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1 Introduction

Halo-sized non-BPS ’t Hooft-Polyakov monopole dark matter models [1, 2] predict dark

matter halos with density distributions which are the energy distributions of the corre-

sponding classical field theory solutions. In other words, they are automatically cored and

pseudo-isothermal in the sense that at intermediate radii their density falls as the inverse

squared radius, resolving the core/cusp problem [3]. Moreover, they are described by a

single parameter corresponding to their magnetic charge, reproducing the observed one-

parameter universality of rotation curves in spiral galaxies [4]. Dirac quantization also

ensures a minimum mass, potentially resolving the missing satellites problem [5, 6]. The

main phenomenological obstruction to such dark matter models is that the monopoles

repel, unlike real dark matter halos whose long distance interactions are gravitationally

dominated. Various proposed solutions to this problem have been proposed, from screen-

ing by light antimonopoles of another flavor in the original references to confinement inside

of Skyrmions in ref. [7]. The first mechanism has yet to be realized in a concrete model1

while the second leads to metastability, not stability, for large halos.

In the current note we investigate another potential solution. Our monopoles need to

be deeply non-BPS to exhibit the desired isothermal density profile in the inner region, yet

1However in ref. [8], in a related context, the dark abelian gauge field is screened by charged dark matter.

The electromagnetic dual of that model exhibits the desired magnetic screening.
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at long distances we would like the cancellation of forces characteristic of BPS monopoles.

We will attempt to achieve the best of both worlds by including two charged scalar Higgs

fields in our theory, one of which has a large self-interaction and so is deeply non-BPS,

yielding the pseudoisothermal spike in the core, while the second has no self-interaction

and so serves to cancel the magnetic repulsion at large distances.

Even if the long distance interaction can be made negligibly small for static monopoles

at a fixed separation, there is no guarantee that the interactions between monopoles will

be sufficiently small to satisfy all observational bounds. BPS monopoles have very large

short distance interactions and also long distance interactions proportional to the relative

velocity squared [9]. In addition, the phenomenological bounds themselves, derived from

cluster interactions, are still quite controversial [10, 11]. These bounds are derived using

very simple models of repulsion by a central potential yielding scattering at a fixed angle,

which is quite different from the velocity dependent, non-central interactions characteristic

of BPS monopoles. Indeed, the interactions of multimonopole systems with one another,

even in the BPS case, depends on an understanding of the internal kinematics of each

system, which again is dominated by such non-central interactions, and so is nontrivial.

We will return to this problem in a sequel.

Generally speaking, solitonic dark matter models fall into two categories. First, each

dark matter halo may consist of a single soliton, albeit of high charge. Such halos pre-

sumably formed from a merger of charge one solitons which needed to be light enough to

avoid introducing too much shot noise in the matter power spectrum [12]. Such halos, if

cool enough, will have a shape determined by the profile of the soliton solution and so will

yield universal halo profiles. The other possibility is that each halo consists of a number of

solitons which move sufficiently quickly to form a dispersion supported structure. In this

case the individual soliton subhalos must satisfy the bound [12].

In our study below, we will find that acceptably small repulsion requires the spike to

have much less mass than the total halo.2 Thus although the isothermal profile of the spike

is tantalizingly similar to observed halo plus baryon density profiles, yielding flat rotation

curves for example, it seems unlikely that the spike can contain a large enough fraction

of the halo mass to agree with observations. Therefore, if realized in Nature the spiked

monopole scenario would likely fall under the second category above. The universality of

halo shapes would therefore not be a direct consequence of the soliton solution. In this case,

the monopole gas may be thin enough to satisfy upper limits on the dark matter scattering

cross section, although this may require individual monopoles which are so small that the

minimum mass alone would not yield a solution to the missing satellite problem.

On the bright side, the spikes in the soliton solution would necessarily form seeds for the

formation of today’s supermassive black holes. With the discovery of supermassive black

halos at ever larger redshift [14], it has become ever more difficult to produce convincing

scenarios of their growth [15]. Large black holes require large seeds [16] or else seeds which

were created very early [17, 18]. The spikes of spiked monopoles, produced via the Kibble

mechanism, would provide very early seeds.

2As a result kinematic bounds such as that in ref. [13] will be easily satisfied.
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2 Individual spiked monopoles

2.1 Einstein-Yang-Mills-Higgs

Although in the present note we will only be interested in solutions in the range of parameter

space in which gravity is essentially Newtonian, we are motivated in part by the formation

of black holes and so it will eventually be useful to embed our solutions in general relativity.

Therefore we will introduce our monopoles in the context of Einstein gravity coupled to

the SU(2) Yang-Mills Higgs theory, and later specialize to the case of Newtonian gravity.

Einstein-Yang-Mills-Higgs theory is defined by the following action

S=

∫ √
−det(g)L, L=Lgrav+LYM+LH (2.1)

Lgrav =
1

4k
R, k= 4πGN (2.2)

LYM =− 1

2g2
Tr(FµνF

µν) , Fµν = ∂µAν−∂νAµ−i[Aµ,Aν ] (2.3)

LH =
∑
I

[
Tr(DµΦID

µΦI)−
λI
4

(
2Tr(Φ2

I)−v2I
)2]

, DµΦI = ∂µΦI−i[Aµ,ΦI ]. (2.4)

The analogue of the BPS condition for φ1 is λ1 = 0, which will be imposed in subsequent

sections. We will adopt the spherically symmetric, static Ansatz [19]

ds2 = σ2(r)N(r)dt2 − dr2

N(r)2
− r2(dθ2 + sin2(θ)dφ2), N(r) = 1− 2km(r)

r
(2.5)

Ai = εaik
xk

r2
(1− w(r))T a, ΦI = vIφI(r)

xjT j

r
(2.6)

where for brevity we have mixed Cartesian xi and spherical (r, θ, φ) coordinates. We have

also suppressed dependence on space-time while making dependence on r alone explicit,

to highlight that with this Ansatz the equations of motion become ordinary differential

equations in r. All pairs of indices are summed implicitly regardless of whether they are

up or down except for the flavor index, which will always be denoted using capital letters.

The gauge generators are normalized such that Tr(T aT b) = δab/2.

With this Ansatz, Einstein’s Equations reduce to one constraint and one dynamical

equation

Gtt = 2kT tt , Gtt −Grr = 2k(T tt − T rr ). (2.7)

Multiplying the former by r2/2k and the latter by r/2kN(r) one obtains the two equations

m′(r) =
N(r)w′2(r)

g2
+

(
1− w2(r)

)2
2g2r2

+
∑
I

[
v2Iw

2(r)φ2I(r) +
λIv

4
Ir

2

4

(
φ2I(r)− 1

)2]
(2.8)

σ′(r)

kσ(r)
=

2w′2(r)

g2r
+
∑
I

v2Iφ
′2
I (r)r. (2.9)
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Further equations follow from the vanishing of the variation with respect to A and ΦI

respectively

(
N(r)σ(r)w′(r)

)′
=
σ(r)

r2
w(r)

(
w2(r)− 1

)
+
∑
I

g2v2Iφ
2
I(r)σ(r)w(r) (2.10)

(
N(r)r2σ(r)φ′I(r)

)′
= 2w2(r)σ(r)φI(r) + λIv

2
Ir

2σ(r)
(
φ2I(r)− 1

)
φI(r). (2.11)

If km(r) � r, which is generally the case for vI well below the Planck scale, then

one may approximate N(r) = σ(r) = 1. In this case the two gravitational equations (2.8)

and (2.9) can be ignored, as they can always be integrated to produce N(r) and σ(r) which

are anyway approximated to be unity. The remaining equations simplify to

w′′(r) =

[
w2(r)− 1

r2
+
∑
I

g2v2Iφ
2
I(r)

]
w(r) (2.12)

(
r2φ′I(r)

)′
=
[
2w2(r) + λIv

2
Ir

2(φ2I(r)− 1)
]
φI(r). (2.13)

The spiked monopole is the solution to the ordinary differential equations (2.12) and (2.13)

with λ1 = 0 and the boundary conditions

w(0) = 1, w(∞) = 0, φI(0) = 0, φI(∞) = 1. (2.14)

2.2 Asymptotics

At large r, as the W boson is Higgsed, w(r) exponentially goes to zero. As it is massive

when varied about the minimum of its potential, φ2(r) also exponentially goes to 1. Thus

at high r the only non-exponentially suppressed evolution is that of φ1(r). Dropping the

exponentially suppressed w(r) term, it is described by (2.13)(
r2φ′1(r)

)′
= 0 (2.15)

whose solutions with the boundary conditions (2.14) are

φ1 = 1− c

r
. (2.16)

In the BPS case, corresponding here to λ2v2 = 0, one finds c = 1/gv and the attractive

force caused by the scalar cancels the monopole’s repulsive magnetic force. However more

generally c appears to be unconstrained.

2.3 Numerical solutions

We have numerically solved this system of ordinary differential equations for various values

of v1, v2 and λ2. We have found that

0 ≤ c ≤ 1/gv (2.17)

where the upper bound is saturated only in the BPS case λ2v2 = 0. In particular, the

failure of c to saturate its upper bound appears to be monotonic in λ2 and v2.
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In the case g = v1 = v2 = λ2 = 1, the functions φi(r) and w(r) are drawn in figure 1.

In figure 2 we compare φ1(r) with the asymptotic form (2.16) with c = 0.5835, which is

only about half of the BPS bound. The agreement between these curves at high r may

lead one to suspect that, since c does not saturate its BPS value, the scalar field φ1 in such

monopoles is insufficient to balance the repulsive magnetic field, and so such monopoles

repel. We will see numerically that this is indeed the case. We have also tried various

nonrenormalizzable potentials for φ2 but were unable to violate the upper bound (2.17),

and so we expect that spiked monopoles will repel even in such cases.

3 Monopole interactions

We have found hedgehog-like spiked monopole solutions of the Yang-Mills-Higgs system.

In the rest of this paper, we will attempt to answer two questions regarding these solutions.

First of all, are they stable? Even if they are stable against spherically-symmetric

perturbations, this does not guarantee stability against all perturbations. Topology guar-

antees that the winding number of each scalar field agrees with the magnetic charge, which

is equal to unity. However, both scalar fields interact with the gauge field and so it is

not clear that such a simple concentric wrapping is the lowest energy solution. One may

worry, for example, whether the presence of multiple charged scalar fields could lead to the

existence of semilocal solutions as happens in the case of strings [20, 21].

Second, do they really repel? Sure, c does not saturate its BPS bound. But this is the

bound necessary to cancel the magnetic repulsion in the case of a single scalar field. Now

there are two scalar fields. This means that the nonabelian part of the magnetic field is

confined to lower radii, which affects the distribution of the magnetic field although Gauss’

law at large distances means that it cannot change the integrated flux. In addition, if we

are interested in the interactions of two spiked monopoles with one another, then the fact

that both of them have modified scalar fields may lead to the possibility that the critical

value of c for force cancellation is not the BPS value. After all, a larger fraction of the

spiked monopole mass is in the form of scalar fields than in the case of a BPS monopole,

and so perhaps the scalar field’s attraction is somehow more powerful in this case, canceling

the effect of the submaximal c? To respond robustly to this question, we will simulate the

evolution of such systems.

3.1 Vachaspati’s numerical method

The Ansatz used above to obtain the spiked monopole solution used the temporal gauge

A0 = 0. To numerically evolve the Yang-Mills-Higgs system, we need to write the evolution

equations in a form that preserves this gauge choice.

Our static, spiked monopole solution, as a solution of the full equations of motion,

solves the Gauss constraints which arise from the variation with respect to A0

∂kF
a
0k + εabcA

b
kF

c
0k +

∑
I

g2εabcΦ
b
IΦ̇

c
I = 0 (3.1)

even though A0 is set to zero in the Ansatz. Gauge-invariance guarantees that once the

constraints are satisfied in the initial conditions, evolution under the (hyperbolic) equations
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Figure 1. In order from top to bottom, the functions φ1(r), φ2(r) and w(r) are shown for

g = v1 = v2 = λ2 = 1.
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Figure 2. The function φ1(r) (black) is compared with 1 − 0.5835/r (red).

with two time derivatives will continue to satisfy these constraints. However on the lattice,

imprecision due to the finite lattice spacing will cause violations of the constraints which,

once present, are grown exponentially by the second order evolution equations. Thus one

needs a method of enforcing these constraints as the system evolves. Solving the elliptic

equations (3.1) at each iteration would be quite time consuming.

Fortunately, Vachaspati has imported a method from numerical relativity for this pur-

pose [22]. This method decomposes the second order Yang-Mills-Higgs evolution equations

into first order equations and introduces an auxiliary, su(2) Lie algebra valued field Γa

whose evolution enforces these constraints. In our case, the evolution equations are

∂tφ
a
I = φ̇aI (3.2)

∂tA
a
k = F a0k (3.3)

∂tφ̇
a
I = ∂2kφ

a
I − 2εabc∂kφ

b
IA

c
k +Aakφ

b
IA

b
k − φaIAbkAbk − λI(φbIφbI − v2I )φaI + εabcΓ

bφcI (3.4)

∂tF
a
0k = ∂2jA

a
k + 2εabcA

b
j∂jA

c
k − εabcAbj∂kAcj +AajA

b
jA

b
k −AakAbjAbj − ∂kΓa (3.5)

− εabcAbkΓc + g2
∑
I

[
−εabcφbI∂kφcI − φbIφbIAak + φbIA

b
kφ

a
I

]
(3.6)

∂tΓ
a = ∂kF

a
0k − g2p

[
∂kF

a
0k + εabcA

b
kF

c
0k +

∑
I

g2εabcΦ
b
IΦ̇

c
I

]
(3.7)

where gp is any constant. In the continuum limit, the choice of gp is irrelevant because it

multiplies the vanishing constraint (3.1). However on the lattice this constraint will fail

to be zero as a result of numerical imprecision and so gp can be chosen at will to enforce

stability. Following ref. [22] we choose g2p = 0.75, although unlike that reference we also

set g = 1.

The auxilliary field Γa is given the initial value

Γa(t = 0) = ∂kA
a
k(t = 0). (3.8)

– 7 –
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Note that if the constraint is satisfied, the evolution equation (3.7) guarantees that Γ will

be equal to ∂kAk at all times. In practice, the failure of the constraint will lead to a

deviation of Γ which will push the solution back towards the constraint surface.

Simply discretizing time and evolving according to finite differences given by the evo-

lution equations, numerical imprecisions grow exponentially and the configuration soon

diverges. To eliminate this problem, again following ref. [22], we evolve using the second

order Crank-Nicholson method. This was shown to be the optimal order in ref. [23].

3.2 Covariant absorbing boundary conditions

Ref. [22] introduced a new kind of absorbing boundary condition, in which the Laplacian is

replaced with ∂r∂t to effectively make free waves travel outwards at the speed of light. This

boundary condition is not gauge covariant, as ordinary instead of covariant derivatives are

employed. This caused little problem for the authors as they considered only massive fields

whose values were anyway exponentially suppressed near the boundary. In our case, the

field φ1 only decreases as 1/r and so its derivative at the boundary is not negligible. As

a result, when we attempted to use this kind of boundary condition, the constraints were

violently violated near the boundary and this violation soon spread to the entire lattice.

Therefore we have instead introduced covariant boundary conditions. We derived these

boundary conditions by altering the metric at the boundary to

gtt = gtr = a, gtk = grr = grk = 0, gjk = −bδjk, b� a (3.9)

where j and k are perpendicular to r. As the boundary conditions came from a modi-

fication of the metric, gauge-covariance is guaranteed. Returning to a Minkowski metric

without changing the form of the evolution equations, these boundary conditions change

the evolution equations at the boundary to

∂tφ̇I = −∂rφ̇I − εabcAbrφ̇cI −
1

2
F b0rφ

c
I (3.10)

∂tF
a
0k = −∂rF a0k + ∂kF

a
0r − εabcAbrF c0k −

1

2
εabcF

b
0rA

c
k. (3.11)

Here one can recognize the first terms on the right hand sides as the boundary conditions

of ref. [22] while the later terms serve to render them gauge covariant.

3.3 Two-monopole initial conditions

We are interested in interactions of 2 spiked monopoles with each other. In section 2 we

described the construction of a single spiked monopole. This is a time-independent solution

to the equations of motion. It is not known if there are any time-independent solutions

with two monopoles and in fact the repulsion that we will find makes the existence of such

a solution unlikely, at least in the absence of gravity. Therefore, since time-independence

is out of the question, the choice of initial conditions for a simulation of 2 monopoles is

somewhat arbitrary.

We will be guided by the following argument. The Ansatz for Ai in eq. (2.6) decomposes

the gauge field into two terms. The 1 in the (1 − w(r)) represents the long range abelian

– 8 –
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part of the field, whereas the w(r) represents the W boson, which is massive outside of the

core and exponentially falls to zero. In the case at hand, we are interested in well separated

monopoles. So nearby one, it should resemble a single spiked monopole.

With this vague motivation, we will place the monopoles at x = y = 0, z = ±z0 with

z0 > 0 and we will divide the space into two regions along the plane z = 0. Each region

contains one monopole and in each the w term in (2.6) will be simply that corresponding

to a single spiked monopole in that space. It will not be differentiable at z = 0, but it

is already exponentially suppressed there. The other term, essential for the asymptotic

behavior of the 2-monopole system, will be taken from Manton’s construction in ref. [24].

Repeating Manton’s construction, to determine the fields at a point p first one deter-

mines the angle θi between the z axis and the line from p to each monopole. Their sum is

the stream function

ψ = sin(θ1) + sin(θ2), ψ′ = ψ + sign(z), sign(z) =
z

|z|
. (3.12)

Let φ̂ be the unit vector in color space corresponding to φI at the point p. We are adapting

Manton’s analysis in which there is only one scalar field, so this direction will necessarily be

independent of the flavor index I, although the radial dependence does depend on the flavor

ΦI = vIφI(r̃)φ̂(r̃). (3.13)

Here r̃ is the distance to the nearest monopole, so the derivative will be discontinuous at

z = 0. In our initial condition, we fix φ̂ to the large r̃ form of ref. [24]

φ̂ =
√

1− ψ′2 x√
x2 + y2

T 1 + sign(z)
√

1− ψ′2 y√
x2 + y2

T 2 + sign(z)ψ′T 3 (3.14)

while φI(r̃) are taken to be the single monopole solutions.

At large r̃ the gauge field only depends on φ̂

Aasy
k = [∂kφ̂, φ̂]. (3.15)

In the case of a single monopole, Aasy is in fact just the abelian term in eq. (2.6). Therefore

the gauge field of a single monopole is just the sum of Aasy and the w term in (2.6). As we

would like the two monopole initial condition to reproduce the single monopole solution

near each monopole, our initial condition will be that on each side of z = 0 the gauge field

is just this sum

Ai = Aasy
i − εika

w(r̃)x̃k

r̃2
T a. (3.16)

Here r̃ is the distance to the nearest monopole, and x̃k is the coordinate centered on the

nearest monopole. Recalling that ΦI is given by (3.13) with φI given by the one monopole

solution for the nearest monopole, the initial conditions for the 2 monopole configurations

are now determined.

Converting to global Cartesian coordinates with ρ =
√
x2 + y2, the distance to the

nearest monopole is
√
x2 + y2 + (z − z0sign(z))2 and we can evaluate the initial conditions

– 9 –
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for A in terms of ψ′ and w

Ai = Aasy
i +Awi (3.17)

Aasy
x =

[
−y
ρ

∂xψ
′√

1− ψ′2
− xy

ρ3
ψ′
√

1− ψ′2

]
T 1 (3.18)

+ sign(z)

[
x

ρ

∂xψ
′√

1− ψ′2
− y2

ρ3
ψ′
√

1− ψ′2

]
T 2 + sign(z)

y

ρ2
(
1− ψ′2)T 3

Aasy
y =

[
−y
ρ

∂yψ
′√

1− ψ′2
+
x2

ρ3
ψ′
√

1− ψ′2

]
T 1 (3.19)

+ sign(z)

[
x

ρ

∂yψ
′√

1− ψ′2
+
xy

ρ3
ψ′
√

1− ψ′2

]
T 2 − sign(z)

x

ρ2
(
1− ψ′2)T 3

Aasy
z = − ∂zψ

′

ρ
√

1− ψ′2

[
yT 1 − xsign(z)T 2

]
(3.20)

Awx =
w (z − z0sign(z)) sign(z)

x2 + y2 + (z − z0sign(z))2
T 2 − wysign(z)

x2 + y2 + (z − z0sign(z))2
T 3 (3.21)

Awy = − w (z − z0sign(z)) sign(z)

x2 + y2 + (z − z0sign(z))2
T 1 +

wxsign(z)

x2 + y2 + (z − z0sign(z))2
T 3 (3.22)

Awz =
wy

x2 + y2 + (z − z0sign(z))2
T 1 − wxsign(z)

x2 + y2 + (z − z0sign(z))2
T 2. (3.23)

Here w is always evaluated at
√
x2 + y2 + (z − z0sign(z))2, but for brevity the argument

is left implicit.

4 Results

4.1 Simulation parameters

We considered g = 1. We varied v1, v2 and λ2 but performed most of our simulations on

the combination v1 = v2 = λ2 = 1. We simulated single spiked monopoles and also pairs of

spiked monopoles starting at initial positions x = y = 0 and z = ±z0, In the case of single

monopoles, we ran simulations with various initial velocities. To create a moving single

monopole, we Lorentz transformed the initial conditions and then gauge transformed back

to the temporal gauge A0 = 0, as the evolution equations (3.7) are given in that gauge.

We identified the monopole position with the zero of the field φI interpolated between

the grid points. We found that this definition of the position was in general quite inde-

pendent of which flavor of the field was used. In other words, even during the interactions

we found that the zeros of the fields were separated by an amount consistent with the

uncertainties of the simulations.

We used two overlapping grids of the same dimensions. Each grid had dimensions of

between 16 and 34 in x and y and between 28 and 106 in z. The grid spacings were different.

The fine grid had a grid spacing of between 0.12 and 0.25 while the coarse grid always had

a spacing which was three times larger. The grids were placed so that they had a common
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center. The fine grid lay entirely within the coarse grid and all calculations in the overlap

were done using the fine grid, and then imposed upon the coarse grid at each step.

The fine grid spacing is similar to the 0.2 used in ref. [22]. However in that paper all

fields reached their asymptotic values exponentially and so boundary conditions were not so

essential. In the present note, as λ1 = 0, the Φ1 field falls as 1/r and so is still appreciable

at the boundary of the fine grid. This is the reason that we introduced the coarse grid.

Its boundaries are sufficiently distant that the Φ1 field approaches its asymptotic value.

However, in our simulations we keep the monopole centers well within the fine grid. In

fact we observed that, as a result of finite lattice spacing errors in the coarse grid, the

monopoles are actually repelled from the coarse grid and so, unless they have a sufficiently

high initial velocity, they do not leave the fine grid.

The time spacing in each simulation was always half of the spatial spacing in the

fine grid. We found that a larger time step leads to the numerical instabilities expected

in the iterative Crank-Nicholson method when the time and spatial discretization scales

are comparable.

4.2 Results

In our two spiked monopole simulations, at t = 0 the configuration is static and there is

no electric field. Therefore the gauge constraints are satisfied exactly. However, our initial

conditions are made by patching together two solutions, one at z > 0 and the other at

z < 0. This patching is imperfect, especially for small z0. As a result, there are violent

derivatives near z = 0 which, due to discretization errors, lead to an evolution which

soon violates the constraints near z = 0. This violation spreads throughout the grid but

eventually dissipates as Vachaspati’s auxilliary field forces the configuration to relax back

to a solution. This relaxation is shown in figure 3.

We have observed that the scalar fields in the monopoles are remarkably stable, given

initial velocities or when exposed to interactions with other monopoles. The solutions

change, but gauge-invariant observables move with the monopoles. In figure 4 one can

observe the motion of two monopoles beginning at z = ±2 on the finely spaced grid. The

self-interacting scalar field is tightly confined, yet it moves roughly in step with the other

scalar field. As expected, the monopoles repel. In the last panel, one may see that on

the two edges at z = 0 the scalar field has actually decreased. In fact, it fluctuates due

to an effective friction force caused by numerical errors on the coarse grid. Most of our

simulations were done on wider grids where this effect is still present, but smaller.

5 Comments

Dark matter halos grow by merging. This merging requires them to be attractive, but the

simplest manifestation of monopole dark matter is repulsive. If the magnetic repulsion is

sufficiently weak, then it can be overcome by gravity. However fitting parameters in the

simplest model [1] one finds that v ∼ 1014 GeV and so the magnetic repulsion is stronger

than gravitational attraction by nearly 10 orders of magnitude. In the spiked monopole

model, the gravitational repulsion is reduced. The crudeness of our numerical simulations
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Figure 3. The square root of the three components of the constraint added in quadrature at times

t = 0.2 (top), t = 3 (middle) and t = 15 (bottom) for two monopoles starting at z = ±2. An initial

violation of the constraint at z = 0 spreads into the volume and diffuses as the system relaxes to a

solution. The finely spaced grid is plotted.
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Figure 4. The sum in quadrature of the three gauge components of scalar field I = 1 (left) and

I = 2 (right) at t = 3 (top), t = 6 (middle) and t = 15 (bottom). The finely spaced grid is plotted.
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and initial conditions makes it difficult to quantify the repulsion, however it clearly is not

reduced by the required 10 orders of magnitude.

When the mass in the spike is reduced, the asymptotic value of φ1 approaches its

BPS value roughly linearly, not exponentially. Therefore the attraction of the scalar field

can cancel the repulsion with sufficient precision only if the mass of the spike is several

orders of magnitude smaller than that of the monopole. If it is the spike which yields flat

galactic rotation curves, then it is not possible for the spike to be more than a few orders

of magnitude lighter than its host halo. Therefore we conclude that, without additional

screening, it is not possible for this spike to explain the 1/r2 density profile of dark matter

halos. However, a much lighter spike which seeds black holes and perhaps resolves the final

parsec problem [25] in their merging is allowed if the monopoles are either BPS or else

screened by some other mechanism.

In a sequel we will attempt to examine the possibility that each halo consists of a gas

of spiked BPS monopoles, whose spikes are small enough to induce little repulsion but large

enough to seed black hole growth. Each monopole in this gas should be small enough to

evade the bounds in [12]. In principle, the entire monopoles themselves could serve as seeds,

in which case the spikes are not necessary. As the interactions between BPS monopoles

depend on relative velocities and displacement [9] such a gas is rather complicated and its

stability is still an open question, let alone its phenomenological viability as a halo model.
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