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theory. We then explain the relation of the expansion near the two conformal points

ζ = 0 and ζ = 1 to the correlators of scalar operators inserted on the loop. We also

discuss the AdS5 × S5 string 1-loop correction to the strong-coupling expansion of the

standard circular Wilson loop, as well as its generalization to the case of mixed boundary

conditions on the five-sphere coordinates, corresponding to general ζ. From the point of

view of the defect CFT1 defined on the Wilson line, the ζ-dependent term can be seen

as a perturbation driving a RG flow from the standard Wilson loop in the UV to the

supersymmetric Wilson loop in the IR. Both at weak and strong coupling we find that the

logarithm of the expectation value of the standard Wilson loop for the circular contour is

larger than that of the supersymmetric one, which appears to be in agreement with the 1d

analog of the F-theorem.

Keywords: AdS-CFT Correspondence, Wilson, ’t Hooft and Polyakov loops, Supersym-

metric Gauge Theory

ArXiv ePrint: 1712.06874

1Also at Lebedev Institute, Moscow.

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP03(2018)131

mailto:matteo.beccaria@le.infn.it
mailto:sgiombi@princeton.edu
mailto:tseytlin@imperial.ac.uk
https://arxiv.org/abs/1104.5077
https://arxiv.org/abs/1712.06874
https://doi.org/10.1007/JHEP03(2018)131


J
H
E
P
0
3
(
2
0
1
8
)
1
3
1

Contents

1 Introduction 1

2 Weak coupling expansion 6

2.1 One-loop order 6

2.2 Two-loop order 8

2.2.1 Ladder contribution 8

2.2.2 Self-energy contribution 10

2.2.3 Internal-vertex contribution 10

2.2.4 Total contribution to standard Wilson loop 13

2.3 Generalization to any ζ 13

3 Relation to correlators of scalar operators on the Wilson loop 16

4 Strong coupling expansion 20

4.1 Standard Wilson loop 21

4.2 General case 23

5 Concluding remarks 27

A Cut-off regularization 28

B Computing 2-loop circle integrals 29

B.1 Expansion method 29

B.2 Method based on Fourier representation 30

B.3 Alternative approach: expansion and summation directly in d = 4 32

1 Introduction

The expectation value of the Wilson loop (WL) operator 〈TrPei
∫
A〉 is an important

observable in any gauge theory. In N = 4 Super Yang-Mills (SYM), the Wilson-

Maldacena loop (WML) [1, 2], which contains an extra scalar coupling making it locally-

supersymmetric, was at the center of attention, but the study of the ordinary, “non-

supersymmetric” WL is also of interest [3, 4] in the context of the AdS/CFT correspon-

dence. Computing the large N expectation value of the standard WL for some simple

contours (like circle or cusp) should produce new non-trivial functions of the ’t Hooft cou-

pling λ = g2N which are no longer controlled by supersymmetry but may still be possible

to determine using the underlying integrability of the theory. Another motivation comes

from considering correlation functions of local operators inserted along the WL: this should

produce a new example of AdS2/CFT1 duality, similar but different from the one recently
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discussed in the WML case [5, 6]. In the latter case, correlators of local operators on the

1/2-BPS Wilson line have a OSp(4∗|4) 1d superconformal symmetry, while in the ordinary

WL case one expects a non-supersymmetric “defect” CFT1 with SO(3)×SO(6) “internal”

symmetry.

On general grounds, for the standard WL defined for a smooth contour one should

find that (i) all power divergences (that cancel in the WML case) exponentiate and factor-

ize [7–12] and (ii) all logarithmic divergences cancel as the gauge coupling is not running in

N = 4 SYM theory. Thus its large N expectation value should produce a nontrivial finite

function of λ (after factorising power divergences, or directly, if computed in dimensional

regularization).

It is useful to consider a 1-parameter family of Wilson loop operators with an arbitrary

coefficient ζ in front of the scalar coupling which interpolates between the WL (ζ = 0) and

the WML (ζ = 1) cases [4]

W (ζ)(C) =
1

N
TrP exp

∮
C
dτ
[
i Aµ(x) ẋµ + ζΦm(x) θm |ẋ|

]
, θ2

m = 1 . (1.1)

We may choose the direction θm of the scalar coupling in (1.1) to be along 6-th direction,

i.e. Φmθ
m = Φ6. Below we shall sometimes omit the expectation value brackets using the

notation

WL : 〈W (0)〉 ≡W (0) , WML : 〈W (1)〉 ≡W (1) . (1.2)

Ignoring power divergences, for generic ζ the expectation value 〈W (ζ)〉 for a smooth contour

may have additional logarithmic divergences but it should be possible to absorb them into

a renormalization of the coupling ζ, i.e.1

〈W (ζ)〉 ≡W
(
λ; ζ(µ), µ

)
, µ

∂

∂µ
W + βζ

∂

∂ζ
W = 0 , (1.3)

where µ is a renormalization scale and the beta-function is, to leading order at weak

coupling [4]

βζ = µ
dζ

dµ
= − λ

8π2
ζ(1− ζ2) +O(λ2) . (1.4)

The WL and WML cases in (1.2) are the two conformal fixed points ζ = 0 and ζ = 1

where the logarithmic divergences cancel out automatically.2 Given that the SYM action

is invariant under the change of sign of Φm the fixed point points ζ = ±1 are equivalent

(we may resstrict ζ to be non-negative in (1.1)).

Our aim below will be to compute the leading weak and strong coupling terms in the

WL expectation value for a circular contour in the planar limit. As is well known, the

1Here there is an analogy with a partition function of a renormalizable QFT: if gb is bare coupling

depending on cutoff Λ one has Zb(gb(Λ),Λ) = Z(g(µ), µ), µ dZ
dµ

= µ ∂Z
∂µ

+ β(g) ∂Z
∂g

= 0, β = µ dg
dµ

. In the

present case the expectation value depends on µ via µR where R is the radius of the circle (which we often

set to 1). A natural choice of renormalization point is then µ = R−1.
2As the expectation value of the standard WL has no logarithmic divergences, combined with the fact

that the straight line (or circle) preserves a subgroup of 4d conformal group this implies that one should

have a 1d conformal SL(2, R) invariance for the corresponding CFT on the line for all λ.
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circular WML expectation value can be found exactly due to underlying supersymmetry;

in the planar limit [13–15] (see also [16])

W (1)(circle) =
2√
λ
I1(
√
λ) =

1 + λ
8 + λ2

192 + · · · , λ� 1 ,√
2
π

1
(
√
λ)3/2

e
√
λ
(

1− 3
8
√
λ

+ · · ·
)
, λ� 1 .

(1.5)

For a straight line the expectation value of the WML is 1, and then for the circle its

non-trivial value can be understood as a consequence of an anomaly in the conformal

transformation relating the line to the circle [14]. As this anomaly is due to an IR behaviour

of the vector field propagator [14], one may wonder if the same anomaly argument may

apply to the WL as well. Indeed, in this case (ζ = 0) there are no additional logarithmic

divergences and then after all power divergences are factorized or regularized away one gets

W (0)(line) = 1; then the finite part of W (0)(circle) may happen to be the same as in the

WML case (1.5).3

Some indication in favour of this is that the leading strong and weak coupling terms

in the circular WL happen to be the same as in the WML case. The leading strong-

coupling term is determined by the volume of the same minimal surface (AdS2 with circle

as a boundary) given by 2π( 1
a − 1) and (after subtracting the linear divergence) thus has

the universal form 〈W (ζ)〉 ∼ e
√
λ. At weak coupling, the circular WL and WML also

have the same leading-order expectation value (again after subtracting linear divergence)

〈W (ζ)〉 = 1 + 1
8λ+O(λ2).

However, as we shall see below, the subleading terms in WL in both weak and strong

coupling expansion start to differ from the WML values, i.e. 〈W (ζ)(circle)〉 develops de-

pendence on ζ. This implies, in particular, that the conformal anomaly argument of [14]

does not apply for ζ = 0.4

Explicitly, we shall find that at weak coupling (in dimensional regularization)

〈W (ζ)〉 = 1 +
1

8
λ+

[
1

192
+

1

128π2
(1− ζ2)2

]
λ2 +O(λ3) . (1.6)

This interpolates between the WML value in (1.5) and the WL value (ζ = 0)

W (0) = 1 +
1

8
λ+

(
1

192
+

1

128π2

)
λ2 +O(λ3) . (1.7)

Note that the 2-loop correction in (1.7) to the WML value in (1.5) has a different transcen-

dentality; it would be very interesting to find the all-order generalization of (1.7), i.e. the

counterpart of the exact Bessel function expression in (1.5) in the standard WL case. It is

tempting to conjecture that the highest transcendentality part of 〈W 〉 at each order in the

3The conjecture that the circular WL may have the same value as the locally-supersymmetric WML one

runs, of course, against the derivation of the expectation value of the latter based on localization [15] as

there is no reason why the localisation argument should apply in the standard WL case.
4This may be attributed to the presence of extra (power) divergences that do not cancel automatically in

the standard WL case. For generic ζ there are also additional logarithmic divergences that break conformal

invariance.
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perturbative expansion is the same for supersymmetric and non-supersymmetric Wilson

loops and hence given by (1.5).

The expression (1.6) passes several consistency checks. The UV finiteness of the two-

loop λ2 term is in agreement with ζ-independence of the one-loop term (cf. (1.3), (1.4)

implying that UV logs should appear first at the next λ3 order). The derivative of (log

of) (1.6) over ζ is proportional to the beta-function (1.4)

∂

∂ζ
log〈W (ζ)〉 = C βζ , C =

λ

4
+O(λ2) , (1.8)

where C = C(λ, ζ) should not have zeroes. This implies that the conformal points ζ = 1

and ζ = 0 are extrema (minimum and maximum) of 〈W (ζ)〉. This is consistent with

the interpretation of 〈W (ζ)〉 as a 1d partition function on S1 that may be computed in

conformal perturbation theory near ζ = 1 or ζ = 0 conformal points. Indeed, eq.(1.8)

may be viewed as a special d = 1 case of the relation ∂F
∂gi

= Cijβj for free energy F on a

sphere Sd computed by perturbing a CFTd by a linear combination of operators giO
i (see,

e.g., [17, 18]).

In the present case, the flow [4] is driven by the scalar operator Φmθ
m = Φ6 in (1.1)

restricted to the line, and the condition ∂
∂ζ 〈W

(ζ)〉
∣∣
ζ=0,1

= 0 means that its one-point

function vanishes at the conformal points, as required by the 1d conformal invariance.

The parameter ζ may be viewed as a “weakly relevant” (nearly marginal up to O(λ) term,

cf. (1.4)) coupling constant running from ζ = 0 in the UV (the ordinary Wilson loop) to

ζ = 1 in the IR (the supersymmetric Wilson loop). Note that our result (1.6) implies that

log〈W (0)〉 > log〈W (1)〉 . (1.9)

Hence, viewing 〈W (ζ)〉 = ZS1 as a partition function of a 1d QFT on the circle, this is

precisely consistent with the F -theorem [17–21], which in d = 1 (where it is analogous to

the g-theorem [22, 23] applying to the boundary of a 2d theory) implies

F̃UV > F̃IR , F̃ ≡ sin πd
2 logZSd

∣∣∣
d=1

= logZS1 = −F . (1.10)

Moreover, we see that 〈W (ζ)〉 decreases monotonically as a function of ζ from the non-

supersymmetric to the supersymmetric fixed point.

The second derivative of 〈W (ζ)〉 which from (1.8) is thus proportional to the derivative

of the beta-function (1.4)

∂2

∂ζ2
log〈W (ζ)〉

∣∣∣∣
ζ=0,1

= C
∂βζ
∂ζ

∣∣∣∣
ζ=0,1

, (1.11)

should, on the other hand, be given by the integrated 2-point function of Φ6 restricted

to the line and should thus be determined by the corresponding anomalous dimensions.

Indeed,
∂βζ
∂ζ

∣∣
ζ=0,1

reproduces [4] the anomalous dimensions [3] of Φ6 at the ζ = 1 and ζ = 0

conformal points

∆(ζ)− 1 =
∂βζ
∂ζ

=
λ

8π2
(3ζ2 − 1) +O(λ2) ,

∆(1) = 1 +
λ

4π2
+ . . . , ∆(0) = 1− λ

8π2
+ . . . .

(1.12)
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Again, this is a special case of a general relation between the second derivative of free energy

on Sd at conformal point and anomalous dimensions found in conformal perturbation

theory. We shall explicitly verify this relation between ∂2

∂ζ2
〈W (ζ)〉

∣∣
ζ=0,1

and the integrated

2-point function of Φ6 inserted into the circular Wilson loop in section 3 below.

The interpretation of 〈W (ζ)〉 as a partition function of an effective 1d QFT is strongly

supported by its strong-coupling representation as the AdS5 × S5 string theory partition

function on a disc with mixed boundary conditions [4] for S5 coordinates (in particular,

Dirichlet for ζ = 1 and Neumann for ζ = 0 [3]). As we will find in section 4, in contrast to

the large λ asymptotics of the WML 〈W (1)〉 ∼ (
√
λ)−3/2e

√
λ + . . . in (1.5), in the standard

WL one gets

〈W (0)〉 ∼
√
λ e
√
λ + . . . , (1.13)

so that the F-theorem inequality (1.9), (1.10) is satisfied also at strong coupling. At strong

coupling, the counterpart of the Φ6 perturbation near the ζ = 0 conformal point is an extra

boundary term (which to leading order is quadratic in S5 coordinates) added to the string

action with Neumann boundary condition to induce the boundary RG flow to the other

conformal point.5 The counterpart of ζ in (1.1) is a (relevant) coupling κ = f(ζ;λ) (which

is 0 for ζ = 0 and ∞ for ζ = 1) has the beta function (see 4.2) βκ = (−1 + 5√
λ

)κ + . . ..

This implies that strong-coupling dimensions of Φ6 near the two conformal points should

be (in agreement with [3, 6])

∆− 1 = ±
(
− 1 +

5√
λ

+ . . .

)
, i.e. ∆(0) =

5√
λ

+ . . . , ∆(1) = 2− 5√
λ

+ . . . . (1.14)

This paper is organized as follows. In section 2 we shall compute the two leading terms

in the planar weak-coupling expansion of the circular WL. The structure of the computation

will be similar to the one in the WML case in [13] (see also [24]) but now the integrands (and

thus evaluating the resulting path-ordered integrals) will be substantially more complicated.

We shall then generalize to any value of ζ in (1.1) obtaining the expression in (1.6).

In section 3 we shall elaborate on the relation between the expansion of the generalized

WL (1.6) near the conformal points and the correlators of scalar operators inserted on the

loop. In section 4 we shall consider the strong-coupling (string theory) computation of

the circular WL to 1-loop order in AdS5 × S5 superstring theory generalizing the previous

discussions in the WML case. We shall also discuss the general ζ case in section 4.2.

Some concluding remarks will be made in section 5. In appendix A we shall comment

on cutoff regularization. In appendix B we shall explain different methods of computing

path-ordered integrals on a circle appearing in the 2-loop ladder diagram contribution to

the generalized WL.

5In particular, the boundary term is independent of the fermionic fields. When restricted to the AdS2

minimal surface dual to the Wilson loop, they will be assumed to have the usual unitary ∆ = 3/2 boundary

behaviour along the whole RG flow. Instead, for the S5 scalars the boundary deformation induces unitary

mixed boundary conditions and only in Dirichlet case we have unbroken supersymmetry [4].
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Figure 1. Gauge field exchange diagram contributing the standard Wilson loop at the leading

order. In the Wilson-Maldacena loop case there is an additional scalar exchange contribution.

2 Weak coupling expansion

Let us now consider the weak-coupling (λ = g2N � 1) expansion in planar N = 4 SYM

theory and compute the first two leading terms in the expectation value for the generalized

circular Wilson loop (1.1)

〈W (ζ)〉 = 1 + λW
(ζ)
1 + λ2W

(ζ)
2 + · · · . (2.1)

We shall first discuss explicitly the standard Wilson loop W (0) in (1.2) comparing it to the

Wilson-Maldacena loop W (1) case in [13] and then generalize to an arbitrary value of the

parameter ζ.

2.1 One-loop order

The perturbative computation of the WML was discussed in [13] (see also [24]) that we

shall follow and generalize. The order λ contribution is6

W
(1)
1 (C) =

1

(4π)2

∮
C
dτ1dτ2

|ẋ(τ1)| |ẋ(τ2)| − ẋ(τ1) · ẋ(τ2)

|x(τ1)− x(τ2)|2
. (2.2)

Here the term ẋ(τ1) · ẋ(τ2) comes from the vector exchange (see figure 1) and the term

|ẋ(τ1)| |ẋ(τ2)| from the scalar exchange. This integral is finite for a smooth loop. In

particular, for the straight line xµ(τ) = (τ, 0, 0, 0), the numerator in W
(1)
1 is zero and thus

W
(1)
1 (line) = 0. (2.3)

For the circular loop, xµ(τ) = (cos τ, sin τ, 0, 0), the integrand in (2.2) is constant

|ẋ(τ1)| |ẋ(τ2)| − ẋ(τ1) · ẋ(τ2)

|x(τ1)− x(τ2)|2
=

1

2
(2.4)

and thus, in agreement with (1.5), (2.1)

W
(1)
1 (circle) =

1

(4π)2
(2π)2 1

2
=

1

8
. (2.5)

6There is a misprint in the overall coefficient in [13] corrected in [24].

– 6 –



J
H
E
P
0
3
(
2
0
1
8
)
1
3
1

The analog of (2.2) in the case of the standard WL is found by omitting the scalar exchange

|ẋ(τ1)| |ẋ(τ2)| term in the integrand. The resulting integral will have linear divergence (see

appendix A) that can be factorized or automatically ignored using dimension regularization

for the vector propagator with parameter ω = 2− ε→ 2. If we replace the dimension 4 by

d = 2ω ≡ 4− 2ε the standard Euclidean 4d propagator becomes

∆(x) = (−∂2)−1 =
Γ(ω − 1)

4πω
1

|x|2ω−2
. (2.6)

Then

W
(0)
1 =

1

(4π)2

∮
dτ1dτ2

−ẋ(τ1) · ẋ(τ2)

|x(τ1)− x(τ2)|2
→ Γ(ω − 1)

16πω

∮
dτ1dτ2

−ẋ(τ1) · ẋ(τ2)

|x(τ1)− x(τ2)|2ω−2
.

(2.7)

In the infinite line case we get (L→∞)7∫ L

0
dτ1

∫ L

0
dτ2

1

|τ1 − τ2|2ω−2
= 2

∫ L

0
dτ

L− τ
τ2 (ω−1)

=
L4−2ω

2− ω
1

3− 2ω
→ 0 . (2.8)

The formal integral here is linearly divergent. If we use dimensional regularization to

regulate both UV and IR divergences (analytically continuing from ω > 2 region) we get

as in (2.3)

W
(0)
1 (line) = 0. (2.9)

In the case of a circle, we may use (2.2), (2.5) to write (ω ≡ 2− ε→ 2)

W
(0)
1 (circle) = W

(1)
1 (circle)− Γ(ω − 1)

16πω

∮
dτ1dτ2

1

|x(τ1)− x(τ2)|2ω−2

=
1

8
− Γ(ω − 1)

22ω+2πω

∮
dτ1dτ2

[
sin2 τ12

2

]1−ω
. (2.10)

The integral here may be computed, e.g., by using the master-integral in eq. (G.1) of [25]8

M(a, b, c) ≡
∮
dτ1dτ2dτ3

[
sin2 τ12

2

]a[
sin2 τ23

2

]b[
sin2 τ13

2

]c
= 8π3/2 Γ

(
1
2 + a

)
Γ
(

1
2 + b

)
Γ
(

1
2 + c

)
Γ(1 + a+ b+ c)

Γ(1 + a+ c)Γ(1 + b+ c)Γ(1 + a+ b)
, (2.11)

i.e.∮
dτ1dτ2

[
sin2 τ12

2

]1−ω
=

1

2π
M(1−ω, 0, 0) =

4π3/2 Γ
(
−1

2 + ε
)

Γ(ε)
= −8π2ε+O(ε2). (2.12)

Plugging this into (2.10), we get the same result as in (2.5):

W
(0)
1 (circle) =

1

8
. (2.13)

Thus the leading-order expectation values for the WML and WL are the same for both the

straight line and the circle.

7We use that
∫ L
0
dτ1

∫ L
0
dτ2 f(|τ1 − τ2|) = 2

∫ L
0
dτ (L− τ) f(τ).

8Alternative direct methods of computing similar integrals are discussed in appendix B. We also note

that such 2-point and 3-point integrals can be viewed as a special d = 1 case of the conformal integrals on

Sd used in [17, 26].
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Figure 2. Order λ2 contributions to the standard Wilson loop. The middle diagram contains the

full self-energy 1-loop correction in SYM theory (with vector, ghost, scalar and fermion fields in

the loop). For the Wilson-Maldacena loop there are additional diagrams with scalar propagators

instead of some of the vector ones.

2.2 Two-loop order

At order λ2 there are three types of planar contributions to the Wilson loop in (2.14) shown

in figure 2 that we shall denote as

W
(ζ)
2 = W

(ζ)
2,1 +W

(ζ)
2,2 +W

(ζ)
2,3 . (2.14)

In the WML case it was found in [13] that the ladder diagram contribution W
(1)
2,1 is finite.

While the self-energy part W
(1)
2,2 and the internal-vertex part W

(1)
2,3 are separately loga-

rithmically divergent (all power divergences cancel out in WML case), their sum is finite;

moreover, the finite part also vanishes in 4 dimensions (in Feynman gauge)

W
(1)
2,2 +W

(1)
2,3 = 0 . (2.15)

In the WL case, using dimensional regularization to discard power divergences, we find that

the ladder diagram W
(0)
2,1 in figure 2 has a logarithmic singularity (i.e. a pole in ε = 2−ω).

The same is true for both the self-energy diagram W
(0)
2,2 and the internal-vertex diagram

W
(0)
2,3 . However, their sum in (2.14) turns out to be finite (in agreement with the general

expectation for a conformal WL operator in a theory where the gauge coupling is not

running).9

Let us now discuss each of these contributions in turn.

2.2.1 Ladder contribution

The planar ladder diagram W2,1 in figure 2 arises from the quartic term in the expansion

of the Wilson loop operator (1.1). It is convenient to split the integration region into 4!

ordered domains, i.e. τ1 > τ2 > τ3 > τ4 and similar ones. Before the Wick contractions, all

9If one uses power UV cutoff a → 0 the remaining power divergences universally factorize as an expo-

nential factor exp(−k L
a

) where L is the loop length. This can be interpreted as a mass renormalization of

a test particle moving along the loop.

– 8 –
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Figure 3. Two of planar diagrams of ladder type W2,1 = W
(a)
2,1 + W

(b)
2,1 with path-ordered four

points τ1, . . . , τ4 in the WL (ζ = 0) case. For general ζ one needs also to add similar diagrams with

scalar propagators.

these are equivalent and cancel the 4! factor from the expansion of the exponential. There

are two different planar Wick contractions shown in figure 3.

In the WML case the expression for the first one is [13]10

W
(1)
2,1a =

[
Γ(ω − 1)

]2
64π2ω

∮
τ1>τ2>τ3>τ4

d4τ
(|ẋ(1)| |ẋ(2)| − ẋ(1) · ẋ(2))(|ẋ(3)| |ẋ(4)| − ẋ(3) · ẋ(4))

(|x(1) − x(2)|2 |x(3) − x(4)|2)ω−1
.

(2.16)

The second diagram has a similar expression with (1, 2, 3, 4) → (1, 4, 2, 3). In the WML

case these two contributions are equal and finite. Setting ω = 2 we find that the integrand

in (2.16) in the circle case is constant as in (2.4). As a result,

W
(1)
2,1 = W

(1)
2,1a +W

(1)
2,1b = 2× 1

64π4

(2π)4

4!

(
1

2

)2

=
1

192
. (2.17)

This already reproduces the coefficient of the λ2 term in (1.5) (consistently with the van-

ishing (2.15) of the rest of the contributions [13]).

The corresponding expression in the WL case is found by dropping the scalar field

exchanges, i.e. the |ẋ| terms in the numerator of (2.16). Then for the circle we get

W
(0)
2,1a =

[Γ(ω − 1)]2

64π2ω

∫
τ1>τ2>τ3>τ4

d4τ
cos τ12 cos τ34(

4 sin2 τ12
2 4 sin2 τ34

2

)ω−1 ,

W
(0)
2,1b =

[Γ(ω − 1)]2

64π2ω

∫
τ1>τ2>τ3>τ4

d4τ
cos τ14 cos τ23(

4 sin2 τ14
2 4 sin2 τ23

2

)ω−1 . (2.18)

The computation of these integrals is discussed in appendix B. Setting ω = 2− ε we get

W
(0)
2,1a = [Γ(1−ε)]2

64π2 (2−ε)

[
π2

ε + 3π2 + π4

6 +O(ε)
]

= 1
64π2 ε

+ 1
384 + 3

64π2 + γE+log π
32π2 +O(ε),

W
(0)
2,1b = [Γ(1−ε)]2

64π2 (2−ε)

[
π2

2 + π4

6 +O(ε)
]

= 1
384 + 1

128π2 +O(ε). (2.19)

The total ladder contribution in the WL case is thus

W
(0)
2,1 = W

(0)
2,1a +W

(0)
2,1b =

1

64π2 ε
+

1

192
+

7

128π2
+
γE + log π

32π2
+O(ε). (2.20)

10Here x(i) = x(τi) and d4τ ≡ dτ1dτ2dτ3dτ4.
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2.2.2 Self-energy contribution

It is convenient to represent the contribution W2,2 of the self-energy diagram in figure 2 as

W
(ζ)
2,2 = − [Γ(ω − 1)]2

8πω(2− ω)(2ω − 3)
W̃

(ζ)
1 , (2.21)

where, in the WML case, one has [13]

W̃
(1)
1 =

1

16πω

∮
dτ1dτ2

|ẋ(τ1)| |ẋ(τ2)| − ẋ(τ1) · ẋ(τ2)[
|x(τ1)− x(τ2)|2

]2ω−3 . (2.22)

Again, the expression in the WL case is obtained by simply dropping the scalar exchange

|ẋ(τ1)| |ẋ(τ2)| term in the numerator of (2.22):

W̃
(0)
1 =

1

16πω

∮
dτ1dτ2

−ẋ(τ1) · ẋ(τ2)[
|x(τ1)− x(τ2)|2

]2ω−3 . (2.23)

Altough (2.23) is very similar to W
(0)
1 in (2.7), for ω 6= 2 there is a difference in the power

in the denominator. Specializing to the circle case we find (using the integral (2.11))

W̃
(1)
1 = 23−4ωπ−ω

∮
dτ1dτ2

[
sin2 τ12

2

]4−2ω

=
23−4ωπ−ω

2π
M(4− 2ω, 0, 0)

=
1

8
+

1

8
log π ε+O(ε2) , (2.24)

W̃
(0)
1 = −41−2ωπ−ω

∮
dτ1dτ2

[
sin2 τ12

2

]3−2ω

+ 23−4ωπ−ω
∮
dτ1dτ2

[
sin2 τ12

2

]4−2ω

=
1

8
+

1

8
(2 + log π) ε+O(ε2). (2.25)

Then from (2.21) we get

W
(1)
2,2 = − 1

64π2 ε
− 1

32π2
− γE

32π2
− log π

32π2
+O(ε), (2.26)

W
(0)
2,2 = − 1

64π2 ε
− 1

16π2
− γE

32π2
− log π

32π2
+O(ε) . (2.27)

Note that the difference between the WL and WML self-energy contributions is finite

W
(0)
2,2 = W

(1)
2,2 −

1

32π2
. (2.28)

2.2.3 Internal-vertex contribution

In the WML case, the internal-vertex diagram contribution in figure 2 has the following

expression [13]

W
(1)
2,3 =− 1

4

∮
d3τ ε(τ1, τ2, τ3)

[
|ẋ(1)| |ẋ(3)| − ẋ(1) · ẋ(3)

]
× ẋ(2) · ∂

∂x(1)

∫
d2ωy∆(x(1) − y) ∆(x(2) − y) ∆(x(3) − y), (2.29)
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where ∆(x) is the propagator (2.6), d3τ ≡ dτ1dτ2dτ3 and ε(τ1, τ2, τ3) is the totally anti-

symmetric path ordering symbol equal to 1 if τ1 > τ2 > τ3. Using the Feynman parameter

representation for the propagators and specializing to the circle case (2.29) becomes

W
(1)
2,3 =

Γ(2ω − 2)

22ω+5 π2ω

∫ 1

0
[d3α]

∮
d3τ ε(τ1, τ2, τ3)

×
(
1− cos τ13

) α (1− α) sin τ12 + αγ sin τ23

Q2ω−2
, (2.30)

[d3α] ≡ dα dβ dγ (αβγ)ω−2 δ(1− α− β − γ) , (2.31)

Q ≡ αβ (1− cos τ12) + β γ (1− cos τ23) + γ α (1− cos τ13) . (2.32)

The corresponding WL expression is found by omitting the scalar coupling term |ẋ(1)| |ẋ(3)|,
i.e. by replacing the factor (1 − cos τ13) by (− cos τ13). We can then represent the WL

contribution as

W
(0)
2,3 = W

(1)
2,3 −

Γ(2ω − 2)

22ω+5π2ω
J(ω), (2.33)

J(ω) ≡
∫ 1

0
[d3α]

∮
d3τ ε(τ1, τ2, τ3)

α (1− α) sin τ12 + αγ sin τ23

Q2ω−2
. (2.34)

In the WML case one finds that (2.30) is related to W
(1)
2,2 [13]

W
(1)
2,3 = −W (1)

2,2 +O(ε) , (2.35)

where W
(1)
2,2 was given in (2.26). Thus to compute W

(0)
2,3 it remains to determine J(ω). Let

us first use that∮
d3τ ε(τ1, τ2, τ3) F (τ1, τ2, τ3) =

∮
τ1>τ2>τ3

d3τ
[
F (τ1, τ2, τ3)− F (τ1, τ3, τ2)

+ F (τ2, τ3, τ1)− F (τ2, τ1, τ3) + F (τ3, τ1, τ2)− F (τ3, τ2, τ1)
]
, (2.36)

and relabel the Feynman parameters in each term. Then J(ω) takes a more symmetric form

J(ω) = 8

∫ 1

0
[d3α]

∮
τ1>τ2>τ3

d3τ
(αβ + β γ + γ α) sin τ12

2 sin τ13
2 sin τ23

2

Q2ω−2
. (2.37)

Using the double Mellin-Barnes representation (see, for instance, [27])

1

(A+B + C)σ
=

1

(2π i)2

1

Γ(σ)

∫ +i∞

−i∞
du dv

BuCv

Aσ+u+v
Γ(σ + u+ v) Γ(−u) Γ(−v), (2.38)

we can further rewrite (2.37) as

J(ω)=
8

(2πi)2 22ω−2Γ(2ω − 2)

∮
τ1>τ2>τ3

d3τ

∫
dudv

∫ 1

0
dα dβ dγ (αβγ)ω−2(αβ + βγ + γα)

× Γ(2ω−2+u+v)Γ(−u)Γ(−v)

(
βγ sin2 τ23

2

)u (
αβ sin2 τ12

2

)v(
γα sin2 τ13

2

)2ω−2+u+v sin
τ12

2
sin

τ13

2
sin

τ23

2
.

(2.39)
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Integrating over α,β,γ using the relation∫ 1

0

N∏
i=1

dαi α
νi−1
i δ

(
1−

∑
i

αi

)
=

Γ(ν1) · · ·Γ(νN )

Γ(ν1 + · · ·+ νN )
, (2.40)

gives the following representation for J

J(ω) =− 1

π2 22ω−3

1

Γ(2ω − 2)Γ(3− ω)

∫ +i∞

−i∞
du

∫ +i∞

−i∞
dv X(u, v) T (u, v) , (2.41)

X(u, v) ≡
(

1

u+ v + ω − 1
− 1

u+ ω − 1
− 1

v + ω − 1

)
(2.42)

× Γ(2ω − 2 + u+ v)Γ(−u)Γ(−v) Γ(2− u− ω) Γ(2− v − ω) Γ(u+ v + ω) ,

T (u, v) ≡
∮
τ1>τ2>τ3

d3τ

(
sin2 τ23

2

)u+1/2 (
sin2 τ12

2

)v+1/2(
sin2 τ13

2

)2ω−2+u+v−1/2
. (2.43)

A remarkable feature of (2.41), familiar in computations of similar integrals, is that the

integrand is symmetric in the three τi variables as one can show using a suitable linear

change of the Mellin-Barnes integration parameters u, v.11 As a result, we may effectively

replace T (u, v) by 1
3! of the integrals along the full circle:

T (u, v)→ 1

3!

∮ 2π

0
d3τ

(
sin2 τ23

2

)u+1/2 (
sin2 τ12

2

)v+1/2(
sin2 τ13

2

)2ω−2+u+v−1/2
. (2.44)

Using again the master integral (2.11), we find the following expression for J(ω) as a double

integral

J(ω) =− 8π3/2

3!π2 22ω−3

1

Γ(2ω − 2)Γ(3− ω)

∫ +i∞

−i∞
du

∫ +i∞

−i∞
dv X(u, v)

×
Γ(u+ 1) Γ(v + 1) Γ

(
9
2 − 2ω

)
Γ(−u− v − 2ω + 3)

Γ(u+ v + 2) Γ(−u− 2ω + 4) Γ(−v − 2ω + 4)
. (2.45)

Writing all factors in X(u, v) in (2.42) in terms of Γ-functions we end up with

J(ω) =
π3/2

3× 22ω−7

1

Γ(2ω − 2)Γ(3− ω)

∫ +i∞

−i∞

du

2π i

∫ +i∞

−i∞

dv

2π i
R(u, v) , (2.46)

R(u, v) = Γ(2ω − 2 + u+ v)Γ(−u)Γ(−v)
[
Γ(1− u− ω) Γ(2− v − ω) Γ(u+ v + ω)

+ Γ(2−u−ω) Γ(1−v−ω) Γ(u+v+ω) + Γ(2−u−ω) Γ(2−v−ω) Γ(u+v+ω−1)
]

×
Γ(u+ 1)Γ(v + 1)Γ

(
9
2 − 2ω

)
Γ(−u− v − 2ω + 3)

Γ(u+ v + 2)Γ(−u− 2ω + 4)Γ(−v − 2ω + 4)
. (2.47)

11For instance, the exchange of τ1 and τ3 is compensated by redefining (u, v) → (u′, v′) with u + 1
2

=

−(2ω − 2 + u′ + v′ − 1/2), −(2ω − 2 + u+ v − 1/2) = u′ + 1/2, that is u = 2− u′ − v′ − 2ω, v = v′. This

change of variables leaves invariant the other part T (u, v) of the integrand: it takes the same form when

written in terms of u′, v′.
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This integral can be computed using the algorithms described in [28] and by repeated

application of Barnes first and second lemmas [29]. The result expanded in ε = 2−ω→0 is

J(2− ε) =
8π2

ε
− 8π2 (2 log 2− 3) +O(ε). (2.48)

Using this in (2.33) gives

W
(0)
2,3 = W

(1)
2,3 −

1

64π2 ε
− 1

64π2
− γE + log π

32π2
+O(ε). (2.49)

2.2.4 Total contribution to standard Wilson loop

From (2.28) and (2.49) we get

W
(0)
2,2 +W

(0)
2,3 = − 1

64π2 ε
− 3

64π2
− γE + log π

32π2
+O(ε). , (2.50)

i.e. in contrast to the WML case (2.15), (2.35) the sum of the self-energy and internal vertex

diagrams is no longer zero and is logarithmically divergent. The divergence is cancelled

once we add the ladder contribution in (2.20). Thus the total contribution to the WL

expectation value at order λ2 found from (2.20), (2.50) is finite

W
(0)
2 = W

(0)
2,1 +W

(0)
2,2 +W

(0)
2,3 =

1

192
+

1

128π2
, W

(0)
2 = W

(1)
2 +

1

128π2
. (2.51)

Thus, using (2.1), (2.13), we get the final result for the expectation value of the ordinary

Wilson loop

W (0) = 1 +
1

8
λ+

(
1

192
+

1

128π2

)
λ2 +O(λ3) . (2.52)

We conclude that the weak-coupling expectation values for the circular WML and WL

start to differ from order λ2.

2.3 Generalization to any ζ

Let us now generalize the above results for the leading and subleading term in the weak-

coupling expansion (2.1) of the circular Wilson loop to the case of the generalized WL, i.e.

to any value of the parameter ζ in (1.1). The computation follows the same lines as above.

At leading order in λ we find the same result as in the circular WML (2.5) and

WL (2.13) cases, i.e., after subtracting the linear divergence, the quantity W1 in (2.1)

has the universal (independent on ζ) value

W
(ζ)
1 =

1

8
. (2.53)

Explicitly, using again dimensional regularization, we find as in (2.2), (2.10), (2.12)

W
(ζ)
1 =

Γ(ω − 1)

16πω

∮
dτ1dτ2

ζ2 − ẋ(τ1) · ẋ(τ2)

|x(τ1)− x(τ2)|2ω−2

=
1

8
− (1− ζ2) Γ(ω − 1)

16πω

∮
dτ1dτ2(

4 sin2 τ12
2

)ω−1 =
1

8
+

1

8
(1− ζ2)ε+O(ε2) (2.54)
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where we set ω = 2 − ε and retained a term of order ε as this will contribute to the final

result at order λ2 in our dimensional regularization scheme upon replacing the bare with

renormalized coupling. To order λ, however, one can safely remove this term yielding (2.53).

Turning to λ2 order, the ladder diagram contributions in figure 2 generalizing the ζ = 0

expressions (2.18) are

W
(ζ)
2,1a =

[Γ(ω − 1)]2

64π2ω

∫
τ1>τ2>τ3>τ4

d4τ
(ζ2 − cos τ12) (ζ2 − cos τ34)(

4 sin2 τ12
2 4 sin2 τ34

2

)ω−1 ,

W
(ζ)
2,1b =

[Γ(ω − 1)]2

64π2ω

∫
τ1>τ2>τ3>τ4

d4τ
(ζ2 − cos τ14) (ζ2 − cos τ23)(

4 sin2 τ14
2 4 sin2 τ23

2

)ω−1 . (2.55)

The result of their rather involved computation generalizing (2.19) is (see appendix B)

W
(ζ)
2,1a =

[Γ(1− ε)]2

64π2 (2−ε)

[
π2 (1− ζ2)

ε
+ π2 (1− ζ2)(3− ζ2) +

π4

6
+O(ε)

]
,

W
(ζ)
2,1b =

[Γ(1− ε)]2

64π2 (2−ε)

[
π2

2
(1− ζ2)2 +

π4

6
+O(ε)

]
, (2.56)

with the sum being

W
(ζ)
2,1 = W

(ζ)
2,1a +W

(ζ)
2,1b =

1

192
+ (1− ζ2)

[
1

64π2 ε
+

1

128π2
(7− 3 ζ2) +

log π + γE

32π2

]
+O(ε).

(2.57)

For the self-energy contribution in figure 2 we find the expression (2.21) where now

W̃
(ζ)
1 =

1

16πω

∮
dτ1dτ2

ζ2 |ẋ(τ1)| |ẋ(τ2)| − ẋ(τ1) · ẋ(τ2)[
|x(τ1)− x(τ2)|2

]2ω−3

= ζ2 W̃
(1)
1 + (1− ζ2) W̃

(0)
1 =

1

8
+

1

8

[
2 (1− ζ2) + log π

]
+O(ε), (2.58)

with W̃
(1)
1 and W̃

(0)
1 given by (2.22), (2.24) and (2.23), (2.25). Substituting this into (2.21),

we get

W
(ζ)
2,2 = ζ2W

(1)
2,2 + (1− ζ2)

[
− 1

64π2 ε
− 1

16π2
− γE + log π

32π2

]
+O(ε) , (2.59)

where W
(1)
2,2 is given by (2.26).

The internal-vertex diagram contribution in figure 2 generalizing (2.33) is

W
(ζ)
2,3 = W

(1)
2,3 − (1− ζ2)

Γ(2ω − 2)

22ω+5π2ω
J(ω) , (2.60)

where J is given by (2.34), (2.48) and W
(1)
2,3 is given by (2.35), (2.26), i.e.

W
(ζ)
2,3 = −W (1)

2,2 + (1− ζ2)

[
− 1

64π2 ε
− 1

64π2
− γE + log π

32π2

]
+O(ε) . (2.61)
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Summing up the separate contributions given in (2.57), (2.59) and (2.61) we find that the
1
ε ∼ log a logarithmic divergences cancel out, and we get the finite expression

W
(ζ)
2 = W

(ζ)
2,1 +W

(ζ)
2,2 +W

(ζ)
2,3 =

1

192
+

1

128π2
(1− ζ2) (1− 3ζ2) . (2.62)

The final result for the Wilson loop expectation value to order λ2 that follows from (2.54)

and (2.62) is then

〈W (ζ)〉 = 1 + λ

(
1

8
− 1

8
ζ2ε

)
+ λ2

[
1

192
+

1

128π2
(1− ζ2) (1− 3ζ2)

]
+O(λ3) . (2.63)

Here it is important to retain the order ζ2ε part in the 1-loop term in (2.54): despite the

cancellation of all 1
ε terms to this order, ζ in the order λ term is a bare coupling that

contains poles that may effectively contribute at higher orders.

Despite λ not running in d = 4 the presence of the linear in ζ term in the beta-

function (1.4) implies that the present case is best treated as a 2-coupling gi = (λ, ζ)

theory. In general, if d = 4 − 2ε and we have a set of near-marginal couplings gi with

mass dimensions uiε the bare couplings may be expressed in terms of the dimensionless

renormalized couplings gi as

gib = µuiε
[
gi +

1

ε
Ki(g) +O

(
1

ε2

)]
, µ

dgib
dµ

= 0, (2.64)

βi(g) = µ
dgi
dµ

= −εuigi − uiKi +
∑
j

ujgj
∂

∂gj
Ki . (2.65)

In the present case we may choose dimensions so that the gauge field and scalars Φm in the

bare SYM action N
λb

∫
ddx(F 2 +DΦDΦ + . . .) have dimension 1 so that λb has dimension

2ε, i.e. λb = µ2ελ, or uλ = 2 (and of course Kλ = 0). As the Wilson line integrand in (1.1)

should have dimension 1, that means ζb should have dimension zero, i.e. uζ = 0.12 Then

from (2.64), (2.65) we learn that (using (1.4))

ζb = ζ +
1

ε
Kζ +O

(
1

ε2

)
, βζ = uλλ

∂

∂λ
Kζ , Kζ =

1

2
βζ =

λ

16π2
ζ(ζ2− 1) . (2.66)

The coupling ζ in (2.63) should actually be the bare coupling; replacing it with the renor-

malized coupling according to (2.66) and then sending ε → 0 we find the expression

in (1.6), i.e.

〈W (ζ)〉 = 1 +
1

8
λ+

[
1

192
+

1

128π2
(1− ζ2)2

]
λ2 +O(λ3) . (2.67)

As we shall discuss in appendix B.3, there is an alternative regularization procedure in

which the full 2-loop expression in (2.67) comes just from the type (b) ladder diagram

contribution in (2.56) and thus the use of the evanescent 1-loop term in (2.63) is not

required.

12This is natural as the dimension of the Wilson line integral is not changed. Note that the same is true if

one redefines the SYM fields by a power of gauge coupling g: then dimension of Φ is canonical d−2
2

= 1− ε
but gΦ that then enters the Wilson loop (1.1) still has dimension 1.
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3 Relation to correlators of scalar operators on the Wilson loop

The ζ-dependence of the generalized WL (1.1) can be viewed as being to due to multi-

ple insertions of the scalar operators on the loop. It is of interest to relate the expres-

sion (2.67) to what is known about 2-point functions of (scalar) operators on the line or

circle (see [3, 5, 6, 30–34]). Let us choose the scalar coupling in (1.1) to be along 6-th direc-

tion, i.e. Φmθ
m = Φ6 and denote the remaining 5 scalars not coupled directly to the loop as

Φa (a = 1, . . . , 5). Let us also choose the contour to be straight line xµ = (τ, 0, 0, 0) along

the Euclidean time direction x0 = t so that the exponent in (1.1) is simply
∫
dt(iAt+ζΦ6).

For ζ = 1 or ζ = 0 when the loop preserves the conformal symmetry the 2- (and higher)

point functions of conformal operators inserted along the line can be interpreted as corre-

lators in an effective (defect) 1d CFT. For example, for ζ = 1

⟪O(t1)O(t2)⟫line ≡ 〈TrP
[
O(x1)O(x2) e

∫
dt(iAt+Φ6)

]
〉 =

C

|t12|2∆
. (3.1)

Here in 〈Tr . . .〉 the operator O(x) is a gauge-theory operator in the adjoint representation

restricted to the line (with exponential factors appearing between and after O(xn(tn))

according to path ordering to preserve gauge invariance). We also use that in the WML

case for a straight line the normalization factor is trivial, i.e. ⟪1⟫ = 1. Similar relation can

be written for a circular loop using the map t→ tan τ
2

⟪O(τ1)O(τ2)⟫circle =
C

|2 sin τ12
2 |2∆

. (3.2)

Here the gauge-theory expectation value is to be normalized with the non-trivial circle

WML factor (1.5) so that once again ⟪1⟫ = 1. In the ζ = 0 case one is to use (2.52) as

the corresponding normalization factor. In what follows ⟪. . .⟫ will refer to the expectation

value in the effective CFT on the circle.

The simplest example is the insertion of the “orthogonal” scalars Φa into the

WML (3.1) in which case the dimension is protected, ∆ = 1, while the norm is related to

the Bremsstrahlung function B(λ) [34]13

⟪Φa(τ1)Φb(τ2)⟫ = δab
C0(λ)∣∣2 sin τ12

2

∣∣2 , C0 = 2B(λ) , (3.3)

B(λ) ≡ 1

2π2

d

d log λ
〈W (1)〉 =

√
λ I2(

√
λ)

4π2 I1(
√
λ)
, (3.4)

C0(λ� 1) =
λ

8π2
− λ2

192π2
+O(λ3) , C0(λ� 1) =

√
λ

2π2
− 3

4π2
+O

(
1√
λ

)
. (3.5)

13Let us recall that the leading tree level value of the 2-point coefficient C = λ
8π2 + . . . (with λ ≡ g2N) is

found by taking into the account that the adjoint scalar field is Φ = Φrtr with propagator 〈Φr(x)Φr
′
(0)〉 =

g2 δrr
′

4π2 x2
(r = 1, . . . , N2 − 1 is the SU(N) algebra index) where the generators satisfy Tr(trtr′) = 1

2
δrr′ ,

trtr = 1
2
N I. The trace δrr

′
δrr′ = N2 − 1 produces the factor of N2 in the planar limit.
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The operator Φ6 which couples to the loop in this ζ = 1 case, on the other hand, gets

renormalized and its scaling dimension is a non-trivial function of λ. At small λ one gets14

⟪Φ6(τ1)Φ6(τ2)⟫ =
C(λ)∣∣2 sin τ12

2

∣∣2∆
, C =

λ

8π2
+O(λ2) , ∆ = 1 +

λ

4π2
+O(λ2) . (3.6)

Here the anomalous dimension can be obtained by direct computation [3] or by taking

the derivative of the beta-function (1.4) at the ζ = 1 conformal point [4] as in (1.12).

The leading term in C is the same as in (3.3), (3.5) as it comes just from the free-theory

correlator. At strong coupling the “transverse” scalars Φa should correspond to massless

string coordinates ya in S5 directions (with ∆ = ∆+ = 1, cf. (4.7)) [6] while Φ6 should

correspond [35] to the 2-particle world-sheet state yaya (see section 4.2), with dimension

∆ = 2∆+ +O( 1√
λ

) = 2 +O( 1√
λ

) [4]. The subleading term in

∆ = 2− 5√
λ

+O
(

1

(
√
λ)2

)
, (3.7)

computed in [6] has a negative sign consistent with a possibility of a smooth interpolation

to the weak-coupling expansion in (3.6) (see also section 4.2).

In the case of the standard WL with no scalar coupling (ζ = 0) the defect CFT1 has

unbroken SO(6) symmetry and thus all 6 scalars have the same correlators:

⟪Φm⟫ = 0 , ⟪Φm(τ1)Φn(τ2)⟫ = δmn
C(λ)∣∣2 sin τ12

2

∣∣2∆
, (3.8)

C =
λ

8π2
+O(λ2) , ∆ = 1− λ

8π2
+O(λ2) . (3.9)

Here the leading free-theory term in C is the same as in (3.5), (3.6) as it comes just from

the free-theory correlator. The anomalous dimension in (3.9) found by direct computation

in [3] is again the same as the derivative of the beta-function (1.4) at the ζ = 0 conformal

point [4] (see (1.12)). At strong coupling, i.e. in the string theory description where the

S5 coordinates are to be subject to the Neumann boundary conditions restoring the O(6)

symmetry, one expects to find [3]

∆ =
5√
λ

+O
(

1

(
√
λ)2

)
, (3.10)

which is consistent with the negative sign of the anomalous dimension at weak coupling

in (3.9), suggesting that it decreases to zero at strong coupling.15

14Definition of a good conformal operator may require subtraction of a non-zero constant one-point

function on the circle, which may depend on the regularization scheme.
15It is interesting to notice that the data (3.7), (3.10) about strong-coupling dimensions of Φ6 near ζ = 0

and near ζ = 1 is consistent with the relation [4] 2∆++2∆− = 2, i.e. [ 5√
λ

+O( 1

(
√
λ)2

)]+[2− 5√
λ

+O( 1

(
√
λ)2

)] =

2+O( 1

(
√
λ)2

). Here 2∆± are dimensions of perturbations near the two ends of the flow between the Dirichlet

and Neumann b.c. which may be interpreted as being driven by the “double-trace”-like operator constructed

out of a massless 2d scalar with strong-coupling dimensions ∆+ = 1 and ∆− = 0 (see section 4.2).
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As a test of our perturbative calculation of the expectation value (2.67) of the gener-

alized WL (1.1), let us now relate its expansion near the conformal points ζ = 0, 1 to the

above expressions for the 2-point functions of the Φ6 operator. The expectation value of

W (ζ) for the circular contour (|ẋ| = 1) expanded near ζ = 0 may be written as

〈W (ζ)〉 = W (0)

[
1+ζ⟪

∮
dτ Φ6(x(τ))⟫+

ζ2

2
⟪
∮
dτ Φ6(x(τ))

∮
dτ ′Φ6(x(τ ′))⟫+O(ζ3)

]
,

(3.11)

where ⟪. . .⟫ is defined as in (3.1) but now for ζ = 0, i.e. with only the gauge field coupling

i
∫
dτẋµAµ in the exponent and the normalization factor W (0) ≡ 〈W (0)〉 has weak-coupling

expansion given in (2.52). The order ζ (tadpole) term here vanishes automatically as

in (3.8) due to the SO(6) symmetry, consistently with the conformal invariance. We may

compute the ζ2 term here

〈W (ζ)〉ζ2 =
ζ2

2
W (0)

∫ 2π

0
dτ

∫ 2π

0
dτ ′ ⟪Φ6(τ) Φ6(τ ′)⟫ , (3.12)

directly using the conformal 2-point function (3.8) with generic C(λ) and ∆(λ) ≡ 1+γ(λ).

Doing the integral over τ as in (2.12) and then expanding in small λ using (3.9) we obtain16

〈W (ζ)〉ζ2 = ζ2W (0)C(λ)
π3/2 Γ

(
−1

2 − γ(λ)
)

21+2γ(λ) Γ(−γ(λ))

= ζ2W (0)C(λ)π2γ(λ)
[
1 +O(γ2)

]
= −ζ2 λ2

64π2
+O(λ3) . (3.13)

This precisely matches the term of order λ2ζ2 in (2.67). Comparing to the general rela-

tion (1.11), the higher order terms in the anomalous dimension γ(λ) can be absorbed into

the relation between C in (1.8) and C in (3.8).

Next, let us consider the expansion of the WL (1.1), (2.67) near the supersymmetric

conformal point ζ = 1. The term of order ζ − 1 in this expansion is expected to vanish by

conformal symmetry (provided a possible tadpole contribution is suitably subtracted),17

and the term of order (ζ − 1)2 is to be related to the integrated two-point function on the

supersymmetric WL

〈W (ζ)〉(ζ−1)2 =
1

2
(ζ − 1)2W (1)

∫ 2π

0
dτ

∫ 2π

0
dτ ′ ⟪Φ6(τ) Φ6(τ ′)⟫ζ=1 . (3.14)

Inserting here the conformal 2-point function (3.6) and we get the same integral as

in (3.12), (3.13). Plugging in the values for C = λ
8π2 + O(λ2) and γ = λ

4π2 + O(λ2)

from (3.6) we get

〈W (ζ)〉(ζ−1)2 =
λ2

32π2
(ζ − 1)2 +O(λ3) , (3.15)

16This integral is similar to the one in (2.24) and thus can be found by an analytic continuation in γ.

Alternatively, we may use a cutoff regularization, see appendix A.
17As we have seen above, the dimensional regularization scheme that leads to (1.8) and thus implies the

vanishing of the tadpole at the conformal point effectively preserves the conformal invariance.
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which is indeed in precise agreement with the term of order (1 − ζ)2 in the expansion

of (2.67) near ζ = 1

〈W (ζ)〉 = 〈W (1)〉
{

1 +
λ2

32π2

[
(ζ − 1)2 + (ζ − 1)3 +

1

4
(ζ − 1)4

]
+O

(
λ3
)}

. (3.16)

We may also compare the higher order terms in the small ζ or small (1− ζ) expansion to

integrated higher-point conformal correlators of the ζ = 0 and ζ = 1 CFT’s. The absence

of the ζ3 term (and other ζ2n+1 terms) in the expansion near the ζ = 0 is in agreement

with the vanishing of the odd-point scalar correlators that follows from the Φm → −Φm

symmetry of the SYM action. At the same time, the 3-point scalar Φ6 correlator at the

ζ = 1 point is non-trivial (cf. also [36, 37]). In general, on the 1/2-BPS circular WL we

should have

⟪Φ6(τ1) Φ6(τ2)Φ6(τ3)⟫ζ=1 =
C3(λ)∣∣2 sin τ12

2

∣∣∆∣∣2 sin τ23
2

∣∣∆ ∣∣2 sin τ31
2

∣∣∆ , (3.17)

where at weak coupling ∆ = 1 + γ(λ) is the same as in (3.6), i.e. γ = λ
4π2 + O(λ2), and

we should have C3 = c3λ
2 +O(λ3). Integrating (3.17) using (2.11) and then expanding in

small λ we get as in (3.13), (3.14)

〈W (ζ)〉(ζ−1)3 =
1

3!
(ζ − 1)3 〈W (1)〉

∮
dτ1 dτ2 dτ3 ⟪Φ6(τ1)Φ6(τ2)Φ6(τ3)⟫ζ=1 (3.18)

= (ζ − 1)3〈W (1)〉C3
π3/2 Γ

(
−γ

2

)
Γ
(
−1

2 −
3
2γ
)

3 · 21+3γ [Γ(−γ)]3
= −8

3
π2(ζ − 1)3C3

[
1 +O(λ)

]
.

Comparing (3.18) to (3.16) we conclude that

C3 = − 3λ2

256π4
+O(λ3) . (3.19)

The ζ4 term in the expansion of (2.67) should be related to the integrated value of the

4-point correlator of Φ6. To λ2 order it is given just by the product of the two 2-point

contributions (corresponding to the two ladder graphs; the third ordering is subleading in

the planar limit)

⟪Φ6(τ1)Φ6(τ2)Φ6(τ3)Φ6(τ4)⟫ =
[
G0(τ1, τ2)G0(τ3, τ4) +G0(τ1, τ4)G0(τ2, τ3)

+O(λ3)
]
θ(1, 2, 3, 4) + permutations , (3.20)

where G0(τ1, τ2) = λ
8π2

1
|2 sin

τ12
2
|2 is the leading term in the 2-point correlator (3.8) of Φ6 at

ζ = 0 and θ(1, 2, 3, 4) = θ(τ1 − τ2)θ(τ2 − τ3)θ(τ3 − τ4).

To understand the precise relation between the integrated 4-point correlator and the

ζ4 term in 〈W (ζ)〉 in (2.67) one should follow the logic of conformal perturbation theory

by a nearly-marginal operator O with dimension ∆ = d− ε (see, e.g., [18]). In the present

case of d = 1 near the ζ = 0 point we have O = Φ6 with dimension ∆ = 1 − ε, ε ≡ −γ =
λ

8π2 +. . .� 1 (see (3.9)). Then the dimension 1 perturbation ζbO where the bare coupling ζb

is related to the dimensionless renormalized one by ζb = µε(ζ+ λ
16π2ε

ζ3 + . . .) corresponding
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to the beta-function (1.4), i.e. βζ = −ε ζ + λ
8π2 ζ

3 + . . .. Computing 〈W (ζ)〉 in an expansion

in powers of ζb we get for the λ2 term: 〈W (ζ)〉 = 〈W (0)〉
[
1 + λ2(k2ζ

2
b + k4ζ

4
b) + O(ζ6

b)
]

where k2 = − 1
64π2 is the contribution of the integrated 2-point function given by (3.13)

and k4 = 1
64π2 (π2 + 1

2π
2) is the contribution of the integral of (3.20), i.e. the sum of

the ζ4 terms in the two ladder diagrams in (2.56). Similarly to what happened in the

dimensional regularization case in (2.63), here the quadratic term contributes to the quartic

one once expressed in terms of the renormalized coupling. Using ζb = ζ + 1
2ζ

3 + . . . we get

k2ζ
2
b + k4ζ

4
b = k2ζ

2 + k′4ζ
4 + . . ., where k′4 = k4 + k2 = 1

128π2 which is in agreement with

the ζ4 coefficient in (2.67). Similar considerations should apply to the (ζ − 1)4λ2 term in

the expansion (3.16) near ζ = 1.

4 Strong coupling expansion

As discussed in [3, 4], the AdS5×S5 string description of the standard Wilson loop should

be given by the path integral with Dirichlet boundary condition along the boundary of AdS5

and Neumann (instead of Dirichlet for the Wilson-Maldacena loop) condition for the S5

coordinates. The case of the generalized WL (1.1) may then correspond to mixed boundary

conditions [4]. Below we shall first discuss the subleading strong-coupling correction to the

standard WL (ζ = 0) comparing it to the more familiar WML (ζ = 1) case and then

consider the general ζ case.

The strong coupling expansion of the straight-line or circular WL will be represented

by the string partition function with the same AdS2 world-sheet geometry as in the WML

case [38]. As the AdS2 is a homogeneous-space, the log of the string partition function

should be proportional to the volume of AdS2 [39, 40]. In the straight-line case the

volume of AdS2 with infinite (L→∞) line as a boundary is linearly divergent as L
a . Thus

the straight-line WL should be given just by an exponent of this linear 2d IR divergence.

Linear UV divergences in WL for a smooth contour are known to factorize in general at

weak coupling [8]. After the separation of this linear divergence the straight-line WL should

be thus equal to 1 as in the case of the locally-supersymmetric WML. The same should be

true for the generalized WL (1.1).

Similar arguments apply in the case of the circular WL where the minimal surface is

again the AdS2 but now with a circle as its boundary. In this case the volume is (we fix

the radius to be 1)

VAdS2 = 2π

(
1

a
− 1

)
, (4.1)

i.e. has a finite part and thus the expectation value may be a non-trivial function of string

tension
√
λ

2π . After factorizing the linearly divergent factor, the leading strong-coupling term

will then have a universal
√
λ form

〈W (ζ)〉 ≡ e−F (ζ)(λ) , F (ζ) = −
√
λ+ F

(ζ)
1 +O

(
1√
λ

)
. (4.2)

The subleading terms F
(ζ)
1 +. . . will, however, differ due to the different boundary conditions

in the S5 directions.
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4.1 Standard Wilson loop

Let us consider the 1-loop string correction in the standard WL case following the same

approach as used in the WML case in [39–41]. As the fluctuation determinants for all

the 2d fields (3 AdS5 bosons with m2=2, 8 fermions with m2 = 1 and ghosts) except the

S5 massless scalars are the same, the ratio of the WML and WL expectation values (1.2)

should be proportional the ratio of the 1-loop string partition functions with the Dirichlet

and Neumann boundary conditions in the five S5 directions:

〈W (1)〉
〈W (0)〉

=
e−F

(1)

e−F
(0)

= N−1
0

[
det(−∇2)D

det′(−∇2)N

]−5/2 [
1 +O

(
1√
λ

)]
. (4.3)

Here −∇2 is the massless scalar wave operator in AdS2 and N0 is the normalization factor

of the S5 zero modes present in the Neumann case

N0 = c0 (
√
λ)5/2 , (4.4)

with c0 being a numerical constant (representing contributions of renormalized volume of

AdS2 and volume of S5).18 The 1-loop corrections to F (ζ) are thus related by

F
(1)
1 − F (0)

1 = 5

[
1

2
log det(−∇2)D −

1

2
log det′(−∇2)N

]
+ logN0 . (4.5)

To compute this correction we may use the general result for the difference of effective

actions with standard (D or +) and alternate (N or -) boundary conditions for a scalar

with mass m in AdSd+1 [43, 44]

δΓ = Γ+−Γ− =
1

2
log det(−∇2 +m2)D −

1

2
log det(−∇2 +m2)N

=
1

2

∞∑
`=0

cd,` log
Γ
(
`+ d

2 − ν
)

Γ
(
`+ d

2 + ν
) , cd,` = (2`+ d− 1)

(`+ d− 2)!

`!(d− 1)!
, (4.6)

where ν is defined by

m2 = ∆(∆− d) , ∆± =
d

2
± ν, ν ≡

√
d2

4
+m2 . (4.7)

In the present case of d = 1 and m = 0 the ` = 0 term with Γ
(
`+ d

2 − ν
)

is singular and

should be dropped: this corresponds to projecting out the constant 0-mode present in the

Neumann case. Then in the limit d→ 1 and ν → 1
2 in (4.6) we get (projecting out 0-mode)

δΓ′ = −
∞∑
`=1

log ` = lim
s→0

d

ds

∞∑
`=1

`−s = ζ ′R(0) = −1

2
log(2π) . (4.8)

One may also give an alternative derivation of (4.8) using the relation between the

AdSd+1 bulk field and Sd boundary conformal field partition functions: Z−/Z+ = Zconf

(see [44–46]). For a massive scalar in AdSd+1 associated to an operator with dimension

18In general, one is to separate the 0-mode integral and treat it exactly (cf. [42]).
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∆+, the boundary conformal (source) field has canonical dimension ∆− = d−∆+ and thus

the kinetic term
∫
ddxϕ(−∂2)νϕ, with ν = ∆+ − d

2 . In the present case of the massless

scalar in AdS2 we have d = 1, ∆+ = 1, ∆− = 0 and ν = 1
2 . The induced boundary CFT

has thus the kinetic operator ∂ ≡ (−∂2)1/2 defined on S1 and thus we find again (4.8)

δΓ′ = − log
Z+

Z−
= −1

4
log det′(−∂2) = −

∞∑
`=1

log ` , (4.9)

where we fixed the normalization constant in the S1 eigen-value to be 1.

It is interesting to note that the zero-mode contribution in (4.5) may be included

automatically by “regularizing” the m → 0 or ν → 1
2 limit in (4.6), (4.7). One may

expect that for the Neumann boundary conditions which are non-supersymmetric in the

world-sheet theory [4] the massless S5 scalars ya may get 1-loop correction to their mass

m2 = − k√
λ

+O
(

1
(
√
λ)2

)
→ 0.19 Then ν = 1

2−
k√
λ

+ . . . and ∆− = k√
λ

+ . . .; for the agreement

with (3.10) we need to fix k = 5. We then get an extra −1
2 log |m2| = −1

2 log k√
λ

term from

the ` = 0 term in (4.6), i.e.

δΓ = δΓ′ − 1

2
log |m2| = −1

2
log(2π) +

1

2
log
√
λ− 1

2
log k . (4.10)

This agrees with (4.5), (4.8) if we set c0 = k−5/2. Finally, from (4.5), (4.6) we find

F
(0)
1 = F

(1)
1 −5δΓ = F

(1)
1 −5 δΓ′−logN0 = F

(1)
1 +

5

2
log(2π)−

(
5

2
log
√
λ+log c0

)
. (4.11)

Let us now recall that the direct computation of the determinants in the string 1-loop

partition function for the circular WML gives (after using (4.1) and separating out the

linear divergence) [39–41] (see also [49–51])

F
(1)
1 =

1

2
log(2π) . (4.12)

At the same time, the exact gauge-theory result (1.5) for the WML implies that the total

correction to the leading strong-coupling term should, in fact, be

F
(1)
1 tot =

1

2
log(2π)− log 2 +

3

2
log
√
λ . (4.13)

The 3
2 log

√
λ term may be attributed to the normalization of the three Möbius symmetry

zero modes on the disc [14], but the remaining log 2 difference still remains to be understood.

It is then natural to conjecture that for the standard WL expanded at strong coupling

the total value of the subleading term at strong coupling should be given by (4.11) where

the first term is replaced by (4.13), i.e.

F
(0)
1 tot = F

(1)
1 tot +

5

2
log(2π) + logN0 = 3 log(2π)− log(2c0)− log

√
λ . (4.14)

19This correction may be found by computing the 1-loop contribution to the propagator of ya in AdS2

background. Similar correction to scalar propagator with alternate b.c. should appear in higher spin

theories in the context of vectorial AdS/CFT (there the effective coupling is 1/N instead of 1/
√
λ), see

e.g. [47]. Note that having a correction to the mass of a world-sheet excitation here does not run against

the usual 2d conformal invariance constraint as we are expanding near a non-trivial background and are

effectively in a physical gauge where the conformal freedom is fixed (cf. [48]).
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We then conclude that while the leading λ � 1 prediction for the log of the expectation

value F̃ (ζ) ≡ log〈W (ζ)〉 = −F (ζ)
tot for the circular WML and WL is the same

√
λ in (4.2),

the subleading term in F̃ (0) is larger than that in F̃ (1) by logN0 = 5
2 log

√
λ + . . .. This

appears to be in agreement with a similar behavior (1.9) observed at weak coupling and

thus with the 1d analog of the F-theorem (1.10).

While the strong-coupling behaviour of WML 〈W (1)〉 ∼ (
√
λ)−3/2e

√
λ+. . . follows from

the exact Bessel function expression in (1.5), one may wonder which special function may

give the above strong-coupling asymptotics 〈W (0)〉 ∼
√
λ e
√
λ + . . . of the standard WL.

4.2 General case

Turning to the case of generic 0 < ζ < 1, one may imagine computing 〈W (ζ)(λ)〉 exactly

to all orders in the weak-coupling expansion and expressing it in terms of the renormalized

coupling ζ (in some particular scheme). One may then re-expand the resulting function at

strong coupling (as in (1.5)) expecting to match F
(ζ)
1 in (4.2) with (4.13) and (4.14) at the

two conformal points.

A way to set up the strong-coupling (string-theory) computation for an arbitrary value

of ζ may not be a priori clear as non-conformal WL operators need not have a simple string-

theory description. Below we shall develop a heuristic but rather compelling suggestion

of [4]. Starting with the AdS5×S5 string action and considering a minimal surface ending,

e.g., on a line at the boundary of AdS5 we may choose a static string gauge where x0 =

τ, z = σ so that the induced metric is the AdS2 one: ds2 = 1
σ2 (dσ2 +dτ2); in what follows

we identify z and σ.20 Let the 5 independent S5 coordinates be ya (with the embedding

coordinates being, e.g., Ya = ya
1+ 1

4
y2
, Y6 =

1− 1
4
y2

1+ 1
4
y2

, ds2
S5 = dyadya

(1+ 1
4
y2)2

). In the WL case they are

subject to the Neumann condition ∂zy
a
∣∣
z→0

= 0. One may then start with this Neumann

(i.e. standard WL) case and perturb the corresponding string action I(0) by a boundary

term that should induced the flow towards the other (Dirichlet or WML) fixed point

I(κ) = I(0) + δI , I(0) = T

∫
dτdz

(
1

2

√
hhpq∂py

a∂qy
a + . . .

)
, T =

√
λ

2π
, (4.15)

δI = −κ T
∫
dτ Y6 , Y6 =

√
1− YaYa = 1− 1

2
yaya + . . . . (4.16)

In I(0) we give only the part depending quadratically on S5 coordinates and hmn is the

induced AdS2 metric.

Here κ is a new coupling constant which should be a strong-coupling counterpart of

ζ: κ = 0 should correspond to ζ = 0 and κ = ∞ to ζ = 1. Y6 is then the counterpart of

the operator Φ6 in (1.1) perturbing the ζ = 0 conformal point at weak coupling.

Note that for the AdS2 metric ds2 = z−2(dz2 + dτ2) with the boundary at z = a→ 0

the boundary metric is ds = a−1dτ and thus it may be more natural to write δI in (4.16)

as δI = −κT
∫
ds Y6 so that κ = a−1κ. Then κ will always appear together with the

AdS2 IR cutoff factor a−1 which, on the other hand, can be also interpreted — from the

world-sheet theory point of view — as playing the same role as a UV cutoff Λ.

20In the case of the circular boundary ds2 = 1
sinh2 σ

(dσ2 + dτ2).
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The variation of the action I(κ) implies that to linear order in ya it should satisfy

the massless wave equation in AdS2 (so that near the AdS2 world-sheet boundary ya =

z∆+ua + z∆−va + O(z2) = z ua + va + O(z2)) subject to the mixed (Robin) boundary

condition21

(−∂z + κ)ya
∣∣
z→0

= 0 , i.e. − ua + κ va = 0 . (4.17)

The parameter 0 ≤ κ ≤ ∞ thus interpolates between the Neumann and Dirichlet boundary

conditions conditions. Note that in general one may add, instead of Y6, in (4.16) any linear

combination θmYm with θ2
m = 1 (cf. (1.1)) and the S5 part of (4.15) as ∂pY m∂pYm, with

Y mYm = 1. Then the boundary condition becomes
[
− ∂zYm + κ(θm − θkYkYm)

]∣∣
z→0

= 0.

For θm along 6-th axis this reduces to (4.17) to linear order in ya.

Like ζ at weak coupling (1.4), the new boundary coupling κ will need to be renor-

malized, i.e. it will be running with 2d UV scale.22 In (4.16) κ is a renormalized cou-

pling of effective mass dimension 1. In general, in the bare action one should have

δIb = −ΛκbT
∫
dτY6, where Λκb = µκ

[
1 + K( 1√

λ
) log Λ

µ

]
+ . . ., with Λ → ∞ being a

UV cutoff and κb and κ being dimensionless. We may choose the renormalization scale µ

to be fixed as µ = R−1 in terms of the radius R and set R = 1, i.e. measuring scales in

units of R; then we may effectively treat κ as dimensionless.23

Dimensionless renormalized κ should be a non-trivial (scheme-dependent) function of

the renormalized dimensionless parameter ζ and the string tension or ’t Hooft coupling λ

κ = f(ζ;λ) , f(0;λ) = 0 , f(1;λ� 1) =∞ . (4.18)

Lack of information about this function prevents one from direct comparison of weak-

coupling and strong-coupling pictures. Just as an illustration, one may assume that at

large λ one has κ = ζ
1−ζ , ensuring the right limits (cf. (4.17)).

The boundary κ-term in (4.15) may be viewed as a special case of an “open-string

tachyon” coupling depending on S5 coordinates:

δIb = Λ

∫
dτ Tb(y) , ΛTb = µ

[
T − log

Λ

µ
(α′D2 + . . .)T + . . .

]
, (4.19)

βT = µ
dT
dµ

= −T − α′D2T + . . . , α′ =
R2

√
λ
. (4.20)

Here D2 is the Laplacian on S5 (of radius R that we set to 1) and βT is the corresponding

renormalization group function [52, 53].24 The T = κY6 term in I(κ) in (4.15) is the

21The tangent vector to the boundary is tp = (0, z) and the outward normal to the boundary is np =

(−z, 0), so that hpq = npnq + tptq.
22As already mentioned above, in the present case of the boundary of the AdS2 world sheet being at

z → 0 it is natural to add to the boundary term a factor of z−1 = a−1 →∞ that may then be interpreted

as playing the same role as the world-sheet UV cutoff Λ; then this running may be interpreted as a flow

with AdS2 cutoff.
23In the case of the circular boundary the dependence on the radius R that drops out at the conformal

points remains for generic value of κ or ζ. One may fix, for example, µR = 1 as a renormalization condition,

or rescale κ by R to make it dimensionless.
24Similar expression for the closed-string tachyon beta-function has familiar extra factors of 2 and 1

2
:

βT = −2T− 1
2
α′∇2T + . . ..
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eigen-function of the Laplacian with eigenvalue 5 (e.g. for small ya one has D2Y6 = (∂2
y +

. . .)(−1
2yaya + . . .) = −5 + . . .).25 As a result, we should expect to find that κ should be

renormalized according to

Λκb = µκ
(

1 +
5√
λ

log
Λ

µ
+ . . .

)
, βκ = µ

dκ
dµ

=

(
− 1 +

5√
λ

+ . . .

)
κ + . . . . (4.21)

This beta-function then gives another derivation of the strong-coupling dimension (3.10)

of the perturbing operator near the WL (ζ = 0) or κ = 0 fixed point: the coefficient of

the linear term in the beta-function should be the anomalous dimension or ∆ − 1.26 This

operator identified as Φ6 from the weak-coupling point of view is thus naturally associated

with the quadratic yaya perturbation in (4.16) [6, 35].

Note that in the opposite WML (ζ = 1) or κ →∞ limit we may expect to find the same

linear beta-function but with the opposite coefficient, as seen by rewriting the RG equation

in (4.21) as µdκ
−1

dµ = −
(
− 1 + 5√

λ
+ . . .

)
κ−1 + . . ., with now κ−1 → 0 (an alternative is to

reverse the UV and IR limits, i.e. log µ→ − log µ). Then the strong-coupling dimension of

Φ6 should be given by ∆− 1 = 1− 5√
λ

+ . . . in agreement with (3.7).

Another way to derive (4.21) is to use the general expression for the divergence of the

determinant of a 2d scalar Laplacian in curved background subject to the Robin boundary

condition (∂n + κ)φ
∣∣
∂

= 0 as in (4.17) [54, 55] (see also appendix B in [56] for a review)

Γ∞ =
1

2
log det(−∇2 +X)

∣∣∣
∞

= −1

2
A0Λ2 −A1Λ−A2 log Λ , (4.22)

A0 =
1

4π

∫
d2x
√
g , A1 =

1

8
√
π

∫
∂
ds , A2 =

1

6
χ− 1

4π

∫
d2x
√
gX − 1

2π

∫
∂
ds κ .

Here χ is the Euler number and L =
∫
∂ ds is the length of the boundary. In the present

massless case X = 0 and for the Euclidean AdS2 we have χ = 1. For the circular boundary

at z = a → 0 we have (for R = 1) L = 2πa−1. To compare this to (4.17) we note that

for an outward normal to the boundary of AdS2 we have (∂n + κ)φ
∣∣
∂

= (−z∂z + κ)φ
∣∣
z=a

so that we need to identify a−1κ with κ in (4.17). Taking into account the factor of 5 for

massless scalars ya we thus find the same κ log Λ divergence as in (4.21).27

25In general, the eigenfunctions of Laplacian on S5 are Cm1...mJY
m1 . . . Y mJ (where Cm1...mJ is totally

symmetric and traceless) with eigenvalue J(J + 4). For example, one may consider (Y1 + iY2)J . In J = 1

case we may choose any linear combination CmY
m or any of six Ym which will have the eigenvalue 5.

26To recall, the argument for the strong-coupling dimension ∆(0) = 5√
λ

+ . . . of the scalar operator on the

WL in [3] was based on considering AdS2 in global coordinates as conformal to a strip ds2 = 1
sin2 σ

(dt2+dσ2)

where 0 ≤ σ < π. Then the Hamiltonian with respect to global time is the dilatation operator and the

mode constant in σ should be the primary, and its energy is the conformal dimension. The Hamiltonian of

quantized massless particle moving on S5 is then proportional to the Laplacian on S5 with the eigenvalue
α′

R2 J(J + 4) with the present case being that of J = 1 (in the ζ = 0 case the dimension of all 6 scalars is

the same due to unbroken O(6) symmetry).
27Note that (4.22) directly applies only for a finite non-zero κ (including κ = 0 of the Neumann condition).

In the Dirichlet case (κ→∞) the sign of A1 is reversed and the boundary contribution to the logarithmic

divergence (the last term in A2) is absent. Thus the D-limit or κ →∞ can not be taken directly in (4.22)

(see also [57]). The logarithmic χ divergence and the quadratic divergence are universal, so they cancel in

the difference of effective actions with different boundary conditions. Linear divergence has the opposite

sign for the Dirichlet and Neumann or Robin b.c.; that means it cancels in the difference of effective actions

for the Robin and the Neumann conditions (4.25).
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Explicitly, in the case of 5 massless scalars in AdSd+1 with spherical boundary and

mixed boundary conditions (4.17) the analog of (4.6) gives [43, 44] (see eqs. (3.2), (5.2)

in [44])

F1(κ)− F1(0) =
5

2

∞∑
`=0

cd,` log
(
1 + κ q`

)
, q` =

22ν Γ(1 + ν)

Γ(1− ν)

Γ
(
`+ d

2 − ν
)

Γ
(
`+ d

2 + ν
)R2ν , (4.23)

where cd,` is the same as in (4.6) and in the present d = 1 case cd,0 = 1, cd,`>0 = 2. Since

κ and ζ are related by (4.18) the connection to previous notation in (4.5), (4.11), (4.12) is

F (κ) ≡ F (ζ) , F (∞) ≡ F (1) , F (0) ≡ F (0) . (4.24)

Then from (4.23)

F1(κ)− F (0)
1 = 5

∞∑
`=1

log
(
1 + κ `−1

)
+ 5

2 log
(
1 + κ |m−2|

)
. (4.25)

Here we effectively set the radius R to 1 absorbing it into κ (which will then be dimen-

sionless) and isolated the contribution of the ` = 0 mode (using that for m2 → 0 we have

ν = 1
2 +m2 + . . .). The limit κ → 0 of (4.25) is smooth provided it is taken before m2 → 0

one. The limit κ →∞ in (4.25) may be formally taken before the summation and then (us-

ing
∑∞

`=1 1+ 1
2 = ζR(0)+ 1

2 = 0) we recover the previous ζ = 1 result in (4.8), (4.10), (4.11).

Using (4.8), (4.10), (4.11) we may instead consider the difference between F1(κ) and

F1(∞) ≡ F (1)
1 , i.e.

F1(κ)− F1(∞) = 5
∞∑
`=1

log
(
`+ κ

)
+ 5

2 logκ , κ > 0 . (4.26)

where we assumed κ > 0 to drop 1 in the log in the second term in (4.25) and observed

that the constant S5 zero mode contribution ∼ log |m2| which is present only in the N-case

(κ = 0) then cancels out. An alternative is to rewrite (4.26) in the form that has regular

expansion near κ =∞

F1(κ)− F1(∞) = 5

∞∑
`=1

log(1 + κ−1`) , (4.27)

where we used again the zeta-function regularization (ζR(0) + 1
2 = 0). Note that this

expression comes out of the general expression in [44] or (4.23) if we interchange the roles

of ∆+ and ∆− (i.e. set ν = −1
2) and replace κ → κ−1. The infinite sum in (4.26) or (4.27)

contains the expected logarithmic UV divergence as in (4.21), (4.22) (ε = Λ−1 → 0) as can

be seen using an explicit cutoff,
∑∞

`=1 e
−ε` log

(
`+κ

)
→ κ

∑∞
`=1 e

−ε``−1+. . . = −κ log ε+. . .

(we ignore power divergence as in (4.8)). In general, the term linear in κ in the finite part

is thus scheme-dependent. The finite part of (4.27) can be found using derivative of the

Hurwitz zeta-function or simply expanding the log in powers of κ−1` and then using the
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zeta-function to define the sum over `. As a result,

F1 fin(κ)− F1(∞) = 5κ(logκ − 1)− 5 log
[
Γ(1 + κ)

]
+ 5

2 log(2πκ) (4.28)

= 5

∞∑
n=1

(−1)n

n
ζR(−n)κ−n = − 5

12κ
+

1

72κ3
− 1

252κ5
+O

(
1

κ7

)
.

Taken with the opposite sign, i.e. F̃1 fin(κ)− F̃1(∞), this expression is a positive monoton-

ically decreasing function which is consistent with the F-theorem (1.9), (1.10).

5 Concluding remarks

In this paper we computed the λ2 term in the expectation value of the generalized circular

Wilson loop (1.6) depending on the parameter ζ. The computation is considerably more

involved than in the Wilson-Maldacena loop case [13]. In particular, in dimensional reg-

ularization, to obtain the finite λ2 part one needs to take into account the “evanescent”

dependence of the 1-loop term on the bare value of ζ. It would be useful to extend the

perturbative computation of 〈W (ζ)〉 to λ3 order to see if the ladder diagrams may still be

giving the most relevant contributions, with a hope to sum them up to all orders (at least

in the standard WL case).

The circular loop expectation value 〈W (ζ)〉 admits a natural interpretation as a special

d = 1 case of a partition function on d-sphere and thus satisfies a d = 1 analog of F-

theorem: we demonstrated the inequality (1.9) at first subleading orders at both weak and

strong coupling.

The 2-loop term (1.6) in 〈W (ζ)〉 determined in this paper effectively encodes several

previously known results about the defect CFT1 defined on the Wilson line: the 1-loop

beta-function for ζ [4] and the related anomalous dimensions of the scalar operator Φ6

near the two conformal points ζ = 1 and ζ = 0 [3]. It would be interesting to further study

the spectrum and correlation functions of operator insertions on the non-supersymmetric

(ζ = 0) Wilson line. A particularly interesting insertion is the displacement operator

Di ∼ Fti, which has protected dimension ∆ = 2 as a consequence of conformal symmetry

(see e.g. [58]). The normalization of its two-point correlation function is an important

observable of the CFT, which should be a non-trivial function of the ’t Hooft coupling. This

observable is also expected to appear in the small angle expansion of the cusp anomalous

dimension, or in the expectation value of the WL at second order of small deformations of

the loop around the circular shape. In the case of the supersymmetric Wilson-Maldacena

loop, the analogous observable, known as “Bremsstrahlung function”, can be determined

exactly by localization [34] as well as integrability [59, 60]. It would be very interesting to

find the corresponding quantity in the non-supersymmetric Wilson loop case.

Motivated by the 2-loop expression (1.6) one may make a bold conjecture28 that to all

orders in λ the renormalized expression for the circular loop will depend on ζ only through

28We thank R. Roiban for a discussion of the possible exact structure of 〈W (ζ)〉 and this suggestion.

– 27 –



J
H
E
P
0
3
(
2
0
1
8
)
1
3
1

the combination (1− ζ2)λ, i.e. will have the form

〈W (ζ)〉 = W (1)(λ)
[
1 + Z

(
(1− ζ2)λ

)]
, Z(x) =

∞∑
n=2

cnx
n , (5.1)

where W (1)(λ) is the exact expression for the WML given in (1.5). If (in some particular

renormalization scheme) all cn > 0 then for 0 ≤ ζ ≤ 1 this function will have the minimum

at ζ = 1 and the maximim at ζ = 0, in agreement with the expected structure of the

β-function in (1.8) and the F-theorem (1.9). The standard WL expectation value will be

given by W (0)(λ) = W (1)(λ)
[
1 + Z(λ)

]
. One may also try to determine the coefficients

cn by using that at each λn order the term ζ2n with the highest power of ζ should come

from the ladder graphs. The large λ behavior of the WL in (1.13), (4.14) suggests that one

should have Z(λ� 1) ∼ λ5/4.

While localization does not apply to the non-supersymmetric circular Wilson loop case,

it would be very interesting to see if 〈W (ζ)〉, and, more generally, the spectrum of local

operator insertions on the loop, may be determined exactly in the planar limit using the

underlying integrability of the large N theory.

Another important direction is to understand better the strong-coupling side, in par-

ticular, shed light on the precise correspondence between the “strong-coupling” and “weak-

coupling” parameters κ and ζ in (4.18). A related question is about the detailed compar-

ison of the expansion of the Wilson loop expectation value near the conformal points to

correlation functions of scalar operator insertions at strong coupling.
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A Cut-off regularization

We can compute the leading order λ contribution to the Wilson loop in (2.7) using the

explicit UV cutoff a → 0 by replacing x2 in the vector field propagator by x2 + a2. Then

in the line case we get (cf. (2.8))

W
(0)
1 = − 1

(4π)2

∫ L

0
dτ1

∫ L

0
dτ2

1

(τ1 − τ2)2 + a2
= − 2

(4π)2

∫ L

0
dτ

L− τ
τ2 + a2

= − L

16π a
+

1 + log (L/a)

8π2
+O(a). (A.1)
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Here for L→∞ only the first term is relevant and this linear divergence is to be subtracted

out. For the circle, we have as in (2.10) W
(0)
1 = 1

8 + δW
(0)
1 where

δW
(0)
1 = − 1

4π

∫ π

0

dτ

4 sin2 τ
2 + a2

= − 1

4 a
√
a2 + 4

= − 1

8 a
+

a

64
+O(a2). (A.2)

The linear divergence here is the same as in (A.1) after the identification of L with the circle

length 2π. Subtracting this linear divergence we get the same result as in (2.10), (2.12).

The computation of the integral in (3.12), (3.13) can be done using similar cutoff a

I(a, γ) =

∫ 2π

0

dτ

(4 sin2 τ
2 + a2)1+γ

= 2π a−2−2γ
2F1

(
1

2
, 1 + γ, 1,− 4

a2

)
= a−2−2γ

[√
π Γ
(

1
2 + γ

)
a

Γ(1 + γ)
+O(a3)

]
+

[√
π Γ
(
−1

2 − γ
)

21+2γ Γ(−γ)
+O(a)

]
. (A.3)

Expanding in γ → 0, the first term gives just a power divergence with no finite O(a0)

part. The leading finite part in the second bracket is the same as given in (3.13) found

by directly computing the integral in (3.12) using an analytic continuation. Subtracting

power divergence we get I(a → 0, γ) = π γ + O(γ2) in agreement with (3.13). One can

check that the expansions a→ 0 and γ → 0 here commute.

B Computing 2-loop circle integrals

B.1 Expansion method

The circle integrals that appear in the expectation value of the circular WL can be com-

puted by using the commonly used expansion method (see [61], appendix B of [62] and

appendix G of [25]). Let us first illustrate it on the example of the the 1-loop integral

in (2.10) or (A.3). Expanding power of sine-function as a series of exponents and setting

α ≡ ω − 1 = 1− ε we get29

W
(0)
1 (α) = − 1

16πα+1

∫ 2π

0
dτ1dτ2

cos τ12

(4 sin2 τ12
2 )α

= − 1

16πα+1
e−i π α

∞∑
n=0

(
−2α

n

)
(−1)n

∫ 2π

0
dτ1dτ2 cos(τ1 − τ2) ei (n+α)(τ1−τ2)

= −2−2(α+1)π
3
2
−αα cos(πα)

Γ(2− α)Γ
(
α+ 1

2

) =
1

8
+

1

8
(1 + log π) ε+O(ε2) , (B.1)

which is in agreement with (2.10), (2.12).

At two loops, we need the integrals in (2.55); stripping off irrelevant factors these are

W(ζ)

2(a)
(α) =

∫
τ1>τ2>τ3>τ4

d4τ
(ζ2 − cos τ12) (ζ2 − cos τ34)(

4 sin2 τ12
2 4 sin2 τ34

2

)α , (B.2)

W(ζ)

2(b)
(α) =

∫
τ1>τ2>τ3>τ4

d4τ
(ζ2 − cos τ14) (ζ2 − cos τ23)(

4 sin2 τ14
2 4 sin2 τ23

2

)α . (B.3)

29Here we omit the overall factor Γ(2 − ω) that does not contribute to the final result.
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Applying the expansion procedure as in (B.1), we finally obtain for W(ζ)

2(a)
(α)

W(ζ)

2(a)
(α) =

1

π(α− 1)

{
21−4αζ2Γ

(
1

2
− α

)2

Γ(α− 1)2
[
π2(α− 1)2[(α− 1)ζ2 + 4α]

+ [(α− 1)ζ2 + 2] sin2(πα) + (α− 1)2 sin2(πα)
(

(α− 1)ζ2ψ(1)(1− α)

+ [ζ2 − α(ζ2 + 4)]ψ(1)(α− 1)
)]}

(B.4)

+
4π2(α− 1)αΓ(1− 2α)2

[
π2(α− 1)α csc2(πα)− (α− 1)αψ(1)(α− 1)− 1

]
Γ(2− α)4

,

where ψ(1)(z) is the derivative of the digamma function. Its expansion around α = 1 gives

the expression in (2.56)

W(ζ)

2(a)
(1− ε) =

π2(1− ζ2)

ε
+ π2(3− ζ2)(1− ζ2) +

π4

6
+O(ε) . (B.5)

For W(ζ)

2(b)
(α) a similar calculation gives

W(ζ)

2(b)
(α) =

2π6
[
(α− 1)ζ2 + α

]2
csc2(2πα)

3Γ(1− α)2Γ(2− α)2Γ(2α)2

+
4π4(α− 4)2(α− 3)2(ζ2 − 1)

(
2α[(α− 2)ζ2 + α− 1] + ζ2 + 1

)
csc2(2πα)

Γ(1− α)2Γ(5− α)2Γ(2α)2

× 3F2(1, α, α; 3− α, 3− α; 1)

− 12π4(ζ2 − 1)2 csc2(2πα)

Γ(4− α)2Γ(−α)2Γ(2α)2 3F2(2, α+ 1, α+ 1; 4− α, 4− α; 1)

− 32π4(ζ2 − 1)2 csc2(2πα)

(α− 4)2(α− 3)2(α− 2)2(α− 1)2(α+ 1)2Γ(−α− 1)4Γ(2α+ 1)2

× 3F2(3, α+ 2, α+ 2; 5− α, 5− α; 1)− 4π4(α− 1)2(αζ2 + α− ζ2)2 csc2(2πα)

Γ(1− α)2Γ(3− α)2Γ(2α)2

× 5F4(1, 1, 1, α, α; 2, 2, 3− α, 3− α; 1). (B.6)

Expanding this around α = 1, we obtain the finite expression given in (2.56)

W(ζ)

2(b)
(1− ε) =

1

2
π2(1− ζ2)2 +

π4

6
+O(ε) . (B.7)

B.2 Method based on Fourier representation

In the expansion method, the intermediate calculations are not manifestly real and can-

cellation of imaginary parts is often due to non-trivial relations between infinite sums.

A simpler approach closer to the analysis in momentum space is based on the Fourier

representation of the real even function (4 sin2 x
2 )−α

1(
4 sin2 x

2

)α =
1

2
a0(α) +

∞∑
n=1

an(α) cos(nx) , (B.8)

an(α) =
1

π

∫ 2π

0
dx

cos(nx)(
4 sin2 x

2

)α =
sec(πα) Γ(n+ α)

Γ(2α) Γ(n− α+ 1)
(B.9)

Note that near α = 1 we have a0 = sec(πα)Γ(α)
Γ(1−α)Γ(2α) = α− 1 +O(α− 1)2.
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Let us define the integrals

I(a)
α,β =

∫
τ1>τ2>τ3>τ4

d4τ
1(

4 sin2 τ12
2

)α (
4 sin2 τ34

2

)β ,
I(b)
α,β =

∫
τ1>τ2>τ3>τ4

d4τ
1(

4 sin2 τ14
2

)α (
4 sin2 τ23

2

)β (B.10)

Using the identity

(ζ2−cos τ12) (ζ2−cos τ34) = 4 sin2 τ12

2
sin2 τ34

2
+ 2

(
sin2 τ12

2
+ sin2 τ34

2

)
(ζ2−1) + (ζ2−1)2,

(B.11)

we find that the ladder integrals in (B.3) may be written as

W(ζ)

2(a)
(α) =

1

4
I(a)
α−1,α−1 +

1

2

(
I(a)
α−1,α + I(a)

α,α−1

)
(ζ2 − 1) + I(a)

α,α(ζ2 − 1)2, (B.12)

W(ζ)

2(b)
(α) =

1

4
I(b)
α−1,α−1 +

1

2

(
I(b)
α−1,α + I(b)

α,α−1

)
(ζ2 − 1) + I(b)

α,α(ζ2 − 1)2. (B.13)

To compute the integrals (B.10), we use the representation (B.8) and the integrals

∫
τ1>τ2>τ3>τ4

d4τ cos(nτ12) cos(mτ34) =


0, m, n > 0,
2π2

n2 , m = 0, n > 0,
2π2

m2 , n = 0,m > 0,
2π4

3 , n = m = 0,

(B.14)

∫
τ1>τ2>τ3>τ4

d4τ cos(nτ14) cos(mτ23) =



0, m 6= n > 0,

−π2

n2 , m = n > 0,
2π2

m2 , n = 0,m > 0,

−2π2

n2 , m = 0, n > 0,
2π4

3 , n = m = 0.

(B.15)

As a result,

I(a)
α,β =

π4

6
a0(α)a0(β) +

∞∑
n=1

π2

n2

[
a0(α)an(β) + a0(β)an(α)

]
, (B.16)

I(b)
α,β =

π4

6
a0(α)a0(β) +

∞∑
n=1

π2

n2

[
a0(α)an(β)− a0(β)an(α)− an(α)an(β)

]
. (B.17)

Plugging this into (B.12) and using the explicit expression of the Fourier coefficients (B.9),

this yields

W(ζ)

2(a)
(α) =

2π6
[
(α− 1)ζ2 + α

]2
csc2(2πα)

3Γ(1− α)2Γ(2− α)2Γ(2α)2
+

∞∑
n=1

2π3
[
(α− 1)ζ2 + α

]
csc(πα) sec2(πα)

n2Γ(1− α)Γ(2− α)Γ(2α)2Γ(n− α+ 2)

×
[
α2 − α+ n2 + ζ2(α− n− 1)(α+ n− 1)

]
Γ(n+ α− 1). (B.18)

– 31 –



J
H
E
P
0
3
(
2
0
1
8
)
1
3
1

Evaluating the sum gives

W(ζ)

2(a)
(α) =

2π6
[
(α− 1)ζ2 + α

]2
csc2(2πα)

3Γ(1− α)2Γ(2− α)2Γ(2α)2
+

41−2απ
[
(α− 1)ζ2 + α

]
Γ(1

2 − α)

Γ(1− α)2
(B.19)

×
[

(ζ2 − 1)Γ(1
2 − α)

(α− 1)3
−
π3/222α+1

[
(α− 1)ζ2 + α

]
4F3(1, 1, 1, α; 2, 2, 3− α; 1)

sin(2πα)Γ(3− α)Γ(2α)

]
.

One can check that (B.19) is equal to (B.4) by using the identity

4F3(1, 1, 1, α; 2, 2, 3− α; 1) =
(α− 2)

[
π2
(
1− 6 csc2(πα)

)
+ 6ψ(1)(α− 1)

]
12(α− 1)

. (B.20)

Using (B.17) in (B.13), we find in a similar way that

W(ζ)

2(b)
(α) =

2π6
[
(α− 1)ζ2 + α

]2
csc2(2πα)

3Γ(1− α)2Γ(2− α)2Γ(2α)2

−
∞∑
n=1

π2
[
α2 − α+ n2 + ζ2(α− n− 1)(α+ n− 1)

]2
Γ(n+ α− 1)2

n2 cos2(πα)Γ(2α)2 Γ(n− α+ 2)2
. (B.21)

Evaluating the infinite sum gives the expression which is in agreement with (B.6). In

particular, for α→ 1, one finds again (B.7).

Let us note that it is easy to extract the α → 1 expansion of expressions like (B.21)

without computing the unwieldy closed form (B.6): one is to separate the leading contri-

bution at large n in the sum. For instance,

−
∞∑
n=1

π2
[
α2 − α+ n2 + ζ2(α− n− 1)(α+ n− 1)

]2
Γ(n+ α− 1)2

n2 cos2(πα)Γ(2α)2Γ(n− α+ 2)2

= −
∞∑
n=1

[
π2(ζ2 − 1)2 sec2(πα)n4α−4

Γ(2α)2
+O

(
(α− 1)n4α−6

)]
= −π

2(ζ2 − 1)2 sec2(πα)

Γ(2α)2
ζR(4− 4α) +O(α− 1)

α→1
=

π2

2
(1− ζ2)2 , (B.22)

where ζR is the Riemann zeta-function. Adding the α→ 1 limit of the first line of (B.21),

i.e. π4

6 , we reproduce the expression in (B.7).

B.3 Alternative approach: expansion and summation directly in d = 4

The ladder integrals in (2.55) were computed using dimensional regularization with the

analytic continuation parameter α = ω − 1 = d
2 − 1 = 1 − ε → 1. The expansion method

and its improved Fourier representation version used to compute these integrals involve

infinite summations that produce meromorphic functions of α that are then evaluated near

the physical value α = 1. Instead of using analytic continuation in α one may use a simple

alternative approach: first set α = 1, use expansion procedure, do the τ -integrals and then

regularize the resulting infinite sums.
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For example, starting with W(ζ) (a)(α) in (B.2), setting α = 1 and using (B.8), i.e.
1

4 sin2 x
2

= −
∑∞

n=1 n cos(nx), and (B.14) we get (the same expression is found of course by

setting α = 1 in (B.18))

W(ζ) (a)(1) = 2π2 (1− ζ2)

∞∑
n=1

1

n
+
π4

6
. (B.23)

Comparing to (B.5), we see that the pole 1
ε there corresponds to the logarithmically diver-

gent sum 2
∑

n≥1
1
n in (B.23). The finite parts of (B.5) and (B.23) (which are, in general,

scheme-dependent) do not match. The reason for this disagreement can be understood as

follows. The finite term of order ζ4 in (B.2) comes from the integral∫
τ1>τ2>τ3>τ4

d4τ
1(

4 sin2 τ12
2 4 sin2 τ34

2

)α = a0(α)

[
π4

6
a0(α) +

∞∑
n=1

2π2

n2
an(α)

]
= π2 +O(α−1)

(B.24)

where we used that

∞∑
n=1

2π2

n2
an(α) =

π2

α− 1
+O(1) , a0(α) = α− 1 +O

(
(α− 1)2

)
. (B.25)

The direct way of setting α = 1 before summation misses extra finite 0
0 term as a0(1) is

set to zero from the start.

This subtlety does not appear in the case of W(ζ) (b)(α) which does not have a pole

near α = 1 (see (B.7)). Indeed, direct evaluation at α = 1 (or setting α = 1 in (B.21)

before summation) gives, in agreement with (B.7) or (2.56),

W(ζ)

2(b)
(1) =

π4

6
−
∞∑
n=1

π2(1− ζ2)2 =
π4

6
− π2(1− ζ2)2 ζR(0) =

π4

6
+
π2

2
(1− ζ2)2, (B.26)

where we used ζ-function regularization for the linearly divergent sum.

This direct procedure thus gives a vanishing ζ4 contribution from the type (a) ladder

diagram integral, i.e. the full ζ4 term in the final result (2.67) comes just from the type (b)

integral, avoiding the use of the evanescent bare coupling terms in (2.63), (2.66) required

in dimensional regularization.

A weak point of this regularization method is that it is difficult to apply it to the

self-energy and internal-vertex diagrams in figure 2 where the Mellin double integral repre-

sentation is quite useful when combined with dimensional regularization. Nevertheless, it is

remarkable that in this prescription the only finite contribution to the 2-loop term in (2.67)

should come just from the ladder type (b) diagram, i.e. the logarithmically divergent (and

scheme-dependent finite) parts from other diagrams should cancel against each other.
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