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1 Introduction

The most important problem of physics is to answer how to unify all fundamental theories.

One intelligent way is duality. It is the main idea of the M-theory. We can use the T-duality

and S-duality to unify all ten dimensional superstring theories. If we combine the T-duality

and S-duality, it is the so-called U-duality. We expect that the U-duality is a symmetry of

the M-theory. However, the M-theory is still mysterious at the current stage. The main

problem is that we do not completely understand our tool, duality. The S-duality is an

equivalence between strong and weak coupling constant. The familiar example is invariance

of the Maxwell’s equations by exchanging electric and magnetic fields. Because this duality

should be a non-perturbative duality, it is difficult to study from the perturbative way

explicitly. The other one duality, T-duality, is an equivalence between radius and inverse

radius on a compact torus. This duality is equivalent to exchanging momentum and winding

modes in closed string theory, or the Dirichlet and Neumann boundary conditions in open

string theory. However, there is one remaining serious problem that we cannot solve it.

This problem is called T-fold problem. This problem is found in closed string theory. It is

mainly due to the fact that the T-duality is not a well-defined transition function as gauge

transformation or diffeomorphism in the presence of non-zero flux. For the low energy

massless closed string field theory with the H-flux [1, 2], we can perform the T-duality on

one direction to let the H-flux to become the f -flux. At this step, it is still well-defined.
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If we perform the second T-duality, we will get the Q-flux. The problem occurs because

fields cannot be described as single valued. For the third T-duality, it gives a more serious

problem, we do not know how to perform this third T-duality because we lose isometry.

However, we expect that the R-flux can be found by the T-duality. In this T-fold problem,

we meet two problems, the first problem is how to define our fields with single values

in a new geometry and the second problem is how to extend our T-duality definition to

obtain the R-flux. Solving the T-fold problem should give us a new perspective to our M-

theoretical frame work. It should lead us to understand a new supergravity or superstring

theory.

The dynamics of the superstring or M-theory is hard to obtain by the first principle

directly. One way is to study low energy effective theory. At the level of field theory, we

can understand symmetry principle and dynamics. String theory can be described by a

two dimensional sigma model. From low energy effective theory, we can understand what

kind of low energy effective theory can be realized on the target space. It leads us to

understand corresponding gauge symmetry on target space. Low energy physics inspires

us to study non-local field theories beyond the standard model and normal particle physics.

Non-local theories help us to develop techniques to study dynamics of field theory. The

development not only gives us a new way to study partition functions or amplitudes on field

theories, but also the conceptual aspects of the M-theory. However, the M-theory is still

mysterious, it is difficult to write a consistent Lagrangian to describe it now. Nevertheless,

the low energy effective theory of the M2-M5 system has already been constructed. One

consistent single M5 system is the Nambu-Poisson M5 (NP M5) [3, 4]. The way of the

construction is analogous to the stack of the Dp-brane in the B-field background to obtain

the D(p+ 2)-brane theory. The Nambu-Poisson M5-brane theory can be stacked from the

C-field background of the multiple M2-brane. It gives us a single M5-brane in the large

constant C-field background (Only three spatial dimensions are not zero.) The coupling

of this single M5-brane is the inverse C-field background. The role of the Nambu-Poisson

M5-brane theory is similar to the non-commutative D-brane theory. The symmetry of the

Nambu-Poisson M5-brane theory is the volume preserving diffeomorphism (VPD) governed

by the Nambu-Poisson bracket which satisfies the fundamental identity. The consistency

of a single M5-brane theory is to perform the direct dimensional reduction to find the non-

commutative D4-brane in a constant NS-NS B-field background. This consistent check

is already shown. The problem is that they only obtained the Poisson bracket, not the

deformed version. It also implies that the Nambu-Poisson M5-brane is just a truncated

M5-brane theory. Even for a truncated M5-brane theory, it is still interesting to study new

theories by the dualities. By performing a double dimensional reduction on the Nambu-

Poisson M5-brane, we can obtain the non-commutative D4-brane in a large constant R-R

C-field background. It can be generalized to the Dp-brane based on the gauge symmetry,

covariant field strength, rotational symmetry of the scalar field and duality rules. This

Dp-brane is built on the non-commutative space in a large constant R-R (p − 1)-form

background. The NS-NS Dp-brane, R-R Dp-brane, and Nambu-Poisson M5-brane are

well-defined low energy effective theories under the decoupling limit. Especially, the NS-NS

D3-brane and R-R D3-brane theories are also consistent with the electric-magnetic duality.

– 2 –
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It shows that the Nambu-Poisson M5-brane theory has consistency on the T-duality and

S-duality [5–7]. These studies are also interesting to see relations between the background

and brackets. The symmetry of the (p − 1)-form background theory can be described by

the (p− 1)-form bracket exactly. The most important direction of this single M5-brane is

the way of deformation. The hint of the deformation can be found from the direction of the

S-duality because we also have the same problem on the D-brane theory. The way is to use

all orders of the non-commutative NS-NS D3-brane to find the deformed non-commutative

R-R D3-brane by the electric-magnetic duality. This study gives us a new product to

write this R-R D3-brane theory. It should indicate how to write the full-order low energy

effective theory consistent with dualities. These Nambu-Poisson M5-brane studies not only

answer problems of the M-theory, but also other difficult problems of field theories, e.g.,

the electric-magnetic duality of the non-abelian gauge theory in four dimensions. Since

the U(1) non-commutative gauge theory is similar to the non-abelian gauge theory, we can

point out that the electric-magnetic duality of the non-commutative gauge theory inspires

us to solve the electric-magnetic duality of the non-abelian gauge theory. This way can be

understood from the string duality. It is a good example to show that string duality not

only concerns unification, but also new structure of field theories.

The Nambu-Poisson M5-brane theory is built on the non-commutative space by the

stack of the multiple M2-brane theory. From the perspective of non-commutative geometry,

we should be possible to build the M5-brane from the equivalence of commutative and non-

commutative gauge theories or from the Seiberg-Witten map. For the DBI theory (a string

ending on a p-brane), we need to change from the closed to open string parameters. We

can find this redefinition from the Poisson-Sigma model. For a higher form field, we can

consider the Nambu-Sigma model [8, 9], which is classically equivalent to a p-brane theory.

From the Nambu-Sigma model, we can change variables to consider a non-commutative

theory. Starting from the equivalence of non-commutative and commutative gauge theories,

we can find the form of field theories without many degrees of freedom. This theory is called

generalized DBI theory, which describes a q-brane ending on a p-brane. This generalized

DBI theory can reduce to the DBI theory when q = 1. In the case of a two brane ending

on a five brane, we can find the same form for the M5-brane action up to the second order

perturbatively (derivative expansion) [8, 9]. From dimensional reduction on this special

case, we find that the two brane ending on the five brane becomes a one brane ending

on a four brane [10]. Even though this calculation is not a general consideration, this

consistency on the DBI-form of the M5-brane still gives a strong support. This approach is

to offer a new generalized metric, which gives a new structure of non-commutative theory.

It gives another way to obtain the same theory as the generalized DBI [11, 12]. It not

only shows that the equivalence of non-commutative and commutative gauge theories for

an arbitrary form field can be described by a new generalized metric, but also shows that

this equivalence is strongly restricted to our action. On the other hand, supergravity

interpretation of the generalized DBI theory should have supersymmetric extension. The

related supersymmetric extension has already been done in [13]. The Nambu structure of

the p-brane theory can be found manifestly on the formulation of taking off the square

root [14]. It gives a consistent understanding with the Nambu-Poisson M5-brane. It may

indicate that the p-brane theory has some relations with the M-theory.

– 3 –
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The Nambu-Poisson M5 and the generalized DBI theories are still defined on the local

geometry so they do not really strike the main problem of the T-fold. Although their

constructions have already provided insight to the M-theory, they may not solve the T-

fold problem or the global geometry. Now we have a way to find a new geometry to

understand string theory. The new geometry is called “stringy geometry” [15, 16]. This

way is to double coordinates. It embeds the T-duality rule in the O(D,D) group. This

type of theory is called double field theory [17–32]. Now we have a well-defined theory

to describe the massless closed string field theory with the strong constraints. Although

the strong constraints are equivalent to removing half additional coordinates, this theory

is not a new theory without considering the T-duality. Double field theory is a way to

provide the extension of the T-duality or solve the T-fold problem [33, 34]. The T-fold

problem is that the local geometry is unable to find a theory with the R-flux by using

the T-duality. If we want to define a theory with the R-flux, we need to go beyond the

original supergravity and T-duality. Double field theory is built on the doubled space.

The gauge transformation is governed by the Courant bracket. On this doubled space, we

can perform the T-duality three times to find the R-flux in the massless closed string field

theory. It implies that we can use this doubled space to know how to perform the T-duality

for non-isometric case. Double field theory extends the supergravity from local to global

geometry. The so-called non-geometric flux (Q- and R-flux) can be understood from a

geometric way. The understanding of the non-geometric flux has important influence on

brane theory. The sources of the exotic brane theory are non-geometric fluxes. The exotic

brane theory can be shown by performing the T-duality two times on the Neveu-Schwarz

five-brane (NS5-brane). This exotic brane is called the 522-brane theory. The background

of the exotic brane is no longer single-valued. It implies that global description is needed.

However, worldvolume theory for the 522-brane theory is constructed from the NS5-brane

theory by performing the T-duality two times [35]. The exotic brane theory should play an

important role on the extension of our understanding for the M5-brane because of the NS5-

brane can be uplifted to the M5-brane theory. Although we have new concepts with the

strong constraints in double field theory, we still want to relax the constraints. Because the

strong constraints equivalently imply that solutions will be annihilated by the constraints.

We want to relax the constraints to get more solutions that will not be annihilated. It is a

very important study, but the closed property of the generalized Lie derivative makes this

problem be a very hard task. The approaches can be seen in [36, 37]. For more extension

of the original theory, we need to consider α′ corrections. We already formulate the theory

in the language of double field theory [38] at the first step. Some good reviews of double

field theory are in [39–41].

Double field theory is a formulation for the ten dimensional supergravity. The extension

from the T-duality to U-duality or from ten dimensions to eleven dimensions, we need to

consider exceptional field theory [42–44]. The low energy limit of the M-theory is the eleven

dimensional supergravity. The symmetry of the eleven dimensional supergravity should be

the exceptional Lie group. For the analogue consideration of double field theory, we need

to embed the exceptional Lie group into a bigger space. From the theoretical point of view

of the M-theory, the manifest symmetry becomes important to give us the insight to know
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properties of the M-theory although we just know the low energy level. The first difficulty

of this task is the E8(8) case, it does not have closed algebra. However, this problem is

already solved by sacrificing some Lorentz gauge freedoms. The exceptional field theory

helps us to show the U-fold problem as a double field theory. It also needs a constraint

as double field theory. The current stage of relaxing constraint does not have too much

progress. With the strong constraint of the exceptional field theory, we can obtain the

exceptional generalized geometry. It provides intuition to realize the eleven dimensional

supergravity to inspire exceptional field theory from a different way [45].

Double field theory extends string theory from local to global geometry. For a self-

consistent double field theory, we need to extend our understanding of closed string theory

to open string theory. Otherwise, we cannot write full string theory in terms of double

field theory. Then double field theory may not be a fully consistent understanding of string

theory. The first proposal of double field theory for open string is to double coordinates

with two types of boundary conditions and also introduces projectors to satisfy the suit-

able boundary conditions [46]. For the projectors, it does not give a full understanding

until [47]. This paper extends the idea of the projectors to show a consistent boundary

condition. However, their discussion only considers the background without the one-form

gauge field. For the first study of the one-form gauge field, they put the normal boundary

term after they introduce the self-duality relation at the off-shell level. They cannot con-

sistently obtain the DBI action from the one-loop β function [48]. From the generalized

geometry [49–51], they used the Courant bracket to understand the properties of the D-

brane [52, 53]. Especially for [53], they construct the gauge transformation based on the

language of generalized geometry. It inspires [54] to find the gauge transformation of the

open string theory in the language of double field theory. From the gauge transformation

(governed by the F -bracket), the double sigma model is also proposed. The main difference

is that the double sigma model does not use projectors to satisfy the boundary conditions,

but they have the classical equivalence with the normal sigma model without modifying

the self-duality relation. Since this double sigma model only puts the normal boundary

term and the self-duality relation does not have modification with the one-form gauge field,

the one-loop β function can be performed in this double sigma model. Quantum fluctu-

ation from string theory inspires the higher derivative gravity model [55] so a calculable

sigma model is undoubtedly necessary. The R-flux can be found from the Courant bracket

without an action in [56]. The suitable action for the D-brane theory is proposed in [54].

It should give a consistent R-flux as [56].

We implement the self-duality relation at the off-shell level with the strong constraints.

Then we use the action to perform the one-loop β function to obtain a consistent DBI

theory. We rewrite this low energy effective theory in terms of the generalized metric and

scalar dilaton. We also use the equations of motion to define the generalized Ricci scalar

curvature and tensor.

The plan of this paper is to first review the double sigma model in section 2. Then we

calculate the one-loop β function and obtain the low energy effective action in section 3.

We also discuss the generalized metric formulation, and show the generalized Ricci scalar

curvature and tensor in section 4. Finally, we conclude and summarize in section 5.

– 5 –
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2 Review of the double sigma model

We review the double sigma model in this section. We first show the notation and set up.

Then we write the gauge transformation of the double sigma model. In the end of this

section, we show classical equivalence between the double and normal sigma model.

2.1 Notation and set up

Our theory is defined on the doubled space. The normal coordinates are associated with

the Neumann boundary condition and the other coordinates (transverse coordinates) are

associated with the Dirichlet boundary condition. The field components are the metric

field (gmn), antisymmetric background field (Bmn), scalar dilaton (d) and one-form gauge

field (Am). In this theory, we need two constraints (strong constraints) to guarantee the

gauge invariance. The constraints are

∂m∂̃m(field) = 0, ∂m∂̃m(AB) = 0, (2.1)

where

∂m =
∂

∂xm
, ∂̃m =

∂

∂x̃m
. (2.2)

The index m = 0, 1 · · · , D − 1 (We denote the non-doubled target index from m to z.).

If we only consider the first constraint, the conventional name is called weak constraint.

Imposing the weak constraint leads to

∂m∂̃mδ(field) 6= 0, (2.3)

where δ is the gauge transformation. For a consistent gauge invariance, we need to impose

the strong constraints to annihilate non-gauge invariant parts. We can rewrite the weak

constraint as

∂A∂A(field) = 0, (2.4)

where ∂A is defined by

∂A ≡

(

∂̃m

∂m

)

(2.5)

and ∂A = ηAB∂C . The index, A = 0, 1 · · · , 2D − 1, is a doubled dimensional target index

(We represent them from A to K.). We use η to raise and lower the indices for O(D,D)

tensor

h =

(

a b

c d

)

, htηh = η, η =

(

0 I

I 0

)

, (2.6)

where a, b, c and d are D ×D matrices. We can also define XA from the combination of

the normal and dual coordinates by

XA ≡

(

x̃m

xm

)

. (2.7)

– 6 –
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2.2 C- and D-bracket

We introduce the generalized Lie derivative, C-bracket and D-bracket [31, 32]. The gauge

transformation of the background independence field (E) and scalar dilaton are

δEmn ≡ δ(g +B)mn = Dmξ̃n − D̄nξ̃m + ξp∂pEmn +DmξpEpn + D̄nξ
pEmp,

δd = −
1

2
∂pξ

p + ξp∂pd, (2.8)

where

e−2d =
√

− det ge−2φ, (2.9)

Dm = ∂m − Emn∂̃
n, D̄m = ∂m + Enm∂̃n, (2.10)

and φ is the dilaton. Then we define the symmetric O(D,D) element (HAB, generalized

metric),

H ≡ H• • , (2.11)

H =

(

g −Bg−1B Bg−1

−g−1B g−1

)

. (2.12)

This matrix is defined by

H ηH = η . (2.13)

The inverse of H can be obtained by

H−1 = ηHη , (2.14)

H−1 ≡ H• • =
(

HAB
)−1

=

(

g−1 −g−1B

Bg−1 g −Bg−1B

)

. (2.15)

The gauge transformation of HAB is

δξH
AB = ξC∂CH

AB + (∂AξC − ∂Cξ
A)HCB + (∂BξC − ∂Cξ

B)HAC , (2.16)

where

ξA ≡

(

ξ̃m

ξm

)

≡

(

Λm

ǫm

)

. (2.17)

The generalized Lie derivative can be defined from the gauge transformation

L̂ξH
AB ≡ δξH

AB, (2.18)

which satisfies the Leibniz rule. The special property of the generalized Lie derivative is

the acting on the constant metric (η) is zero, but the ordinary Lie derivative is not. The

gauge algebra is closed under the strong constraints

[L̂ξ1 , L̂ξ2 ] = L̂[ξ1,ξ2]C , (2.19)

– 7 –
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where the C-bracket is defined by

[ξ1, ξ2]
A
C = ξC1 ∂Cξ

A
2 − ξC2 ∂Cξ

A
1 −

1

2
ηACηDEξ

D
1 ∂Cξ

E
2 +

1

2
ηACηDEξ

D
2 ∂Cξ

E
1 . (2.20)

The D-bracket for the generalized vector is defined by

[A,B]D ≡ L̂AB. (2.21)

At the end of the C- and D-bracket, we assume that all parameters are independent of x̃

on the C-bracket. Then it reduces to the Courant bracket [31].

[ξ1, ξ2]
m
C = ξ

p
1∂pξ

m
2 − ξ

p
2∂pξ

m
1 = (Lξ1ξ2)

m ≡ ([ξ1, ξ2])
m,

[ξ1, ξ2]Cm = ξ
p
1∂pξ̃2m − ξ

p
2∂pξ̃1m −

1

2
(ξp1∂mξ̃2p − ξ̃2p∂mξ

p
1) +

1

2
(ξp2∂mξ̃1p − ξ̃1p∂mξ

p
2)

= ξ
p
1∂pξ̃2m − ξ

p
2∂pξ̃1m + (∂mξ

p
1)ξ̃2p −

1

2
∂m(ξp1 ξ̃2p)− (∂mξ

p
2)ξ̃1p +

1

2
∂m(ξp2 ξ̃1p)

=

(

Lξ1 ξ̃2 −
1

2
d(iξ1 ξ̃2)

)

m

−

(

Lξ2 ξ̃1 −
1

2
d(iξ2 ξ̃1)

)

m

. (2.22)

It shows the Courant bracket

[A+ α,B + β]Cour = [A,B] + LAβ − LBα−
1

2
d(iAβ − iBα), (2.23)

where A, B are vectors, and α, β are one-form. We also obtain the Dorfman bracket [49]

from the D-bracket.

[A+ α,B + β]Dor = [A,B] + LAβ − iBdα. (2.24)

For the consistent notation, we denote the Dorfman bracket in a different way instead of

the conventional way (A+ α) ◦ (B + β). The D-bracket has the Jacobi identity

[A, [B,C]D]D = [[A,B]D, C]D + [B, [A,C]D]D, (2.25)

but it is not antisymmetric. For the C-bracket, it does not satisfy the Jacobi identity, but

it is antisymmetric. In other words, the C- and D-bracket are not Lie brackets.

2.3 F -bracket

We discuss the F -bracket [54] in this section. The gauge transformation of the gauge field is

δAm = Λm + LǫAm. (2.26)

Then we calculate [δ1, δ2]Am = −δ′Am.

ǫ′m = ǫn1∂nǫ
m
2 − ǫn2∂nǫ

m
1 ,

Λ′
m = ǫn1∂nΛ2m + (∂mǫn1 )Λ2n − ǫn2∂nΛ1m − (∂mǫn2 )Λ1n

= Lǫ1Λ2m − Lǫ2Λ1m. (2.27)

– 8 –
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We define the F -bracket from this closed algebra.

[ξ1, ξ2]
A
F =

(

ξD1 ∂Dξ
A
2 −ξD2 ∂Dξ

A
1

)

−
1

2

(

ξD1 ∂Aξ2D−ξD2 ∂Aξ1D

)

−
1

2
∂A

(

ξ2DZ
D
Eξ

E
1

)

, (2.28)

where

Z ≡ ZA
B ≡

(

−1 0

0 1

)

. (2.29)

We use η to raise or lower index for Z. It is easy to find

[δ1, δ2] = −δ[ξ1,ξ2]F . (2.30)

We perform the B-transformation on the C-bracket and F -bracket with the strong con-

straints. The B-transformation is defined by

eB ≡

(

1 0

B 1

)

, eB

(

X

ξ

)

=

(

X

ξ +BX

)

=

(

X

ξ + iXB

)

. (2.31)

This transformation is a symmetry of the sigma model. We show the calculation on the

Courant bracket.

[eB(X+ξ), eB(Y +η)]Cour = [X + ξ + iXB, Y + η + iY B]Cour

= [X + ξ, Y + η]Cour + [X, iY B]Cour + [iXB, Y ]Cour

= [X+ξ, Y +η]Cour+LXiY B−
1

2
diXiY B−LY iXB+

1

2
diY iXB

= [X + ξ, Y + η]Cour + i[X,Y ]B + iY iXdB

= eB
(

[X + ξ, Y + η]Cour

)

+ iY iXdB. (2.32)

If dB = 0, we can obtain automorphism. It shows that the symmetry of a theory governed

by the Courant bracket can define a non-zero H-flux (dH = 0) and possibly be extended

to the O(D,D) description. For the closed string theory, we use the O(D,D) structure to

rewrite this theory. For the D-brane theory without the one-form gauge field, we should

have the same story. Before we calculate the F -bracket, we define the notation for the

F -bracket with the strong constraints

[X + ξ, Y + η]F = [X,Y ] + LXη − LY ξ. (2.33)

Therefore, we obtain

[eB(X + ξ), eB(Y + η)]F = [X + ξ + iXB, Y + η + iY B]F

= [X + ξ, Y + η]F + [X, iY B]F + [iXB, Y ]F

= [X + ξ, Y + η]F + LXiY B − LY iXB

= [X + ξ, Y + η]F + i[X,Y ]B + iY iXdB − diY iXB

= eB
(

[X + ξ, Y + η]F

)

+ iY iXdB − diY iXB. (2.34)
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This means that we cannot use dB = 0 to show automorphism as the Courant bracket. The

information of the F -bracket shows that the O(D,D) structure is not suitable to describe

the DBI term.

2.4 Classical equivalence

We prove classical equivalence between the double and normal sigma model in this section.

We start from the bulk action

Sbulk =
1

2

∫

d2σ

(

∂1X
AHAB∂1X

B − ∂1X
AηAB∂0X

B

)

. (2.35)

The worldsheet metric is (−,+) signature on the bulk. The equation of motion of XA is

∂1

(

HAB∂1X
B − ηAB∂0X

B

)

=
1

2
∂1X

B∂AHBC∂1X
C . (2.36)

We use the strong constraints (∂̃m = 0) to show the equivalence. Then we use the self-

duality relation

Hm
B∂1X

B − ηmB∂0X
B = 0 (2.37)

to remove half degrees of freedom. It is equivalent to

∂1X̃ = B∂1X + g∂0X. (2.38)

The gauge transformation of XA is governed by the generalized Lie derivative as the gen-

eralized metric. The gauge transformation is

δXA = ξC∂CX
A + (∂AξC − ∂Cξ

A)XC . (2.39)

We assume that the gauge parameters do not depend on the worldsheet coordinates. Then

we can show (2.37) is covariant under the gauge transformation with ∂̃m = 0. It implies

that (2.37) do not need to be modified from the covariant property. Then we substi-

tute (2.37) to the other one equation of motion.

∂1

(

HmB∂1X
B−ηmB∂0X

B

)

=∂1(g∂1X +B∂0X)m − ∂0(g∂0X +B∂1X)m. (2.40)

1

2
∂1X

B∂mHBC∂1X
C=−

1

2
∂0X

p∂mgpq∂0X
q+

1

2
∂1X

p∂mgpq∂1X
q+∂1X

p∂mBpq∂0X
q.

(2.41)

We combine (2.40) and (2.41) to find the same equations of motion as

1

2

∫

d2σ

(

∂αX
mgmn∂

αXn − ǫαβ∂αX
mBmn∂βX

n

)

, (2.42)

where α = 0, 1 (We indicate the worldsheet directions by the Greek index.). If we impose

the Neumann boundary condition on the σ1 direction, the suitable boundary term for the

double sigma model should be

Sboundary = −

∫

dσ0 Am∂0X
m (2.43)

to guarantee the gauge invariance. This boundary term breaks the O(D,D) structure with

the consistent understanding from the F -bracket.
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3 One-loop β function

We implement the self-duality relation (2.37) at the off-shell level. Then we obtain the

DBI theory from the one-loop β function.

3.1 Self-duality relation at the off-shell level

We can have the classical equivalence with the on-shell self-duality relation. But quantum

fluctuation of the double sigma model needs the self-duality relation beyond the on-shell

level. For the constant background fields, we can show it. We first set B = 0. We can

always redefine the one-form gauge field to find the non-zero constant B field without losing

generality. The equations of motion on the bulk is

∂1
(

∂1X̃ − g∂0X
)

= 0,

∂1
(

g∂1X − ∂0X̃
)

= 0. (3.1)

They can be rewritten as

∂1X̃ − g∂0X = f,

∂1
(

g∂1X
)

− ∂0
(

g∂0X
)

= ∂0f, (3.2)

where f is an arbitrary function of σ0. Then we can redefine Xm (Xm → Xm+hm(σ0)) to

find the consistent equations of motion with the self-duality relation. We assume −g∂0h =

f . Then we obtain

∂1X̃ − g∂0X = 0,

∂1
(

g∂1X
)

− ∂0
(

g∂0X
)

= 0. (3.3)

The first equation is the self-duality relation and second equation is the equation of motion

on the bulk. Then we discuss the equation of motion on the boundary. The Neumann

boundary condition is

g∂1X = F (X)∂0X. (3.4)

This boundary condition is still an invariant form from the redefinition. The above dis-

cussion shows that we can have the self-duality relation at the off-shell level to describe

the same equations of motion with the normal sigma model in the case of the constant

background. The difficulty of quantization for the non-constant background is the same

as the chiral boson theory [57–60]. Nevertheless, we will show that we can obtain the DBI

theory from the one-loop β function in the next section.

3.2 One-loop β function

We set B = 0 and g = I (I ≡ identity matrix) to simplify the calculation without losing

generality in the end of this section. We first show the standard calculation of the one-loop

β function as [61]. From the variation (X → X + ξ) of the boundary term, we obtain

−

∫

dσ0

(

Am∂0X
m + ξmFmn∂0X

n +
1

2

(

ξmξn∂mFnp∂0X
p + ξm∂0ξ

nFmn

)

)

, (3.5)
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where

Fmn ≡ ∂mAn − ∂nAm. (3.6)

Then the Green’s function on the bulk are
(

Hm
B∂

2
1 − ηmB∂0∂1

)

GBp(σ, σ′) = iImpδ2(σ − σ′),

(

HmB∂
2
1 − ηmB∂0∂1

)

GB
p(σ, σ

′) = iImpδ
2(σ − σ′) (3.7)

and on the boundary is

HmB∂1G
Bp − Fmn∂0G

np = 0. (3.8)

The counter term is

−
1

2

∫

dσ0 Γm∂0X
m, (3.9)

where

Γm = lim
ǫ→0

Gnp(ǫ ≡ σ0 − σ0′)∂nFpm. (3.10)

The β function is

βm ≡ ǫ
∂Γm

∂ǫ
. (3.11)

Then we try to solve the Green’s functions on the bulk. We first change the coordinates

z = σ + τ, z̄ = σ − τ. (3.12)

We only need to solve

Imn

(

1

2
∂2
z +

1

2
∂2
z̄ + ∂z∂z̄

)

Gn
p = iImpδ2(z − z′),

Imn

(

1

2
∂2
z +

1

2
∂2
z̄ + ∂z∂z̄

)

Gn
p = iImpδ

2(z − z′) (3.13)

with

δ2(z − z′) ≡
1

2
δ2(σ − σ′) (3.14)

on the bulk. The solutions of the Green’s function on the bulk are

Gn
p = −

In
p

2π
ln(z̄ − z̄′)−

In
p

2π
ln(z − z′),

Gn
p = −

Inp

2π
ln(z̄ − z̄′)−

Inp

2π
ln(z − z′). (3.15)
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The equation of the Green’s function on the boundary is followed by

HmB(∂z+∂z̄)G
Bp−Fmn(∂z−∂z̄)G

np = (Imn−Fmn)∂zG
np+(Imn+Fmn)∂z̄G

np = 0. (3.16)

The solution of the Green’s function on the boundary is

Gnp = Inp ln |z − z′|+
1

2
(I − F )nq(I + F )qwI

wp ln(z + z̄′)

+
1

2
(I + F )nq(I − F )qwI

wp ln(z̄ + z′)|z=−z̄, z′=−z̄′ . (3.17)

Therefore, the β function is

βm =

(

Inp +
1

2
(I − F )nq(I + F )qwI

wp +
1

2
(I + F )nq(I − F )qwI

wp

)

∂nFpm. (3.18)

We rewrite it by

I +
1

2

(

(I − F )−1(I + F ) + (I + F )−1(I − F )

)

= I +
1

2
(I − F 2)−1

(

(I + F 2) + (I + F 2)

)

= I + (I − F 2)−1(F 2 + I)

= 2(I − F 2)−1.

So that we can get

βm = 2(I − F 2)np∂nFpm, (3.19)

where

(I − F 2)np ≡ (I − F 2)−1. (3.20)

Let us show an useful identity

(I − F 2)mnβn = −2

[

∂p

(

(I − F 2)mnFnp

)

− (I − F 2)mxFxr∂
nF r

q(I − F 2)qpFpn

]

(3.21)

by

(a+ b)−1 = a−1 − a−1(I + ba−1)−1ba−1,

(I − F 2)−1 = I + (I − F 2)−1F 2. (3.22)

We can use the Bianchi identity to rewrite it.

1

4

(

F

I − F 2

)

mn

∂nTr ln(I − F 2) = −
1

4

(

F

I − F 2

)

mn

1

I − F 2
∂n(F 2)

= −
1

2

(

F

I − F 2

)

mn

(I − F 2)pqFpr∂
nF r

q

= −
1

2

(

F

I − F 2

)

mn

∂nF pq

(

F

I − F 2

)

qp
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= −
1

2

(

F

I − F 2

)

mn

(

− ∂pF qn − ∂qFnp

)(

F

I − F 2

)

qp

=

(

F

I − F 2

)

mn

(∂pF qn)

(

F

I − F 2

)

qp

= −

(

F

I − F 2

)

mn

∂pFnq

(

F

I − F 2

)

qp

, (3.23)

where

(I − F 2)−1F ≡

(

F

I − F 2

)

. (3.24)

After that, we can obtain

(I − F 2)mnβn = −2

[

∂p

(

(I − F 2)mnFnp

)

+
1

4

(

F

I − F 2

)

mn

∂nTr ln(I − F 2)

]

. (3.25)

By multiplying
√

det(I + F ), the equation of motion of the DBI action can be rewritten as

√

det(I + F )(I − F 2)mnβn = 0. (3.26)

It is equivalent to βm = 0. We consistently obtain

√

det

(

I + F

)

. (3.27)

Then we show how to obtain the effective action for the general constant metric g. Because

g is a symmetric matrix, we can diagonalize g. Then we rescale the diagonal matrix and

redefine the one-form gauge field. We equivalently obtain

√

det

(

g + F

)

. (3.28)

This calculation shows that this double sigma model can be a consistent model with quan-

tum fluctuation. It is a non-trivial consistent check beyond the classical equivalence.

4 The generalized metric formulation

We construct the low energy effective action based on the symmetry point of view. This

action is written in terms of the generalized metric and scalar dilaton. We use the equations

of motion to define the generalized scalar curvature and tensor.

4.1 The low energy effective action

We construct this low energy effective action in two parts. The first part is based on the

diffeomorphism and one-form gauge transformation. The candidate is the DBI action. The
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second part is based on the O(D,D) structure, Z2 symmetry, gauge symmetry with strong

constraints and two derivative terms. We first discuss the Z2 symmetry

Bmn → −Bmn, ∂̃m → −∂̃m. (4.1)

For ∂̃m → −∂̃m, we can rewrite it as

∂A → Z ∂A . (4.2)

The transformation of HAB under the transformation Bmn → −Bmn can be written as

HAB → ZHABZ , HAB → ZHABZ . (4.3)

Then the action can be constructed with respect to the gauge symmetry (with the strong

constraints) from all possible O(D,D) elements (∂A, H
AB, HAB and d) up to a boundary

term. The theory is

S2 =

∫

dx dx̃ e−2d

(

1

8
HAB∂AH

CD∂BHCD −
1

2
HAB∂BH

CD∂DHAC

− 2∂Ad∂BH
AB + 4HAB ∂Ad∂Bd

)

. (4.4)

This action is uniquely determined from the above criteria. For the goal of rewriting total

theory without using the field strength or one-form gauge field, we redefine the generalized

metric by

Bmn → Bmn − Fmn. (4.5)

This field redefinition does not modify all results of the closed string part. The action of

the DBI part is

S1 =

∫

dx dx̃ e−d

(

− det(Hmn)

)
1

4

. (4.6)

We only rewrite the DBI part from Hmn and d because the boundary conditions are

not modified from the strong constraints except for the fields do not depend on the dual

coordinates. The e−d shows that the T-duality changes the dimensions of spacetime. It

reflects the difference between the closed and open string. This dilaton term and Hmn =
(

g − (B − F )g−1(B − F )

)

mn

give the manifest equivalence between the closed and open

string parameters. Because the manifest equivalence of the double field theory does not

change spacetime dimensions, the suitable manifest equivalence should not be the T-duality.

This manifest equivalence without the field strength can be the manifest Buscher’s rule.

We can say that this DBI action has the manifest T-duality rule without the field strength

as the massless closed string theory. Nevertheless, it is not the T-duality because the
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T-duality for the open string should change spacetime dimensions. The total action is

S = S1 + αS2

=

∫

dx dx̃ e−d

[(

− det(Hmn)

)
1

4

]

+αe−2d

[(

1

8
HAB∂AH

CD∂BHCD −
1

2
HAB∂BH

CD∂DHAC

−2∂Ad∂BH
AB + 4HAB ∂Ad∂Bd

)

]

, (4.7)

where α is an arbitrary constant. If we use ∂̃m = 0, we obtain

∫

dx
√

− det g

[

e−φ

(

− det(g +B − F )

)
1

2

(

− det g

)−
1

2

+ αe−2φ

(

R+ 4(∂φ)2 −
1

12
H2

)]

,

(4.8)

where R is the Ricci scalar and H = dB is the three form field strength. This theory is

determined from the symmetry point of view up to a relative coefficient. This coefficient

can be determined from the one-loop β function. This action is also consistent with [62].

If we set D = 10, it is the low energy effective theory of the D9-brane on the curved

background. Then the nontrivial flux can be realized on the D-brane theory. After we

perform the T-duality on this theory, we should find the non-geometric flux on the lower

dimensions.

4.2 Generalized scalar curvature and tensor

We show the equations of the motion in this section. We also define the generalized scalar

curvature and tensor from the equations of motion. We first define the equations of motion

for d to be the generalized scalar curvature.

R ≡
1

2

(

− det(Hmn)

)
1

4

+α

(

4HAB∂A∂Bd− ∂A∂BH
AB − 4HAB∂Ad∂Bd+ 4∂AH

AB∂Bd

+
1

8
HAB∂AH

CD∂BHCD −
1

2
HAB∂AH

CD∂CHBD

)

. (4.9)

It satisfies the suitable symmetry

δξR = ξA∂AR (4.10)

with ∂̃m = 0 for the closed string part. Considering the DBI part, we do not have diffeo-

morphism. It shows the difference between the closed and open string theory.

At the end of this section, we vary the HCD, which provides the generalized Ricci

tensor. To calculate the variation, we need to introduce one auxiliary field in the action

e−2dλmn(HηH− η)mn. (4.11)
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From the variation of HCD, we can get

KCD + (λS + Stλ)CD = 0, (4.12)

where

λ ≡ λ••, S ≡ Hη, S2 = 1,

KAB ≡ ed
δ

(

− det(Hpq)

)
1

4

δHAB

+ α

(

1

8
∂AH

CD∂BHCD −
1

4
(∂D − 2(∂Dd))(H

DC∂CHAB) + 2∂A∂Bd

−
1

2
∂(AH

CD∂DHB)C +
1

2
(∂D − 2(∂Dd))(H

CD∂(AHB)C +HC
(A∂CH

D
B))

)

(4.13)

except for

δ

(

− det(Hpq)

)
1

4

δHmn
=

1

4

(

− det(Hpq)

)
1

4

(

(Hpq)
−1

)mn

. (4.14)

Other variation of the generalized metric do not give non-zero contribution. The equation

of motion of HCD is equivalent to

(StKS)CD + (Stλ+ λS)CD = 0. (4.15)

It implies

KCD − (StKS)CD = 0. (4.16)

Therefore, we define the generalized Ricci tensor

RCD ≡
1

2
KCD −

1

2
(StKS)CD. (4.17)

We provide the generalized scalar curvature and generalized tensor from the equations of

motion.

5 Conclusion

We compute the one-loop β function for the double sigma model with the strong constraints

in the constant background. We can obtain the consistent low energy effective theory, the

DBI theory. It shows that the construction of this double sigma model is calculable for

quantum corrections. A calculable double sigma model as normal sigma model is important

to understand new physics. Although this calculation is only in the case of the constant

background, it is still an important step for double field theory. So far we did not have any

consistent check with quantum fluctuation for double sigma model of open string. We also

rewrite the low energy effective theory in terms of the generalized metric and scalar dilaton.

This construction also leads us to define the generalized scalar curvature and tensor. It is

the usefulness of the generalized metric formulation [32].
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This double sigma model provides a general way to put the boundary term. Not only

restricted to the open string sigma model, it should be able to extend to the other sigma

model. Double sigma model of open string provides a possibility to unify all string theory

in the language of double field theory. It should be used in all different kind of theories, not

only for some special theories. We believe that this work opens a new door to reformulate

these theories by a more powerful formulation for the T-fold problem.

The formulation of open string relies on the boundary conditions. Choosing boundary

conditions is equivalent to choosing the boundary terms. It should be interesting to embed

different boundary conditions in the projectors. From choosing projectors to determine the

boundary conditions should be interesting. Then the other one interesting issue is to use

canonical way to quantize this open string theory to find the non-commutative relation.

We leave boundary conditions and quantization two interesting problems to the future.

The most serious problem of the double field theory is to relax strong constraints to

obtain more physical solutions. The difficulty is that the generalized Lie derivative is not

closed without the strong constraints. The way is to develop new algebraic structures or

introduce more fields. However, we do not get more understanding from the open string

than the closed string. We still need to go back to the closed string to understand this

problem.

The D-brane theory can be lifted to the M5-brane theory. The construction of the

D-brane theory should shed the light on understanding properties of the M5-brane theory.

In this low energy D-brane theory, we can find the non-geometric flux from the T-duality.

At the low energy level, we should also find the non-geometric flux on the M5-brane. It

should be interesting to study it.

From symmetry point of view, we can deduce the low energy effective action up to

a relative coefficient. It should be interesting to obtain this coefficient from symmetry

between the closed and open string theories without calculating one-loop β function. The

answer may be hidden in the α′ correction of the closed string theory. However, the probe

of principles for brane theory is an interesting direction. It should help us to find the action

for the M5-brane theory from these principles.

Before we worked on the non-geometric frame to study the non-geometric flux in the

massless closed string theory, we can see that this non-geometric frame in the open string

theory is equivalent to using the open string parameters. From this manifest formulation, it

should offer a clear picture. We do not know how to deal with the non-geometric problems

on the commutative space, but the extension of the non-geometric flux can be defined on

the non-commutative space or by the open string parameters. The non-commutative space

possibly be a more natural space to describe string theory than the commutative space.
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