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1 Introduction

The N = 1 superfield description1 of higher dimensional supersymmetric (SUSY) theories

is quite useful when we discuss phenomenological SUSY models with extra dimensions. It

makes the derivation of 4-dimensional (4D) effective theories easier since the Kaluza-Klein

mode expansion can be performed keeping the N = 1 off-shell structure. Besides, the

action is expressed compactly, and general setups can be treated. Since higher-dimensional

SUSY theories have extended SUSY, the full off-shell formulations are complicated and

less familiar, or do not even exist for theories higher than 6 dimensions (6D). In contrast,

the N = 1 superfield description is always possible because it only respects part of the

1“N = 1” denotes supersymmetry with four supercharges in this paper.
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full off-shell SUSY structure. Hence it is powerful especially when we describe interactions

between sectors whose dimensions are different, such as the bulk-boundary couplings in 5D

theories compactified on S1/Z2. For the above reasons, a lot of works along this direction

have been published [1]–[9].

When we discuss a realistic extra-dimensional models, the moduli play important roles.

They have to be stabilized to finite values by some mechanism, and are often relevant to the

mediation of SUSY-breaking to the visible sector. In order to treat the moduli properly, we

need to consider supergravity (SUGRA). The N = 1 superfield description of 5-dimensional

(5D) SUGRA is already obtained in refs. [5]–[9]. Making use of it, the moduli dependence

of the 4D effective action can systematically be derived [10]–[13]. Our aim is to extend

the 5D superfield action to 6D. Since the minimal number of SUSY is the same in the

5D and 6D cases, the desired N = 1 description is expected to be similar to that of 5D

theories. However, there is an obstacle to a straightforward extension of the 5D result. In

contrast to the 5D case, the 6D superconformal Weyl multiplet contains an anti-self-dual

antisymmetric tensor T−
MNL (M,N,L: 6D Lorentz indices) [14]. This leads to a difficulty

for the Lagrangian formulation, similar to that for type IIB SUGRA. This difficulty can be

evaded by introducing a tensor multiplet, which contains an antisymmetric tensor B+
MN

whose field strength F+
MNL ≡ ∂[MB+

NL] is subject to the self-dual constraint [14]. Com-

bining this multiplet with the Weyl multiplet, we obtain a new multiplet2 that contains

an unconstrained antisymmetric tensor BMN , whose field strength is given by the sum of

T−
MNL and F+

MNL. Namely, the off-shell formulation of 6D SUGRA requires the existence

of the tensor field BMN , which is not a necessary ingredient in 5D SUGRA.3

The off-shell action of 6D SUGRA is provided in refs. [14, 15]. In that action, the

tensor field BMN is coupled to the vector fields. Thus, in this paper, we clarify how the

vector-tensor couplings are expressed in terms of N = 1 superfields. Since we focus on these

couplings, we do not consider the gravitational couplings in this paper. In this sense, this

work is the generalization of ref. [1] including the vector-tensor couplings. For our purpose,

the projective superspace formulation [16–18] is useful. In fact, the N = 1 superfield

description of 5D SUGRA can be derived from the action in the projective superspace [8].

As for 6D SUGRA, the off-shell action in this formulation is provided in ref. [19].4 We

derive the N = 1 superfield action from it.

The paper is organized as follows. In section 2, we provide a brief review of N = 2

supersymmetric actions in the projective superspace. In section 3, we decompose N = 2

superfields into N = 1 superfields, and express the vector-tensor couplings in terms of the

latter. We also clarify the relation between our result and the known N = 1 superfield

description of 6D SUSY gauge theory or 5D SUSY Chern-Simons theory through the

dimensional reduction. Section 4 is devoted to the summary. In the appendices, we list

our notations for spinors, and show explicit derivations of some of the results in the text.

2This is called the “Weyl 2 multiplet” in ref. [15], and the “type-II Weyl multiplet” in ref. [19].
3Note also that an antisymmetric rank-2 tensor field is dual to a vector field in 5 dimensions.
4The 6D action in the harmonic superspace is provided in ref. [20].
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2 Invariant action in projective superspace

2.1 Action formula

An N = 2 off-shell action can be constructed by using the projective superspace formu-

lation [16–18]. We consider 6D (1, 0) SUSY theories. The 6D projective superspace is

parametrized by the spacetime coodinates xM (M = 0, 1, · · · , 5), the Grassmannian coor-

dinates Θi
α (i = 1, 2; α = 1, 2, 3, 4),5 which form an SU(2)-Majorana-Weyl spinor, and the

complex coordinate ζ of CP1. A projective superfield Ξ(x,Θ, ζ) is a holomorphic function

in ζ that satisfies6

D[1]
α Ξ ≡

(

−ζD1
α +D2

α

)

Ξ = 0, (2.1)

where the spinor derivatives are defined in (A.26). It can be expanded as

Ξ(x,Θ, ζ) =
∞
∑

n=−∞
Ξn(x,Θ)ζn, (2.2)

where N = 2 superfields Ξn satisfy

D1
αΞn = D2

αΞn+1. (2.3)

The constraint (2.3) fixes the dependence of Ξn on half of the Grassmann coordinates Θi
α,

and thus Ξn can be considered as superfields which effectively live on an N = 1 superspace.

The natural conjugate operation in the projective superspace is the combination of the

complex conjugate and the antipodal map on CP
1 (ζ∗ → −1/ζ), which is called the smile

conjugate denoted as

Ξ̆(x,Θ, ζ) =
∞
∑

n=−∞
(−1)nΞ̄−n(x,Θ)ζn. (2.4)

Then the N = 2 SUSY invariant action formula is given by [19, 22]

S =

∫

d6x

{
∮

C

dζ

2πi
ζD[−4]L(x,Θ, ζ)

∣

∣

∣

∣

Θ=0

}

, (2.5)

where C is a contour surrounding the origin ζ = 0, the “Lagrangian superfield” L(x,Θ, ζ)

is a smile-real projective superfield (L̆ = L), and

D[−4] ≡ −
1

96
ǫαβγδD[−1]

α D
[−1]
β D[−1]

γ D
[−1]
δ ,

D[−1]
α ≡

1

1 + ζη

(

D1
α + ηD2

β

)

. (2.6)

The complex number η is chosen arbitrarily as long as 1+ ζη 6= 0. In fact, the action (2.5)

is independent of η.

5In this paper, α, β, · · · denote the 4-component spinor indices, and α, β, · · · and α̇, β̇, · · · are used as

the 2-component indices of 4D SL(2,C) spinors.
6The index [k] indicates the weight-k quantity. It coincides with the superconformal weight in the

superconformal theories [21].
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2.2 Explicit forms of Lagrangians

A 6D hypermultiplet is described by an arctic superfield Υ, which is a projective superfield

that is non-singular at the north pole of CP1 (ζ = 0). Namely, it is expanded as

Υ(x,Θ, ζ) =
∞
∑

n=0

Υn(x,Θ)ζn. (2.7)

A 6D vector multiplet is described by a tropical superfield V , which is a smile-real projective

superfield,

V̆ (x,Θ, ζ) = V (x,Θ, ζ). (2.8)

Namely, it is expanded as

V (x,Θ, ζ) =

∞
∑

n=−∞
Vn(x,Θ)ζn, V−n = (−1)nV̄n. (2.9)

Using these projective superfields, the Lagrangian superfield L in the hypermultiplet sector

is given by

Lhyper = Ῠe−V Υ. (2.10)

In the following, we consider Abelian gauge theories, for simplicity.

In contrast to the above multiplets, a 6D tensor multiplet is not described by a pro-

jective superfield. As first shown in ref. [23], it can be described by a constrained real

superfield Φ that satisfies

D(i
αD

j)
β Φ = 0. (2.11)

or equivalently described by an SU(2)-Majorana-Weyl spinor superfield T iα constrained by

D(i
αT

j)β −
1

4
δ

β
α D(i

γ T
j)γ = 0. (2.12)

where the parentheses denote the symmetrization for the indices. We can identify these

superfields as

Φ = DiαT
iα = ǫijD

j
αT

iα, (2.13)

but we can also regard them as independent tensor multiplets. From these two superfields,

we can construct a projective composite superfield,

T [2] ≡
i

ζ

{

(D[1]
α Φ)T [1]α +

1

4
ΦD[1]

α T [1]α

}

, (2.14)

where T [1]α ≡ −ζT 1α + T 2α. This certainly satisfies the condition D
[1]
α T = 0 due to the

constraints (2.11) and (2.12). For an SU(2)-Majorana-Weyl spinor Ψiα, a quantity Ψ[1]α ≡

−ζΨ1α +Ψ2α is transformed by the smile conjugation as

Ψ[1]α → Ψ̆[1]α ≡
(

Ψ[1]
)α∣
∣

∣

ζ∗→−1/ζ
= −

1

ζ
Ψ[1]α, (2.15)
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where the overline denotes the covariant conjugation defined by (A.20), and we have

used (A.23). Using this property, it is shown that T [2] is smile-real (T̆ [2] = T [2]), and

thus it can be the Lagrangian superfield for the tensor multiplets.

Ltensor = T [2]. (2.16)

Besides the description by the tropical superfield, a 6D vector multiplet is also described

by a superfield F iα subject to the same constraint as (2.12) if it is further constrained by

DiαF
iα = 0. (2.17)

As we will see later, this superfield contains the field strength of the gauge field, and thus

gauge-invariant. Using F iα with Φ and V , we can construct the Lagrangian superfield for

the vector-tensor couplings as

LVT = V F [2], (2.18)

where

F [2] ≡
i

ζ

{

(D[1]
α Φ)F [1]α +

1

4
ΦD[1]

α F [1]α

}

,

F [1]α ≡ −ζF 1α + F 2α. (2.19)

The action constructed from the above Lagrangian superfields (2.10), (2.16) and (2.18)

is invariant under the following gauge transformations.

δΛV = Λ+ Λ̆, δΛΥ = ΛΥ, δΛΦ = δΛT
iα = 0,

δGT
iα = G

iα, δGV = δGΥ = δGΦ = 0, (2.20)

where the transformation parameters Λ and G
iα are an arctic superfield and a constrained

superfield that satisfies the same constraints as (2.12) and (2.17), respectively.

3 N = 1 superfield description

In this section, we express the N = 2 invariant action in the previous section in terms of

N = 1 superfields. For this purpose, it is convenient to devide the bosonic coordinates xM

into the 4D part xµ (µ = 0, 1, 2, 3) and the extra-dimensional part z ≡ 1
2(x

4 + ix5) and z̄.

As for the fermionic coordinates Θiα, they are decomposed into (θα, θ̄α̇) that describes the

N = 1 subsuperspace we focus on and the rest part (θ′α, θ̄′α̇) as shown in (A.28). We follow

the notations of ref. [24] for the 2-component spinor indices.

3.1 Superfield action formula

Since the action (2.5) is independent of the choice of η, we choose it as η = 0 in the

following. Then, D[−4] becomes

D[−4] = −
1

96
ǫαβγδD1

αD
1
βD

1
γD

1
δ =

1

16
D2D̄′2, (3.1)
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where Dα and D̄′α̇ are defined in (A.30), and we have used (A.8) and (A.29). Since the

Lagrangian superfield L is a projective superfield, it satisfies D
[1]
α L = 0. From (A.29), this

is rewritten as
(

−ζDα −D′
α

)

L = 0,
(

−ζD̄′α̇ + D̄α̇
)

L = 0. (3.2)

Thus, D[−4]L is rewritten as

D[−4]L =
1

16
D2

(

1

ζ
D̄′D̄L

)

=
1

16
D2

(

1

ζ2
D̄2 −

4

ζ
∂

)

L, (3.3)

where ∂ ≡ ∂z = ∂4 − i∂5, and we have used (A.32). Therefore, the action (2.5) becomes

S =

∫

d6x

{
∮

C

dζ

2πiζ

1

16
D2D̄2L

∣

∣

∣

∣

θ=θ′=0

}

=

∫

d6x

{
∮

C

dζ

2πiζ

∫

d4θ L|

}

≡

∫

d6x L. (3.4)

where a total derivative term is dropped, and the symbol | denotes the projection θ′ = 0.

For a given projective superfield Ξ(x,Θ, ζ), its expansion coefficients Ξn(x,Θ) in (2.2)

satisfy

DαΞn = −D′
αΞn+1, D̄α̇Ξn = D̄′

α̇Ξn−1, (3.5)

which comes from the constraint (2.1). Note that Ξn(x,Θ) is decomposed into the following

N = 1 superfields.

Ξn|, D′
αΞn|, D̄′

α̇Ξn|, D′2Ξn|, D′
αD̄

′
α̇Ξn|,

D̄′2Ξn|, D̄′2D′
αΞn|, D′2D̄′

α̇Ξn|, D′2D̄′2Ξn|. (3.6)

The condition (3.5) provides constraints on these N = 1 superfields. The action for-

mula (3.4) is expressed in terms of them. Although each projective superfield contains

infinite number of N = 1 superfields, only a finite small number of them survive in the

final expression of the action as we will see below.

As a simple example, let us consider a free hypermultiplet. The Lagrangian is given by

Lhyp =

∫

d4θ

∮

C

dζ

2πiζ
ῨΥ

∣

∣

∣

∣

=

∫

d4θ

{ ∞
∑

n=0

(−1)n |Υn|
2

}
∣

∣

∣

∣

∣

. (3.7)

Since the arctic superfield Υ does not have terms with negative power in ζ (i.e., Υn = 0

for n < 0), the constraint (3.5) becomes

DαΥn = −D′
αΥn+1 (n ≥ 0), D′

αΥ0 = 0,

D̄α̇Υn = D̄′
α̇Υn−1 (n ≥ 1), D̄α̇Υ0 = 0. (3.8)

Thus the constraints on Υ0| and Υ1| are isolated from the other N = 1 superfields.

D̄α̇Υ0| = 0, D̄2Υ1| = 4∂Υ0|. (3.9)

– 6 –
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We have used (A.32). Note that Υn| (n ≥ 2) are unconstrained superfields.7 Hence they

can be easily integrated out and obtain

Lhyp =

∫

d4θ
{

|Υ0|
2 − |Υ1|

2
}∣

∣

∣
. (3.10)

This is further rewritten as

Lhyp =

∫

d4θ
[(

|Φ|2 − |ξ|2
)

+
{

κ
(

D̄2ξ − 4∂Φ
)

+ h.c.
}

]

, (3.11)

where Φ ≡ Υ0| is a chiral superfield, and ξ and κ are unconstrained N = 1 superfields. In

fact, integrating out κ and κ̄, this reduces to (3.10) with ξ = Υ1|. On the other hand, if

we integrate out ξ and ξ̄, we obtain [22]

Lhyp =

∫

d4θ
{

|Φ|2 + |D̄2κ|2 − (4κ∂Φ+ h.c.)
}

=

∫

d4θ
(

|Φ|2 + |Φ̃|2
)

+

{
∫

d2θ Φ̃∂Φ+ h.c.

}

, (3.12)

where Φ̃ ≡ D̄2κ is another chiral superfield, up to total derivatives. This is consistent

with (2.3) in ref. [1].

3.2 Decomposition into N = 1 superfields

The constraint (2.12) is rewritten as

D[1]
α T [1]β −

1

4
δ

β
α D[1]

γ T [1]γ = 0. (3.13)

Since
{

D
[1]
α ,D

[1]
β

}

= 0, the solution of this constraint is expressed as [23]

T [1]α =
i

3!ζ
ǫαβγδD

[1]
β D[1]

γ D
[1]
δ P

[−2], (3.14)

where the prepotential P [−2] is a ζ-independent N = 2 superfield, which is a real scalar.

The overall ζ-dependence is determined so that T [1]α satisfy

T̆ [1]α = −
1

ζ
T [1]α. (3.15)

(See (2.15).) In the 2-component-spinor notation, (3.14) is rewritten as

T [1]α =
i

2ζ

(

−ζD̄′ + D̄
)2 (

−ζDα −D′α)
P

[−2],

T
[1]
α̇ =

i

2ζ

(

−ζD −D′)2 (−ζD̄′
α̇ + D̄α̇

)

P
[−2]. (3.16)

We have used (A.8) and (A.29).

7From (3.8), each Υn| (n ≥ 2) is related to D′Υn±1|. However, since the latter does not appear in the

action, the former can be regarded as an unconstrained superfield.

– 7 –
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Since T [1]α is a linear function of ζ, the prepotential P [−2] should satisfy

D̄α̇D
′2
P

[−2] = D̄2D′
αP

[−2] = 0. (3.17)

From the linear and constant terms in ζ, we can read off the components T iα as

T 1α =
i

2

(

D′αD̄′2 − 2DαD̄D̄′ + 4∂Dα
)

P
[−2],

T 2α = −
i

2

(

D̄2Dα − 2D̄D̄′D′α + 4∂D′α)
P

[−2],

T 1
α̇ = −(T 2

α)
∗, T 2

α̇ = (T 1
α)

∗. (3.18)

Then, Φ constructed by (2.13) is calculated as

Φ = DαT
2α + D̄′α̇T 2

α̇ +D′
αT

1α − D̄α̇T 1
α̇

= DαT
2α +D′

αT
1α + h.c.

= i
(

−2DαD̄D̄′D′
α + 2D̄α̇DD′D̄′α̇ + 4∂DD′ − 4∂̄D̄D̄′)

P
[−2]. (3.19)

The N = 2 superfield P
[−2] is decomposed into the following N = 1 superfields.

p0 ≡ P
[−2]|, pα1 ≡ D′α

P
[−2]|,

pα̇α2 ≡ D̄′α̇D′α
P

[−2]|, p3 ≡ D′2
P

[−2]|,

pα4 ≡ D′αD̄′2
P

[−2]|, p5 ≡ D′αD̄′2D′
αP

[−2]|. (3.20)

Then, (3.17) is translated into the following constraints.8

D̄2pα1 = 0, D̄α̇p3 = 0,

D̄α̇p̄4β̇ + 2ǫα̇β̇∂p3 = 0, D̄2pα̇α2 + 4∂D̄α̇pα1 = 0,

D̄α̇p5 − 4iσµ

αβ̇
∂µD̄α̇p

β̇α
2 + 4∂p̄4α̇ = 0,

D̄2
(

pα4 − 4iσ̄µα̇α∂µp̄1α̇
)

+ 8∂D̄α̇p
α̇α
2 − 16∂2pα1 = 0. (3.21)

When the spinor derivatives Dα and D̄α̇ act on N = 1 superfields, they are understood

as the 4D N = 1 ones, i.e., Dα = ∂
∂θα + i(σµθ̄)α∂µ and D̄α̇ = ∂

∂θ̄α̇
+ i(σ̄µθ)α̇∂µ. From the

second and the third constraints in (3.21), we obtain

D̄2p̄α̇4 = 0. (3.22)

Namely, pα4 is a complex anti-linear superfield and expressed as

pα4 = Dαq4, (3.23)

where q4 is a complex scalar superfield. The fourth constraint in (3.21) indicates that

χα ≡ D̄α̇p
α̇α
2 − 2∂pα1 (3.24)

8The last four constraints are obtained by operating D′
β orD̄′

β̇
on (3.17) and putting θ′ = 0.

– 8 –
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is a chiral superfield. Thus χα can be expressed as χα = D̄2Uα
χ , where Uα

χ is a spinor

superfield. The sixth constraint in (3.21) is rewritten as

0 = D̄2
(

pα4 + 2
{

Dα, D̄α̇
}

p̄1α̇
)

+ 8∂χα

= D̄2
(

pα4 + 2DαD̄α̇p̄1α̇ + 8∂Uα
χ

)

, (3.25)

which indicates that

Zα ≡
1

2
pα4 −DαD̄α̇p̄

α̇
1 + 4∂Uα

χ (3.26)

is a complex linear superfield, i.e., D̄2Zα = 0.

3.3 N = 1 description of tensor multiplet

From (3.18) and (3.20), we obtain

T 1α| =
i

2

(

pα4 − 2DαD̄α̇p̄
α̇
1 + 4∂Dαp0

)

= iDαX,

T 2α| = −
i

2

(

D̄2Dαp0 − 2D̄α̇p̄
α̇α
2 + 4∂pα1

)

= iD̄2Y α, (3.27)

where

X ≡
1

2
q4 − D̄α̇p̄

α̇
1 + 2∂p0,

Y α ≡ Uα
χ −

1

2
Dαp0. (3.28)

Using Zα defined in (3.26), (3.27) is also expressed as

T 1α| = i (Zα − 4∂Y α) , T 2α| = iD̄2Y α. (3.29)

From (3.18), we can calculate

D[1]
α T [1]α =

(

−ζDα −D′
α

)

T [1]α +
(

−ζD̄′α̇ + D̄α̇
)

T
[1]
α̇

= i

{

ζ2
(

−4∂D2 +
3

2
D2D̄D̄′ − 2iσµ

αα̇∂µD
αD̄′α̇ + 2∂̄D̄′2 −

3

2
DD′D̄′2

)

+ζ
(

−DαD̄2Dα + 16∂∂̄ − 8∂DD′ − 8∂̄D̄D̄′

+2DαD̄D̄′D′
α + 2D̄α̇DD′D̄′α̇ −D′αD̄′2D′

α

)

+

(

4∂̄D̄2 −
3

2
D̄2DD′ + 2iσµ

αα̇∂µD̄
α̇D′α − 2∂D′2 +

3

2
D̄D̄′D′2

)}

P
[−2].

(3.30)

Thus,
i

ζ
D[1]

α T [1]α

∣

∣

∣

∣

= ζA1 +A0 −
1

ζ
Ā1, (3.31)

where

A1 = 4∂D2p0 −
3

2
D2D̄α̇p̄

α̇
1 −

1

2

[

D2, D̄α̇

]

p̄α̇1 − 2∂̄p̄3 +
3

2
Dαp4α

= Dα
(

p4α − 2DαD̄α̇p̄
α̇
1 + 4∂Dαp0

)

= 2Dα (Zα − 4∂Yα) ,

A0 =
(

DαD̄2Dα − 16∂∂̄
)

p0 + 8∂Dαp1α + 8∂̄D̄α̇p̄
α̇
1

−2DαD̄α̇(p2)
α̇
α − 2D̄α̇D

α(p̄2)
α̇

α + p5. (3.32)
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Although A0 cannot be expressed in terms of only Yα and Zα, D̄α̇A0 can. In fact, after

some calculations, we obtain

D̄α̇A0 = −8∂
(

Z̄α̇ − 4∂̄Ȳα̇
)

+ 2D̄2D2Ȳα̇

= D̄α̇

(

−8∂X̄ − 4D̄β̇D
2Ȳ β̇

)

, (3.33)

where we have used that Zα − 4∂Y α = DαX(= −iT 1α|). Thus, A0 is expressed as

A0 = −8∂X̄ − 4D̄α̇D
2Ȳ α̇ + φ0, (3.34)

where φ0 is a chiral superfield that is determined so that A0 is real.

From (3.19), we have

Φ| = i
(

−2DαD̄α̇(p2)
α̇
α + 2D̄α̇D

α(p̄2)
α̇

α + 4∂Dαp1α − 4∂̄D̄α̇p̄
α̇
1

)

= −2iDαχα + 2iD̄α̇χ̄
α̇

= −2iDαD̄2Yα + 2iD̄α̇D
2Ȳ α̇,

D′
αΦ| = −

i

2
D̄2D2p1α +

i

2

(

DαD̄α̇ + 2D̄α̇Dα

)

p̄α̇4 − 4i∂̄χα

= i
(

DαD̄α̇ + 2D̄α̇Dα

) (

Z̄α̇ − 4∂̄Ȳ α̇
)

− 4i∂̄D̄2Yα. (3.35)

In summary, the 6D tensor multiplet is described by the spinor superfields Yα and Zα,

where the latter is constrained by D̄2Zα = 0.

3.4 N = 1 description of vector multiplet

As mentioned in section 2.2, a 6D vector multiplet can also be described by the constrained

superfield F iα. This is decomposed into N = 1 superfields in a similar way to the ten-

sor multiplet.

F 1α| = i (Zα
F − 4∂Y α

F ) = iDαXF , F 2α| = iD̄2Y α
F ,

i

ζ
D[1]

α F [1]α

∣

∣

∣

∣

= ζAF1 +AF0 −
1

ζ
A∗

1F ,

AF1 = 2Dα (ZFα − 4∂YFα) ,

AF0 = −8∂X̄F − 4D̄α̇D
2Ȳ α̇

F + φF0,

DiαF
iα| = −2iDαD̄2YFα + 2iD̄α̇D

2Ȳ α̇
F , (3.36)

where Zα
F and φF0 are a complex linear and a chiral superfields, respectively. In contrast

to the tensor multiplet, F iα is further constrained by (2.17), which indicates that

DαD̄2YFα = D̄α̇D
2Ȳ α̇

F . (3.37)
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This is regarded as the Bianchi identity, and solved as

Y α
F = −

1

4
DαV, (3.38)

where V is an unconstrained real superfield. Then, Zα
F is expressed as

Zα
F = 4∂Y α

F +DαXF = −DαΣ, (3.39)

where Σ ≡ ∂V −XF . Since D̄2Zα
F = 0, Σ is a chiral superfield. Thus, (3.36) becomes

F 1α| = iDα (∂V − Σ) , F 2α = −
i

4
D̄2DαV,

AF1 = 2D2 (∂V − Σ) , AF0 = −8∂
(

∂̄V − Σ̄
)

+ D̄α̇D
2D̄α̇V + φF0. (3.40)

As mentioned in section 2.2, F iα are invariant under the gauge transformation,

V → V + Λ+ Λ̄, Σ → Σ+ ∂Λ, (3.41)

where Λ is a chiral superfield. Especially, F 2α is proportional to the field strength superfield,

Wα ≡ −
1

4
D̄2DαV. (3.42)

Since φF0 is a chiral superfield and AF0 is real, we find that φF0 = 8∂̄Σ. Namely,

AF0 = 8
{

−
(

�4PT + ∂∂̄
)

V + ∂̄Σ+ ∂Σ̄
}

, (3.43)

where �4 ≡ ∂µ∂
µ, and

PT ≡ −
D̄α̇D

2D̄α̇

8�4
(3.44)

is the projection operator [24].

In summary, the 6D vector multiplet is described by a chiral superfield Σ and a real

superfield V , which are independent of each other.

3.5 Vector-tensor couplings

Now we consider the vector-tensor couplings. Note that F [2] defined in (2.19) is an O(2)

multiplet, i.e.,

F [2] = ζF
[2]
1 + F

[2]
0 −

1

ζ
(F

[2]
1 )∗, (3.45)

where F
[2]
0 is real. Since

i

ζ

(

D[1]
α Φ

)

F [1]α = iζ
{

DαΦF
1α − (D′

αΦF
2α)∗

}

+i
{

D′
αΦF

1α −DαΦF
2α − (D′

αΦF
1α)∗ + (DαΦF

2α)∗
}

−
i

ζ

{

D′
αΦF

2α − (DαΦF
1α)∗

}

, (3.46)
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we can calculate F
[2]
1 | and F

[2]
0 | after some calculations by using the results in the previous

subsections as

F
[2]
1 | =

1

2
D2 {ΦT (∂V − Σ)} − W̄T W̄,

F
[2]
0 | = {−Wα

TDα (∂V − Σ)−DαΦTWα + h.c.}

−2ΦT

{(

�4PT + ∂∂̄
)

V − ∂̄Σ− ∂Σ̄
}

, (3.47)

where

ΦT ≡ Φ| = −2iDαD̄2Yα + 2iD̄α̇D
2Ȳ α̇,

WTα ≡ iD̄2
(

DαX̄ + 4∂̄Yα
)

= −i
(

DαD̄α̇ + 2D̄α̇Dα

) (

Z̄α̇ − 4∂̄Ȳ α̇
)

+ 4i∂̄D̄2Yα. (3.48)

Note that the real linear superfield ΦT and and the chiral superfield Wα
T are not indepen-

dent. As shown in appendix B, they are related through

DαWTα = −2∂̄ΦT ,

D̄2DαΦT = −4∂Wα
T . (3.49)

From these relations, we obtain

(

�4 + ∂∂̄
)

ΦT = 0,
(

�4 + ∂∂̄
)

Wα
T = 0, (3.50)

where we have used that PTΦT = ΦT and D̄2D2Wα
T = 16�4W

α
T . Namely, ΦT and Wα

T are

on-shell. This stems from the fact that the 6D tensor multiplet contains a self-dual tensor

field B+
µν . In the 6D global SUSY theories, the tensor multiplet cannot be described as off-

shell superfields,9 and thus should be treated as external fields. As shown in refs. [14, 15],

the off-shell description of the tensor multiplet becomes possible by combining the Weyl

multiplet when the theory is promoted to SUGRA.

Therefore, from (2.18), the Lagrangian in the vector-tensor sector is

LVT =

∮

C

dζ

2πiζ

∫

d4θ LVT|

=

∫

d4θ
{

−V1(F
[2]
1 )∗ + V0F

[2]
0 − V̄1F

[2]
1

}
∣

∣

∣

=

∫

d4θ

[

−
1

2
V1|D̄

2
{

ΦT

(

∂̄V − Σ̄
)}

+ V1|WTW

−V0| {W
α
TDα (∂V − Σ) +DαΦTWα + h.c.}

−2V0|ΦT

{(

�4PT + ∂∂̄
)

V − ∂̄Σ− ∂Σ̄
}

−
1

2
V̄1|D

2 {ΦT (∂V − Σ)}+ V̄1|W̄T W̄

]

, (3.51)

9This fact is explicitly shown in the harmonic superspace formulation in ref. [23].
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where V0 and V1 are the coefficient superfields in the tropical superfield (2.9). Using

d2θ̄ = −1
4D̄

2 and performing the partial integrals, the above Lagrangian is rewritten as

LVT = −

∫

d2θ Σ̃WTW + h.c.

−

∫

d4θ
{

2¯̃ΣΦT (∂V − Σ) + ṼWα
TDα (∂V − Σ) + Ṽ DαΦTWα + h.c.

}

−

∫

d4θ 2ΦT Ṽ
{(

�4PT + ∂∂̄
)

V − ∂̄Σ− ∂Σ̄
}

(3.52)

where

Ṽ ≡ V0|, Σ̃ ≡
1

4
D̄2V1|. (3.53)

The second line in (3.52) is further rewritten as

−

∫

d4θ
{

2¯̃ΣΦT (∂V − Σ) + ṼWα
TDα (∂V − Σ) + Ṽ DαΦTWα + h.c.

}

= −

∫

d2θ

{

ΣW̃WT +
1

4
D̄2
(

ΦTD
αṼWα + ∂V DαṼWTα

)

}

+ h.c.

+

∫

d4θ ΦT Ṽ
{

4
(

�4PT + ∂∂̄
)

V − 2∂̄Σ− 2∂Σ̄
}

+

∫

d4θ
{

2ΦT (∂̄Ṽ − ¯̃Σ) (∂V − Σ) + h.c.
}

, (3.54)

where we have used (3.49). Thus, LVT becomes

LVT = −

∫

d2θ

{

(

Σ̃W +ΣW̃
)

WT +
1

4
D̄2
(

ΦTD
αṼWα + ∂V DαṼWTα

)

}

+ h.c.

+

∫

d4θ 2ΦT Ṽ
(

�4PT + ∂∂̄
)

V

+

∫

d4θ
{

2ΦT (∂̄Ṽ − ¯̃Σ) (∂V − Σ) + h.c.
}

, (3.55)

where W̃α ≡ −1
4D̄

2DαṼ . When the 6D vector multiplets (V,Σ) and (Ṽ , Σ̃) are identi-

cal, (3.55) is simplified as

LVT = −

∫

d2θ

{

2ΣWWT +
1

4
D̄2 (ΦTD

αVWα + ∂V DαVWTα)

}

+ h.c.

+

∫

d4θ 2ΦT

{

V
(

�4PT + ∂∂̄
)

V + 2
(

∂̄V − Σ̄
)

(∂V − Σ)
}

. (3.56)

This is our main result. This contains the result in ref. [1] as a special case: ΦT = 1 and

Wα
T = 0, which corresponds to the case where the tensor multiplet is absent. In such a
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case, (3.56) becomes

LVT =

∫

d2θ W2 + h.c.

+

∫

d4θ
{

V DαWα + 2V ∂∂̄V + 4
(

∂̄V − Σ̄
)

(∂V − Σ)
}

=

∫

d2θ
1

2
W2 + h.c.

+

∫

d4θ 2
{

2
(

∂̄V − Σ̄
)

(∂V − Σ)− ∂̄V ∂V
}

, (3.57)

where we have used d2θ̄ = −1
4D̄

2, and dropped total derivative terms. This agrees

with (2.17) in ref. [1] after rescaling the superfields as V → 1√
2g
V and Σ → 1

2gφ.

3.6 Dimensional reduction to 5D

Here we consider the dimensional reduction of (3.56) to five dimensions by neglecting the

x5-dependence of the N = 1 superfields. Then (3.49) becomes

DαWTα = −2∂4ΦT ,

D̄2DαΦT = −4∂4W
α
T . (3.58)

Since the right-hand-side of the first equation is now real, Wα
T satisfies the Bianchi iden-

tity DαWTα = D̄α̇W̄
α̇
T . Hence it is a field-strength superfield.

Wα
T = −

1

4
D̄2DαVT , (3.59)

where VT is a real superfield. Substituting this into the second constraint in (3.58), we

obtain

D̄2Dα (ΦT − ∂4VT ) = 0, (3.60)

which indicates that

ΦT = ∂4VT − ΣT − Σ̄T , (3.61)

where10

ΣT ≡
D̄2D2

16�4
∂4VT (3.62)

is a chiral part of ∂4VT . Then, the first constraint in (3.58) is rewritten as

(

�4 + ∂2
4

)

PTVT = 0. (3.63)

Namely, the 6D tensor multiplet becomes an (on-shell) 5D vector multiplet after the di-

mensional reduction.11

10Note that ΦT is a real linear superfield, i.e., ΦT = PT∂4VT .
11Although there exists a 5D tensor field among the fields obtained from the 6D tensor field B+

MN by the

dimensional reduction, such a field is dual to a 5D vector field. The duality between the 5D tensor (gauge)

multiplet and the 5D vector multiplet is explicitly shown in component fields in ref. [25].
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As shown in appendix C, the Lagrangian (3.56) becomes the following expression after

the dimensional reduction.

L
(5D)
VT = −

∫

d2θ CIJKΣIWJWK + h.c.

+

∫

d4θ
CIJK

3

{(

∂4V
IDαV J − V I∂4D

αV J
)

WK
α + h.c.

}

+

∫

d4θ
2CIJK

3
VIVJVK , (3.64)

where (Σ1, V 1,Σ2, V 2) = (Σ, V,ΣT , VT ), the symmetric constant tensor CIJK is defined as

C112 = C121 = C211 = 1 and the other components are zero, and

VI ≡ ∂4V
I − ΣI − Σ̄I . (3.65)

This agrees with the 5D supersymmetric Chern-Simons terms [1, 26].

3.7 Bilinear terms in tensor multiplets

In this subsection, we consider the Lagrangian terms that consist of only tensor multiplets.

It is given by (2.16). The Lagrangian is expressed as

Ltensor =

∮

C

dζ

2πiζ

∫

d4θ Ltensor =

∫

d4θ T
[2]
0 |, (3.66)

where

T [2] = ζT
[2]
1 + T

[2]
0 −

1

ζ
(T

[2]
1 )∗. (3.67)

Using the expressions in section 3.3, T
[2]
0 | is calculated as

T
[2]
0 | =

{

−i(DαΦ)T
2α + i(D′

αΦ)T
1α + h.c.

}
∣

∣+
1

4
ΦT Ã0

=
(

−DαΦT D̄
2Ỹα −Wα

TDαX̃ + h.c.
)

+
1

4
ΦT Ã0, (3.68)

where

Ã0 = −8∂ ¯̃X − 4D̄α̇D
2 ¯̃Y α̇ + φ̃0. (3.69)

Here we treat two tensor multiplets (ΦT ,W
α
T ) originating from Φ and (X̃, Ỹ α) originating

from T iα as independent multiplets. The Lagrangian (3.66) is then expressed as

Ltensor =

∫

d4θ

{

(

ΦTD
αD̄2Ỹα +DαWTαX̃ + h.c.

)

+
1

4
ΦT Ã0

}

=

∫

d4θ

(

1

8
ΦT Ã0 +ΦTD

αD̄2Ỹα − 2∂̄ΦT X̃ + h.c.

)

=

∫

d4θ
1

8
ΦT

(

Ã0 + 8DαD̄2Ỹα + 16∂̄X̃ + h.c.
)

=

∫

d4θ ΦT

(

1

2
DαD̄2Ỹα + ∂̄X̃ + h.c.

)

. (3.70)
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We have used (3.49), and dropped total derivative terms. At the last step, we have used that
∫

d4θ ΦT

(

Ã0 + 4D̄α̇D
2 ¯̃Y α̇ + 8∂ ¯̃X

)

=

∫

d4θ ΦT φ̃0 = 0. (3.71)

This Lagrangian can be further rewritten as

Ltensor =

∫

d4θ

(

−
1

2
D̄2DαΦT Ỹα − ∂̄ΦT X̃ + h.c.

)

=

∫

d4θ

(

−
1

2
D̄2DαΦT Ỹα −

1

2
Wα

TDαX̃ + h.c.

)

= −
1

2

∫

d4θ
{

D̄2DαΦT Ỹα +Wα
T

(

Z̃α − 4∂Ỹα

)

+ h.c.
}

= −
1

2

∫

d4θ
{

(

D̄2DαΦT + 4∂Wα
T

)

Ỹα + h.c.
}

. (3.72)

At the last step, we have used the fact that Wα
T and Z̃α are a chiral and a linear superfields.

This Lagrangian vanishes due to the second constraint in (3.49). However we can relax

that constraint if we regard Ỹα as the Lagrange multiplier. In that case, the constraint

is obtained as the equation of motion for Ỹα. As shown in appendix B, that constraint is

necessary in order for F [2] defined in (2.19) to satisfy D
[1]
α F [2] = 0, which is relevant to

the N = 2 SUSY invariance of the action. Thus, in such a case, the full N = 2 SUSY

invariance of the vector-tensor coupling terms (3.56) is ensured only at the on-shell level.12

Nevertheless, (3.72) is expected to play an important role when we promote the theory to

SUGRA. It corresponds to (2.14) in ref. [23], which is described in the harmonic superspace.

3.8 Identification of component fields

Finally, we identify component fields of each N = 1 superfield. Here we focus on the

bosonic fields.

A 6D vector field AM is embedded into V and Σ as [1]

V = −(θσµθ̄)Aµ + · · · ,

Σ =
1

2
(A5 − iA4) + · · · , (3.73)

where the ellipses denote fermionic or auxiliary fields.

The 6D tensor multiplet contains a real scalar field σ and a self-dual tensor field B+
MN ,

which satisfy [23]
(

�4 + ∂∂̄
)

σ = 0,

∂[MB+
NL] =

1

6
ǫMNLPQR∂

PB+QR, (3.74)

where ǫMNLPQR is the antisymmetric constant tensor. From (3.29) and (3.40), the gauge

transformation for the tensor multiplet in (2.20) is expressed as

δG (Zα − 4∂Yα) = Dα (∂VG − ΣG) ,

δGD̄
2Yα = −

1

4
D̄2DαVG, (3.75)

12Half of the whole SUSY remains manifest at the off-shell level because the action is expressed in terms

of N = 1 superfields.
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where the vector multiplet (ΣG, VG) is the transformation parameter that satisfies the

on-shell condition. Note that ΦT and WTα are invariant under this transformation. In

components, this gauge transformation is expressed as

σ → σ, B+
MN → B+

MN + ∂MλN − ∂NλM , (3.76)

where λM are the transformation parameters. From the conditions D2ΦT = D̄2ΦT = 0

and (3.49), we find that σ and B+
MN are embedded into ΦT and WTα as

ΦT = σ − 2(θσµθ̄)
{

∂µB
+
45 − Im (∂Cµ)

}

−
1

4
θ2θ̄2�4σ + · · · ,

WTα = θα∂̄σ + (σµνθ)α
{

∂̄B+
µν + ∂µCν − ∂νCµ

}

+ · · · , (3.77)

where Cµ ≡ B+
µ4 + iB+

µ5, and WTα is expressed in the chiral basis (xµ + iθσµθ̄, z, z̄, θ, θ̄).

Note that these expressions are invariant under (3.76).

4 Summary

We have derived the N = 1 superfield description of supersymmetric coupling terms among

6D tensor and vector multiplets from the projective superspace action provided in ref. [19].

This is necessary to describe 6D SUGRA in terms of N = 1 superfields. Our result contains

the result in ref. [1] as a special case. It also reproduces the 5D supersymmetric Chern-

Simons terms after the dimensional reduction.

The tensor multiplet is described by two complex spinor superfields Yα and Zα, where

Zα is constrained as D̄2Zα = 0. They appear in the action in the forms of a real linear

superfield ΦT and a chiral spinor superfield WTα defined by (3.48). These superfields

are constrained by (3.49), which leads to the on-shell conditions. Thus they should be

treated as external fields. This stems from the fact that the 6D tensor multiplet contains

a self-dual tensor field B+
MN . As shown in ref. [14] in the component fields, the on-shell

condition for the tensor multiplet can be relaxed when the theory couples to the gravity.

Our result (3.56) provides a good starting point to obtain the N = 1 superfield description

of 6D SUGRA. We will discuss this issue in the subsequent paper.
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A Notations for spinors

A.1 Gamma matrices

The spacetime metric is

ds2 = ηMNdxMdxN = ηµνdx
µdxν + (dx4)2 + (dx5)2, (A.1)

where ηµν = diag(−1, 1, 1, 1).
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The 6D gamma matrices ΓM (M = 0, 1, · · · , 5) are chosen as

ΓM =

(

(γM )αβ

(γ̃M )αβ

)

, (A.2)

where 4× 4 matrices γM and γ̃M satisfy

(

γM γ̃N + γN γ̃M
) β

α
= −2ηMNδ

β
α ,

(

γ̃MγN + γ̃NγM
)α

β
= −2ηMNδ

α
β , (A.3)

and are defined as

(γµ)αβ =

(

−σµ
αγ̇ǫ

γ̇β̇

σ̄µα̇γǫγβ

)

,

(γ4)αβ =

(

−iǫαβ

−iǫα̇β̇

)

, (γ5)αβ =

(

ǫαβ

−ǫα̇β̇

)

,

(γ̃µ)αβ =

(

ǫαγσµ

γβ̇

−ǫα̇γ̇ σ̄
µγ̇β

)

,

(γ̃4)αβ =

(

−iǫαβ

−iǫα̇β̇

)

, (γ̃5)αβ =

(

−ǫαβ

ǫα̇β̇

)

, (A.4)

where the antisymmetric tensors ǫαβ and ǫαβ are chosen as ǫ12 = ǫ21 = 1. These matrices

are anti-symmetric, i.e., (γM )αβ = −(γM )βα and (γ̃M )αβ = −(γ̃M )βα. The 6D chirality

matrix Γ7 is defined by

Γ7 ≡ Γ0Γ1Γ2Γ3Γ4Γ5 =

(

14

−14

)

. (A.5)

The antisymmetric tensors ǫαβγδ and ǫαβγδ are given by

ǫαβγδ =
1

2
(γM )αβ(γM )γδ, ǫαβγδ =

1

2
(γ̃M )αβ(γ̃M )γδ. (A.6)

Then it follows that

1

2
ǫαβγδ(γM )γδ = (γ̃M )αβ,

1

2
ǫαβγδ(γ̃

M )γδ = (γM )αβ . (A.7)

Since ǫ1234 = 1 = −ǫ12ǫ1̇2̇ and ǫ1234 = 1 = −ǫ12ǫ
1̇2̇, these tensors are expressed in the

2-component notation as

ǫαβγδ = −ǫαβǫγ̇δ̇ − ǫαγǫδ̇β̇ − ǫαδǫβ̇γ̇ − ǫα̇β̇ǫ
γδ − ǫα̇γ̇ǫ

δβ − ǫα̇δ̇ǫ
βγ ,

ǫαβγδ = −ǫαβǫ
γ̇δ̇ − ǫαγǫ

δ̇β̇ − ǫαδǫ
β̇γ̇ − ǫα̇β̇ǫγδ − ǫα̇γ̇ǫδβ − ǫα̇δ̇ǫβγ . (A.8)
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A.2 Conjugation matrices

An 8-component Dirac spinor Ψ̂ is decomposed into 4-component Weyl spinors as

Ψ̂ =

(

Ψ
(+)
α

Ψ(−)α

)

, (A.9)

where the signs denote eigenvalues of Γ7. The Dirac conjugate of Ψ̂ is defined as

¯̂
Ψ ≡ Ψ̂†A, (A.10)

where Â satisfies

ÂΓM Â−1 = (ΓM )†. (A.11)

The explicit form of Â is given by

Â =

(

A

Ã

)

,

Aᾱ
β =

(

ǫα̇β̇

−ǫαβ

)

, Ã
β

ᾱ =

(

ǫα̇β̇
−ǫαβ

)

, (A.12)

where ᾱ denotes a 4-component spinor index of the complex conjugate of the Weyl spinors.

Since (ΓM )∗ form an equivalent representation of the Clifford algebra, there exists an

invertible matrix B̂ that satisfies

B̂(ΓM )∗B̂t = ΓM . (A.13)

An explicit form of B̂ is given by

B̂ =

(

B

B†

)

, (A.14)

where

B β̄
α ≡

(

ǫαβ

−ǫα̇β̇

)

, (B∗)
β

ᾱ =

(

ǫα̇β̇
−ǫαβ

)

. (A.15)

These matrices satisfy

BB∗ = B∗B = −14, B(γM )∗B∗ = γM . (A.16)

The charge conjugation matrix Ĉ, which satisfies

ĈΓM Ĉ−1 = −(ΓM )t, (A.17)

is constructed from Â and B̂ as

Ĉ ≡ B̂†Â =

(

C

C̃

)

, (A.18)
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where

C
α
β =

(

−δαβ

−δ β̇
α̇

)

, C̃
β

α =

(

−δ β
α

−δα̇
β̇

)

. (A.19)

Thus the charge conjugation flips the 6D chirality.

The covariant conjugate of a spinor Ψ̂ is defined as

Ψ̂ ≡ B̂Ψ̂∗. (A.20)

This operation is not a Z2 transformation since

Ψ̂ = B̂Ψ̂∗ = B̂(B̂Ψ̂∗)∗ = B̂B̂∗Ψ̂ = −Ψ̂. (A.21)

For an SU(2)-doublet spinor Ψ̂i (i = 1, 2), a Z2 transformation is obtained by combining

the covariant conjugation with lowering the SU(2) index,

Ψ̂i → ǫijΨ̂j = ǫijB̂(Ψ̂j)∗. (A.22)

Thus we can impose the SU(2)-Majorana condition,

ǫijΨ̂j = Ψ̂i ⇔ Ψ̂i = Ψ̂i ≡ ǫijΨ̂
j . (A.23)

Here the antisymmetric tensors ǫij and ǫij are chosen as ǫ12 = ǫ21 = 1. Since the covariant

conjugation preserves the 6D chirality, we can impose this condition on 6D Weyl spinors.

Namely, the SU(2)-Majorana-Weyl condition is expressed in the 4-component-spinor nota-

tion as
(

Ψ(+)i
)

α
≡ B β̄

α (Ψ(+)i∗)β̄ = Ψ
(+)
iα ≡ ǫijΨ

(+)j
α ,

(

Ψ(−)i
)α

≡ (B†)α
β̄
(Ψ(−)i∗)β̄ = Ψ

(−)α
i ≡ ǫijΨ

(−)jα. (A.24)

In the two-component-spinor notation, the SU(2)-Majorana-Weyl spinors are expressed as

Ψ(+)1
α =

(

χ
(+)
α

λ̄(+)α̇

)

, Ψ(+)2
α =

(

−λ
(+)
α

χ̄(+)α̇

)

,

Ψ(−)1α =

(

χ(−)α

λ̄
(−)
α̇

)

, Ψ(−)2α =

(

−λ(−)α

χ̄
(−)
α̇

)

. (A.25)

A.3 Covariant spinor derivatives

We introduce the Grassmann coordinates Θiα, which form an SU(2)-Majorana-Weyl spinor

with the 6D chirality −. Then the covariant spinor derivatives are defined as

Di
α ≡ ǫij

∂

∂Θjα
+ i(γM )αβΘ

iβ∂M = −
∂

∂Θ
α
i

+ i(γM )αβΘ
iβ∂M , (A.26)

which satisfies
{

Di
α,D

j
β

}

= −2iǫij(γM )αβ∂M . (A.27)
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In the 2-component-spinor notation, Θiα are expressed as

Θ1α =

(

θ′α

−θ̄α̇

)

, Θ2α =

(

θα

θ̄′α̇

)

. (A.28)

Then, the covariant spinor derivatives are expressed as

D1
α =

(

Dα

D̄′α̇

)

, D2
α =

(

−D′
α

D̄α̇

)

, (A.29)

where

Dα =
∂

∂θα
+ i
(

σµθ̄
)

α
∂µ + θ′α∂̄,

D′
α =

∂

∂θ′α
+ i
(

σµθ̄′
)

α
∂µ − θα∂̄,

D̄α̇ =
∂

∂θ̄α̇
+ i (σ̄µθ)α̇ ∂µ + θ̄′α̇∂,

D̄′α̇ =
∂

∂θ̄′α̇
+ i
(

σ̄µθ′
)α̇

∂µ − θ̄α̇∂, (A.30)

and ∂ ≡ ∂4 − i∂5. The algebra (A.27) is decomposed as

{

Dα, D̄α̇

}

= −2iσµ
αα̇∂µ,

{

D′
α, D̄

′
α̇

}

= −2iσµ
αα̇∂µ,

{

Dα, D
′
β

}

= 2ǫαβ ∂̄,
{

D̄α̇, D̄′β̇
}

= 2ǫα̇β̇∂,

{Dα, Dβ}=
{

D′
α, D

′
β

}

=
{

D′
α, D̄α̇

}

= 0. (A.31)

We list some useful formulae following from this algebra.

[

Dα, D̄
2
]

= −4iσµ
αα̇∂µD̄

α̇,
[

D̄α̇, D
2
]

= 4iσµ
αα̇∂µD

α,

D′D = DD′ − 4∂̄, D̄′D̄ = D̄D̄′ − 4∂,

DαDβ =
1

2
ǫαβD

2, D̄α̇D̄β̇ = −
1

2
ǫα̇β̇D̄

2. (A.32)

B Constraints on ΦT and Wα

T

Here we derive the constraints in (3.49).

From the definition (3.48),

DαWTα = iDαD̄2
(

DαX̄ + 4∂̄Yα
)

= iD̄α̇D
2D̄α̇X̄ + 4i∂̄DαD̄2Yα

= iD̄α̇D
2
(

Z̄α̇ − 4∂̄Ȳ α̇
)

+ 4i∂̄DαD̄2Yα

= −2∂̄
(

2iD̄α̇D
2Ȳ α̇ − 2iDαD̄2Yα

)

= −2∂̄ΦT . (B.1)

We have used that D̄α̇X̄ = Z̄α̇ − 4∂̄Ȳ α̇ and D2Z̄α̇ = 0.
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The analyticity condition D
[1]
α F [2] = 0 is translated in the 2-component-spinor nota-

tion as

DαF
[2]
1 = 0, DαF

[2]
0 +D′

αF
[2]
1 = 0,

D̄′
α̇F

[2]
1 = 0, D̄α̇F

[2]
1 − D̄′

α̇F
[2]
0 = 0. (B.2)

Thus the N = 1 superfields F
[2]
0 | and F

[2]
1 | satisfy the following constraints.

DαF
[2]
1 | = 0,

D2F
[2]
0 | = −DD′F

[2]
1 | = −

(

D′D + 4∂̄
)

F
[2]
1 | = −4∂̄F

[2]
1 |. (B.3)

From the explicit expressions in (3.47), we can see that the first constraint is satisfied. As

for the second constraint, we can show that

D2F
[2]
0 | = −4∂̄F

[2]
1 | −

(

D2D̄α̇ΦT + 4∂̄W̄T α̇

)

W̄ α̇. (B.4)

We have used the constraint (B.1). Comparing this with the second constraint in (B.3),

we obtain

D2D̄α̇ΦT = −4∂̄W̄T α̇. (B.5)

C Derivation of 5D Lagrangian

We derive (3.64) from (3.56) after the dimensional reduction to 5D. By using (3.58)

and (3.61), we can calculate

2ΦT

{

V
(

�4PT + ∂2
4

)

V + 2
(

∂4V − Σ̄
)

(∂4V − Σ)
}

=
(

∂4VT − ΣT − Σ̄T

)

V DαWα − 2 (∂4ΦTV +ΦT∂4V ) ∂4V

+4ΦT

{

(∂4V )2 − ∂4V
(

Σ+ Σ̄
)

+ Σ̄Σ
}

=

{

1

2
∂4VTV DαWα − Σ̄TV DαWα +

1

2
DαWTαV ∂4V + h.c.

}

+2ΦT

{

(∂4V )2 − 2∂4V
(

Σ+ Σ̄
)

+ 2Σ̄Σ
}

=

{

−
1

2
Dα (∂4VTV )Wα + Σ̄TD

αVWα −
1

2
Dα (V ∂4V )WTα + h.c.

}

+2ΦT

(

∂4V − Σ− Σ̄
)2

− 2ΦT

(

Σ2 + Σ̄2
)

. (C.1)

We have also used DαWα = D̄α̇W̄
α̇, and dropped total derivative terms. Thus, after the

dimensional reduction to 5D, (3.56) becomes

L
(5D)
VT = −

∫

d2θ

{

2ΣWWT +
1

4
D̄2 (ΦTD

αVWα + ∂4V DαVWTα)

}

+ h.c.

+

∫

d4θ 2ΦT

{

V
(

�4PT + ∂2
4

)

V + 2
(

∂4V − Σ̄
)

(∂4V − Σ)
}
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= −

∫

d2θ 2ΣWWT + h.c.

+

∫

d4θ
{(

∂4VT − ΣT − Σ̄T

)

DαVWα + ∂4V DαVWTα + h.c.
}

+

∫

d4θ

{(

−
1

2
Dα (∂4VTV )Wα + Σ̄TD

αVWα −
1

2
Dα (V ∂4V )WTα + h.c.

)

+2ΦT

(

∂4V − Σ− Σ̄
)2

− 2ΦT

(

Σ2 + Σ̄2
)

}

= −

∫

d2θ
(

2ΣWWT +ΣTW
2
)

+ h.c.

+

∫

d4θ

{

1

2
(∂4VTD

αV − ∂4D
αVTV )Wα+

1

2
(∂4V DαV − ∂4D

αV V )WTα+h.c.

}

+

∫

d4θ 2
(

∂4VT − ΣT − Σ̄T

) (

∂4V − Σ− Σ̄
)2

. (C.2)

We have dropped total derivative terms, and used that
∫

d4θ ΦTΣ
2 = −

1

4

∫

d2θ D̄2(ΦTΣ
2) = −

1

4

∫

d2θ (D̄2ΦT )Σ
2 = 0. (C.3)

Using (A.31) and (A.32), we can show that

(∂4VTD
αV − ∂4D

αVTV )Wα + (∂4V DαV − ∂4D
αV V )WTα + h.c.

= 2 (∂4V DαVT − ∂4D
αV VT )Wα + h.c., (C.4)

up to total derivatives. Thus, (C.2) is rewritten as

L
(5D)
VT = −

∫

d2θ
(

2ΣWWT +ΣTW
2
)

+ h.c.

+

∫

d4θ

{

1

3
(∂4VTD

αV − ∂4D
αVTV )Wα +

1

3
(∂V DαVT − ∂4D

αV VT )Wα

+
1

3
(∂4V DαV − ∂4D

αV V )WTα + h.c.

}

+

∫

d4θ 2
(

∂4VT − ΣT − Σ̄T

) (

∂4V − Σ− Σ̄
)2

. (C.5)

If we relabel (Σ, V ) and (ΣT , VT ) as (Σ
1, V 1) and (Σ2, V 2), this is expressed as (3.64).
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