 7π

9

((
r2

l9

)
E(1)

(0,0) +
π

2

)
log

(
r2

l9

)
(B.29)

The log r2/l9 terms are consistent with the non-analytic term
(

4π2

27 log2 g8 + (. . .) log g8

)
displayed in (2.19).

B.4 D = 7, d = 3

The moduli space in type II string theory compactified on T 3 is SL(5)/SO(5), identified

under SL(5,Z).

B.4.1 R4

The exact R4 coupling is given by [13]

E(3)
(0,0) = E

SL(5)
[1000],3/2 (B.30)

This reproduces the expected tree-level and one-loop terms, up to an infinite series of

D-instanton corrections,

g
2/5
7 E

(3)
(0,0) =

2ζ(3)

g2
7

+ 2π E
SO(3,3)
[100],1/2 + n.p. (B.31)

Note

E
SL(4)
[100],1 = π E

SO(3,3)
[100],1/2 (B.32)

Decompactifying from D = 7 to D = 8, one has, in agreement with (2.26)

E(3)
(0,0) →

(
r3

l8

)6/5

E(2)
(0,0) + 4π

(
r3

l8

)6/5

log
r3

l8µ8
(B.33)

The log r3 terms cancels against the non-analytic term in E(2)
(0,0), so that E(3)

(0,0) is analytic at

g7 = 0. The scale is found to be µ8 = 4πe−γE .
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B.4.2 D4R4

The exact D4R4 coupling is given by the linear combination [8]

E(3)
(1,0) =

1

2
Ê

SL(5)
[1000],5/2 +

π

30
Ê

SL(5)
[0010],5/2 (B.34)

The two Eisenstein series are defined after subtracting the pole at s = 5/2. They contribute

to different supersymmetric invariants [11]. At weak coupling, they reproduce the expected

tree-level, one-loop and two-loop contributions,

g2
7 E

(3)
(1,0) =

ζ(5)

g2
7

+
π

30
E

SO(3,3)
[100],5/2

+

[
2

3

(
Ê

SO(3,3)
[010];2 + Ê

SO(3,3)
[001];2

)
+

4π2

3
(1− 2γE + log 4)

]
g2

7 +
16π2

15
g2

7 log g7 + n.p.

(B.35)

Decompactifying from D = 7 to D = 8, one has, in agreement with (2.27) [20, 4.26],

E(3)
(1,0) →

(
r3

l8

)2
(
E(2)

(1,0) +
π

3

(
r3

l8

)−2(
E(2)

(0,0) −
28π

5
log

r3

l8

)
+

π

15
ζ(5)

(
r3

l8

)4
)

(B.36)

Using l8 = g
1/3
8 ls, one sees that the explicit log r3/l8 term combines with the non-analytic

contribution 4π
3 log g8 in E(8)

(0,0) to yield the non-analytic contribution 16π2

15 log g7 in (2.19).

B.4.3 D6R4

The exact D6R4 coupling in D = 7 is not known. At weak coupling, it must reproduce

the correct perturbative terms up to three loops,

g
14/5
7 E(3)

(0,1) =
2ζ(3)2

3g2
7

+

(
2πζ(3)

3
E

SO(3,3)
[100],1/2 +

5π

378
E

SO(3,3)
[100],7/2

)
+ E(3,2)

(0,1)g
2
7 +

2

27

[
E

SO(3,3)
[001],3 + E

SO(3,3)
[010],3

]
g4

7 + n.p.

(B.37)

where E(3,2)
(0,1) is proportional to the modular integral of the Kawazumi-Zhang invariant times

the genus two lattice partition function (hence not a standard Eisenstein series).

Decompactifying from D = 7 to D = 8, one has, in agreement with (2.28), suitably

amended to take into account the logarithmic divergences in D = 8,

E(3)
(0,1) →

(
r3

l8

)12/5
(
E(2)

(0,1) +
π

18

(
r3

l8

)−4

E(2)
(1,0) +

2π

3
log

(
r3

l8

)
E(2)

(0,0) +
2π2

9
log

(
r3

l8

)

+
4π2

3
(log

(
r3

l8

)
)2 − π

36
E(2)

(0,0) +
5π2

72
+

5π

189
ζ(7)

(
r3

l8

)6
)

(B.38)

Using l8 = lsg
1/3
8 , the (log

(
r3
l8

)
)2 and log

(
r3
l8

)
E(2),an.

(0,0) terms are seen to cancel against the

non-analytic terms in E(2)
(0,1), so that E(3)

(0,1) is analytic at g7 = 0.
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B.5 D = 6, d = 4

The moduli space in type II string theory on T 4 is SO(5, 5)/SO(5)×SO(5), identified under

SO(5, 5,Z).

B.5.1 R4

The exact R4 coupling is given by [15, 17]

E(4)
(0,0) = E

SO(5,5)
[10000],3/2 (B.39)

At weak coupling, it produces the correct tree-level and one-loop terms,

g6E(4)
(0,0) =

2ζ(3)

g2
6

+ 2E
SO(4,4)
[1000],1 + n.p. (B.40)

Decompactifying from D = 6 to D = 7, one has, in agreement with (2.26),

E(4)
(0,0) →

(
r4

l7

)3/2

E(3)
(0,0) + 4ζ(2)

(
r4

l7

)5/2

(B.41)

B.5.2 D4R4

The exact D4R4 coupling is given by [8]

E(4)
(1,0) =

1

2
Ê

SO(5,5)
[10000],5/2 +

4

45
Ê

SO(5,5)
[00001],3 (B.42)

The two Eisenstein series are defined by subtracting the pole at s = 5/2 and s = 3,

respectively. They contribute to different supersymmetric invariants [11].

At weak coupling, this produces the correct tree-level, one-loop and two-loop terms,

g3
6 E

(4)
(1,0) =

ζ(5)

g2
6

+

(
4

45
Ê

SO(4,4)
[1000],3 +

4

3
ζ(3)(36 log(A)− 7 + 3γE)− 4ζ ′(3)

)
+

[
2

3

(
Ê

SO(4,4)
[0001],2 + Ê

SO(4,4)
[0010],2

)
+

(
24ζ ′(2)

π2
− 360ζ ′(4)

π4
− 19

3
+ log(16)

)
E

SO(4,4)
[1000],1

]
g2

6

+ E(4)
(0,0) g

3
6 log g6 + n.p.

(B.43)

Decompactifying fromD = 6 to D = 7, one has, in agreement with (2.27), suitably modified

to take into account the logarithmic divergences,

E(4)
(1,0) →

(
r4

l7

)5/2(
E(3)

(1,0) + π2 log
r4

l7

)
− 5

2

(
r4

l7

)3/2

log
r4

l7
E(3)

(0,0) +
8

45
ζ(6)

(
r4

l7

)15/2

(B.44)

Using l7 = g
2/5
7 ls, the explicit log r4/l7 terms along with the non-analytic behavior of

E(3)
(1,0) ∼

16π2

15 log g7 are seen to be consistent with the non-analytic term E(0,0) log g6 in

E(4)
(1,0), as written in (2.19).
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B.5.3 D6R4

The exact D6R4 coupling in D = 6 is not known. At weak coupling, it must reproduce

the correct perturbative terms up to three loops,

g4
6 E

(4)
(0,1) =

2ζ(3)2

3g2
6

+

[
2ζ(3)

3
E
SO(4,4)
[1000],1 +

8

189
E
SO(4,4)
[1000],4

]
+ g2

6E
(4,2)
(0,1)

+
2

27

[
Ê
SO(4,4)
[0001],3 + Ê

SO(4,4)
[0010],3

]
g4

6 + 5ζ(3)g4
6 log g6 + n.p.

(B.45)

Under decompactification from D = 6 to D = 7, one has, in agreement with (2.28),

E(4)
(0,1) →

(
r4

l7

)3

E(3)
(0,1) +

5ζ(3)

2π2
E(3)

(1,0) +
2

3
ζ(2)

(
r4

l7

)4

E(3)
(0,0) +

8

5
ζ2(2)

(
r4

l7

)5

+
16

189
ζ(8)

(
r4

l7

)10

− 35

6
ζ(3) log

r4

l7
.

(B.46)

Using l7 = lsg
2/5
7 , the logarithmic term is seen to combine with the non-analytic term

16π2

15 log g7 in E(3)
(1,0) to produce E(4)

(0,1) ∼ 5ζ(3) log g6.

B.6 D = 5, d = 5

The moduli space in type II string theory compactified on T 5 is E6(6)/USp(8), identified

under E6(6)(Z).

B.6.1 R4

The exact R4 coupling is given by [15, 17, 18]

E(5)
(0,0) = EE6

[105],3/2
(B.47)

At weak coupling, it produces the correct tree-level and one-loop terms,

g2
5E

(5)
(0,0) =

2ζ(3)

g2
5

+ E
SO(5,5)
[104],3/2

+ n.p. (B.48)

Decompactifying from D = 5 to D = 6, one has, in agreement with (2.26),

E(5)
(0,0) →

(
r5

l6

)2

E(4)
(0,0) + 2ζ(3)

(
r5

l6

)4

(B.49)

B.6.2 D4R4

The exact D4R4 coupling is given by [18]

E(5)
(1,0) =

1

2
EE6

[105],5/2
(B.50)

At weak coupling, this produces the correct tree-level, one-loop and two-loop terms,

g
14/3
5 E(5)

(1,0) =
ζ(5)

g2
5

+
1

12
E

SO(5,5)
[104],7/2

+
2

3
E

SO(5,5)
[041],2

g2
5 + n.p. (B.51)
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Decompactifying fromD = 5 to D = 6, one has, in agreement with (2.27), suitably modified

to take into account the logarithmic divergences,

E(5)
(1,0) →

(
r5

l6

)10/3(
E(4)

(1,0) + 2 log

(
r5

l6

)
E(4)

(0,0)

)
+

1

6
ζ(7)

(
r5

l6

)28/3

(B.52)

Using l6 = lsg
1/2
6 , the log r5/l6 term is seen to cancel against the non-analytic term

E(0,0) log g6 in E(4)
(1,0), so that E(5)

(1,0) is analytic at g5 = 0.

B.6.3 D6R4

The exact D6R4 coupling in D = 5 is not known. At weak coupling, it must reproduce

the correct perturbative terms up to three loops,

g6
5 E

(5)
(0,1) =

2ζ(3)2

3g2
5

+

(
ζ(3)

3
E

SO(5,5)
[104],3/2

+
5

108
E

SO(5,5)
[104],9/2

)
+ g2

5 E
(5,2)
(0,1)

+
2

27

(
Ê

SO(5,5)
[041],3

+ Ê
SO(5,5)
[0310],3

)
g4

5 + α5 log g5 E(5)
(0,0) + n.p.

(B.53)

Under decompactification from D = 5 to D = 6, one has

E(5)
(0,1) →

(
r5

l6

)4

E(4)
(0,1) +

5

6

(
r5

l6

)2 (
E(4)

(1,0) −
10

3
E(4)

(0,0) log
r5

l6

)
+

1

3
ζ(3)

(
r5

l6

)6

E(4)
(0,0)

+
2

3
ζ2(3)

(
r5

l6

)8

+
5

54
ζ(9)

(
r5

l6

)12

+
10

9
ζ(3)

(
r5

l6

)4

log
r5

l6µ̃6

(B.54)

B.7 D = 4, d = 6

The moduli space in type II string theory is E7(7)/SU(8), identified under E7(7)(Z).

B.7.1 R4

The exact R4 coupling is given by [15, 17, 18]

E(6)
(0,0) = EE7

[106],3/2
(B.55)

At weak coupling, it produces the correct tree-level and one-loop terms,

g4
4E

(6)
(0,0) =

2ζ(3)

g2
4

+
2

π
E

SO(6,6)
[105],2

+ n.p. (B.56)

Decompactifying from D = 4 to D = 5, one has, in agreement with (2.26),

E(6)
(0,0) →

(
r6

l5

)3

E(5)
(0,0) +

4

π
ζ(4)

(
r6

l5

)6

(B.57)
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B.7.2 D4R4

The exact D4R4 coupling is given by [18]

E(6)
(1,0) =

1

2
EE7

[106],5/2
(B.58)

At weak coupling, this produces the correct tree-level, one-loop and two-loop terms,

g8
4 E

(6)
(1,0) =

ζ(5)

g2
4

+
4

15π
E

SO(6,6)
[105],4

+
2

3
E

SO(6,6)
[051],2

g2
4 + n.p. (B.59)

Decompactifying from D = 4 to D = 5, one has, in agreement with (2.27),

E(6)
(1,0) →

(
r6

l5

)5

E(5)
(1,0) +

π

3

(
r6

l5

)6

E(5)
(0,0) +

8

15π
ζ(8)

(
r6

l5

)12

(B.60)

B.7.3 D6R4

The exact D6R4 coupling in D = 4 is not known. At weak coupling, it must reproduce

the correct perturbative terms up to three loops,

g10
4 E

(6)
(0,1) =

2ζ(3)2

3g2
4

+

(
2ζ(3)

3π
E

SO(6,6)
[105],2

+
32

189π
Ê

SO(6,6)
[105],5

)
+ g2

4 E
(6,2)
(0,1)

+
2

27

(
Ê

SO(6,6)
[051],3

+ Ê
SO(6,6)
[0410],3

)
g4

4 + α4 E(6)
(1,0) log g4 + n.p.

(B.61)

Under decompactification from D = 4 to D = 5, one has

E(6)
(0,1) →

(
r6

l5

)6
(
E(5)

(0,1) +
5

6
E(5)

(0,0) log

(
r6

l5

)
− 15

2π

(
r6

l5

)−1

E(5)
(1,0) log

(
r6

l5

)

+
2ζ(4)

3π

(
r6

l5

)3

E(5)
(0,0) +

64ζ(10)

189π

(
r6

l5

)9

− 4

π2
ζ(8)

(
r6

l5

)6

log

(
r6

l5

))
(B.62)

B.8 D = 3, d = 7

Finally, the moduli space in type II string compactified on T 7 is E8(8)/SO(16), identified

under E8(8)(Z).

B.8.1 R4

The exact R4 coupling is given by [15, 17, 18]

E(7)
(0,0) = EE8

[107],3/2
(B.63)

This reproduces the expected tree-level and one-loop terms, up to an infinite series of

D-instanton corrections,

g10
3 E

(7)
(0,0) =

2ζ(3)

g2
3

+
3

2π
E

SO(7,7)
[106],5/2

+ n.p. (B.64)

Decompactifying from D = 3 to D = 4, one has, in agreement with (2.26),

E(7)
(0,0) →

(
r7

l4

)6

E(6)
(0,0) +

3

π
ζ(5)

(
r7

l4

)10

(B.65)
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B.8.2 D4R4

The exact D4R4 coupling is given by [18]

E(7)
(1,0) =

1

2
EE8

[107],5/2
(B.66)

At weak coupling, this produces the correct tree-level, one-loop and two-loop terms,

g18
3 E

(7)
(1,0) =

ζ(5)

g2
3

+
7

24π
E

SO(7,7)
[106],9/2

+
2

3
E

SO(7,7)
[061],2

g2
3 + n.p. (B.67)

Decompactifying from D = 3 to D = 4, one has, in agreement with (2.27),

E(7)
(1,0) →

(
r7

l4

)10

E(4)
(1,0) +

1

π
ζ(3)

(
r7

l4

)12

E(4)
(0,0) +

7

12π
ζ(9)

(
r7

l4

)18

(B.68)

B.8.3 D6R4

The exact D6R4 coupling in D = 3 is not known. At weak coupling, it must reproduce

the correct perturbative terms up to three loops,

g22
3 E

(7)
(0,1) =

2ζ(3)2

3g2
3

+

(
ζ(3)

2π
E

SO(7,7)
[106],5/2

+
5

24π
E

SO(7,7)
[106],11/2

)
+ g2

3 E
(7,2)
(0,1)

+
2

27
E

SO(7,7)
[061],3

g4
3 + n.p.

(B.69)

Decompactifying from D = 3 to D = 4, one has

E(7)
(0,1) →

(
r7

l4

)12
(
E(6)

(0,1) +
5

π
log

(
r7

l4

)
E(6)

(1,0) +
ζ(5)

2π

(
r7

l4

)4

E(6)
(0,0)

+
5ζ(11)

12π

(
r7

l4

)10

− 9ζ(5)

8π2

(
r7

l4

)8
) (B.70)

The coefficient in front of log
(
r7
l4

)
is fixed by requiring that it cancels the non-analytic

term α4 E(6)
(1,0) log g4 in E(6)

(0,1), so that E(7)
(0,1) is analytic at g3 = 0 (recall l4 = g4ls).
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