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1 Introduction

Following the seminal work by Ken Wilson [1] many authors have discussed the formulation

and consequences of continuum exact renormalization group (RG) equations for quantum

field theory (QFT). Amongst these the most popular have been those of Polchinski [2]

and Wetterich [3](see also [4–6]).1 The former is a differential equation in RG “time” ln Λ

for the Wilsonian effective action IΛ[φ] obtained by integrating out the ultra-violet (UV)

degrees of freedom down to some scale Λ. The latter is a differential equation for the

so-called average effective action, obtained from the functional integral for the quantum

effective action Γ[φc] by cutting off the integral over the eigenmodes of the kinetic operator

of the QFT at some infra-red (IR) scale k. This produces a functional Γk[φc] such that its

k → 0 limit gives back Γ[φc]. It is claimed that this equation defines the evolution all the

way from an “initial” UV action all the way down to the deep IR k → 0.

The standard model and Einstein’s theory of gravity are usually regarded as effective

field theories (EFT’s). The UV completion of these EFT’s is one of the main motivations

for string theory. In the latter case it is expected that these EFT’s are valid only up to

the string scale, which is typically an order of magnitude or so below the four dimensional

Planck scale.2 It is commonly believed that above such a UV scale one needs to replace

the EFT by string theory, with the parameters of the EFT being determined by the fun-

damental theory through matching conditions in the transitional region defined by the UV

cutoff Λ.

1For reviews and references to recent work see for example [7–10]. For applications to the asymptotic

safety program see [11–13] and references therein.
2If we have a large volume compactification the scale at which the EFT breaks down is the Kaluza-

Klein scale.
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An alternative to such a situation was proposed four decades ago by Weinberg [14, 15].

He argued that if the theory of gravity, or indeed gravity coupled to the standard model,

possessed an ultra-violet fixed point with a finite number of relevant operators, then one

would have a finite and predictive theory at all energy scales.

Such an eventuality would appear to eliminate the hope that a deeper understanding

of the fundamental laws of nature would explain the values of the parameters of the stan-

dard model such as the Yukawa couplings, the CKM matrix elements, and the existence of

three generations. On the other hand although it had been hoped that string theory would

provide such an explanation, the discovery that there is an extremely large (if not infinite)

landscape of (semi-realistic) solutions of the equations of string theory (with different num-

bers of generations etc.), means that in practice (at least with our current understanding

of string theory), it is not possible to answer these questions. It is thus of great interest

from a fundamental theoretical point of view to answer Weinberg’s question.

It is of course well-known that Einstein’s theory is not perturbatively renormalizable

and will require an increasing number of counter-terms if one tries to calculate higher orders

in the gravitational constant. The perturbation series is in effect an expansion in g(E) =

GE2 where G is the gravitational coupling constant (
√

8πG = 1/MP ∼ 1/(1018GeV) and E

is the energy scale which we are interested in. Thus it is valid only for energy scales below

the Planck scale. Furthermore at a given energy scale to a given level of accuracy we need

only a finite number of experimentally determined parameters to calculate any scattering

process. However this procedure clearly breaks down as one approaches the Planck scale

and certainly cannot address issues of post-Planckian physics. In contrast the “asymptotic

safety” (AS) program initiated by Weinberg if indeed it can be realized in practice, should

be able to calculate any gravitational process at arbitrarily high energies in terms of a finite

number of parameters.

There is however a practical problem associated with trying to implement this program

— the problem of truncation. The general Wilsonian effective action valid below some UV

scale Λ will have an infinite number of local operators scaled by some (inverse) power of

Λ. (see for instance equation (4.6) below.) In order to demonstrate the existence of an

UV fixed point one needs to compute the beta functions, and clearly since one is not in

the perturbative regime around the Gaussian fixed point, there is no small parameter that

can give a controlled expansion to approximate the exact β-function. Consequently what

has been resorted to in the literature has been a truncation procedure. This has been done

in many works (see the reviews [11–13] and references therein). The procedure may be

summarized as follows.

• Find a convenient truncation to a subset of the complete set of independent operators

in the action and compute the β-functions for this subset. Then find a (non-trivial)

fixed point (if one exists) and compute the scaling exponents there.

• Add new couplings and repeat the procedure.

• If the enlarged system does not admit a fixed point then clearly the fixed point of the

original truncation was an artifact of the truncation. If it does then one can compare
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the fixed point coordinates of the original set in the two truncations. If these have

been preserved up to small corrections in the enlarged truncation then this may be

interpreted as evidence for a true fixed point of the complete theory.

This procedure has been checked against other methods of calculation in several condensed

matter systems — for recent calculations showing good agreement see for example [16–20].

In the gravity case of course there is nothing to compare with and what has been done

is the following. In pure gravity the fixed point derived from studying the truncation to

Einstein gravity and a cosmological constant term has been shown to be stable under the

addition of Riemann and Ricci squared terms as well as powers of R up to R35. This has

been taken as evidence that the fixed point found in the original truncation is indeed a

true fixed point of the theory. Furthermore numerical investigations (see [21] and references

therein), have shown the existence of an RG trajectory that connects such a fixed point with

the Gaussian fixed point. This seems to point towards the existence of a QFT of gravity

that accounts for the experimentally verified weak coupling calculations of Einstein’s theory

and is asymptotically complete.

On the other hand, the fact that explicit calculations of the UV fixed point values of

the cosmological and gravitational coupling constants seem to depend only very weakly

on the higher dimension operators, indicates that some deep principle that is yet to be

understood is underlying this program. If this is uncovered then works such as that of [22–

24] where standard model parameters are evaluated using asymptotic safety within some

truncation ansatz, will indeed be true successes of the program. In the absence of such

an understanding the experimental agreement of these calculations (for the Higgs and top

quark masses) may still be interpreted as further evidence of the validity of the truncation

in the sense that the higher dimension operators that in principle could have contributed

to the calculation, are in fact negligible as in the pure gravity case.

Finally let us address the question of observables in quantum gravity. It is of course

well-known that only quantities which are diffeomorphism invariant are observables in the

theory. What the asymptotic safety program hopes to achieve then is to construct a

Wilsonian effective action, which depends on only a finite number of relevant parameters3

so that in principle gauge invariant observables such as the S-matrix can be calculated. The

asymptotic safety program can also be of relevance for computing inflationary observables

as has been explained by Weinberg in [25].

In this paper we will first review the two main versions of the Wilsonian exact RG

equation and discuss the relation between them.4 Then we will argue that the Wetterich

version is ill-defined at the initial point of the evolution i.e. at the UV cutoff. Next we will

derive a background field version of an exact RG equation which is close in spirit to the

Polchinski equation, is well defined at the UV cutoff, and with proper time regularization,

gives a simple expression for the β function.5 Furthermore it avoids the problem of having

3This is clearly enunciated in [25].
4These equations are in effect RG improved one loop equations. As pointed out to the author by Joe

Polchinski, such an equation was first derived by Weinberg in [14] (see section 8).
5The equation itself has been written down by other authors by conjecturing that a RG improved one-

loop equation may be exact (see for example [8]). In this paper we establish the validity of this conjecture.
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to deal with two sets of fields, a set of background fields as well as a set of expectation

values of quantum fields (so there are two metrics for instance), that affects the background

field formulation of the Wetterich equation. In practice much of the work that has been

done towards establishing a fixed point for gravitational theories can actually be taken over

for this RG equation for the Wilsonian action. We then discuss the beta function equations

and the evidence for the existence of an ultra-violet fixed point with a finite number of

relevant directions in a theory of gravity.

2 Review and comments

Our starting point is the (Euclidean) functional integral for connected correlation func-

tions W [J ],

e−W [J ] =

∫
[dφ]e−I[φ]−

∫ √
gJ.φ. (2.1)

Here I is the “classical” action and J is an external (classical) source. For simplicity we

will work with scalar fields, but the expressions can be extended in the obvious ways to

gauge fields, fermion fields, and metric fields, with appropriate tensor contractions and

addition of gauge fixing terms DeWitt-Fadeev-Popov terms etc., and the replacement of

traces and determinants by supertraces and superdeterminants. We will also employ a

(commonly used) condensed notation so that for any fields φ, ψ, and a differential operator

K(x, y) ≡ −∇2 1
g1/4(x)

δ(x− y) 1
g1/4(y)

,

φ.ψ ≡
∫
√
gd4xφ(x)ψ(x)

φ.K.ψ ≡
∫ √

g(x)d4x

∫ √
g(y)d4yφ(x)K(x, y)ψ(y)

Let us now separate the kinetic and interaction parts and write

I[φ] = I0[φ] + Ii[φ],

with I0 ≡ 1
2φ.K.φ] is the kinetic term and Ii is the interaction. By standard manipula-

tions (2.1) may be rewritten as,

e−W [J ] = e−Ii[−
δ
δJ ]e−

1
2

Tr lnK+ 1
2
J.K−1.J (2.2)

where K−1 is the Green’s function associated with K. This expression is formal and (at

least in a perturbative expansion in powers of the interaction) has divergences in any non-

trivial field theory. Thus it needs to be regulated in the ultra-violet (UV). Assuming that

K is a positive operator with eigenvalues p2 we impose a cutoff Λ such that the modes

p2 � Λ2 are suppressed. A simple hard cutoff would be to replace the Fourier transformed

Green’s function K̃−1(p2) by K̃−1
Λ (p2) = K̃−1(p2)θ(Λ2 − p2). In flat space a smoothly

cutoff propagator would be for instance of the form K̃−1
Λ (p2) = K̃−1(p2) exp(−p2/Λ2).

Thus we have

e−W [J ] = e−IiΛ[− δ
δJ ]e−

1
2

Tr lnKΛ+ 1
2
J.K−1

Λ .J . (2.3)
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Demanding that the l.h.s. of this equation be independent of Λ gives us the following:

0 = e−IiΛ[− δ
δJ ]
[
− ∂IiΛ

∂ ln Λ

[
− δ

δJ

]
− 1

2

∂

∂ ln Λ
Tr ln KΛ +

1

2
J.

d

d ln Λ
K−1

Λ .J

]
e−

1
2

Tr lnKΛ+ 1
2
J.K−1

Λ .J

= e−IiΛ[− δ
δJ ]
∫

[dφ]e−I0Λ[φ]

[
− ∂IiΛ

∂ ln Λ
[φ]− 1

2

∂

∂ ln Λ
Tr ln KΛ +

1

2

δ

δφ
.

d

d ln Λ
K−1

Λ .
δ

δφ

]
e−J.φ

=

∫
[dφ]e−I0Λ[φ]

[
− ∂IiΛ

∂ ln Λ
[φ]− 1

2

∂

∂ ln Λ
Tr ln KΛ +

1

2

δ

δφ
.

d

d ln Λ
K−1

Λ .
δ

δφ

]
e−[IiΛ+J.φ] (2.4)

=

∫
[dφ]

{
− ∂IiΛ

∂ ln Λ
[φ]− 1

2

∂

∂ ln Λ
Tr ln KΛ +

1

2

(
δIiΛ
δφ

+ J

)
.

d

d ln Λ
K−1

Λ .

(
δIiΛ
δφ

+ J

)

−1

2

δ

δφ
.

d

d ln Λ
K−1

Λ .
δIiΛ
δφ

}
e−[I0Λ+IiΛ+J.φ]. (2.5)

The Polchinski equation results from using a external source current J which goes to zero

at (momentum space) scales well below Λ. In this case the J dependent terms in the last

equation vanish and we have the (slightly generalized) Polchinski RG equation,

∂IiΛ

∂ ln Λ
[φ] = −1

2

∂

∂ ln Λ
Tr ln KΛ +

1

2

(
δIiΛ
δφ

)
.

d

d ln Λ
K−1

Λ .

(
δIiΛ
δφ

)
− 1

2

δ

δφ
.

d

d ln Λ
K−1

Λ .
δIiΛ
δφ

.

(2.6)

The slight generalization here is the occurrence of the first term, which in a general metric

background needs to be kept6 unlike in the original flat space case. Writing IΛ = I0Λ+IiΛ =

I0Λ +
∑

i g
i
ΛΦi[φ] and βi ≡ ∂gi

∂ ln Λ gives from (2.6) as is well known, a set of equations for

the beta functions βi.

In addition to this UV cutoff we will, in order to connect to the discussion of the

so-called average effective action, introduce an infra-red (IR) cutoff k2. So for example we

could have in terms of a hard cutoff K̃−1
Λ,k(p

2) = K̃−1(p2)θ(Λ2 − p2)θ(p2 − k2), or in terms

of a smooth cutoff K̃−1
Λ,k(p

2) = K̃−1(p2)[exp(−p2/Λ2)− exp(−p2/k2)]. In this case (2.3) is

replaced by

e−Wk[J ] = e−IiΛ[− δ
δJ ]e−

1
2

Tr lnKΛ,k+ 1
2
J.K−1

Λ,k.J . (2.7)

The dependence on the IR cutoff is indicated by the subscript k on W but it is still

independent of the UV scale Λ. As discussed above this is equivalent to satisfying the

Polchinski equation (2.6) since the replacement KΛ → KΛ,k has no effect on the derivation

of that equation.

Let us now derive the so-called Wetterich equation in a slightly modified form, i.e.

with both a UV cutoff as well as the original IR cutoff. But now we need to begin with

the functional integral version of (2.7). So we have (putting k∂kx ≡ ẋ)

∂

∂ ln k
e−Wk[J ] = −

∫
[dφ]

1

2
φ.K̇k,Λ.φe

−[ 1
2
φ.Kk,Λ.φ+I1Λ[φ]+J.φ]

= −1

2

δ

δJ
.K̇k,Λ.

δ

δJ
e−Wk[J ].

6This has already been observed in [26].
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This leads to the RG equation

Ẇk|J =
1

2

δWk

δJ
.K̇k,Λ.

δWk

δJ
− 1

2

δ

δJ
.K̇k,Λ.

δWk

δJ
. (2.8)

Defining the cutoff effective action by a Legendre transformation,

Γk[φc] = Wk[J ]− J.φc, φc =
δWk[J ]

δJ
⇒ δΓk[φc]

δφc
= −J [φc].

Also Γ̇k|φc = Ẇk|J+ δWk[J ]
δJ .J̇−J̇ .φc = Ẇk|J and δ

δJ .K̇k,Λ.
δWk
δJ = −TrK̇k,Λ

[
δ
δφc
⊗ δΓk[φc]

δφc

]−1
,

giving from (2.8) a flow equation for the cutoff effective action,

Γ̇k[φc] =
1

2
TrK̇k,Λ

{
φc ⊗ φc +

[
δ

δφc
⊗ δΓk[φc]

δφc

]−1
}
.

The effective average action defined by Wetterich is (except for the fact that here we are

keeping Λ finite),

Γw
k [φc] ≡ Γk[φc]−

1

2
φc.Rk,Λ.φc,

where Rk,Λ ≡ Kk,Λ −K0,Λ (so that Ṙk,Λ = K̇k,Λ). The above equation now becomes

Γ̇w
k [φc] =

1

2
TrṘk,Λ

[
δ

δφc
⊗
δΓw

k [φc]

δφc
+Rk,Λ

]−1

. (2.9)

In the limit k → 0, Γk → Γ and Rk,Λ → 0, and we have the “final” condition

Γw
k → Γ, for k → 0.

To get the initial condition for ΓWk let us go back to the functional integral defining it.

e−Γw
k [φc] =

∫
[dφ]e−[ 1

2
φ.Kk,Λ.φ+IiΛ[φ]+J.(φ−φc)− 1

2
φc.Rk,Λ.φc]

∣∣∣
J=−δΓk/δφc

=

∫
[dφ′]e−[ 1

2
φc.Kk,Λ.φc+

1
2
φ′.Kk,Λ.φ

′+IiΛ[φc+φ′]+(J+φc.Kk,Λ).φ′− 1
2
φc.Rk,Λ.φc]

∣∣∣
J=−δΓk/δφc

= e−[ 1
2
φc.K0,Λ.φc+IiΛ[φc− δ

δJ ]+ 1
2

Tr lnKΛ,k]+ 1
2(J̄ .K−1

k,Λ.J̄)
∣∣∣
J̄=−δΓk/δφc+φc.Kk,Λ.

(2.10)

When k → Λ, K−1
k,Λ → 0 and up to a field independent infinite constant ( 1

2Tr lnKΛ,Λ] which

can be regularized to zero in heat kernel proper time regularization for instance), we have

Γw
k [φc]→ IΛ[φc] for k → Λ.

This establishes the fact that Γw
k [φc] interpolates between the seed action (i.e. the Wilsonian

action at the initial scale Λ) and the quantum effective action.

However the flow equation itself breaks down at the initial scale. This is because as

k → Λ, K−1
Λ,k → 0 and hence Rk,Λ = Kk,Λ − K0,Λ → ∞ and so in general does its log

derivative. This means that the r.h.s. of (2.9) and hence the RG time derivative of ΓWk at

– 6 –
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the initial time is not well-defined. Thus it is not clear how the equation can be used to

evolve the initial data, i.e. the Wilsonian action at scale Λ.

To be concrete let us take the regulated propagator to be

K−1
k,Λ(x, y) =< x|

∫ 1/k2

1/Λ2

dse−K̂s|y > .

Then we have the operator relation (writing K−1
k,Λ(x, y) =< x|K̂−1

k,Λ|y > etc.)

R̂k,Λ = K̂k,Λ − K̂0,Λ = K̂eK̂/Λ
2
(
e(1/k2−1/Λ2)K̂ − 1

)−1
(2.11)

˙̂
Rk,ΛR

−1
k,Λ = −2

K̂

k2
e(1/k2−1/Λ2)K̂

(
e(1/k2−1/Λ2)K̂ − 1

)−1
(2.12)

Both these quantities diverge as (1/k2− 1/Λ2)−1 as k → Λ. Thus the equation (2.9) is not

well defined in this limit.

In the literature on the average effective action, in contrast to the above, there is no

explicit UV cutoff. It is implicitly assumed that one can work with Λ → ∞. In this

case (2.12) becomes

˙̂
Rk,∞R

−1
k,∞ = −2

K̂

k2
e(1/k2)K̂

(
e(1/k2)K̂ − 1

)−1

It is clear that k → ∞ is now a well defined limit with
˙̂
Rk,∞R

−1
k,∞ → −2 . However this

assumes that the initial action IΛ is well-defined in the Λ→∞ limit which is tantamount

to assuming (at the very least) that the theory has a UV fixed point!

Actually the situation is worse than that since even if a fixed point existed as in QCD

for example, the coupling gΛ → 0 as the cutoff Λ→∞ so that the action −1/g2
Λ

∫
F 2 does

not exist.7 One can of course get arbitrarily close to the fixed point with a well defined

action but there is no finite action starting point as is assumed in the derivations of the

Wetterich equation.8 One needs to turn on the (marginally) relevant operator above at

some large but finite cutoff Λ in order to flow away from the fixed point as one lowers the

cutoff Λ. Thus even in this case the assumption that there is a meaningful Λ →∞ action

is invalid.

The version of the Wetterich equation that is appropriate for gauge and gravity theories

is formulated using the background field method. However this too has the above problem.

Also it is clear from (2.10) that in the limit k → Λ there is now a background field

dependent infinity which is absent if regularized for instance as in eqn (3.3). Furthermore

this formulation requires the introduction of an effective action which depends on both

a background field and the expectation value of the quantum field — thus it has two

metrics for instance. In the next section we will suggest an alternative exact RG equation

that is well defined at an arbitrary but finite UV scale Λ and is dependent only on the

background field.

7One may redefine the gauge field to get a canonical kinetic term A → Ac = gΛA, but in this case the

gauge transformation Ac → G−1AcG + 1
gΛ
G−1dG is ill-defined in the limit Λ→∞.

8For alternative discussions of this so-called reconstruction problem for the effective average action

see [27–29].

– 7 –



J
H
E
P
0
3
(
2
0
1
8
)
1
1
8

3 An alternative RG equation

The quantum theory corresponding to a given classical action I[φ] is given by the quantum

effective action Γ(φc) defined (implicitly and formally) by the formula

e−Γ(φc) =

∫
[dφ]e−I[φ]−J.(φ−φc)

∣∣∣
J=−∂Γ/∂φc

. (3.1)

By translating the integration variable φ = φc + φ′ we have the following expressions,

e−Γ(φc) =

∫
[dφ′]e−I[φc+φ

′]−J.φ′ |J=−∂Γ/∂φc

=

∫
[dφ′]e

−
{
I[φc]+

1
2
φ′. δ

2I

δφ2
c
.φ′+Ii[φc,φ

′]+
(
J+

δI[φc]
δφc

)
.φ′
}∣∣∣
J=−δΓ/δφc

(3.2)

= e−I[φc]e−
1
2

TrlnK[φc]e−Ii[φc,−
δ
δJ̄ ]e

1
2
J̄ .K[φc]−1.J̄

∣∣∣
J̄=δI[φc]/∂φc−δΓ/δφc

.

In the second line above Ii[φc, φ
′] contains all powers of φ′ which are higher than quadratic

in the expansion of I[φc+φ′], and the third line is the result of doing the Gaussian integral

over φ′.

The above is a formal expression that needs to be regularized. A convenient way of

doing this for our purposes is to introduce the Schwinger proper time regularization9 as in

the previous section, except that now the operators depend on the field φc.

K−1
k,Λ(φc;x, y) =<x

∣∣∣∣∣
∫ 1/k2

1/Λ2

dse−K̂[φc]s

∣∣∣∣∣y>, lnKk,Λ[φc;x, y] = − <x

∣∣∣∣∣
∫ 1/k2

1/Λ2

ds

s
e−K̂[φc]s

∣∣∣∣∣y>.
(3.3)

So we replace (3.2) by

e−Γk(φc) = e−IΛ[φc]e−
1
2

TrlnKk,Λ[φc]e−Ii[φc,−
δ
δJ̄ ]e

1
2
J̄ .Kk,Λ[φc]−1.J̄

∣∣∣
J̄=δIΛ[φc]/∂φc−δΓk/δφc

. (3.4)

Now we have the following limits:

k → 0, Γk → Γ; k → Λ, K−1
k,Λ, lnKk,Λ → 0, ⇒ Γk → IΛ. (3.5)

It should be noted that the problematic limit k → Λ in the Wetterich case is taken care of by

the use of the (regularized) Schwinger proper time representation for the one loop effective

action — i.e. the second equation in (3.3). The necessity of the separate regularization of

the logarithm of K̂ is nothing but the well known phenomenon that any higher covariant

derivative type regularization (which is essential for the discussion of a gauge theory) will

not regularize the one-loop term. With these regularizations (3.3)10 we have the well-

defined expression (3.4).

9In general K will of course be a matrix over space-time indices as well as internal indices labelling the

different fields as well as their components.
10One can of course use a whole class of such regularizations with a smooth cutoff function of the proper

time s in the integrands. Here we just chose the simplest version.
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Differentiating w.r.t. ln k we have from (3.4) (dt ≡ dk/k)

−e−Γk(φc)Γ̇k[φc] = e−IΛ[φc]e−
1
2

TrlnKk,Λ[φc]e−IiΛ(φc,− δ
δJ̄ ) ×(

−1

2

d

dt
Tr lnKk,Λ[φc] + ˙̄J.K−1

k,Λ.J̄ +
1

2
J̄ .K̇−1

k,Λ.J̄

)
×

e
1
2
J̄ .Kk,Λ[φc]−1.J̄

∣∣∣
J̄=δIΛ[φc]/∂φc−δΓk/δφc

(3.6)

Now let us take the limit k → Λ of this equation. Using (3.5) we see that since Ii(φc,− δ
δJ̄

)

is at least third order in δ/δJ , it will commute with the J̄ terms up to terms which have

at least one power of δ/δJ acting on the last factor which is equal to 1 in this limit. Also

in this limit J̄ → 0. Thus we have the alternate RG equation

Λ
d

dΛ
IΛ[φc] =

1

2
k
d

dk
Tr lnKk,Λ[φc]|k=Λ = Tr exp

{
− 1

Λ2

δ

δφc
⊗ δ

δφc
IΛ[φc]

}
, (3.7)

where in the last step we used (3.3). The same equation may be obtained by requiring

the independence from Λ of Γk, as is required for consistency, in (3.4) and then taking the

limit k → Λ . Thus instead of (3.6) we have

0 = e−IΛ[φc]e−
1
2

TrlnKk,Λ[φc]e−IiΛ[φc,− δ
δJ̄ ] ×{

−Λ
d

dΛ
IΛ[φc]− Λ

d

dΛ

(
1

2
Tr lnKk,Λ[φc] + IiΛ

[
φc,−

δ

δJ̄

])
+

(
Λ
d

dΛ
J̄

)
.K−1

k,Λ.J̄ +
1

2
J̄ .

(
Λ
d

dΛ
K−1
k,Λ

)
.J̄

}
×

e
1
2
J̄ .Kk,Λ[φc]−1.J̄

∣∣∣
J̄=δIΛ[φc]/∂φc−δΓk/δφc

(3.8)

By the same argument as before in the limit k → Λ we get (after using the explicit

regulator (3.3) in the last step)

Λ
d

dΛ
IΛ[φc] = −1

2
Λ
d

dΛ
Tr lnKk,Λ[φc]|k=Λ = Tr lim

k→Λ

∫ 1/k2

1/Λ2

ds

s
sΛ
dKΛ

dΛ
e−sKΛ[φc] + Tre−

1
Λ2K[φc]

= Tr exp

{
− 1

Λ2

δ

δφc
⊗ δ

δφc
IΛ[φc]

}
,

which is the same as (3.7).

The above discussion of course needs to be modified when the set of fields φ includes

gauge (and graviton) fields. The quadratic “kinetic” term in φ′ will have an additional

“gauge fixing” term which will be also regularized in the same way. So we make the

replacement (with α a gauge fixing parameter)

Kk,Λ[φc]→ Kk,Λ[φc] +KGF
k,Λ[φc, α].

In addition we have the ghost term which is just a determinant term and will give an

additional factor

e+ 1
2

TrlnKghost
k,Λ [φc],
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on the r.h.s. of (3.4). Thus the RG equation (3.7) is replaced by

Λ
d

dΛ
IΛ[φc] =

1

2
k
d

dk

{
Tr ln

(
Kk,Λ[φc] +KGF

k,Λ[φc, α]
)
− Tr ln Kghost

k,Λ

}
|k=Λ,

= Tr exp

{
− 1

Λ2

(
I

(2)
Λ [φc] + I

(2)GF
Λ [φc, α]

)}
− Tr exp

{
− 1

Λ2
I

(2)ghost
Λ [φc, α]

}
.

(3.9)

In the last line we have again used our explicit proper time cutoff. Also

I
(2)GF
Λ [φc, α], I

(2)ghost
Λ [φc, α] are the background dependent operators defining the gauge

fixing and ghost terms (which are respectively quadratic in the quantum field φ′ and the

ghost fields C, C̄). Also IΛ is as before the Wilsonian action but now including also the

gauge fixing and ghost terms with Λ dependent couplings.

We should point out at this stage that this exact RG equation is in fact simply an RG

improvement of the proper time representation of the RG equation for the cutoff one-loop

effective action. As a one loop equation it has been written down by many authors for

example [30–32]. In a form that is the same as what we have above it is given in [8] (see

equation (92)). The point of the above discussion was however to derive it as an exact

equation for the Wilsonian effective action.

The action can be expanded in a complete set of local operators (after eliminating

redundancies)

IΛ =
∑

ḡA(Λ)ΦA[φ]. (3.10)

The equation (3.7) is then in effect an RG improved one loop equation for the beta functions.

It is (as is the case for the original form of the Polchinski equation) an exact equation for

the evolution of the Wilson effective action. It is also the appropriate form to use for

exploring the fixed points (if any) for gauge and gravitational field theories since it has

manifest gauge invariance under the gauge transformation of φc.

In fact all one needs for the exploration of UV fixed points is the above equation.

Indeed what has been done in the literature is completely equivalent to doing an operator

truncation of this equation, since in practice the equation for the effective average action [3,

33] can be used only in a regime where the derivative expansion is valid. Thus in effect

one is dealing with a derivative expansion in terms of local operators. In this sense Γk is

not in any way different from the Wilsonian effective action. The validity of the derivative

expansion requires that ∂2/k2 � 1 i.e. one cannot really take the k → 0 limit. There is no

sense in which one can get the non-local quantum effective action from the quasi-local Γk
without being able to sum the relevant infinite series. However the former is not needed to

get the RG equations or to establish the existence of a UV fixed point. In other words one

does not need to have an action which interpolates from the initial Wilsonian action all

the way to the quantum effective action Γ[φc] to explore the UV properties of the theory.

Finally let us emphasize that this formulation avoids the problem of having two background

fields such as having two metrics — which is the case for the Wetterich equation.

3.1 Gauge fixing dependence and observables in quantum gravity

DeWitt [34] has argued that the gauge fixing parameter is not renormalized. If this is

the case we may assume that the gauge fixing parameters do not flow. Furthermore the
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1PI effective action Γ at its extremum is in fact independent of the gauge fixing. On the

other hand the Wilsonian action IΛ and the average effective action Γk are gauge fixing

dependent11 and therefore so are the beta functions. Nevertheless the fixed points and the

critical exponents should be gauge independent.

Currently what has been done is to check the gauge dependence by comparing the

calculations in different gauges and to some extent this has been verified — see for example

the discussion in section 7.3.3 of [13]. However clearly one needs a general argument

establishing this.

One possibility would be to show that the different gauge choices are equivalent to

reparametrizations in field space. An alternative approach to using gauge fixing is perhaps

to use a cutoff version of the Vilkovisky-DeWitt gauge independent formulation of gauge

theory [34]. We will leave further discussion of this problem to future work.

The question of gauge dependence also leads us to address what it is that a theory

of quantum gravity hopes to calculate. As is well-known diffeomorphism invariance in

quantum gravity implies that there are no local observables. In asymptotically flat or

AdS backgrounds however it is possible to define an S-matrix that is well-defined as an

observable. It may even be possible to do so in an asymptotically dS background [37].

Thus one would adopt the following procedure.

Consider the Wilsonian effective action for a theory of quantum gravity with a cutoff

scale Λ. This would be an expansion in terms of (space-time integrals of) an infinite set of

local operators which is valid for energy scales E2 ∼ ∂φ or E2 ∼ R (where φ is any field

and R is space-time curvature), such that E < Λ, so that the expansion in terms of local

operators is valid. Thus for the pure gravity case we have,

IΛ =

∫
d4x
√
g
[
Λ4g0(Λ) + Λ2g1(Λ)R+

(
g2a(Λ)RµνR

µν + g2b(Λ)R2 + g3bR....R
....
)

+Λ−2 (g3a(Λ)RRµνR
µν + . . .) +

(
g

(1)
3a R�R+ . . .

)
+O

(
Λ−4

) ]
+ IGF

Λ + Ighost
Λ .

(3.11)

The asymptotic safety program hopes to establish that the dimensionless couplings have,

in addition to the Gaussian fixed point gi = 0 in the IR, also a non-trivial fixed point

gi = g∗i , βi(g
∗) = 0 where not all g∗i are zero. Furthermore only a finite number of these

dimensionless couplings gi are expected to be relevant. For instance in concrete calculations

it appears that only g0, g1, g2 are relevant, and so need to be determined by experiment.

This then gives us a Wilsonian effective action which may be used to calculate the S-matrix

for gravitons, once the background for the far past and the far future of the scattering

process has been chosen to be (say) flat space, for arbitrarily high energies E < Λ in terms

of the three undetermined couplings.12 Furthermore the BRST invariance of (3.11) ensures

that the S-matrix is independent of the gauge fixing.13

11For a detailed discussion of this and a suggestion for a modified version of Γk see [35, 36].
12A concrete method of calculation (in the particular case of cosmology at least) has been discussed by

Weinberg [25]. For a given energy E one needs to optimize the value of the cutoff Λ. In order to be able to

ignore higher dimension operators one needs E < Λ. On the other hand in order to be able to ignore higher

order radiative corrections the cutoff should not be much higher than E. This is of course very much in the

spirit of perturbative QCD calculations as explained in the above reference.
13See for instance [34] and also [38, 39].

– 11 –



J
H
E
P
0
3
(
2
0
1
8
)
1
1
8

One issue that may affect this argument is the question of unitarity. Perturbatively it

appears that any higher derivative theory has a propagating ghost — in particular in higher

derivative gravity there appears to be a spin two ghost [40]. However this weak coupling

argument may not be valid in the complete theory. Let us consider this in more detail.

In the theory defined above (3.11) each dimensionless coupling will have an asymptotic

expansion for large as well as small Λ. Thus defining the planck scale MP by (the inverse

of) the gravitational constant measured at long distances we have for instance with g
(j)
i

being pure numbers or (for j > 0) at most polynomials in ln Λ
MP

,

g1(Λ) = g
(0)
1 + g

(1)
1

M2
P

Λ2
+ . . . , Λ�MP

=
M2
P

2Λ2
+ g̃

(1)
1 + g̃

(2)
1

Λ2

M2
P

+ . . . , Λ�MP

g2(Λ) = g
(0)
2 + g

(1)
2

M2
P

Λ2
+ . . . , Λ�MP

= g̃
(0)
2 + g̃

(1)
2

Λ2

M2
P

+ . . . , Λ�MP .

Now the existence of the perturbative ghost is inferred by looking at the propagator of

the low energy theory (in a flat background i.e. writing gµν = ηµν + 2
MP

hµν truncated to

four derivatives), which turns out to have two poles, one at zero mass corresponding to the

graviton and another with squared mass M2
P /g̃

(0)
2 . But at this point the theory is strongly

coupled and all higher derivative terms would also contribute and it is not at all clear that

this putative ghost will survive in the full theory. Indeed it has been argued that such

states decouple and that the S-matrix is unitary [38]. Furthermore it has been shown in

toy models that the usual argument (even in weak coupling) for the existence of a ghost

in quartic derivative theories is incorrect [41–43]. The Hamiltonian of the theory has to

be interpreted not as a (Dirac) Hermitian one but as a PT symmetric one — in which

case contrary to the naive expectation one has a unitary theory with a positive energy

spectrum.

While the above arguments clearly do not imply that (3.11) defines a unitary quantum

gravity, what they do show is that the naive argument for the existence of a perturbative

ghost, does not mean that the correctly interpreted complete theory violates unitarity.

4 The beta function equations

4.1 General considerations

The formula (3.9) gives a straightforward way of evaluating the beta functions of any

theory. In (3.10) let us introduce dimensionless couplings gA by writing

ḡA = Λ4−nAgA (4.1)

where nA is the physical (a.k.a. canonical or engineering) dimension of the operator Φ.

Thus nA = 0 for the unit operator (the cosmological constant term proportional to
√
g),
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nA = 2 for the Einstein-Hilbert term and for a scalar mass term, nA = 4 for scalar, vector

and fermionic kinetic terms and “renormalizable” interactions in the sense of perturbative

QFT. Terms with physical dimensions nA > 4 are the so-called “non-renormalizable” terms,

amongst which one will have both higher derivative terms such as φ�2φ, R2, as well as

higher powers of field operators such as φ6, (ψ̄ψ)2. Then the flow equation (3.7) (we ignore

the complications of gauge fixing and ghosts for the moment), becomes an infinite set of

coupled equations for the dimensionless couplings gA:

ġA + (4− nA)gA = ΛnA−4Tr exp

{
− 1

Λ2

δ

δφc
⊗ δ

δφc
IΛ[φc]

}∣∣∣∣
ΦA

, A = 0, 1, 2, . . . . (4.2)

The instruction on the right is to isolate the coefficient of the operator ΦA in the expansion

of the trace. Also we’ve written ġ ≡ dg
dt , t = ln Λ

Λ0
where Λ0 is a fiducial scale which can be

identified with the Planck scale (i.e. Λ2
0 = M2

P ≡ 1/8πGN where GN is Newton’s constant

measured at low energies).

The r.h.s. of (4.2) gives the contribution of quantum fluctuations to the various beta

functions. It is succinctly given in this formula by the heat kernel trace whose expansion

in powers of 1/Λ2 can be systematically worked out.14

These beta function equations take the general form

ġA + (4− nA)gA = ηA({g}) (4.3)

with ηA = 0, ∀A when gA = 0, ∀A provided we replace gA → ĝA ≡ (gA)−1 for gravitational

and gauge couplings. This means that there is always a Gaussian fixed point solution

ġA = 0, gA = 0, ∀A. A non-trivial fixed point would exist if the infinite set of equations

(4− nA)gA = ηA({g}), (4.4)

has real solutions gA = gA∗ , with g∗A finite for all A and 6= 0 for at least some couplings.

We will argue below using the general structure of the heat kernel expansion, that this is

indeed the case for gravity coupled to a scalar field theory.

The question of the nature of the fixed point and in particular its critical surface is

determined by linearizing (4.3) around the fixed point so we have

dδg

dt

A

=
∑
B

(
−(4− nA)δAB +

∂ηA({g})
∂gB

∣∣∣∣
g∗

)
δgB ≡

∑
B

DA
B(g∗)δg

B. (4.5)

The number of negative eigenvalues of the matrix D (i.e. the number of relevant directions)

is then the dimensionality of the critical surface for an UV fixed point. A predictive (i.e.

renormalizable) theory should have only a finite number of relevant directions and the cor-

responding couplings (at some fiducial scale) would need to be determined by experiment.

The other (irrelevant) directions can then be set to their fixed point values.

To be more specific let us introduce the eigenvectors u of the matrix D with eigenvalues

θ(J) — i.e. Du(J) = θ(J)u. Also suppose that θ(0), . . . θ(R−1) < 0, while the rest are positive

(or zero). In this case

u(J)(t) = e−|θ
(J)|tu(J)(0)→ 0, J = 0, . . . R− 1, t→∞.

14In practice beyond the first few orders, it becomes extremely complicated though.
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So the deviation from the fixed point value at the fiducial scale Λ = Λ0 will need to be fixed

by experiment. On the other hand for (the infinite set of) positive (or zero) eigenvalues we

set u(J)(0) = 0, i.e. the corresponding couplings at the fiducial scale are equal to the fixed

point values.

Now canonically in the standard model coupled to gravity there are only three operators

with nA < 4, namely the unit operator (cosmological constant term) with n = 0, the Higgs

mass term with n = 2 and the Einstein-Hilbert term with n = 2. Then there are kinetic

terms for all fields and the Yukawa couplings, with canonical dimension n = 4. All the

other (infinite number of) operators have integral canonical dimensions with n ≥ 5, i.e.

4− n < −1. Thus unless there are large anomalous dimensions (at the NGFP) one might

expect the number of relevant operators to remain the same (or at least finite) as in the

absence of quantum corrections. Obviously this is the case around the Gaussian fixed

point. We will argue below that this is very likely to be the case around the UV fixed point

as well.

4.2 The heat kernel expansion and the beta functions

In this section we will discuss the beta functions for a scalar theory coupled to gravity.15

The action for the theory at some scale Λ is

IΛ =

∫
d4x
√
g
[
Λ4g0(Λ) + Λ2g1(Λ)R+

(
g2a(Λ)RµνR

µν + g2b(Λ)R2 + g3bR....R
....
)

+Λ−2 (g3a(Λ)RRµνR
µν + . . .) +

(
g

(1)
3a R�R+ . . .

)
+O

(
Λ−4

) ]
+

∫
d4x
√
g

[
Z
(
φ2/Λ2

) 1

2
φ(−�)φ+ V (φ,Λ) + ξ(φ,Λ)R+O

(
∂4
)]

+I
(G.F.)
Λ + I

(ghost)
Λ . (4.6)

Here

V (φ,Λ) =
1

2
λ1(Λ)Λ2φ2 +

1

4!
λ2(Λ)φ4 +

1

6!
λ3(Λ)Λ−2φ6 + . . . , (4.7)

Z

(
φ2

Λ2

)
= Z0 +

1

2
Z1
φ2

Λ2
+ . . . (4.8)

ξ (φ,Λ) =
1

2
ξ1φ

2 +
1

4!
ξ2φ

4 + . . . (4.9)

All coefficients gi, λi, etc. are dimensionless. The field independent term in the potential has

been included in the first line as an explicit cosmological constant term i.e. Λ4g0(Λ) = ΛCC .

Also Λ2g1(Λ) = −1/16πGN (Λ) ≡ −1/2κ2(Λ) where GN (Λ) is Newton’s constant at the

scale Λ. To get the matrix δ
δφc
⊗ δ

δφc
IΛ[φc] ≡ I

(2)
Λ we expand around the background fields

gµν → gµν +2κhµν , φ→ φ+ φ̂/
√
Z0 (dropping the subscript c), and identify the coefficients

of h ⊗ h, h ⊗ φ̂, φ̂ ⊗ φ̂, to evaluate the second derivative matrix on the background fields.

15For previous treatments of this system based on the Wetterich equation see for example [44] and

references therein.
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If one restricts the discussion to the two derivative action then this matrix operator takes

the form

I
(2)
Λ = −∇2I + E (4.10)

where I is the unit matrix on the space of symmetric transverse traceless tensors, vectors

and scalars as well as space-time, and E is a matrix on the same space with matrix ele-

ments that are linear in the Riemann tensor, as well as φ dependent terms. The RG flow

equation (3.9) will however generate the higher derivative terms in the action. Then in

addition there will be terms ∇4, etc in (4.10) and E will have higher dimension (i.e. greater

than or equal to four) field dependent terms; higher powers of the Riemann tensor as well

as its derivatives, in addition to higher dimension operators constructed out of φ and its

derivatives and mixed terms such as Rφ2 etc.

It is convenient to separate the constant part of the matrix E by writing

E = Λ2E0 + Ê. (4.11)

Here the first constant term comes from the cosmological constant term (the first term of

equation (4.6)) and the scalar mass term, so that (labelling the rows and columns of the

matrix schematically with h, φ̂,

E0 =

[
g0

g1
I 0

0 Z−1
0 λ1(Λ)

]
.

The field dependent operator on the other hand has the structure

Ê =

[
Ô2 Ô1

ÔT
1

ˆ̃O2

]
,

where the subscripts on the operators indicate the lowest (operator) dimension contained

therein and we have suppressed the matrix indices. The off diagonal terms come from

mixed derivatives such as δ2/δgδφ and are odd dimensional, starting with the dimension one

operator which is linear in φ. Thus it would contain terms such as g
−1/2
1 Z

−1/2
0 (λ1(Λ)Λφ+

1
3!λ2(Λ)Λ−1φ3+. . .) and �φ/(

√
g1Z0Λ) , etc. They will contribute to the traces of quadratic

and higher powers of Ê in the heat kernel expansion. The diagonal operators are even

dimensional — starting with terms such as R and g−1
1 Λ−2V (φ) in the case of the hh block

Ô2, and with 1
2λ2φ

2 + 1
4!λ3Λ−2φ4 + . . .and 2ξ(0)R+ . . ., for the φφ block. In addition there

is a ghost sector which we have suppressed for the moment.

To be explicit let us write out Ê in the above theory of gravity coupled to a scalar

field keeping only up to dimension two operators. Let us also label the rows and columns

by hTFµν , h ≡ ihλλ, Cµ, φ̂ ≡
√
Z0δφ where the penultimate field is the diffeomorphism ghost,

and the i in the trace comes from the rotation of the integration over the conformal mode

to the imaginary axis to get a well-defined Euclidean functional integral. So including the

gauge fixing term in Landau gauge (see [11, 33]) we have

Ô2 = 2U[(I−P)−P] + κ2T̂,
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where

Uµνρσ =
1

2
Rδµνρσ +

1

2
(gµνRρσ + gρσR

µν)− δ(µ
(ρR

ν)
σ) −R

(µ ν)
(ρ σ), (4.12)

T̂ λσµν =
1

2
(gµνT

λσ + gλσTµν) +

(
δTµν
δgλσ

+
δT λσ

δgµν

)
. (4.13)

Here Tµν is the stress-energy tensor of the matter sector and δµνρσ = δ
(µ
ρ δ

ν)
σ (X(µν) ≡ 1

2(Xµν+

Xνµ)) and I−P, P = [1
4g
µνgλσ] are projection operators onto the space of trace free and

traced two index symmetric tensors. Thus Ô2 is a 10 × 10 matrix acting on the space of

symmetric tensors which can be partially diagonalized into a 9 × 9 matrix on symmetric

trace free tensors h
(TF )
µν and a 1× 1 acting on the trace part hµµ. Including also the ghosts,

the second diagonal block (labelled by Cµ, φ̂) is (with R = [R ν
µ ])

ˆ̃O2 =

[
R 0

0 V̂
′′
(φ) + ξ̂

′′
(φ)R

]
,

where V̂
′′
(φ) = 1

2 λ̂2φ
2 + . . . and ξ̂

′′
(φ) = ξ̂1 + 1

2Z0ξ̂2φ
2 + . . .with λ̂i ≡ λi/(Z0)i and ξ̂i ≡

ξi/(Z0)i. The off-diagonal blocks take the form

Ô1 =

[
0 κ√

Z0
T,φ

0 i κ√
Z0
Tµµ ,φ

]

where the row labels have been separated to correspond to the trace free and trace parts

of hµν . The i is a consequence of the rotation of the trace part (the conformal mode) of

the graviton fluctuation to the imaginary axis.

The heat kernel coefficients for the first few terms of its expansion have been calculated

(see for example [45]). As we said earlier it is useful to separate the constant piece so we have

exp
[
−Λ−2

(
−∇2I + E

)]
= e−E0 exp

[
−Λ−2

(
−∇2I + Ê

)]
. (4.14)

Our object is to calculate the trace of this operator over space-time and internal indices

i.e. Tr =
∫

d4x
√

gtr. Writing K ≡ −∇2I + E we have the expansion,

Tre−K/Λ
2

=
1

(4π)2

[
Λ4B0(K) + Λ2B2(K) +B4(K) + Λ−2B6(K) + . . .

]
, (4.15)

Bn(K) =

∫
d4x
√
gtre−E0bn. (4.16)

Let us quote the first three b coefficients:

b0 = I, (4.17)

b2 =
R

6
I− Ê, (4.18)

b4 =
1

180

(
R....R.... −R..R.. +

5

2
R2 + 6∇2R

)
I

−1

6
RÊ +

1

2
Ê2 − 1

6
∇2Ê. (4.19)
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These coefficients get rapidly more complicated. However for our purposes the exact num-

bers in front of the operators are not important. The only assumption we make is that they

are O(1) or less as is the case for the ones that have been calculated. In the general situation

where one needs to keep higher derivative terms such as R2 and φ�2φ which lead to fourth

order derivative operators in (4.10), the coefficients of the fourth order operators (i.e. in

b2r for r ≥ 2) will of course change, but will also affect the dimension 0 and 2 operators.

On the other hand for the scalar potential an exact RG equation is possible except

for the constant (cosmological constant) term, which depends on all higher derivative cou-

plings. The reason is that in computing the evolution of the potential one can treat the

fields as constants so that the entire contibution will factor out as in (4.14) with E0 now

containing all non-derivative terms (such as φ2n), and Ê now having at least two derivatives

of the fields.16

We will leave the discussion of (untruncated) exact equations (and to what extent we

can find a justification for the truncations that have been used) for future work. Here we

will just follow what has been done with the Wetterich equation with our version of the

Polchinski equation truncated to the lowest non-trivial operators for gravity coupled to a

scalar field. Then the beta function equations for the dimension zero and two operators

are given by (defining ẋ = Λ d
dΛx, λ̂i = λi/(Z0)i γi = lnZi),

ġ0 + 4g0 =
1

(4π)2

[
10e−g0/g1 − 4 + e−λ̂1

]
, (4.20)

ġ1 + 2g1 = − 1

(4π)2

1

3

[
13e−g0/g1 + 5 +

1

2
e−λ̂1

(
1− 6ξ̂1

)]
, (4.21)

˙̂
λ1 + γ̇0λ̂1 + 2λ̂1 = − e−λ̂1

(4π)2

[
λ̂2

2
+

1

8

λ̂2
1

g1

]
− 5

(4π)2
e−g0/g1

λ̂1

g1
. (4.22)

Note that in the last equation we’ve kept the contribution of the operator φ4 since this is

a measure of the error introduced by the truncation of the scalar field theory. It is useful

also to consider these equations in terms of the following alternative variables

gN (Λ) = 2κ2(Λ)Λ2 = − 1

g1(Λ)
, 2λCC = Λ22κ2g0 = −g0

g1
. (4.23)

The beta function equations above then become17

λ̇CC + 2λCC =
gN

(4π)2

[(
5− 13

3
λCC

)
e2λCC −

(
2+

5

3
λCC

)
+e−λ̂1

(
1

2
− 1

6
λCC

(
1−6ξ̂1

))]
,

(4.24)

ġN − 2gN = −
g2
N

(4π)2

1

3

[
13e2λCC + 5 +

1

2
e−λ̂1

(
1− 6ξ̂1

)]
, (4.25)

˙̂
λ1 + γ̇0λ̂1 + 2λ̂1 = − e−λ̂1

(4π)2

[
λ̂2

2
− 1

8
gN λ̂

2
1

]
+

5

(4π)2
e2λCCgN λ̂1. (4.26)

16It should be noted that in spite of the imaginary off-diagonal elements in E, the final result for the beta

functions which only involves traces of products (and derivatives) of these matrices is real.
17Note that in previous derivations of these equations there is a singularity 1/1−2λCC). This is absent in

our treatment and comes from the exact form given below i.e. e2λCC = 1/e−2λCC which if expanded in the

denominator and truncated to its leading two terms gives the above singularity which is clearly spurious.
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In this form we see the Gaussian fixed point (GFP) at gN = λCC = λ1 = λ2 = ξ1 =

ξ2 = 0. Clearly there is also a non-Gaussian fixed point (NGFP) with for instance g∗N =

6(4π)2[13e2λCC + 5 + 1
2e
−λ̂1(1 − 6ξ̂1)]−1. Note that this is clearly positive at least as long

as ξ1 is not � O(1) as in Higgs inflation and that one may also get (effectively) a large

negative contribution if there is a large number of scalar fields.

However to investigate the NGFP it is more transparent to consider the previous

version i.e. (4.20), (4.21), (4.22). Putting the “time” derivatives to zero, we have a system

of equations which determine the fixed point vales of all the couplings in terms of two

undetermined parameters (both coming from scalar “mass” terms) which may be chosen

to be (say) λ̂1 = λ̂∗1, ξ̂1 = ξ̂∗1 . Then the first two fixed point equations (4.20)–(4.21) give

one transcendental equation

2λCC = 3
10e2λCC − 4 + e−λ̂

∗
1

26e2λCC + 10 + e−λ̂
∗
1

(
1− 6ξ̂∗1

) .
This determines λ∗CC (as an O(1) number) which when used in the second equation will

determine g∗1 (which it should be noted must be negative giving a positive value for gN ).

The third equation then determines the φ4 coupling λ̂∗2. It also follows from the fact that

the fixed point is at O(1) values for g0, g1 (taking λ∗1 > 0 and ξ∗1 = O(1)), that the critical

exponents are essentially given by the canonical values up to corrections O(1/(4π)2), so

that this is indeed a UV fixed point with (at least) two relevant directions.

To get the beta function for λ2 we need to consider the heat kernel expansion to the

next order i.e. the b4 term. The coefficients of the beta function for the terms in the

potential (to arbitrary order) are actually easily evaluated since they can be obtained by

ignoring all derivative terms of φ as discussed before. In particular the beta function for

φ4 term is

1

4!

(
λ̇2 + γ̇0λ̂2

)
=

e−λ̂1

(4π)2

(
1

8
λ̂2

2 −
1

4!
λ̂3 +

1

3

1

g1
λ̂2λ̂1

)
+

4gNe
2λCC

(4π)2

1

4!
λ̂2. (4.27)

At a fixed point we already know λ̂1, λ̂2, λCC , gN (the last two and hence the last term

on the r.h.s. above is of course known provided we ignore higher derivative terms), so this

equation just determines λ̂3. This process obviously repeats itself ad infinitum with the

beta function equation at a fixed point for λ̂n determining λ̂n+1, since the set of fixed point

equations for λm with m < n have already determined all the other couplings which enter

into this equation.18

Just focusing on the scalar sector in flat space it appears as if there is a one parameter

family of fixed points since λ1 does not appear to be determined by any of the fixed

point equations. However it has been argued (see [7, 47] and references therein for flat

space scalar field theory at least) the requirement of a scaling solution for all values of the

dimensionless field φ̃ ∈ < would restrict the allowed values of λ1 to a discrete set for space

time dimension d = 3 (in the sense that the potential blows up at some finite value of φ̃

18This argument, for the case of flat space scalar field theory, seems to have been first given by Wein-

berg [14]. For comments on the usual statements about triviality of such theories see also [46] page 137.
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otherwise) and has no solution in d = 4. However it is not clear that there is a physical

requirement that the potential should be non-singular for all real values of φ̃. In practice

for finite Λ one works with φ̃ ≡ φ/Λ < φ̃s < 1 so it is not obvious that a singularity (in the

limit Λ→∞) at a finite value of φ̃s is not physically reasonable. If indeed the scalar field

sector is trivial, then for the asymptotic safety program to remain valid one needs to argue

that the inclusion of gravitational corrections (such as the last term of (4.27)), somehow

changes this conclusion.

The necessary inclusion of higher order terms such as R2, implies that we have higher

derivative terms in the kinetic operator; i.e. K = −∇2I + E + O(∇4). These terms will

not only affect b4 and the higher order coefficients but also the lower order ones and

hence the beta-functions for the cosmological constant and Newton’s constant as well.

These calculations have been performed for operators whose highest derivative is quartic

by generalizing standard heat kernel methods (see for example [48, 49]). Calculating these

has been done for f(R) theories and for a theory with R2
µν + R2 (see for example [11]

and references therein). The general conclusion is that the fixed point values obtained

for the lowest order truncations (i.e. the solutions of (4.24)–(4.25) etc.) are not changed

significantly.

However in general even with the inclusion of all the higher order contributions to

K, one expects that the coefficients of the generalized heat kernel expansion will all be of

O(1) or smaller as is the case for the ones that have actually been calculated, and that

there is no singular behavior in this expansion. If true this implies that the anomalous

dimension matrix has at most order one coefficients divided by (4π)2. This means that the

relevance or irrelevance of operators at the UV fixed point is determined by their canonical

dimensions — except for the three R2 operators and the φ4 interaction (see eqn (4.5)) and

perhaps a few more. Thus we see that the cosmological constant term and the Einstein

Hilbert term are relevant19 and all operators of dimension 6 and above are most probably

irrelevant since to make them relevant, one would need large anomalous dimensions to

cancel the canonical dimension term in (4.5) for nA − 4 > 2. This is of course the general

expectation that has been confirmed in some cases by detailed calculations in the literature.

The relevance or irrelevance of the dimension four operators on the other hand can only

be established by direct calculation. Truncating at this order, for instance in pure gravity,

appears to give a non trivial fixed point value for these couplings (see for example [13] and

references therein). The relevance (or irrelevance) of these classically marginal operators

19It is important to stress that these statements are manifest in terms of the natural couplings gi defined

in (4.6). If on the other hand one chose the inverses (such as gN = −g−1
1 ) then the fixed point values are

at numerically large values (O(4π)2). Thus (the equation (see (4.21) and (4.5)) for δg1 ≡ g1 − g∗1 is

δ̇g1 + 2δg1 = O

(
1

(4π)2

)
so that this is a relevant direction. On the other hand defining δgN = gN − g∗N the equation gives δ̇gN −
2δgN ∼ O( gN

(4π)2
)gN which of course can be used to establish that near the GFP this direction is relevant in

the IR but near the NGFP which is strongly coupled the right hand side cannot be ignored, and restores

the conclusion based on the analysis of the g1 equation that direction is relevant in the UV. See for

example [11, 12].

– 19 –



J
H
E
P
0
3
(
2
0
1
8
)
1
1
8

is however hard to establish since their scaling dimension could be significantly affected

by higher derivative (”R6” etc) terms. So it seems that the situation for these operators

remains somewhat murky.

5 Comments and conclusions

Some comments on the general approach we have adopted here and its relation to the

literature are in order.

1. The first equality of equation (3.7) (or (3.9)) resembles the Wetterich equation (2.9)

if one uses d
dt lnKk,Λ =

K̇k,Λ
Kk,Λ

=
Ṙk,Λ
Kk,Λ

. This would then reintroduce the problem

mentioned at the end of section (2). The point is to use the Schwinger proper time

expression (and regularization) of the one-loop determinant given in (3.3). Note that

the difference (in the k → Λ limit) is an infinite term (which is not field independent

in the background field version which is essential for the gauge theory discussion).

2. In practice, the average effective action is only used in the regime where the back-

ground field momentum modes are low compared to the cutoff k (which is usually

identified as a IR cutoff) in order for the heat kernel expansion to be valid. So the

entire discussion involving the so-called average effective action is completely equiv-

alent to one involving the Wilsonian effective action. To put it another way as far as

deriving the beta function equations go, one is effectively dealing with a floating UV

cutoff rather than a IR cutoff. Although it is formally true that the definition (2.10)

leads to the quantum effective action Γ in the limit k → 0 it is difficult to recover

in practice the non-localities of Γ starting from the quasi-local Γk since this would

involve summing the infinite series of the derivative expansion.20

3. For the same reason as in the above, the RG equation (3.9) does not generate non-

local terms — the expansion of the heat kernel is local as long as the mode numbers

(“momenta”) of the background fields are small compared to the cutoff. This is of

course the well known statement that the Wilsonian effective action is (quasi) local.

By the above arguments it follows that in actual calculations the average effective

action is also being treated as being quasi-local.

4. The use of the equation (3.9) coupled with the heat kernel expansion and proper

time regularization gives a simple expression for all the beta function equations of

the theory. Of course as in other approaches one can find the fixed point only after

truncating the number of operators.

5. To the extent that they have been computed, the heat kernel coefficients are order

one or smaller. Given that there is no reason to expect anomalously large coefficients

it is very plausible that there is only a finite number of relevant directions at the UV

fixed point. In other words we expect that there are no large anomalous dimensions

20For partial summations recovering some aspects of non-locality see [50].
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which can swamp the canonical dimensions of operators, which grow with the order of

the terms in the derivative expansion. We found two relevant directions in agreement

with previous work in pure gravity.

6. While in pure gravity the UV fixed point is completely determined, in gravity coupled

to a scalar field theory (or to the standard model), there are two undetermined

parameters corresponding to the scalar mass term and the φ2R term. However as in

the case of flat space scalar field theory, it is possible that only a discrete set of values

admit a scaling solution. All other couplings are then determined in terms of these.

Much work remains to be done to really establish the standard model coupled to gravity

as a UV complete theory. While an iterative procedure for establishing the existence

of a fixed point appears to be valid for the scalar potential the same is not the case

for derivative interactions since higher derivative terms feed back into the flow equation

for lower derivative terms. Nevertheless explicit calculations [11, 51] seem to show that

the fixed point established (in pure gravity) is hardly affected by the inclusion of higher

derivative terms. Also apart from giving a rigorous proof of the dimensionality of the

critical surface, an important unresolved problem remains; that of establishing the unitarity

of the theory, since in perturbation theory such higher derivative theories have ghosts. As

discussed in subsection (3.1) at tree level these ghosts will appear at the (low energy)

Planck mass. However at the scale of this putative ghost, in order to minimize radiative

corrections in the Wilsonian action, the cutoff Λ needs to be chosen at around the same

scale. But in this case all terms in the effective action will make similar contributions.

On the other hand if the cutoff is chosen much larger the radiative corrections become

important. Thus it is possible that (as discussed also in section VIII of [11] for instance)

non-perturbative quantum effects change the spectrum at the putative ghost mass. It is

also possible that higher derivative theories need to be reinterpreted as having PT invariant

rather than Hermitian Hamiltonians as suggested in [41–43]. Clearly this is one of the most

important issue that needs to be addressed in the asymptotic safety program.
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