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1 Introduction

The AdS-CFT or the gauge/gravity correspondence is one of the most significant devel-

opments in fundamental physics in the last one decade. This holographically relates a

weakly coupled theory of gravity in a bulk AdS space time to a strongly coupled gauge

theory at its conformal fixed point on the conformal boundary in a large N limit and vice

versa [1–4]. Later studies showed that the strongly coupled conformal field theory on the

boundary may be described at a finite temperature through the introduction of a black

hole in the bulk AdS space time [5]. The Hawking temperature of the bulk AdS black hole

was then considered to be the temperature of the boundary gauge theory. In particular the

Hawking-Page phase transition for the black hole in the bulk AdS space-time corresponds

to the confinement-deconfinement phase transition in the boundary gauge theory [5]. In

recent years such strongly coupled boundary field theories at a finite temperature and a

finite charge density could be realized through this correspondence from charged black

holes in the bulk AdS space-time coupled to gauge fields and other matter fields. This

makes the correspondence an extremely powerful tool for describing strongly coupled con-

densed matter systems, which are typically at finite temperatures and finite density. In

this context Gubser [6] showed that a charged Reissner Nordstrom-AdS (RN-AdS) black

hole in presence of a charged scalar field was unstable to the formation of scalar hair below

a certain critical temperature. Through the AdS-CFT correspondence Hartnoll et al. [7]

demonstrated that this bulk instability corresponds to a superconducting phase transition

in the boundary field theory. Such strongly coupled superconducting phases of the bound-

ary field theory are termed holographic superconductors. The construction described above

relates to a s-wave holographic superconductor and typically involves an Abelian Higgs
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model with a bulk complex scalar field that is charged under the Maxwell field [8–12].

From a phenomenological perspective, the onset of superconductivity in the boundary field

theory causes a charged operator to acquire a vacuum expectation value which sponta-

neously breaks the global U(1) invariance. It is to be noted that the dual boundary field

theory is translationally invariant which leads to the divergence of the Drude peak at zero

frequency and a gap formation in the real part of the electrical conductivity which is char-

acteristic of such superconducting phase transitions [13, 14]. The physics of this transition

could be described in the probe approximation where the backreaction of matter fields on

the spacetime metric is neglected [7]. It was later shown that this backreaction may be

systematically accounted for and leads to a lower transition temperature thereby making

the condensation harder [8].

Naturally such a model of superconductivity involving the AdS-CFT correspondence

is a possible candidate for the description of high temperature superconductors which are

typically strongly coupled. It is also known that such high temperature superconductors

usually involve p, d or higher wave superconductors. The construction for holographic

s-wave superconductors may be generalized to describe d-wave superconductors through

the condensation of a charged massive spin two field in the bulk [15–17]. Consequently p-

wave holographic superconductors could be realized through the condensation of a charged

vector field in the bulk that corresponds to a dual vector order parameter in the boundary

field theory. It was shown in [18] that such a holographic p-wave superconductor may also

be described through a bulk SU(2) Yang-Mills gauge field where one of the gauge degrees

of freedom for the SU(2) gauge field is dual to the vector order parameter in the boundary

field theory. Further studies based on this model involving condensate formation, transport

and spectral properties in diverse dimensions both in the probe limit and including the

back reaction may be found in [19–26]. Alternatively such models of p wave holographic

superconductors may be realized through the condensation of a 2-form field in the bulk [27]

or through the condensation of a massive complex vector field charged under the Maxwell

field [28]. In [19] it was shown that for the model of p-wave holographic superconductors,

the phase transition in the boundary field theory corresponding to the formation of vector

hair for the bulk charged black hole changes from second order to first order for large

backreaction of the matter fields. Whereas in [28], it was observed that depending on

the mass of the complex vector field and the strength of the backreaction, the condensate

formation may occur through a first order, second order, zeroth order [29] or a retrograde

phase transition [30]. Such a varied phase structure may also be observed for the s-wave

holographic superconductors as has been shown in the articles [31–34].

It is to be noted that all of the above mentioned gravity duals for the holographic

superconductors have been studied in the framework of linear Maxwell electrodynamics

related to the Einstein-Maxwell gravity in the bulk. It is naturally interesting to investigate

the possibility of describing such holographic superconductor in a non linear scenario. In

this context the Born-Infeld electrodynamics [35] is one of the most important nonlinear

electromagnetic theories that was proposed to avoid the infinite self energy arising in the

Maxwell theory. Moreover, the Born-Infeld action naturally possesses electric-magnetic

duality invariance [36] which makes it suitable for describing gauge fields arising from

open strings on D-branes [37]. In [38, 39] asymptotically Anti-deSitter (and deSitter)
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black hole solutions were obtained for the Einstein Born-Infeld theory with a cosmological

constant. The condensate formation and the transport properties for holographic s-wave

superconductors in the framework of the nonlinear Born-Infeld electrodynamics have been

studied extensively in [40–48]. Specifically, in [40] it was shown that in the probe limit,

for large values of the Born-Infeld parameter, the condensate formation is hindered while

suppressing the gap in the real part of the ac conductivity.

In this article we propose to construct a model of p-wave holographic superconductors

in the framework of an Einstein-Born-Infeld theory in the bulk AdS space time with back-

reaction. In this context we consider a charged Born-Infeld black hole in the presence of a

massive complex vector field that is charged under the Maxwell gauge field in a bulk AdS4
Einstein-Born-Infeld gravity. Through the AdS-CFT correspondence such a bulk theory

would be dual to a strongly coupled (2+1) dimensional boundary field theory involving

a charged vector operator with a global U(1) symmetry. It is also possible to include a

non-minimal coupling [28] between the vector field and the gauge field in the bulk Einstein

Born-Infeld theory that represents the magnetic moment of the complex vector field and

plays a crucial role for the condensate formation induced by an external magnetic field. As

our motivation here is to study the effect of the Born-Infeld parameter on the p-wave holo-

graphic superconductors we have neglected this coupling in our analysis. We show that

below a certain critical temperature the dual vector operator in the (2+1) dimensional

boundary field theory acquires a vacuum expectation value that breaks the U(1) symmetry

as well as the rotational symmetry at the boundary spontaneously that essentially describes

an anisotropic condensate required for a p-wave superconductor. Naturally such a conden-

sate is a consequence of the formation of vector hair for the charged Born-Infeld black hole

in the AdS4 bulk. Our construction involves three independent parameters namely, the

mass m of the vector field which is related to the dimension of the dual vector operator,

the back reaction parameter κ and the Born-Infeld parameter γ all of which control the

phase structure of the (2+1)-dimensional boundary field theory. Depending on the values

of the parameters m, κ and γ we realize a rich and varied phase structure for the boundary

field theory in our construction. We further observe that for fixed values of m and κ it is

possible to tune the parameter γ and obtain a change in the order of the superconducting

phase transition of the boundary field theory. This is in contrast to [28] as our model whilst

reproducing the usual phase structure of such p-wave holographic superconductors also ex-

hibits a novel phase behaviour that arises from the inclusion of the nonlinear Born-Infeld

term in the bulk theory.

We observe in our construction that the phase structure of the boundary theory changes

radically as we go from large values of m2 to small values of m2. For large m2 it is observed

that at a small but fixed value of the Born-Infeld parameter γ, the superconducting phase

transition changes from second order to first order for a critical value of the backreaction

parameter κ. Whereas for small m2, we observe that there is no condensate formation

below a certain critical transition temperature for all values of the parameters κ and γ.

Furthermore at small but fixed values of γ a small backreaction results in a second or-

der phase transition below a critical temperature. This changes to a zeroth order phase

transition at some lower temperature where the free energy changes discretely [29]. For

moderate values of the backreaction parameter the superconducting phase transition is of
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first order and there is no condensate formation at a certain temperature below the tran-

sition temperature. In contrast for large values of the backreaction parameter we observe

an interesting retrograde phase transition [30], for which the condensate formation occurs

only for temperatures higher than the transition temperature. In general we see that for

small m2 it is possible to obtain bounds on the values of γ which indicates that the order of

the phase transition may be changed through tuning the Born-Infeld parameter γ for fixed

values of the backreaction parameter κ. Furthermore it is observed that for all values of the

mass m2 the transition temperatures corresponding to different orders of phase transitions

decrease with increasing values of κ and γ.

In contrast to [28] in a linear Maxwell scenario, we have further computed trans-

port properties such as the ac conductivity of the strongly coupled 2+1 dimensional field

boundary theory in a linear response framework. This is the first such computation in

the literature for p-wave holographic superconductors in a non linear Born-Infeld setting.

The ac conductivity for the different phases of the p-wave holographic superconductors

arising in our construction exhibits a dependence on all the three parameters m, κ and γ.

Remarkably in the case of the retrograde phase transition described above, we observe the

formation of a gap in the real part of the ac conductivity at temperatures above the critical

temperature. For the rest of the cases the ac conductivity exhibits a behavior similar to

the case of the p-wave holographic superconductors obtained in [18] from the condensation

of the vector part of an SU(2) gauge field in the AdS4 bulk.

The article is organized as follows, in section 2 we introduce the bulk gravitational

theory and obtain the corresponding equations of motion. In this section we also describe

the charged Born-Infeld black hole solutions with vector hair in the bulk AdS4 space-time

which corresponds to the p-wave superconducting phase of the boundary field theory. In

section 3 we compute the free energy and the dual stress energy tensor for the 2+1 dimen-

sional boundary field theory using the bulk-boundary correspondence and the holographic

dictionary. Section 4 is devoted to calculating the condensates corresponding to the dif-

ferent types of phase transitions for different values of the parameters m2, κ and γ. In

section 5 we describe the ac conductivity for the superconducting phase of the boundary

theory at various values of the parameters m2, κ and γ. In section 6 we present a summary

of our results and discussions.

2 The bulk AdS4 Einstein-Born-Infeld theory

In order to realize a vector condensate in the Einstein-Born-Infeld theory we consider a bulk

gravitational action with a complex vector field [28] that is charged under the bulk Maxwell

field associated with the Born-Infeld Lagrangian. The form of the bulk gravitational action

may be written down as,

S =
1

2κ2

∫

dx4
√−g (LG) +

∫

dx4
√−g (LM )

LG = R+
6

L2

LM =
1

γ

(

1−
√

1 +
γ

2
F

)

− 1

2
ρ†µνρ

µν −m2ρ†µρ
µ − iηq

(

ρ†µρνF
µν
)

(2.1)
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with L as the AdS radius and κ2 = 8πG is related to the gravitational constant in the

bulk. Here ρµ is the complex vector field charged under the bulk Maxwell field Aµ with

F = FµνF
µν . The constants q and m correspond respectively to the charge and the

mass of the vector field ρµ. The Maxwell field strength reads as Fµν = ∇µAν − ∇νAµ

and ρµν in (2.1) may be defined as ρµν = Dµρν − Dνρµ with the covariant derivative

Dµ = ∇µ− iqAµ. The last term in the expression for the matter Lagrangian represents the

non-minimal coupling between the vector field ρµ and the gauge field Aµ. This characterizes

the magnetic moment of the vector field ρµ as suggested by the authors in [27] where it

was shown that the term plays an important role for the case of an applied magnetic field.

In our study we will neglect the effect of the interaction term on the boundary field theory

and simply consider only the effect of the nonlinear Born-Infeld term. For this purpose

we will set the interaction parameter η to zero at the level of the ansatz for solving the

equations of motion.

In our model we consider the backreaction of the bulk fields on the background metric

that describes a charged Born-Infeld black hole in the AdS4 bulk. We rescale the bulk

fields ρµ, Aµ and the Born-Infeld coupling parameter γ as ρµ/q, Aµ/q and q2γ in order

to put the factor 1
q2

as the backreaction parameter for the matter fields. In general the

probe limit is defined as κ2/q2 → 0. In the literature there exist two methods to include

the backreaction of matter fields on the metric. The first method is to consider κ2 = 1 and

choose a finite value of q2 as described in [8]. The second alternative is to fix q2 = 1 and

consider finite values of the parameter κ2. In our analysis we will use the second approach

to fix the backreaction parameter to be κ2. We find the equations of the motion for the

bulk matter fields through the variation of the action (2.1) as

∇ν





F νµ

√

1 + γ
2F



 = i
(

ρνρ
†νµ − ρ†νρ

νµ
)

− iη∇ν

(

ρνρ†µ − ρ†νρµ
)

, (2.2)

Dνρ
νµ = m2ρµ + iηρνF

νµ, (2.3)

similarly the gravitational field equations may be expressed as,

Rµν −
1

2
Rgµν −

3

L2
gµν =

κ2

2
LMgµν +

κ2

2





FµλF
λ

ν
√

1 + γ
2F



+
κ2

2

[(

ρ†µλρ
λ
ν +m2ρ†µρν

−iη
(

ρ†µρλ − ρµρ
†
λ

)

F λ
ν

)

+ µ↔ ν
]

, (2.4)

where the right hand side of the eq. (2.4) represents the stress energy tensor Tµν . According

to the gauge/gravity duality we have a bulk theory of gravity that is holographically dual

to a gauge theory on the conformal boundary of the AdS space. In [6, 7] it was observed

that the charged black hole with scalar hair corresponds to the superconducting phase of

the boundary field theory. More precisely as the temperature of the charged black hole

in the bulk reaches a critical temperature the background develops an instability leading

to the formation of scalar hair. This corresponds to a superconducting phase transition

in the boundary field theory and leads to a charged scalar operator acquiring a vacuum

– 5 –



J
H
E
P
0
4
(
2
0
1
5
)
0
0
1

expectation value. Our construction described by the action (2.1) admits a vector field (ρµ)

which is charged under the bulk U(1) gauge field Aµ. Following the AdS/CFT dictionary

this bulk vector field corresponds to a charged vector operator in the strongly coupled

dual boundary field theory. A non zero vacuum expectation value of this dual charged

vector operator will break the U(1) symmetry at the boundary along with the rotational

invariance which would describe an anisotropic condensate necessary for the realization of

a p-wave superconducting phase.

2.1 Equations of motion and boundary conditions

In order to realize charged black hole solutions with vector hair in our model we consider

the following ansatz for the metric and the bulk fields,

ds2 = −f(r)e−χ(r)dt2 +
dr2

f(r)
+ r2h(r)dx2 + r2

dy2

h(r)
, (2.5)

ρµdx
µ = ρx(r)dx, Aµdx

µ = φ(r)dt. (2.6)

In the metric ansatz we have introduced a function h(r) in the xx and the yy component of

the metric which accounts for the anisotropy induced by the vector field ρµ. We may also

account for specific choice of the ansatz as follows, the non zero x component of the vector

field ρµ denoted by ρx correspond to the expectation value 〈Jx〉 of a dual vector operator

Jx of the boundary theory. Thus as described above a non zero vacuum expectation value

of Jx will break both the U(1) gauge symmetry and the rotational invariance in x−y plane

with 〈Jx〉 picking the x direction as special. The Hawking temperature Th of the black

hole is given as

Th =
f ′(rh)e

−χ(rh)/2

4π
, (2.7)

where the horizon rh is determined by f(rh) = 0. As mentioned earlier we set the in-

teraction parameter η to zero in the equations (2.2), (2.3), (2.4). Now implementing the

ansatz (2.5) and (2.6), we may write down the independent bulk equations of motion as,

ρ′′x + ρ′x

(

f ′

f
− h′

h
− χ′

2

)

− ρx

(

m2

f
− eχφ2

f2

)

= 0, (2.8)

φ′′ + φ′
(

2

r
+
χ′

2

)

− 2ρ2xφ
(

1− eχγφ′2
)3/2

r2fh
− 2eχγφ′3

r
= 0, (2.9)

χ′ +
rh′2

2h2
+ κ2

(

rψ′2 +
ρ′2x
rh

+
eχρ2xφ

2

rf2h

)

= 0, (2.10)

h′′ + h′
(

f ′

f
− h′

h
− χ′

2
+

2

r

)

+ κ2
(

ρ′2x
r2

+
m2ρ2x
r2f

− eχφ2ρ2x
r2f2

)

= 0, (2.11)

f ′

f
+
rh′2

4h2
+ κ2

(

− r

2γ
+

r

2γ
√

1− eχγφ′2
+
m2ρ2x
2rh

+
eχρ2xφ

2

2rfh
+
fρ′2x
2rh

)

− 3r

f
+

1

r
= 0, (2.12)

where the prime denotes derivative with respect to the coordinate r. The above set of

equations of motion admit an analytic solution for ρµ = 0. The solution thus obtained
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correspond to the normal phase of the boundary theory that describes a charged Born-

Infeld AdS4 black hole [38, 39] in the bulk with the metric

ds2 = −f(r)dt2 + dr2

f(r)
+ r2

(

dx2 + dy2
)

,

φ(r) = U +
µ

r
2F1

[

1

4
,
1

2
,
5

4
,−4γµ2

r4

]

,

f(r) = −M
2

r
+

[

κ2

6γ
+

1

L2

]

r2 − κ2

6γ

√

r4 + 4γµ2 +
4κ2µ2

3r2
2F1

[

1

4
,
1

2
,
5

4
,−4γµ2

r4

]

, (2.13)

where µ and U are integration constants with M being the ADM mass of the black hole.

Here the symbol, 2F1[a, b, c, z] represents a hypergeometric function. The constant U may

be determined by the constraint φ(rh) = 0, at the horizon as

U = − µ

rh
2F1

[

1

4
,
1

2
,
5

4
,−4γµ2

r4h

]

. (2.14)

The Hawking temperature for the charged Born-Infeld AdS4 black hole is given by

T =
1

4π

[

1

rh
+

{

κ2

3γ
+

3

L2

}

rh −
κ2

2rhγ

√

r4h + 4γµ2
]

. (2.15)

In order to obtain a black hole solution with vector hair in the bulk it is necessary to

consider solutions to the equations of motion (2.8)–(2.12) with a nontrivial profile for ρx
(corresponding to the x component of ρµ). However the full set of coupled equations of

motion do not admit an analytic solution for this case. Hence these equations need to be

solved numerically. From the equations of motion we observe that for a nontrivial solution

we need to determine five independent functions Θ = {φ, ρx, f, h, χ}. For this suitable

boundary conditions must be imposed at the conformal boundary r → ∞ and at the

horizon r = rh of the AdS4 bulk. The asymptotic form of the functions Θ = {φ, ρx, f, h, χ}
near the AdS boundary r → ∞ may be written as,

φ = µ− ρ

r
+ · · · , ρx =

ρx−
r∆−

+
ρx+
r∆+

+ · · · , (2.16)

f = r2(1 +
f3
r3

) + · · · , h = 1 +
h3
r3

+ · · · , χ = 0 +
χ3

r3
· · · , (2.17)

where ∆± = 1±
√
1+4m2

2 and the dots represent higher order terms in powers of 1/r. We

require the vector condensate to arise spontaneously in the boundary theory, hence we

impose the condition ρx− = 0 in the asymptotic form of ρx near the boundary. Here

the coefficients µ, ρ and ρx+ represent the chemical potential, charge density and the x

component of the vacuum expectation value of the dual vector operator < Jx > respectively

in the dual boundary field theory.

For black hole configurations with regular event horizons we have f(rh) = 0 with the

extra condition φ(rh) = 0 so that gµνAµAν term may remain finite at the horizon r = rh.

We also require the functions Θ = {φ, ρx, f, h, χ} to be regular at the horizon r = rh which
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implies that all the functions must admit finite values and Taylor series expansions near

the horizon as,

Θ(r) = Θ(rh) + Θ′(rh)(r − rh) + · · · (2.18)

Analyzing the equations of motion and the horizon expansions of the functions, we may

identify that there are five independent parameters {rh, φ′(rh), ρx(rh), h(rh), χ(rh)} at the

horizon.

It may be noted that our construction admits three useful scaling symmetries for the

metric, bulk matter fields and the equations of the motion. These symmetries may be

listed as follows,

eχ → a2eχ, t→ at, φ→ a−1φ, (2.19)

ρx → aρx, h→ a2h, x→ a−1x, y → ay, (2.20)

r → ar, f → a2f, (t, x, y) → a−1(t, x, y), (φ, ρx) → a(φ, ρx), (2.21)

where a is a positive number. Now using the three symmetries described above, near the

horizon we set {rh = 1, h(rh) = 1, χ(rh) = 0} for our analysis. Similarly using the first two

symmetries we set {χ(∞) = 0, h(∞) = 0} near the AdS boundary. Thus we are left with

only two independent parameters at the horizon {φ′(rh), ρx(rh)} and out of these two we

will use one of them as a shooting parameter to obtain the source free condition ρx− = 0.

The remaining quantities like µ, ρ etc. may be obtained by reading off the corresponding

coefficients in the asymptotic forms as given in (2.16).

Finally under the third symmetry the quantities µ, ρ, T , ρx+ and ψ+ transform as,

µ→ aµ, ρ→ a2ρ, T → aT, ρx+ → a∆++1ρx+. (2.22)

Using the symmetries mentioned above we fix the chemical potential µ as the scaling

parameter which implies that the finite temperature boundary field theory is considered to

be in a grand canonical ensemble. One may then define the dimensionless scale invariant

quantities in the grand canonical ensemble as,

T/µ, (ρx+)
1

(∆++1) /µ (2.23)

In next sections we will focus on the behavior of these scale invariant quantities which

describe the relevant properties of the dual boundary field theory through the gauge/gravity

duality.

3 Gibbs free energy and dual stress energy tensor

In order to establish which of the two phases (normal or condensed) is energetically fa-

vorable, we consider the behavior of the Gibbs free energy for the dual boundary field

theory corresponding to the bulk configuration. Following the gauge/gravity dictionary

one may note that the Gibbs free energy (Ω) of the boundary theory is related to the

product of the on-shell Euclidean bulk action and the temperature T . In order to pose a

well-defined, stationary Dirichlet variational problem one must add the Gibbons-Hawking

– 8 –
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boundary term [49] to the Euclidean action and also a surface counter term for removing

divergences. The Euclidean action may be related to the Minkowski one by a minus sign as

− 2κ2SEuclidean =

∫

dx4
√−g

(

R+
6

L2
+ Lm

)

+

∫

r→∞
dx3

√
−h
(

2K − 4

L2

)

, (3.1)

where the AdS length L is set to unity for further analysis. Here, h is the determinant

of the induced metric on the AdS boundary, and K is the trace of the extrinsic curvature

Kµν . In order to relate the Gibbs free energy of the boundary theory (Ω) to the on-shell

Euclidean bulk action, we begin by noting that there exists a relationship between the

matter Lagrangian and the stress energy tensor [8] which may be described as,

Tµν = −gµνLm. (3.2)

The Einstein’s equations (2.4) may be written in the following fashion

Gµν =
1

2
gµν(Lm + 6) =

1

2
gµν(Ltot −R), (3.3)

where, Ltot = R+ 6+Lm. Now considering the xx and yy component of the eq. (3.3), we

find that

Ltot −R = Gx
x +Gy

y. (3.4)

One may also relate the Ricci scalar to the Einstein tensor as follows,

−R = Gµ
µ. (3.5)

Using eq. (3.4) and eq. (3.5) with the ansatz eq. (2.5), we may rewrite the total Lagrangian

in terms of the components of the Einstein tensor as follows,

Ltot = −Gt
t −Gr

r =
2f(r)− rf(r)χ′(r) + 2rf ′(r)

r2
. (3.6)

Thus plugging in the expressions for Ltot and K in eq. (3.1), we obtain the following

expression for the on-shell Euclidean action,

− 2κ2Son−shell
Euclidean =

∫

dx3e−
χ
2 r
(

−2f − rf ′ + rχ′f + 4r
√

f
)

|r→∞. (3.7)

Furthermore following [8], one must add a counter term quadratic in the bulk vector field

that provides a contribution of the form

Sct = −
∫

dx3(αρx−ρx+)|r→∞ (3.8)

where α is a constant. We observe that it is possible to choose the asymptotic values

(ρx− = 0, ρx+ 6= 0) in eq. (2.16), in order to implement the source free condition at the

boundary or fix (ρx+ = 0, ρx− 6= 0) at the boundary. For our purpose at least one of the

ρx± = 0, hence this term does not contribute to the computation of the free energy. On
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substituting the asymptotic expansions (2.17) into (3.7), we obtain the expression for the

Gibbs free energy (Ω) of the boundary theory as,

Ω =
1

β
Son−shell
Euclidean =

V2
2κ2

f3, (3.9)

where, β = 1/T and V2 =
∫

dxdy. Now from eq. (2.13) we note that for the normal phase

with h3 = χ3 = 0, the expression for the free energy is

Ωnrml = − V2
2κ2

M2,

M2 =
1

6rhγ

(

r4h
(

6γ + κ2
)

− κ2r2h

√

4γµ2 + r4h + 8γκ2µ22F1

[

1

4
,
1

2
,
5

4
,−4γµ2

r4h

])

(3.10)

here the mass of the black hole (M) as a function of rh is obtained through solving the

condition f(rh) = 0. As stated earlier, a non zero vacuum expectation value of the operator

Jx dual to the vector field ρx, breaks both the U(1) gauge symmetry and the rotational

invariance in x − y plane. This may be established from the stress-energy tensor of the

dual boundary field theory [50] which is given as,

Tab =
1

κ2
lim
r→∞

[r (Khab −Kab − 2hab)] (3.11)

where, a, b = {t, x, y}. Using the asymptotic expansions (2.17), we obtain the non-zero

components of the stress-energy tensor for the dual boundary field theory as,

Ttt =
1

κ2
(−f3),

Txx =
1

2κ2
(−f3 + 3h3 + 3χ3),

Tyy =
1

2κ2
(−f3 − 3h3 + 3χ3), (3.12)

For the normal phase we see that, Txx = Tyy and Ω/V2 = −Ttt, as h3 = 0, χ3 = 0.

This indicates that the normal phase is isotropic in the x − y plane. However for the

superconducting phase the rotational invariance in the x−y plane is broken due to the non-

zero < Jx >, h3 and χ3. This translates to the fact that, Txx 6= Tyy for the superconducting

phase due to the anisotropic condensate.

4 Normal and the superconducting phase of the boundary field theory

In this section we will focus on the superconducting phase of the boundary theory dual

to our bulk model in the context of gauge/gravity duality. The normal phase of the

boundary theory is dual to the charged Born-Infeld AdS4 black hole in the bulk described

by eq. (2.13). Whereas the superconducting phase of the boundary theory corresponds

to the solution ρx 6= 0 of the equations (2.8)–(2.12). One can see that the bulk theory

described here depends on three independent parameters namely the mass (m) of the bulk

vector field, the backreaction parameter (κ) and the Born-Infeld parameter (γ). We now
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proceed with computing the superconducting phase numerically for different range of values

for these parameters. We will first focus on the behavior of the system with varying values

of the mass (or the parameter m2) of the bulk vector field. We observe that there exists a

certain critical value of the parameter m2 labeled as m2
c = 0, above which the condensed

phase seems to exist for all temperatures below Tc. Whereas for the case m2 < m2
c the

condensed phase cannot exist below a certain temperature T0 which is less than the critical

temperature Tc. This behavior was also observed for the case of p-wave superconductors

described in [28] with m2
c also being zero. Now in order to compare our results with [28]

we have considered the values for the mass as, m2 = 3/4 for the case m2 > m2
c and

m2 = −3/16 for the case m2 < m2
c .

4.1 m2 = 3/4

Now to begin with we assume m2 = 3/4, as an example for the case m2 > m2
c . For this

case the normal phase of the boundary field theory exists above the critical temperature

for all values of the backreaction parameter κ and the Born-Infeld parameter γ. Whereas

the p-wave superconducting phase of the boundary field theory exists only below a certain

critical temperature Tc. As described earlier, the phase structure of the (2+1)-dimensional

boundary field theory described here depends on the two parameters namely the backre-

action parameter κ and the Born-Infeld parameter γ in the bulk. Through the numerical

computations we find that the order of the phase transition may be changed from second

order to first order by increasing the strength of the backreaction parameter for fixed but

small values of the Born-Infeld parameter.1 Thus we obtain a critical value (κc) of the

backreaction parameter κ such that the phase transition is of first order for κ > κc and

second order for κ < κc. Furthermore, we also observe that the phase transition may

be changed from second order to first order by increasing the strength of the Born-Infeld

parameter γ for fixed values of the backreaction parameter κ lying near the critical value

κc. This indicates that for κ = κc, there exists a critical value (γc) of the Born-Infeld

parameter such that the phase transition is of first order for γ > γc and second order for

γ < γc. For m2 = 3/4, we obtain the critical values of the Born-Infeld parameter and the

backreaction parameter as γc ≃ 0.03582 and κc ≃ 0.7364 respectively.

In figure 1 we have plotted the condensate (< Jx >)
2/5/Tc as a function of tempera-

ture at fixed value of the backreaction parameter, κ = 0.5 < κc and varying values of the

Born-Infeld parameter γ. From the red curve corresponding to, κ = 0.5 and γ = 0.001

shown in the figure 1, we observe that the dual vector operator Jx acquires a non zero

vacuum expectation value below a certain critical temperature Tc ≃ 0.0042 and rises con-

tinuously from zero to saturation at temperatures well below Tc. Our numerical results

also suggest that for κ < κc, the critical exponent for the phase transition is always 1/2

and < Jx >∼ (1−T/Tc)1/2, which is a general mean field behaviour related to second order

1It is to be noted that in the limit of small Born-Infeld parameter γ, the nonlinear Born-Infeld term

introduced in the bulk reduces to a Maxwell term. Thus for very small values of Born-Infeld parameter γ

the phase structure for our construction of p-wave holographic superconductors in the framework of a bulk

Einstein-Born-Infeld theory matches with the phase behaviour observed for the case of p-wave holographic

superconductors described in [28]
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Figure 1. Figures showing the condensate (< Jx >)
2/5/Tc and the Free Energy ω = 2κ2Ω/V2 in

grand canonical ensemble as a function of temperature with the backreaction parameter fixed at

κ = 0.5. The red, green and the blue curves in left figure represent the different values of Born-Infeld

parameter γ = 0.001, 0.008 and 0.01 respectively and the red curve corresponds to the critical value

of the temperature Tc = 0.004158µ. For κ = 0.5 and γ = 0.001, The red curve in the right figure

shows the free energy of the superconducting phase whereas the dashed black curve represents the

normal phase. Here the mass of the vector field ρx is taken to be m2 = 3/4.

phase transitions. We have also plotted the grand potential (ω = 2κ2Ω/V2) as a function of

temperature in the right plot of figure 1. From the free energy plot we observe that below

the critical temperature Tc, the superconducting phase has lower free energy than the nor-

mal phase. This suggests that the superconducting phase is thermodynamically favored.

From the condensate plots in figure 1, we also observe that on increasing the value of the

Born-Infeld parameter γ, the critical temperature drops to lower values thereby making

the condensate formation harder.

As we have observed, there exists a critical value (κc) of the backreaction parame-

ter, below which the formation of the condensate occurs through a second order phase

transition. We now focus on the other regime of the values for the backreaction param-

eter κ, which lie above the critical value κc. In figure 2, we have plotted the condensate

(< Jx >)
2/5/Tc as a function of temperature at a fixed value of the backreaction parame-

ter, κ = 0.8 > κc and different values of the Born-Infeld parameter γ. It may be observed

from the figure that the condensate is now multiple valued at the critical temperature

Tc ≃ 0.0042. We observe that there are two new sets of branches for the condensate at

temperatures ( e.g. T ≃ 1.02Tc) above than the critical temperature. The upper-branch

corresponds to large values of < Jx > whereas the lower branch is for small values of

< Jx >. In order to determine which of these branches correspond to the thermodynam-

ically favored phase, we have plotted the grand potential (ω = 2κ2Ω/V2) as a function of

temperature in the right plot of the figure 2. It is observed from the plot that above the

Tc ≃ 0.0042, the free energy develops a swallow tail, which is a typical characteristic for

first order phase transitions. In contrast the free energy for the normal phase (< Jx >= 0)

shows that it is the preferred phase at high temperatures. As the temperature is lowered

to Tc, the upper-branch corresponding to the condensed phase with large values of < Jx >

now represents the thermodynamically favored phase. Similar to the case of κ < κc the

critical temperature drops to lower values as the value of the Born-Infeld parameter γ is

increased thereby making the condensation harder.
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Figure 2. Figures showing the condensate (< Jx >)
2/5/Tc and the Free Energy ω = 2κ2Ω/V2 in

grand canonical ensemble as a function of temperature with the backreaction parameter fixed at

κ = 0.8. The red, green and the blue curves in left figure represent the different values of Born-Infeld

parameter γ = 0.001, 0.008 and 0.01 respectively and the red curve corresponds to the critical value

of the temperature Tc = 0.004158µ. For κ = 0.8 and γ = 0.001, The red curve in the right figure

shows the free energy of the superconducting phase whereas the dashed black curve represents the

normal phase. Here the mass of the vector field ρx is taken to be m2 = 3/4.
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Figure 3. Figure showing the condensate (< Jx >)
2/5/Tc as a function of temperature for varying

values of the Born-Infeld parameter γ with the backreaction parameter fixed at κ = 0.7. The red,

green and the blue curves represent the different values of Born-Infeld parameter γ = 0.001, 0.008

and 0.01 respectively. The brown curve is for γ = 0.05 with critical value of temperature, Tc =

0.004912µ denoted by vertical dotted line. Here the mass of the vector field ρx is taken to be

m2 = 3/4.

The interesting case arises when we consider the value of the backreaction parameter

near the critical value (κ = 0.7 ≃ κc). In the figure 3 and figure 4, we have plotted

the condensate (< Jx >)
2/5/Tc and the grand potential (ω = 2κ2Ω/V2) as a function of

temperature at the critical value of the backreaction parameter for different values of the

Born-Infeld parameter γ. From both the figures it is observed that as the value of the

Born-Infeld parameter is increased, the condensate changes its behavior from being single

valued to being multiple valued implying a change in the order of the superconducting phase

transition. This shows that there exists a critical value (γc ≃ 0.036) for the Born-Infeld

parameter at which the phase transition changes from second order to first order.

The main results of this subsection are summarized in the (T, κ) and (T, γ) phase

diagrams shown in the figure 5. The solid curves in both the phase diagrams represent

the critical temperature Tc for the superconducting phase transition. Depending on the
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Figure 4. Plots showing the Free Energy ω = 2κ2Ω/V2 in grand canonical ensemble with respect

to the temperature. Here the plots are drawn for fixed value of the backreaction parameter κ = 0.7

and for varying values of the Born-Infeld parameter γ = 0.001, 0.008, 0.01 and 0.05 represented by

the red, green, blue and the brown curves respectively.

values of κ or γ, the region below the curve represents the superconducting phase of the

boundary theory whereas the region above the curve corresponds to the normal or the

metastable phase of the boundary field theory. The (T, κ) phase diagram corresponding to

fixed γ = 0.001, shows the existence of a critical value (κc) of the backreaction parameter κ,

above which the phase transition is of second order, whereas below it the phase transition

is of first order. Similarly the (T, γ) phase diagram at fixed κ = 0.7 ≃ κc shows the

existence of a critical value (γc) of the Born-Infeld parameter γ, below which the condensate

formation occurs through a second order phase transition whereas above it the condensate

formation is through a first order phase transition. The phase diagrams also describe that

for increasing values of κ or γ the critical temperature Tc decreases gradually implying that

the superconducting phase transition is hindered for large values of both the backreaction

parameter κ and the Born-Infeld parameter γ.

4.2 m2 = −3/16

In this section we now consider the case for m2 < m2
c to study the behavior of the con-

densate for various possible values of the backreaction parameter κ and the Born-Infeld

parameter γ. As a particular example we consider the mass of the vector field to be

m2 = −3/16. Through the numerical computations we observe that for a small but fixed

value of the Born-Infeld parameter γ, there exist two curious values of the backreaction

parameter namely κ1 and κ2, such that the parameter space of κ is partitioned into three

regions κ < κ1, κ1 < κ < κ2 and κ2 < κ respectively. For a fixed value of the backreaction

– 14 –



J
H
E
P
0
4
(
2
0
1
5
)
0
0
1

Κc

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.00

0.01

0.02

0.03

0.04

0.05

Κ

T
Γc

0.00 0.02 0.04 0.06 0.08
0.000

0.002

0.004

0.006

0.008

0.010

Γ

T

Figure 5. The phase diagram for m2 = 3/4. The left graph shows the (T, κ) phase diagram at

fixed γ = 0.001 where the solid curve separates the condensed phase from the normal phase. The

critical value κc divides the condensed phase into two parts. The case κ < κc is associated with

second order phase transition (green area), while κ > κc corresponds to first order transition (red

area). Whereas, The right graph shows the (T, γ) phase diagram at fixed κ = 0.07 ≃ κc with the

solid curve separating the condensed phase from the normal phase. The critical value γc = 0.0358

divides the condensed phase into two parts. The case γ < γc is associated with second order phase

transition (green area), while γ > γc corresponds to first order transition (red area).

parameter κ in the three distinct regions mentioned above, the condensate behaves differ-

ently for varying values of the Born-Infeld parameter (γ). This indicates the existence of

certain bounds on the possible values of γ. We will elaborate more on these bounds for

the Born-Infeld parameter (γ) later. Thus for m2 < m2
c , we observe that depending on the

values of the parameters κ and γ, the thermodynamic behavior changes dramatically and

the condensate formation may occur via a first order, second order, zeroth order [29] or a

retrograde phase transition [30].

For the mass, m2 = −3/16 of the vector field considered above, we have obtained the

critical values of κ1 and κ2 as 0.9828 and 1.0485 respectively for the Born-Infeld parameter

γ = 0.001. Now in order to study the behavior of the condensate in the region κ < κ1,

we have considered the value κ = 0.8 of the backreaction parameter for which we have

plotted the condensate (< Jx >)
4/7/Tc as a function of temperature in the figure 6. From

the graph it is observed that the condensate formation occurs via a second order phase

transition at the critical temperature Tc = 0.0575µ and the condensate formation ceases

below a certain temperature, T0 = 0.0391µ < Tc. It is also to be noted that the condensate

becomes multiple valued at the temperature T0, with the upper branch representing larger

values of < Jx > and the lower branch representing smaller values. Furthermore for this

case, in the right graph of the figure 6 we have plotted the grand potential (ω = 2κ2Ω/V2)

as a function of temperature which shows a “swallow tail” like behaviour near T0 and a

kink near Tc indicating a second order phase transition. From the free energy plot it is

observed that only the lower branch of the condensate with smaller values of < Jx >,

represents the thermodynamically favored phase in the temperature range T0 < T < Tc.

Whereas the normal phase with < Jx >= 0, is the preferred phase for the regions T < T0
and T > Tc. The interesting feature that arises in the free energy plot is that the free

energy now shows a discontinuity at T0, which indicates a zeroth order phase transition.

It is to be noted that in the context of superfluidity and superconductivity, a discontinuity
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Figure 6. Figures showing the condensate (< Jx >)4/7/Tc and the Free Energy ω = 2κ2Ω/V2
in grand canonical ensemble as a function of temperature with κ = 0.8 and γ = 0.001. Here the

critical temperature Tc = 0.0575µ and the temperature T0 = 0.0391 are represented by the vertical

dashed lines. For κ = 0.8 and γ = 0.001, the blue curve in the right figure shows the free energy of

the superconducting phase whereas the dashed black curve represents the normal phase. Here the

mass of the vector field ρx is taken to be m2 = −3/16.

of the free energy is related to a zeroth phase transitions that was first discovered in an

exactly solvable model described in [29].

We now focus on the case with the backreaction parameter lying in the range, κ1 <

κ < κ2 for γ = 0.001. For this we have fixed the value of the backreaction parameter at,

κ = 1.01. In the left graph of the figure 7 we have plotted the condensate (< Jx >)
4/7/Tc

as a function of temperature for the value κ = 1.01, of the backreaction parameter with

the value γ = 0.001, of the Born-Infeld parameter. From the plot it may be observed

that the condensate now becomes multiple valued at both the temperatures T0 = 0.041µ

and Tc = 0.0428µ indicating a zeroth order phase transition at T0 and a first order phase

transition at Tc. Above T0 the condensate bifurcates into an upper branch corresponding to

larger values of < Jx > and a lower branch corresponding to smaller values. Whereas near

the critical temperature Tc, the condensate has three branches namely an upper branch

with higher values of < Jx >, a lower branch with lower values of < Jx > and a middle

branch with values of < Jx > lying between the other two. From the free energy verses

temperature plot in the right side of the figure 7, it is observed that at higher temperatures

the normal phase with < Jx >= 0 is the thermodynamically favored phase. However as the

temperature is lowered to Tc = 0.0428µ, the free energy shows a “swallow tail” behaviour

indicating a first order phase transition and the thermodynamically favored phase is now

represented by the middle branch. As we further lower the temperature the free energy

shows a discontnuity at the temperature T0 indicating a zeroth order phase transition.

Through the numerics, we observe that as the backreaction parameter is increased then

both the critical temperature (Tc) and the temperature T0 start decreasing and finally Tc
coincides with T0 at κ = κ2 (see figure 13).

Further increasing the backreaction parameter beyond the value κ2, the condensate

undergoes a drastic change in its behavior. For the case κ > κ2, we have plotted the

condensate (< Jx >)
4/7/Tc as a function of temperature in figure 8 and figure 9 for the

values of the backreaction parameter, κ = 1.05 and κ = 1.1 respectively with the value of
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Figure 7. Figures showing the condensate (< Jx >)
4/7/Tc and the Free Energy ω = 2κ2Ω/V2 in

grand canonical ensemble as a function of temperature with κ = 1.01 and γ = 0.001. The critical

temperature is given by Tc = 0.0428µ and the temperature T0 = 0.041 are represented by the

vertical dashed lines. For κ = 1.01 and γ = 0.001, the the red curve in the right figure shows the

free energy of the superconducting phase whereas the dashed black curve represents the normal

phase. Here the mass of the vector field ρx is taken to be m2 = −3/16.
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Figure 8. Figures showing the condensate (< Jx >)
4/7/Tc and the Free Energy ω = 2κ2Ω/V2 in

grand canonical ensemble as a function of temperature with κ = 1.05 and γ = 0.001. The critical

temperature above which the condensate appears is given by T1 = 0.0398µ. For κ = 1.05 and

γ = 0.001, the the green curve in the right figure shows the free energy of the superconducting

phase whereas the dashed black curve represents the normal phase. Here the mass of the vector

field ρx is taken to be m2 = −3/16.

the Born-Infeld parameter fixed at, γ = 0.001. From the figures it may be observed that the

condensate now exists only above a certain temperature T1 and it asymptotically increases

with increasing values of the temperature. The condensate remains multiple valued for

the values of κ lying near κ2 but as the value of κ is increased further, the condensate

becomes single valued again. Here the phenomena of the condensate existing above a

certain temperature which is opposite to the general behavior of the condensate arising

below a certain critical temperature, corresponds to the black hole with “vector hair” that

has higher free energy than the normal phase as shown in right side of the figure 8 and

figure 9. Thus these hairy black hole configurations correspond to metastable states in

the boundary field theory. This phenomenon of a thermodynamically unfavorable phase

existing above a certain critical temperature is known as retrograde condensation [30].

Subsequently we now study the effect of changing the Born-Infeld parameter on the

thermodynamic behavior of the condensate. For this we consider the backreaction param-
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Figure 9. Figures showing the condensate (< Jx >)4/7/Tc and the Free Energy ω = 2κ2Ω/V2
in grand canonical ensemble as a function of temperature with κ = 1.1 and γ = 0.001. The

critical temperature above which the condensate appears is given by T1 = 0.036µ. For κ = 1.1 and

γ = 0.001, the the brown curve in the right figure shows the free energy of the superconducting

phase whereas the dashed black curve represents the normal phase. Here the mass of the vector

field ρx is taken to be m2 = −3/16.

eter to be κ = 0.8 < κ1. In figure 10 we have plotted the condensate (< Jx >)
4/7/Tc as

a function of temperature for the value of the backreaction parameter, κ = 0.8 < κ1 at

different values of the Born-Infeld parameter, γ = (0.001, 0.05, 0.1). From the plots it is

observed that the condensate lies between two temperatures T0 and Tc describing a second

order phase transition at Tc and a zeroth order phase transition at T0. For κ < κ1, this

behavior of the condensate remains the same for all values of the Born-Infeld parameter.2

Similarly in the figure 11, we have plotted the condensate (< Jx >)
4/7/Tc as a function

of temperature for the value of the backreaction parameter, κ = 1.05 > κ2 at different

values of the Born-Infeld parameter, γ = (0.001, 0.05, 0.1). For the case κ > κ2, the con-

densate remains thermodynamically unfavorable for all values of γ depicting a “retrograde

condensation”. Here the interesting case arises when we take the value of the backreaction

parameter (κ = 1.01) in between κ1 and κ2. In this case as we increase the value of γ the

vector field shows a “retrograde condensation” beyond a certain critical value of the Born-

Infeld parameter (γ1c = 0.0254) which is evident from figure 12. Whereas below this critical

value of γ the condensate shows a first order phase transition at the critical temperature

Tc and a zeroth order phase transition at the temperature T0.

We summarize the main results of this subsection by plotting the (T, κ) and (T, γ)

phase diagram in figure 13. The upper curve in the (T, κ) phase diagram at fixed γ =

0.001, represents the critical transition temperature Tc for the regions κ < κ1, κ1 < κ <

κ2 and κ2 < κ respectively. In contrast the lower curve represents the temperature T0
corresponding to the zeroth order phase transition. At κ2 the two curves merge to the single

curve representing the retrograde phase transition temperature T1. The regions below the

T0 curve and above the Tc curve represent the normal phase of the boundary theory whereas

the region in between these curves represents the condensed phase. The bounded green

region existing below κ1 represents the condensation via a second order phase transition and

2We have checked the behavior of the condensate for higher values of γ = 1, 10 etc. and found out the

behavior of the condensate doesn’t changes for values of the backreaction parameter κ < κ1
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Figure 10. Figures showing the condensate (< Jx >)
4/7/Tc as a function of temperature for varying

values of the Born-Infeld parameter γ with the backreaction parameter fixed at κ = 0.8. The blue,

red and the green curves represent the different values of Born-Infeld parameter γ = 0.001, 0.05 and

0.1 respectively. Here the mass of the vector field ρx taken to be m2 = −3/16.
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Figure 11. Figures showing the condensate (< Jx >)
4/7/Tc as a function of temperature for varying

values of the Born-Infeld parameter γ with the backreaction parameter fixed at κ = 1.05. The blue,

red and the green curves represent the different values of Born-Infeld parameter γ = 0.001, 0.05 and

0.1 respectively. Here the mass of the vector field ρx taken to be m2 = −3/16.
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Figure 12. Figures showing the condensate (< Jx >)
4/7/Tc as a function of temperature for varying

values of the Born-Infeld parameter γ with the backreaction parameter fixed at κ = 1.01. The blue,

red and the green curves represent the different values of Born-Infeld parameter γ = 0.001, 0.05 and

0.1 respectively. Here the mass of the vector field ρx taken to be m2 = −3/16.

the bounded red region between κ1 < κ < κ2 represents the condensation via a first order

phase transition. Furthermore in the (T, γ) diagram corresponding to κ1 < κ = 1.01 < κc,

the upper curve represents the critical transition temperature Tc whereas the lower curve

represents the temperature T0 corresponding to the zeroth order phase transition. At

γ1c the two curves merge to the single curve representing the retrograde phase transition

temperature T1. The regions below the T0 curve and above the Tc curve represent the normal

phase of the boundary theory whereas the region in between these curves represents the

condensed phase. The bounded red region existing below γ1c represents the condensation

via a first order phase transition. The phase diagrams also shows that as we increase κ or γ

the critical temperature Tc and the zeroth order phase transition temperature T0 decrease

gradually which implies that the superconducting phase transition is hindered for large

values of the backreaction parameter κ or the Born-Infeld parameter γ.

5 The ac conductivity

In this section we focus on studying transport phenomena for the holographic supercon-

ductor, that describes the linear response of the system to small external sources. In

particular we obtain the ac conductivity as a function of frequency for the p-wave super-

conducting phase of the strongly coupled (2+1)-dimensional boundary field theory. For the

linear response framework considered by us this involves the computation of the retarded

Green function that describes the current-current correlation in the boundary field theory.

– 20 –



J
H
E
P
0
4
(
2
0
1
5
)
0
0
1

Κ1 Κ2

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15
0.02

0.03

0.04

0.05

0.06

Κ

T

Γ
1

c

0.00 0.01 0.02 0.03 0.04
0.040

0.041

0.042

0.043

0.044

Γ

T

Figure 13. The phase diagram for m2 = −3/16. The left graph shows the (T, κ) phase diagram

at fixed γ = 0.001 where the colored region between the T0 curve (bottom) and the Tc curve (top)

corresponds to the condensed phase. The critical values κ1 and κ2 divides the condensed phase into

three parts. The case κ < κ1 is associated with second order phase transition (green area), while

κ1 < κ < κ2 corresponds to first order transition (red area). Whereas, The T0 curve (bottom) and

the Tc curve (top) merge with each other at κ2 = 1.0485 resulting in the retrograde transition curve

for κ > κ2. For fixed κ = 1.01, the critical value γ1c = 0.0254 divides the condensed phase into two

parts. The case γ < γ1c is associated with first order phase transition (red area bounded between

the T0 curve (bottom) and the Tc curve (top)), while curve corresponding to γ > γ1c corresponds

to retrograde phase transition.

By using the GKPW prescription [2, 3], these correlation functions may be computed by

studying the linear response3 of the boundary theory to the fluctuations of the bulk gauge

field Aµ. These fluctuations are dual to the boundary electric current (say J ) such that

< Ji >= Gret
ij Aj , where Gret

ij stands for the retarded Green function and Aj stand for the

external vector potential. For the Ohm’s law we also have < Ji >= σijEj , where σij repre-

sents the electrical conductivity and Ej stands for the external electric field. Now from the

aforementioned relations the electrical conductivity may be deduced as, σij = Gret
ij AkEk/E2.

In order to compute the ac conductivity for the condensed phase of the boundary theory

one has to add the vector perturbation eiωtAµ and the metric perturbation eiωtgµt to the

hairy black hole background and then solve the linearized equations obtained from the

Maxwell equation (2.2) and the Einstein equation (2.4).

As described above, the evaluation of the conductivity in the x-direction requires the

addition of a vector perturbation eiωtAx(r) and a metric perturbation eiωtgxt(r) to the bulk

configuration. In this case the metric perturbation is coupled to the vector field ρx even

at linear order through the equation of motion (2.3) for the vector field. This renders the

numerical computation of the ac conductivity (σx) in the x direction, highly complicated

and we omit this. However the calculation simplifies considerably for the ac conductivity

(σy) in the y-direction as the metric perturbation do not couple to the vector field ρx. For

this case, we perturb the bulk by adding the vector perturbation eiωtAy(r) and the metric

perturbation eiωtgyt(r). These perturbations for the metric and the gauge field lead to two

coupled equations in terms of gyt and Ay. Eliminating gyt from the coupled equations of

3It is to be noted that we are working in the the long wavelength and low frequency limit which is in

relation to the linear response theory.
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motion we obtain a linearized equation for the gauge field Ay, which may be given as

A′′
y + A′

y

(

f ′

f
+
h′

h
+
χ′ (2γeχφ′2 − 1

)

+ 2γeχφ′φ′′

2 (1− γeχφ′2)

)

+ Ay

(

ω2eχ

f2
+

2ρ2x
(

γeχφ′2 − 1
)

− κ2r2heχφ′2

r2fh
√

1− γeχφ′2

)

= 0. (5.1)

An analytic solution for the above differential equation seems computationally in-

tractable, thus we proceed to solve it numerically. For this we begin by considering the

horizon (r = rh = 1) boundary conditions for Ay(r) which may be written down as

Ay(r) = f(r)δS(r), S(r) =
(

1 + a(1− r) + b(1− r)2 + · · ·
)

, (5.2)

where the coefficients a and b are functions of µ, κ, γ and ω and the dots represent the terms

in higher powers of (1 − r). Now substituting Ay(r) = f(r)δS(r) in eq. (5.1) and taking

the near horizon limit (r → 1) one may obtain the following expression for the exponent δ,

δ = ± ie
χ
2 ω

f ′

∣

∣

∣

∣

∣

r=1

(5.3)

Taking δ = δ− , the near horizon form of Ay(r) with the incoming wave boundary

condition may be expressed as,

Ay(r) = f(r)
− iωeχ(1)/2

f ′(1)
(

1 + a(1− r) + b(1− r)2 + · · ·
)

(5.4)

Similarly the asymptotic large r behavior of the perturbation Ay(r) may be written

down as

Ay(r) = A(0)
y +

A
(1)
y

r
+ · · · (5.5)

here the leading term A
(0)
y determines the source whereas the ‘normalisable’ term A

(1)
y gives

the expectation value for the current in the dual boundary field theory respectively. Thus

from the AdS/CFT dictionary we obtain

Ay = A(0)
y , < Jy >= A(1)

y , Ey = ∂tA
(0)
y = iωA(0)

y (5.6)

Now from Ohm’s law, the expression for the ac conductivity in the y-direction may be

expressed as follows

σy(ω, κ, γ) =
< Jy >

Ey
= − iA

(1)
y

ωA
(0)
y

. (5.7)

Using the expression given in equation (5.7), we numerically compute the ac conduc-

tivity for the superconducting phase of the (2+1)-dimensional boundary field theory.

In figure 14, we have plotted the real and imaginary parts of the ac conductivity

as a function of ω/T which correspond to the condensate for m2 = 3/4, κ = 0.7 and

γ = 0.05 displayed in figure 3. The horizontal line in the plots for the real part of the ac
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Figure 14. For m2 = 3/4, real and imaginary parts of the ac conductivity for superconducting

phase are plotted with respect to ω/T for fixed values of κ = 0.7 and γ = 0.05. The red, blue and

green curves correspond to the temperatures T/Tc = 0.8753, T/Tc = 0.5743 and T/Tc = 1.0404

respectively.

conductivity corresponds to the temperatures at or above the critical value for which there

is no condensate. This line also represents the frequency independent conductivity for the

normal phase of the boundary theory [7]. From the figure it may be observed that for

the superconducting phase, the real part of the ac conductivity shows a gapped behavior

for temperatures below Tc. This gap in the real part of the ac conductivity disappears

for very small values of the frequency (ω) whereas, for higher values of ω the conductivity

approaches asymptotically to the frequency independent conductivity for the normal phase.

Furthermore, for temperatures below than the critical temperature (i.e. T < Tc) there is

also a delta function at ω = 0, which corresponds to a pole in the imaginary part of the ac

conductivity such that the Kramers-Kronig relations are satisfied [7].

As described earlier, we have explored the vector condensate for two different val-

ues of the mass of the vector field lying in different regimes (m2 = −3/16 < m2
c and

m2 = 3/4 > m2
c). We now describe in detail the behaviour of the ac conductivity for

these two different values of the mass for the vector field. For m2 = 3/4, in figure 15 we

have plotted the real and imaginary parts of the ac conductivity with ω/T with different

values of the backreaction parameter for fixed value of γ = 0.001 and the temperature

T = 0.0038µ. It may be observed from the figure that the gap in the real part of ac

conductivity shifts to higher values of the frequency (ω) for increasing values of the back-

reaction parameter. Furthermore, the conductivity peaks decrease for higher values of the

backreaction parameter κ. Similarly in figure 16, we have plotted the real and imaginary

parts of the ac conductivity with ω/T with different values of the Born-Infeld parameter

γ for fixed value of κ = 0.7 and the temperature T = 0.0038µ. From the figure it may

be observed that for increasing values of the Born-Infeld parameter, the gap in the real

part of ac conductivity shifts to higher values of the frequency (ω) with the decrease in the

conductivity peaks.

For the mass m2 = −3/16, in figure 17 we have plotted the real and imaginary parts

of the ac conductivity for different values of the backreaction parameter κ and fixed value

of Born-Infeld parameter (γ = 0.001) at different temperatures. In this case the parameter

space of κ is partitioned into three regions κ < κ1, κ1 < κ < κ2 and κ2 < κ respectively
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Figure 15. For m2 = 3/4, real and imaginary parts of the ac conductivity for superconducting

phase are plotted with respect to ω/T for fixed values of γ = 0.001 and temperature T = 0.0038µ.

The blue, red and the green curves correspond to the values of the backreaction parameter κ = 0.5,

κ = 0.7 and κ = 0.8 respectively.
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Figure 16. For m2 = 3/4, real and imaginary parts of the ac conductivity for superconducting

phase are plotted with respect to ω/T for fixed values of κ = 0.7 and the temperature T = 0.0038µ.

The red, green and the blue curves correspond to the values of the backreaction parameter γ = 0.001,

γ = 0.008 and γ = 0.05 respectively.

and the behavior of the condensate changes radically in these regions. For the values of

κ = (0.8, 1.01) less than κ2, we observe the opening of a gap in the real part of the ac

conductivity the temperature is lowered below the critical temperature. But for the values

of κ = (1.05, 1.1) greater than κ2, the opening of a gap in real part of the ac conductivity

occurs for temperatures above than the critical temperature. This may be related to the

fact that for this case the condensate formation occurs via a retrograde phase transition

and the condensate formation occurs only for temperatures above the critical temperature.

Furthermore, in the top two graphs of figure 18 we have plotted the real and imaginary

parts of the ac conductivity with ω/T for different values of the backreaction parameter

and fixed value of γ = 0.001 at temperature T = 0.0419µ. It may be observed from the

figure that the gap in the real part of the ac conductivity shifts to higher values of the

frequency (ω) for increasing values of the backreaction parameter. The conductivity peaks

also decrease for higher values of the backreaction parameter κ.

Similarly, in the bottom graphs of the figure 18 we have plotted the real and imaginary

parts of the ac conductivity with ω/T for different values of the Born-Infeld parameter and

fixed value of κ = 1.05 at temperature T = 0.0419µ. From the figure it may also be
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Figure 17. For m2 = −3/16, real and imaginary parts of the ac conductivity for superconducting

phase are plotted with respect to ω/T for fixed value of γ = 0.001 and varying values of κ. For

κ = 0.8, 1.01, the red, green and blue curves in each graph correspond to decreasing value of the

temperature. Whereas for κ = 1.05, 1.1, the red, green and blue curves in each graph correspond

to increasing value of the temperature.
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Figure 18. For m2 = −3/16, real and imaginary parts of the ac conductivity for superconducting

phase are plotted with respect to ω/T . The graphs at the top are for a fixed value of γ = 0.001 and

T = 0.0419µ with red, green and the blue curves corresponding to κ = 0.8, κ = 1.01 and κ = 1.05

respectively. Whereas the bottom graphs are for a fixed value of κ = 1.05 and T = 0.0419µ with

red, green and the blue curves corresponding to γ = 0.001, γ = 0.05 and γ = 0.1 respectively.

observed that for increasing values of the Born-Infeld parameter, the gap in the real part

of the ac conductivity shifts to higher values of the frequency (ω) with the decrease in the

conductivity peaks.

6 Summary and conclusions

In summary we have constructed a model of (2+1) dimensional p-wave holographic super-

conductors from charged Born-Infeld black holes in a AdS4 bulk in the presence of a charged

massive vector field. The superconducting phase of the strongly coupled boundary field

theory corresponds to the condensation of the complex vector field leading to the formation

of vector hair for the charged Born-Infeld black hole. For the boundary field theory this

leads to a charged vector operator acquiring a vacuum expectation value that breaks both

the U(1) symmetry as well as the rotational invariance spontaneously. This coressponds to

an anisotropic condensate in the boundary field theory that describes a p-wave holographic

superconductor. Considering the backreaction of the vector matter fields we have eluci-

dated a rich and varied phase structure for the boundary field theory depending on the

relative values of the mass parameter m, the backreaction parameter κ and the Born-Infeld

parameter γ. It has been shown in our construction that depending on the values of the pa-

rameters described above it is possible to obtain zeroth order, first order, second order and

retrograde phase transitions for the condensate formation in the strongly coupled (2+1)

dimensional boundary field theory. While the phase structure obtained by us is similar to
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that described in [28] in the context of a linear Maxwell electrodynamics, we also observe

novel behaviours controlled by the Born-Infeld parameter for our nonlinear scenario. From

our construction we obtain a critical value (m2
c = 0) of the mass parameter m2 such that

the parameter space is partitioned into two regions with different behaviours of the con-

densate for different values of the parameters κ and γ. Particularly it is observed that for

m2 > m2
c there is a critical value (κc) for small values of γ such that the condensate shows

a second order phase transition for κ < κc whereas the transition is of first order for κ > κc.

For m2 < m2
c , we have shown that at very small values of the Born-Infeld parameter

γ the system has two critical values of κ namely, κ1 and κ2. For κ < κ1 the condensate

formation follows a second order phase transition whereas for κ1 < κ < κ2, it is a first

order phase transition. Finally for κ2 < κ, the condensation of the vector field occurs

via a retrograde phase transition that exhibits a condensate formation for temperatures

higher than the critical temperature T1. This retrograde phase transition corresponds to a

metastable phase of the condensate for which the free energy is higher than that of the nor-

mal phase. Furthermore we have shown from our construction that for fixed values of κ for

the different regions mentioned above between the two critical values κ1 and κ2, changing

the Born-Infeld parameter γ also affects the nature of the phase transition. Particularly

for κ < κ1 and κ2 < κ, changing γ has no effect on the order of the phase transition

whereas for κ1 < κ < κ2, increasing γ beyond a certain critical value γ1c changes the phase

transition from first order to a retrograde phase transition. The general behaviour which

emerges from our analysis is that, irrespective of any value of m2 the critical transition

temperature decreases with increasing values of the parameters κ and γ.

In order to characterize the nature of the different types of superconducting phase

transitions in our model, we have studied the holographic free energy for both the normal

and the superconducting phases for different possible values of the parameters m2, κ and

γ. For the first order phase transition the free energy shows a characteristic swallow tail

behaviour whereas for the second order phase transition the free energy exhibits a kink

at the critical temperature. Furthermore, for the zeroth order phase transition the free

energy describes an abrupt discontinuity at the transition from the superconducting to the

normal phase of the boundary field theory. It is to be noted that the holographic free

energy considered here may be considered as a generalized version of the usual Landau-

Ginzburg free energy [51] where the coefficient of the quadratic term in the order parameter

depends linearly on the temperature whereas the coefficient of the fourth order term is

weakly dependent. Also the holographic free energy considered here describes a strongly

coupled phase of the boundary field theory which shows a deviation from the usual mean

field behaviour. In the context of the phenomenological Landau-Ginzburg theory such a

deviation would imply an unusual dependence of the critical temperature on the higher

order terms. Thus in this context an analytical description of our construction may serve

to provide a deeper insight into this interesting issue.

In contrast to [28] in a linear Maxwell scenario we have further computed the ac con-

ductivity for the p-wave superconducting phase of the strongly coupled 2+1 dimensional

boundary field theory. We observe from our construction that the ac conductivity exhibits

the usual behaviour as obtained for the case of p-wave holographic superconductors de-
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scribed in [18]. The only exception occurs for the case of the condensate corresponding to

the retrograde phase transition where the real part of the ac conductivity shows the for-

mation of a gap for temperatures above the critical temperature T1. Finally in passing we

would like to mention that the retrograde phase transition for the p-wave superconducting

phase of the boundary field theory is usually observed for binary and multicomponent liquid

mixtures as described in [30]. This interesting type of phase transition also occurs in some

of the superconducting materials such as the granular BaPb0.75Bi0.25O3 compound [52]

and the cuprate superconductors described in [53]. This naturally makes it interesting

to explore whether our construction would be relevant for the description of the phase

structure and the transport properties of such superconducting materials.

Our work leads to extremely interesting future directions for investigations. It would be

interesting to generalize our construction to the gravitational background lattice described

in [54, 55]. Such an investigation may lead to interesting behaviour of the transport prop-

erties such as the ac conductivity for such models. Furthermore it may also be possible

to extend our construction to the case of the zero temperature gravitational background,

such as the AdS soliton where the system may undergo a superconductor/insulator phase

transition as described in [26, 56–58]. Additionally our construction may be generalized to

study the phenomena of holographic quantum quench [59–61] that may lead to interesting

insights due to the presence of the non-linear Born-Infeld term considered by us. We leave

these interesting avenues for future investigations.
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