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Abstract: We consider a special double scaling limit, recently introduced by two of the

authors, combining weak coupling and large imaginary twist, for the γ-twisted N = 4

SYM theory. We also establish the analogous limit for ABJM theory. The resulting

non-gauge chiral 4D and 3D theories of interacting scalars and fermions are integrable in

the planar limit. In spite of the breakdown of conformality by double-trace interactions,

most of the correlators for local operators of these theories are conformal, with non-trivial

anomalous dimensions defined by specific, integrable Feynman diagrams. We discuss the

details of this diagrammatics. We construct the doubly-scaled asymptotic Bethe ansatz

(ABA) equations for multi-magnon states in these theories. Each entry of the mixing

matrix of local conformal operators in the simplest of these theories — the bi-scalar model

in 4D and tri-scalar model in 3D — is given by a single Feynman diagram at any given loop

order. The related diagrams are in principle computable, up to a few scheme dependent

constants, by integrability methods (quantum spectral curve or ABA). These constants

should be fixed from direct computations of a few simplest graphs. This integrability-

based method is advocated to be able to provide information about some high loop order

graphs which are hardly computable by other known methods. We exemplify our approach

with specific five-loop graphs.

Keywords: Conformal Field Theory, Integrable Field Theories

ArXiv ePrint: 1612.05895

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP03(2018)077

mailto:joao.caetano@lpt.ens.fr
mailto:o.c.gurdogan@soton.ac.uk
mailto:kazakov@physique.ens.fr
https://arxiv.org/abs/1612.05895
https://doi.org/10.1007/JHEP03(2018)077


J
H
E
P
0
3
(
2
0
1
8
)
0
7
7

Contents

1 Introduction 2

2 Integrable chiral field theories (χFTs) from DS limit of γ-twisted N = 4

SYM 4

2.1 χFT4 as DS limit of N = 4 SYM 5

2.2 Planar diagrammatics of χFT4 and the breakdown of conformality 6

2.3 Planar diagrams for correlation functions of χFT4 8

3 χFT3 as DS limit of ABJM and its planar diagrammatics 12

3.1 Planar diagrams for correlation function of χFT3 14

4 Asymptotic Bethe ansatz for the spectrum of χFT4 and χFT3 17

4.1 Spectrum of χFT4 17

4.1.1 Dispersion relation 17

4.1.2 Multi-magnon states 18

4.2 Spectrum of χFT3 21

4.2.1 Dispersion relation 21

4.2.2 Multi-magnon states 21

5 Computing multi-loop graphs from the ABA spectrum 22

5.1 The dilatation operator 22

5.2 Two-point functions in dimensional regularization 23

5.3 Two magnons at four loops 24

5.4 Predictions at five loops 26

6 Wrapping effects in the bi-scalar chiral model 27

7 Conclusions 30

A Action of γ-twisted N = 4 SYM 34

B γ-twisted ABJM 34

B.1 Strongly twisted β-deformed ABJM Lagrangian 34

C Twisted Asymptotic Bethe equations for γ-deformed N = 4 SYM 35

D Twisted asymptotic Bethe equations for γ-deformed ABJM 36

E Feynman integrals 36

– 1 –



J
H
E
P
0
3
(
2
0
1
8
)
0
7
7

1 Introduction

The examples of solvable, or integrable QFTs in more than two dimensions are very rare.

In fact only two such theories with non-trivial integrable dynamics are known:1 four-

dimensional N = 4 SYM theory and three-dimensional ABJM model in the planar, or

’t Hooft limit [1]. Gauge symmetry and a large amount of supersymmetry, as well as

the existence of AdS/CFT string duals for these theories have been long believed to be a

prerequisite for their quantum integrability.

However, in the last years various deformations of these theories have been considered

which seem to preserve planar integrability. Examples include the so-called β- and γ-

deformations which break the R-symmetry [2–4], or even more general deformations [2, 5]

of N = 4 SYM, which break partially or completely the global superconformal psu(2, 2|4)

symmetry, together with a part of supersymmetry or even all of it. A similar twisting is

possible for the ABJM model [6, 7]. It seems that the consequences of these generalizations

have not been yet completely explored.

Recently, two of the current authors proposed in [8] a special, double scaling limit of

γ-twisted N = 4 SYM theory [4], such that the three twisting parameters qj = e−
i
2
γj , j =

1, 2, 3, approach infinity (or zero) and the ’t Hooft coupling g =
√
Nc gYM is sent to

zero, while their product ξi = gqj (or ratio) is kept fixed. Since the twist parameters

γj have to be taken imaginary for this limit, the resulting action (see equations (2.2)

and (2.3) in the following section) is not real and the theory is not unitary. The interaction

vertices impose a specific clockwise (or anti-clockwise) orientation on planar Feynman

graphs reflecting the chirality property of the theory. For this reason, slightly abusing

the common terminology, we will call it the “chiral field theory” and use the abbreviation

χFT. This theory, represented by the action eqs. (2.2)–(2.3), contains only three complex

scalars and three complex fermions which are interacting through a few quartic scalar and

Yukawa couplings, all oriented in the same way on planar graphs. The gauge fields and the

gluino decouple in this limit. The supersymmetry is completely lost apart from a particular

choice called the β-deformation when all three couplings are equal (with the action given

by equation (2.6)). Nevertheless, these new theories have to be integrable in the planar

limit and they show indeed multiple signs of this integrability [8]. In the simplest case of a

single non-zero coupling the theory reduces just to two interacting massless complex scalar

fields, equation (2.5). We will call this model the bi-scalar χFT.

One of the remarkable features of these χFTs is a great simplification of Feynman

diagrammatics compared to their “mother” theory — the N = 4 SYM. For the bi-scalar

χFT, one can roughly say that a generic multi-point correlation function of single-trace

local operators Tr(χ1χ2 . . . χL), where χj ∈ {φ1, φ†1, φ
2, φ†2}, can have at most one Feynman

graph at each order of perturbation theory in the planar limit. The bulk of a higher-loop

planar Feynman graph looks like a regular quadratic lattice. It was noticed a long time ago

that such regular “fishnet” graphs define, due to the star-triangle relations, an integrable

quantum spin chain model [9] with four-dimensional conformal su(2, 2) symmetry. The

1Apart from topological sectors of some N = 1 andN = 2 SYM theories where typical physical quantities

are dominated by instanton effects rather than by Feynman perturbation series.
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quantum spins of this spin chain are four-dimensional coordinates of the physical space

and they live in the principal series representation of su(2, 2). More specifically, the only

graphs that renormalise the simplest operator in the bi-scalar χFT, such as the “BMN

vacuum” Tr((φ1)L), are globe-like graphs of the figure 4, which resemble parallels and

meridians drawn on a globe [8]. For the purpose of computing their anomalous dimensions,

the L propagators ending up at the north (or south) pole can be amputated giving simpler

“wheel” graphs with L spokes and M frames, which are of ML-loop order in the coupling

ξ2 (see figure 5). Replacing a few φ1 fields by φ2 fields (“magnons”) inside the trace will

change the boundary conditions of the bulk lattice resulting in more involved graphs than

just wheels, for example those shown in figures 6–8. However these two-point functions, or

equivalently graphs, will nevertheless be integrable.

The analysis of possible graph configurations of the bi-scalar χFT and their computa-

tions using integrability will be one of the goals of this paper.

We will also apply the double scaling limit to the three-dimensional γ-twisted ABJM

model where we will show that it reduces in the simplest limit to a model of three complex

scalars interacting through a single sextic vertex. It has also a limited set of graphs for

similar physical quantities, looking like a regular triangular lattice in their bulk. The β-

deformed ABJM model (with only one non-zero twist parameter) can also contain fermions

in a slightly different double-scaling limit.

The tools of quantum AdS/CFT integrability, such as asymptotic twisted Bethe ansatz

(ABA) [2, 10] for dimensions of long operators2 or twisted quantum spectral curve (QSC)

equations for dimensions of any single-trace operator [11–13], as well as the recently devel-

oped methods of computation of structure constants [14–16], should be applicable to these

new χFT theories after their appropriate double scaling has been found. In the present

paper, we show how to compute the scaling dimensions of operators with magnons using

the doubly scaled twisted ABA equations in a particular “broken” su(3) sector. Similar

ABA equations for the ABJM models will be also deduced here. We show the efficiency of

this doubly scaled ABA for computations of multi-magnon anomalous dimensions in these

χFTs to high orders.

Moreover, we will use these integrability tools to relate particularly complicated five-

loop Feynman graphs to simpler ones of the same loop order. The method is based on

constructing the mixing matrix for multi-magnon operators up to a given order of per-

turbation theory, where each entry is given by a constant represented by a single scalar

graph. Then we find as many relations between these constants as possible by comparing

the spectrum of this mixing matrix with the one given from ABA. Due to the freedom

related to similarity transformations of the mixing matrix, this procedure predicts the val-

ues of Feynman graphs only up to a few scheme dependent parameters which can be then

fixed by direct computation of a few simple graphs. We demonstrate the method by fixing

two linear combinations of three relevant five-loop graphs (up to 1/ε terms in dimensional

regularization).

2Or for the exact perturbative expansion of these dimensions up to the order preceeding the “wrapping”:

roughly, to all orders smaller than the length of the operator.
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The γ-deformed N = 4 SYM and ABJM theories are not conformal in a strict sense,

even in the planar limit [17, 18]. The reason for this is the presence of double-trace inter-

actions of the type Tr(χ1χ2)Tr(χ3χ4) that renormalise the Lagrangian already at one-loop

order and that the beta functions for the couplings of these interactions are not zero (they

were computed at one loop in [19]). One of the manifestations of this non-conformality is

the diverging anomalous dimension of operators of length 2, such as Tr(φ1φ2) or Tr(φ1φ†1).

But most of the correlators of local operators still obey the conformal properties in pla-

nar approximation. On the string side of the AdS/CFT duality [2, 20–22] it was noticed

in [23] that these singularities are due to a tachyon state which unavoidably appears in the

deformed string theory.

Although it is not clear whether our χFTs have a well-defined string dual, since the

weak coupling limit in our double scaling corresponds to an infinitely-strongly-coupled

string theory, the singularity appearing for the shortest operators of χFTs looks similar to

the tachyonic string singularity. For non-planar contributions, when we sum over all states,

the appearance of such singular L = 2 states is unavoidable: since we sum up all the states

around closed cycles there will be always a “tachyonic” state L = 2 propagating around

non-trivial cycles of graphs, so the conformal symmetry is broken down for all physical

quantities already at the first 1/N2
c correction. Similarly to the original γ-deformed N = 4

SYM and ABJM theories in the ’t Hooft limit, the majority of correlation functions of

χFTs considered here have a conformal form due to the fact that the couplings ξj are not

running at Nc →∞. The only condition for conformality of a correlation function is that

all the involved operators should have the length L > 2 and there should be no intermediate

states in the OPE of length L = 2 as well.

This paper is organised as follows: in the first two sections we will introduce the χFT4

and χFT3 theories emerging from double scaling limits of γ-deformed N = 4 SYM and

for ABJM theories, repectively, and describe their planar diagrammatics for the two-point

functions of single-trace operators. We will then formulate the doubly scaled asymptotic

Bethe Ansätze in particular symmetry sectors of these theories. In section five we will

show how to compute particular relations for dimensionally regulated five-loop Feynman

graphs related to the mixing matrix of multi-magnon operators, with an important help

provided by the integrability in the form of ABA. Finally, in the last part of the paper we

reproduce the values of a class of Feynman integrals using the strong-deformation limit of

the wrapping corrections to the anomalous dimensions in β-deformed N = 4 SYM which

were computed in [24].

2 Integrable chiral field theories (χFTs) from DS limit of γ-twisted N =

4 SYM

In this section, we will first remind the definition of the double scaling limit of γ-twisted

N = 4 SYM and the resulting action of χFT4 with three couplings proposed in [8], as well

as its particular cases with one and two non-zero couplings. We will give an overview of

possible operators and correlation functions of χFT4 and describe their Feynman diagram-

matics and the reasons for its drastic simplification in the planar limit. In particular, in
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addition to the globe graphs [8] for two-point correlators of BMN-type operators (or their

“amputated” version — the wheel graphs), we will encounter, for (multi)-magnon opera-

tors, the (multi)-spiral types graphs of the type depicted in figure 6. We will also comment

in this section on the reasons of breakdown of conformality by double-trace interactions in

these χFTs and of the persistence of conformal properties of large majority of correlators.

2.1 χFT4 as DS limit of N = 4 SYM

The γ-deformed action of N = 4 SYM is presented in appendix A. It was proposed in [8]

the following DS limit of the γ-deformed Lagrangian (A) combining weak coupling together

with large imaginary gamma parameters:

q3 ∼ q2 ∼ q1 →∞, g → 0,

ξ1 ≡ q1g, ξ2 ≡ q2g, ξ3 ≡ q3g fixed,
(2.1)

where the large qi limit corresponds to sending γi → i∞. In this DS limit only certain

Yukawa and 4-scalar interactions survive in Lint and we arrived in [8] at the following χFT4

of complex scalars and fermions (no gauge fields!):

Lφψ = NcTr

(
−1

2
∂µφ†j∂µφ

j + iψ̄α̇j (σ̃µ)αα̇∂µψ
j
α

)
+ Lint (2.2)

where the sum is taken with respect to doubly repeated j = 1, 2, 3 and

Lint = Nc Tr
(
ξ2

1 φ
†
2φ
†
3φ

2φ3 + ξ2
2 φ
†
3φ
†
1φ

3φ1 + ξ2
3 φ
†
1φ
†
2φ

1φ2

+ i
√
ξ2ξ3(ψ3φ1ψ2 + ψ̄3φ

†
1ψ̄2) + i

√
ξ1ξ3(ψ1φ2ψ3 + ψ̄1φ

†
2ψ̄3)

+ i
√
ξ1ξ2(ψ2φ3ψ1 + ψ̄2φ

†
3ψ̄1)

)
.

(2.3)

We suppressed in the last equation the spinorial indices assuming the scalar product of

both fermions in each term. An interesting particular case emerges from this action in the

limit ξ3 → 0,

Lint = Nc Tr
(
ξ2

1 φ
†
2φ
†
3φ

2φ3 + ξ2
2 φ
†
3φ
†
1φ

3φ1 + i
√
ξ1ξ2(ψ2φ3ψ1 + ψ̄2φ

†
3ψ̄1)

)
(2.4)

when only two fermions are left.

If we send in (2.3) ξ1 → 0, ξ2 → 0 then the fermions and one of the scalars decouple

and we get an even simpler bi-scalar action [8]

Lφ =
Nc

2
Tr
(
∂µφ†1∂µφ

1 + ∂µφ†2∂µφ
2 + 2ξ2 φ†1φ

†
2φ

1φ2
)
, (2.5)

where we denoted ξ ≡ ξ3 = q3g.

A particular case of all equal couplings ξ1 = ξ2 = ξ3 = ξ represents the so-called

β-deformation, with one supersymmetry left intact,

Lint = Nc ξ
2Tr

(
φ†2φ

†
3φ

2φ3 + φ†3φ
†
1φ

3φ1 + φ†1φ
†
2φ

1φ2
)

+Nc i ξ Tr
(
ψ3φ1ψ2 + ψ̄3φ

†
1ψ̄2 + ψ1φ2ψ3 + ψ̄1φ

†
2ψ̄3 + ψ2φ3ψ1 + ψ̄2φ

†
3ψ̄1

)
.

(2.6)
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According to the observations of [25], if the gauge symmetry is U(Nc), the β-deformed

N = 4 SYM theory is not conformal because of the double-trace counterterms generated

in RG due to the U(1) degrees of freedom of scalar fields. The same is true about its

doubly scaled version (2.6). However, for the SU(Nc) gauge symmetry the β-deformed

N = 4 SYM is conformal and its doubly scaled version (2.6) as well!

These theories are chiral, in the sense that the actions are not invariant w.r.t. com-

plex conjugation. The missing complex conjugated terms (with opposite chirality) can be

retrieved in the opposite, physically equivalent, DS limit

q3 ∼ q2 ∼ q1 → 0, g → 0,

ξ1 ≡ q1/g, ξ2 ≡ q2/g, ξ3 ≡ q3/g fixed,
(2.7)

where the large qi limit corresponds to sending γi → −i∞. Thus the chiral and anti-chiral

interactions completely decouple in our DS limit.

Let us end this section with a comment on further double scaling limits. Besides the

examples we have worked out above, we can scale qi differently for each i and generate

many more Lagrangians. In particular, with the following particular choice

q1, q2 →∞, q3, g → 0,

ξ1 ≡ q1
√
g, ξ2 ≡ q2g, ξ3 ≡ g/q3 fixed,

(2.8)

the gluino ψ4 and its conjugate can survive and we get the following interacting theory

Lint = NcTr
(
ξ2

2 φ
†
3φ
†
1φ

3φ1 + ξ2
3 φ
†
2φ
†
1φ

2φ1 +
√
ξ2ξ3

(
ψ̄1φ

1ψ̄4 − ψ1φ†1ψ
4
))

. (2.9)

In the following we will explore the diagrammatics and integrability of the uniformly double

scaled theories presented above but an analogous analysis applies to this other class of

models as well.

2.2 Planar diagrammatics of χFT4 and the breakdown of conformality

We will describe the planar diagrams and the breakdown of conformal properties of χFT4 on

the example of the simplest bi-scalar theory (2.5). We have there two types of propagators

and one interacting vertex, all of them presented on figure 1. Due to this limited set of

building blocks, the theory looks “almost” conformal in the ’t Hooft limit.

Indeed, consider for example the planar diagrams on figure 2 which could renormalize,

respectively, the coupling ξ and the mass. However, it is easy to see that, due to the

fixed orientation of the single vertex of the bi-scalar model, both diagrams are absent since

each of them has vertices with opposite orientations (chiralities). This argument can be

generalized to higher loops.

However, the graphs on figure 3 lead to the new double-trace type vertices which have

non-zero beta functions (computed at one loop in [19]) already in the planar limit [17].

Hence the theory is not conformal even in the planar limit. On the other hand, since the

coupling ξ is not running in the planar limit, most of the correlators of the theory will have

a conformal form in this case. The only correlators which have a non-conformal behaviour

– 6 –
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φ†
1

i

j
φ1i′

j′

φ†
2

i

j
φ2i′

j′

φ†
1

φ1

φ†
2

φ2

Figure 1. Feynman rules for the bi-scalar theory. Double lines represent the colour dependence of

the fields. There are two types of propagators: solid lines correspond to φ1 and dashed lines to φ2

fields. The arrows besides the double lines indicate the flavour flow of complex scalars. The only

interaction vertex is a particular quartic one and its orientation implies a sense of chirality for the

graphs it enters. The vertex with opposite orientation (chirality) is absent.

φ1

φ†
2

φ2

φ†
1

φ†
1 φ1

Figure 2. The one-loop planar Feynman graphs which could contribute to the renormalization of

the single coupling ξ (on the left picture) or generate the mass (on the right picture). But on each

graph, only one of two vertices is present in perturbation theory and the other vertex, indicated with

red, has a wrong ordering of the fields, so that these diagrams do not contribute. This argument

can be generalized to any loop order. Therefore the mass is not generated and the coupling ξ is not

running in the planar limit.

φ1

φ†
2 φ†

1

φ2

φ†
1 φ†

1φ1 φ1

Figure 3. Non-planar diagrams that generate couplings of the form Tr(φ1φ†2) Tr(φ2φ†1)

and
[
Tr(φ1φ†1)

]2
.

are those which contain the operators of length two, such as (Trφiφ†j)
2 or (Trφiφj)(Trφ†kφ

†
l ),

or similar intermediate states of length two.

In the next sections, we will consider various examples of conformal operators, leaving

so far aside the discussion of length two states breaking the conformality of certain corre-

lators.
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Figure 4. Loop corrections to the two-point function of the BMN vacuum operator in the bi-scalar

theory. It is clearly seen that in the bulk these graphs have the regular “fishnet” structure.

2.3 Planar diagrams for correlation functions of χFT4

Let us discuss possible local operators and the Feynman graphs for various correlation

functions of the bi-scalar theory (2.5). Later we will comment on diagrammatics for the

more general action (2.3). Let us stress that, unless it is specified otherwise, we consider

here only the planar graphs for the leading large Nc order for each quantity. Planar

diagrammatics for χFTs is particularly simple and nice. Moreover, we do not expect the

integrability to survive at finite Nc.

A general local operator is a linear combination of single-trace monomial operators of

the type

Oχ1χ2...χL(x) = Tr[χ1(x)χ2(x) . . . χL(x)] , where χj ∈ {φ1, φ†1, φ
2, φ†2} . (2.10)

The simplest quantity to compute is a two-point correlator of two such operators in

different spacetime points

K{χ};{χ′}(x
2) =

〈
Oχ1χ2,...,χL(x)Oχ′1χ′2,...,χ′L(0)

〉
. (2.11)

“Globe” and “wheel” graphs for BMN vacuum. Let us describe the planar dia-

grams for such correlators in the bi-scalar χFT4. The simplest operator is

OL(x) = Tr[(φ1)L] . (2.12)

It is usually called BMN vacuum since in the undeformed N = 4 SYM its bare dimension is

protected by supersymmetry and we will continue employing this name. The corresponding

two-point correlator is conformal,

KL(x2) = 〈OL(x)OL(0)〉 =
C

(x2)∆(ξ)
. (2.13)

Unlike in the undeformed case this operator is not protected in the bi-scalar theory: its

planar graphs are nontrivial due to wrapping effects. They are represented on figure 4. It is

obvious that due to the fixed chirality of the only vertex of this theory no other graphs are

– 8 –
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Figure 5. Amputated graphs for pair correlators of BMN-vacuum — wheel graphs.

possible [8]. If we are not interested in the normalization constant C and wish to compute

only the anomalous dimension we can amputate the propagators converging at the north

pole (or, alternatively, at the south pole) on figure 4, thus reducing the computation to the

summation of “wheel” graphs of figure 5. The integrability approach in Y-system/TBA

form allowed to compute this anomalous dimension up to two wrappings (two “frames” on

the wheel), i.e. up to ξ4L order [26] in terms of infinite sums and double integrals. This

result was brought in [8] to the form of finite sums of multi-ζ numbers. It should be possible

to construct an algorithmic expansion in higher wrapping once the double scaling limit of

twisted quantum spectral curve (QSC) [12, 13, 27] will be understood.

As it was noticed in [8], the bulk structure of a sufficiently large globe or fishnet graph is

represented by the regular square lattice. The “defects” for the globe graph appear only at

the north and south poles where the “curvature” defects are inserted into the regular “flat”

lattice. The 4D massless Feynman graphs of the shape of regular square lattice (“fishnet”

graphs) were long ago considered by A.Zamolodchikov [9] who showed that, by virtue of

star-triangle relations (a version of Yang-Baxter relations) they define an integrable lattice

quantum spin model with the su(2, 2) conformal symmetry. So the anomalous dimensions

are in principle computable as well by the conformal spin chain approach of [28–34].3

Multi-magnon operators and spider-web graphs. Let us now describe the diagram-

matics of more complex, multi-magnon operators of the type

OL1,L2,...(x) = Tr[(φ1)L1 φ2 (φ1)L2 φ2 (φ1)L3 φ2 . . . ] , m+

m∑
j=1

Lj = L , (2.14)

where m is the number of magnons (insertions of φ2 field). Notice that we take here only

“chiral” operators, without mixing φj with φ†j fields (this case will be discussed later). The

only possible Feynman graphs for two point functions of such operators for one magnon

at a given loop order are depicted on figure 6 for two cases: an unwrapped and a wrapped

magnon (dashed) lines. For the purposes of easier computation of anomalous dimensions,

we can again amputate the propagators converging at one of the operators. For one magnon

3N.Gromov, V.Kazakov, G.Korchemsky, S.Negro, work in progress.

– 9 –



J
H
E
P
0
3
(
2
0
1
8
)
0
7
7

Figure 6. One-magnon spiral graphs, without wrappings (on the left) and with a wrapping (on the

right). The unwrapped configuration can be studied by ABA equations in the DS limit, whereas

the wrapped one needs more sophisticated integrability tools (Lüscher corrections or QSC).

they are depicted on figure 7. For two magnons the corresponding wrapped and unwrapped

graphs are presented on figure 8 and their amputated version — on figure 9. A natu-

ral name for the amputated spiral graphs is “spider-web” graphs. Amputation appears

to be not an innocent operation due to possible infrared divergences, especially for the

multi-magnon operators, so in the section 5 we prefer to do the direct computations with

unwrapped graphs.

It is easy to convince oneself that, for a high loop order, the Feynman graphs look in

the bulk, apart from the boundary effects close to operators, as integrable fishnet graphs.

But the integrability should also persist for these multi-magnon configurations, thus en-

larging the collection of integrable Feynman graphs from simplest fishnet graphs of [9]

typical for the BMN vacuum operators, to more involved multi-magnon graphs. Notice

that replacing, say, φ2 by φ†2 does not change the magnon graph picture except changing

the whole orientation of the planar graphs (one simply turns the sphere inside out).

Let us note as an example, that for the abovementioned particular case of the β-

deformed χFT4 model (2.6) we can extract one of the two anomalous dimensions for the

shortest two-magnon, scalar Konishi-like operator OK = c1Tr(φ1φ2)2 + c2Tr(φ1φ1φ2φ2) up

to 4 loops (one wrapping) from the results of the paper [35] and even compare it to the

direct perturbative expansion of [36] given there. We will see later in section 4, that our

double scaled spectral equations correctly reproduces this result when the double scaling

limit of these results is taken.

Comments on non-chiral operators and fermions. More general scalar opera-

tors (2.10) of the bi-scalar model mixing the original and conjugated scalars have even

more complicated graphs. An even more involved picture emerges in the full doubly scaled

model (2.2)–(2.3) if one mixes the scalar and fermionic fields within the same operator. We

do not consider these operators in detail and limit ourselves only to a couple of comments:

• The operators of the form

OL1,L2,...(x) = Tr[(φ1)L1 φ†1 (φ1)L2 φ†1 (φ1)L3 φ†1 . . . ], m+
m∑
j=1

Lj = L , (2.15)

or the similar ones, when replacing all φ1, φ†1 → φ2, φ†2, represent a “true vacuum”:

their anomalous dimension vanishes in all orders of perturbation theory, so that

– 10 –
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Figure 7. Amputated one magnon graphs: an unwrapped graph where each of the radial prop-

agators of the φ1 fields (shown in solid blue) are crossed by the propagators of φ2 fields (shown

in dashed red) at most once (left figure), and a wrapped one-magnon graph where there is a φ1

propagator crossed twice by the same φ2 field (right figure).

Figure 8. Two-magnon spiral graphs, without wrappings (on the left) and with a wrapping (on

the right).

Figure 9. Feynman graphs for two-magnon amputated graphs.

∆ = L. It is easy to convince oneself that no Feynman graphs correcting their tree

order exist in the bi-scalar model.4

• The situation becomes more involved when we include inside the same operators three

types of fields, say φ1, φ2 and φ†1, or even all four fields φ1, φ2, φ†1, φ
†
2. The wrapped

graphs seem then to be impossible, the loop expansion terminates at a finite order

and it should be in principle possible to study the spectra of such operators entirely

within the ABA.

4Notice that we should exclude disconnected graphs, with the propagators that connect φ1 and φ†1 fields

of the same operator.
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f Y 1 Y 2 Y 3 Y 4 Ψ†2 Ψ†2 Ψ†3 Ψ†4

q1
f −1

2
1
2

1
2 −1

2 −1
2

1
2

1
2 −1

2

q2
f

1
2 −1

2
1
2 −1

2
1
2 −1

2
1
2 −1

2

q3
f

1
2

1
2 −1

2 −1
2

1
2

1
2 −1

2 −1
2

Table 1. Cartan U(1) charges of the su(4) R−symmetry associated to the fields in the γ-deformed

ABJM model. The corresponding conjugate fields have the reversed charges.

3 χFT3 as DS limit of ABJM and its planar diagrammatics

We now explore a very analogous double scaling limit for the twisted ABJM theory. We

first need to determine the form of the γ-deformed Lagrangian which to our knowledge has

not been written explicitly in the literature. It can be obtained from the undeformed one

by the standard procedure of replacing the ordered matrix product of n fields

A1 ∗A2 ∗ · · · ∗An ≡ e−
i
2

∑
m>n εijkγi q

j
Am

qkAnA1A2 . . . An . (3.1)

Note that changing the order of fields will change the signs of corresponding terms in the

exponent. The three U(1)i Cartan charges qiA of the original su(4) R−symmetry associated

to each field Ai entering the Lagrangian are given in the table 1.

The resulting three-dimensional Lagrangian in our conventions reads

L = Nc Tr

[
1

4πλ
εµνλ

(
Aµ∂νAλ +

2i
√
λ

3
AµAνAλ

)

− 1

4πλ
εµνλ

(
Âµ∂νÂλ +

2i
√
λ

3
ÂµÂνÂλ

)

−DµY
†
AD

µY A + iΨ†A /DΨA

]
+ Lscalar + Lferm

(3.2)

with the interacting part for scalars given by

Lscalar = Nc
(2πλ)2

3
Tr

[
Y AY †AY

BY †BY
CY †C + Y AY †BY

BY †CY
CY †A

− 6Y AY †AY
BY †CY

CY †B − 4 (3− 2δAB)Y AY †AY
BY †AY

AY †B

−
3∑

A 6=B 6=C=1

(
ei εABC(γA+γB−γC) Y AY †BY

4Y †AY
BY †4

+
1

3
ei εABC(γA+γB+γC)Y AY †BY

CY †AY
BY †C

)]
(3.3)

where λ = Nc
k is the ’t Hooft coupling. The fermionic part Lferm turns out to be rather

lengthy and is left to the appendix B.

There is a plethora of models that one can generate by playing with different scalings

of the parameters in the original twisted Lagrangian together with the coupling constant.
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We first consider the most general limit where we scale to infinity a single parameter while

keeping the others fixed as follows

q3 ≡ e−iγ3 →∞ and λ→ 0

ξi ≡ e−iγi for i = 1, 2 and ξ3 = q3λ
2 fixed .

(3.4)

With this scaling we end up with a Lagrangian without gauge fields as they decouple in

the weak coupling limit. It reads now

L = Nc Tr

[
−

4∑
i=1

(
∂µY

†
i ∂

µY i + iΨ†i/∂Ψi

)]
+ Lscalar + Lferm (3.5)

where the interaction term involving only scalars is given by

Lscalar = (4π)2 Tr

[
ξ2ξ3

ξ1
Y 2Y †4 Y

3Y †2 Y
4Y †3 +

ξ1ξ3

ξ2
Y 1Y †3 Y

4Y †1 Y
3Y †4

+
ξ3

ξ1ξ2
Y 1Y †2 Y

4Y †1 Y
2Y †4 + ξ1ξ2ξ3Y

1Y †3 Y
2Y †1 Y

3Y †2

] (3.6)

and the mixed fermionic and scalar interacting part is given by

Lferm =
i

4π
√
ξ3

Tr

[
1√
ξ1
Y 4Ψ†2Ψ4Y

†
2 −

1√
ξ2
Y 4Y †1 Ψ4Ψ†1 +

√
ξ1Y

3Ψ†1Ψ3Y
†

1

−
√
ξ2Y

3Y †2 Ψ3Ψ†2 − 1√
ξ1
Y 2Y †4 Ψ2Ψ†4 +

√
ξ2Y

2Ψ†3Ψ2Y
†

3

+
1√
ξ2
Y 1Ψ†4Ψ1Y

†
4 −

√
ξ1Y

1Y †3 Ψ1Ψ†3 − Y 3Ψ†1Y 4Ψ†2

+ Y 1Ψ†4Y 2Ψ†3 + Ψ1Y
†

4 Ψ2Y
†

3 −Ψ3Y
†

1 Ψ4Y
†

2

]
.

(3.7)

We can generate simpler models by scaling more parameters. For instance, by considering

the following limit

qi ≡ e−iγi →∞ for i = 2, 3 , and λ→ 0

ξ1 ≡ e−iγ1 and ξi =
qi
λ

fixed for i = 2, 3 ,
(3.8)

we generate a simpler Lagrangian

L = Nc Tr

[
−

4∑
i=1

∂µY
†
i ∂

µY i −
3∑
i=2

iΨ†i/∂Ψi

]
+ Lint (3.9)

with the interacting terms given by

Lint =
(4π)2

ξ1ξ2ξ3

(
ξ2

1 Y
2Y †3 Y

4Y †2 Y
3Y †4 + Y 1Y †2 Y

3Y †1 Y
2Y †3

)
− 4πi√

ξ2ξ3

(
Y 2Y †3 Ψ2Ψ†3 − Y 3Ψ†2Ψ3Y

†
2

)
. (3.10)
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This is the simplest Lagrangian we can generate containing both scalars and fermions.

Finally, of particular interest is the case where we take all the three γ-parameters to be

imaginary and large with the following scaling with λ

qi ≡ e−iγi →∞ for i = 1, 2 , q3 ≡ e−iγ3 → 0 and λ→ 0 ,

ξi ≡ qi λ2/3 for i = 1, 2 , ξ3 ≡
q3

λ2/3
fixed .

(3.11)

The resulting Lagrangian is the simplest one can get and in particular both the gauge fields

and fermions decouple as a result of the weak coupling limit. We end up with a single sextic

scalar interacting term from the action, namely

L = Nc Tr
[
−∂µY †1 ∂

µY 1 − ∂µY †2 ∂
µY 2 − ∂µY †4 ∂

µY 4
]

+ Lint (3.12)

where the interaction term in the Lagrangian is given by

Lint = (4π)2 ξ Y 1Y †4 Y
2Y †1 Y

4Y †2 , (3.13)

and we have defined ξ ≡ ξ3/(ξ1 ξ2) . The resulting theory is again chiral and the complex

conjugate term can be obtained by taking instead γ1, γ2 → −i∞ and γ3 → +i∞. We will

study the spectrum of this model using the asymptotic Bethe ansatz in section 4.2.2.

Another particularly interesting limit of the γ-deformed Lagrangian where some of the

supersymmetry is preserved can be obtained by setting γ1 = γ2 = 0 while keeping the

remaining γ3 parameter to be finite. This is the well known β-deformation [7, 37] and the

resulting theory is N = 2 supersymmetric. We can then consider a double scaling limit in

this β-deformed Lagrangian as follows

q3 ≡ e−iγ3 →∞ , λ→ 0 ,

ξ3 ≡ q3 λ
2 fixed .

(3.14)

Unlike the N = 4 SYM case, the resulting Lagrangian keeps all fermions and scalars as

in the original theory while the gauge fields decouple. Its explicit form is presented in

appendix B.1.

3.1 Planar diagrams for correlation function of χFT3

We now describe the Feynman graphs contributing to the perturbative computations of

the two point functions in the scalar model with the Lagrangian (3.13) which turns out to

be rather simple. The Feynman rules are presented in figure 10 and they simply contain

three types of scalar propagators and a single interacting vertex. As in the χFT4 model,

we will be considering local operators made out of single-traces of the type

Oχ1χ2...χL(x) = Tr[χ1(x)χ2(x) . . . χL(x)] , where χj ∈ {Y 1, Y †1 , Y
2, Y †2 , Y

4, Y †4 } (3.15)

and consider two-point correlation functions of these operators.
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Y †
1

a

a′ Y 1
b

b′

Y †
2

a

a′ Y 2
b

b′

Y †
4

a

a′ Y 4
b

b′

Y †
4

Y 4

Y †
2

Y 2

Y †
1

Y 1

Figure 10. Feynman rules for χFT3 in double-line notation. The indices a, a′ and b, b′ belong to

the bi-fundamental representation of the SU(Nc) × SU(Nc) gauge group. The arrows besides the

double lines represent the flow of flavour.

Figure 11. The three-dimensional analogue of wheel graphs. These graphs are the only ones that

renormalise the BMN vacuum in χFT3.

Vacuum two point functions and wheels. The simplest state we are going to consider

is the standard vacuum of the undeformed theory,

O(x) = Tr
[
(Y 1Y †4 )L

]
. (3.16)

The story here is similar to the previous findings of the 4D bi-scalar model. Although this

state is protected in the undeformed theory, it again receives quantum corrections in this

model from wrapping graphs. They are simply the wheel diagrams depicted in figure 11,

which are obtained after amputation of the north pole (or equivalently the south pole) of

the globe.

For a globe with a sufficiently large number of frames (red lines corresponding to Y 2

propagators in figure 11), a regular triangular lattice structure emerges in the bulk. If

we ignore the lattice “curvature defects” in the north and south poles of the globe due

to the insertion of the local operators, we can regard this as a “flat”, regular triangular

lattice. In the same work [9] of Zamolodchikov such a regular triangular flat lattice formed
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(a) A one-magnon graph without wrapping. (b) A one-magnon graph with wrapping.

(c) A two-magnon graph without wrapping. (d) A two-magnon graph with wrapping.

Figure 12. Types of graphs for the two-point functions of single-magnon and two-magnon operators

in χFT3.

by massless scalar propagators was also shown to form an integrable statistical-mechanical

system, whose free energy per spin was computed there in the limit of an infinite lattice.

Multi-magnon states and 3D ladders. Let us now consider certain excited states in

this model. We take them to be made out of linear combinations of single-traces of the form

O(x) = Tr
[
(Y 1Y †4 )L−N (Y 2Y †4 )N

]
, (3.17)

which falls into the so-called su(2) subsector of the undeformed theory. For a single magnon

(N = 1), the typical l-loop graph in an asymptotically long spin chain (L > l) is represented

in figure 12(a) and consists of ladder-type graphs. This class of 3D ladders was already

considered in [38] and the results for the (amputated) graphs were computed there at

arbitrary loop order. When we include wrapping we get again the spiral graphs depicted

in figure 12(b).

For two magnons (N = 2), the resulting graphs before wrapping are represented in

figure 12(c) and at wrapping order in figure 12(d). As we will see, integrability can be used

to provide information about this class of graphs in three dimensions.
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4 Asymptotic Bethe ansatz for the spectrum of χFT4 and χFT3

In this section, we derive equations describing the spectrum of asymptotically long opera-

tors in the χFT4 and χFT3 from the double scaling limit of the twisted asymptotic Bethe

ansatz equations of the corresponding “mother” theories: γ-deformed N = 4 SYM and

ABJM models, respectively.

4.1 Spectrum of χFT4

4.1.1 Dispersion relation

In the γ-deformed N = 4 SYM the form of the dispersion relation in the bulk of effective

asymptotically long spin chain is not modified with respect to the original theory [2].

The dependence of the anomalous dimensions on the deformation parameters comes solely

from the twisted periodic boundary conditions, through the solutions of the twisted Bethe

equations. As a consequence, in order to determine the effective dispersion relation for

any of the double scaled models we first need to consider the one-magnon solution of the

corresponding Bethe equations, plug it in the original dispersion relation and then take

there the double scaling limit.

Let us consider the simplest single-magnon operator in the bi-scalar model (2.5) with

one excitation φ2 on top of the vacuum made out of a sea of L− 1 scalars φ1. At the level

of the twisted asymptotic Bethe ansatz equations for the γ-deformed N = 4 SYM written

in appendix C, such an operator is achieved by setting K4 = 1, Ki = 0 for all other i and

take the charges J1 = L − 1, J2 = 1 and J3 = 0. The Bethe equations reduce to a single

equation that is equivalent to the total momentum conservation condition and reads

q2L
3 eiLp = 1. (4.1)

Using the parameterization of momentum

eip =
x+

4

x−4
(4.2)

in terms of the Zhukovski variables obeying the identity

x+ +
1

x+
− x− − 1

x−
=
i

g
(4.3)

we can find the solutions for x+
4 and x−4 in terms of g and q3. There will be two such solu-

tions. Then we can plug them in the original dispersion relation expressing the anomalous

dimension γ(g, q3) = ∆(g, q3)− L

γ = 2ig

(
1

x+
4

− 1

x−4

)
(4.4)

through the momentum p and take the double scaling limit. We notice that in the double

scaling limit q3 →∞, g → 0, ξ3 ≡ ξ = gq3-fixed, the only way to satisfy equation (4.1),

e−ip = q2
3, is to send p→ i∞.

Then in the exact dispersion relation (4.4)

γ = −1±
√

1 + 16 g2 sin2 p

2
' −1±

√
1− 4 g2q2

3 (4.5)
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we have to drop one of the modes (left-moving for q3 → ∞ or right-moving for q3 → 0),

which means that we favor one chirality along the “spin chain” w.r.t. another one. We

finally get the effective double-scaled dispersion relation

γ = −1±
√

1− 4 ξ2
3 . (4.6)

We choose the solution with + sign since it is the only one that has a sensitive expansion

at weak coupling, namely it starts at order ξ2
3 for small ξ3.

4.1.2 Multi-magnon states

We consider now operators with an arbitrary number of magnons over the vacuum in

both models (2.2) and (2.5). Starting again from the twisted asymptotic Bethe ansatz

equations written in the appendix C, we consider for simplicity the su(2|3) closed sector

of the original theory. It is well known that in N = 4 SYM there will be a mixing of

scalars with the gluino ψ4 already at two loops. In our double scaled model (2.2) though,

the gluino ψ4 dropped out. Therefore, the field content is narrowed down to simply three

chiral scalars. In particular, the global AdS5 charges S1 and S2 are zero while the remaining

S5 charges satisfy J1 = L − J2 − J3 > 0 and J2, J3 > 0. The length L is conserved and

the hypercharge B is also zero. We refer to such sector made out of operators of the

form Tr
(
(φ1)J1(φ2)J2(φ3)J3

)
as the broken su(3) sector even though remnant symmetry is

simply u(1)3. In the bi-scalar model (2.5), it boils down to a broken su(2) sector where the

operators are of the form Tr
(
(φ1)J1(φ2)J2

)
.

The above constraints on the global charges of the operators greatly simplify the Bethe

equations. In particular, the right wing of the corresponding Dynkin diagram trivializes

(i.e., K5 = K6 = K7 = 0) and the number of roots of the left wing is fixed to be K1 =

K2 = K3 = J3. In the middle node equation we have K4 = J2 + J3 . The set of ABA

equations we get in this sector is the following [10, 39],

q−J2−J3
1 qJ1+J3

2 q−J1+J2
3 =

J2+J3∏
i=1

1− 1
x+

4,ix1,j

1− 1
x−4,ix1,j

J3∏
l=1

u1,j − u2,l + i/2

u1,j − u2,l − i/2

1 =

J3∏
k=1
k 6=l

u2,l − u2,k − i
u2,l − u2,k + i

J3∏
j=1

u2,l − u1,j + i/2

u2,l − u1,j − i/2

J3∏
j=1

u2,l − u3,j + i/2

u2,l − u3,j − i/2

q−J2−J3
1 qJ1−J3

2 q−J1−J2
3 =

J2+J3∏
i=1

x+
4,i − x3,j

x−4,i − x3,j

J3∏
l=1

u3,j − u2,l + i/2

u3,j − u2,l − i/2

q2J3
1 q2J3

2 q
2(J1+J2)
3 =

(
x−4,k

x+
4,k

)L J2+J3∏
i=1
i 6=l

x+
4,k − x

−
4,i

x−4,k − x
+
4,i

1− 1
x+

4,kx
−
4,i

1− 1
x−4,kx

+
4,i

σ(x4,k, x4,i)
2

×
J3∏
j=1

x−4,k − x3,j

x+
4,k − x3,j

J3∏
j=1

1− 1
x−4,kx1,j

1− 1
x+

4,kx1,j

, (4.7)
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where the rapidities ua,j are related to the momenta of magnons (4.2) through the

Zhukovsky map u = 1
g (x + 1

x). We would like to have them written in terms of the

double scaled parameters ξj . In order to achieve the scaled version of these ABA equations

we first observe that simply doing a series expansion of the Zhukovski variable for small

coupling constant does not produce the correct powers of g to form the desired combination

ξi = gqi with the twist parameters. For example take the third equation. The expansion

in g of the first factor of the last line gives

J2+J3∏
i=1

x+
4,i − x3,j

x−4,i − x3,j
'

J2+J3∏
i=1

u4,i − u3,j + i/2

u4,i − u3,j − i/2
+O(g) , (4.8)

which does not balance the large factors of qi in the left hand side of that equation.

To overcome this apparent problem we have to look for the solutions on other sheets of

Zhukovsky variables. We note that by first performing crossing transformations x → 1/x

of some of the Zhukovski variables we can then generate extra powers of g upon expanding

the resulting equations for small g. With a judicious choice of the variables to cross, we

can produce the precise powers of the coupling constant that recombine nicely with the

twist parameters. Indeed, the following analytic continuations lead to the correct double

scaled equations

x3 → 1/x3 and x+
4 → 1/x+

4 , x
−
4 → x−4 (4.9)

keeping all other variables untouched. For example, consider again the third equation

above. Once we transform the variables according to (4.9), the first factor on the last line

will become
J2+J3∏
i=1

1/x+
4,i − 1/x3,j

x−4,i − 1/x3,j
' (g2)J2+J3

J2+J3∏
i=1

u3,j − u4,i − i/2

u3,j

(
u2

4,i + 1/4
) +O(g2(J2+J3)+2) , (4.10)

and this power of g of the leading term is precisely what we need to form the double scaled

combination ξj with the twist parameters in the left-hand side.

More generally, after performing the replacements (4.9) in the equations (4.7) and

series expanding them for small g, we get the properly doubly scaled spectral equations

ξ−J2−J3
1 ξJ1+J3

2 ξ−J1+J2
3 =

J2+J3∏
j=1

u1,i − u4,j − i/2
u1,i

J3∏
l=1

u1,j − u2,l + i/2

u1,j − u2,l − i/2

1 =

J3∏
k=1
k 6=l

u2,l − u2,k − i
u2,l − u2,k + i

J3∏
j=1

u2,l − u1,j + i/2

u2,l − u1,j − i/2

J3∏
j=1

u2,l − u3,j + i/2

u2,l − u3,j − i/2

ξ−J2−J3
1 ξJ1−J3

2 ξ−J1−J2
3 =

J2+J3∏
i=1

u3,j − u4,i − i/2

u3,j

(
u2

4,i + 1/4
) J3∏
l=1

u3,j − u2,l + i/2

u3,j − u2,l − i/2

ξ2J3
1 ξ2J3

2 ξ
2(L−J3)
3 =

(
u2

4,k + 1/4
)L J2+J3∏

i=1
i 6=l

u4,k − u4,i + i

u4,k − u4,i − i
σm,m0 (u4,k, u4,i)

2

×
J3∏
j=1

u3,j

(
u2

4,k + 1/4
)

u3,j − u4,k − i/2

J3∏
j=1

u1,j

u1,j − u4,k − i/2
. (4.11)
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In the middle node equation, σm,m0 (u4,k, u4,i) stands for the leading order term of the

dressing phase in the mirror-mirror kinematics. Its expression can be derived from [40–42].

We find it to be equal to

σm,m0 (u, v)2 =

(
4v2 + 1

)
Γ
(
iu+ 1

2

)
Γ
(
iu+ 3

2

)
Γ
(

1
2 − iv

)
Γ
(

3
2 − iv

)
Γ(−iu+ iv + 1)2

(4u2 + 1) Γ
(

1
2 − iu

)
Γ
(

3
2 − iu

)
Γ
(
iv + 1

2

)
Γ
(
iv + 3

2

)
Γ(iu− iv + 1)2

.

(4.12)

In particular, in order to get the spectrum for chiral operators of the type (2.14) of the

bi-scalar model (2.5) we simply set J3 = 0 above and limit ourselves to the broken su(2)

sector. Then only the middle equation survives and it reads

ξ2L
3 =

(
u2

4,k + 1/4
)L J2∏

i=1
i 6=l

u4,k − u4,i + i

u4,k − u4,i − i
σm,m0 (u4,k, u4,i)

2 . (4.13)

We can finally compute the energy of a state starting from the dispersion relation (4.4).

After doing the crossing transformation (4.9) in the standard ABA dispersion relation

γ = 2ig
∑
j

(
1

x+(u4,j)
− 1

x−(u4,j)

)
(4.14)

we series expand for small g and keep only the leading term

γ =

J2+J3∑
k=1

2i

(
u4,k +

i

2

)
+O(g) , (4.15)

The leading term provides the correct expression for the energy of multi-magnon state in

the models (2.2) and (2.5) (with J3 = 0 for the latter). The dependence on the effective cou-

plings ξi comes already through the solution of the double scaled spectral equations (4.11).

A simple check: Konishi in the strongly β-deformed twisted theory. As men-

tioned earlier, the anomalous dimension of Konishi in the β-deformed theory was com-

puted previously both from Feynman perturbation theory [24, 36] and by integrability

methods [26] using the asymptotic Bethe ansatz with the first Lüscher correction and

TBA/Y-system [43]. After taking the double scaling limit, the four loop result is given by

the asymptotic part and the wrapping correction γwrap which starts at four loop

γK = 2
√

2 ξ2 − 2 ξ4 +
ξ6

√
2

+ (4− 4ζ3) ξ8 + γwrap ξ8 +O(ξ10) , (4.16)

with ξ = g e−iβ/2 and

γwrap = 4− 8 ζ3 . (4.17)

The asymptotic result (4.16), apart from the wrapping term, matches precisely with one

of the solutions of equation (4.13) for L = 4 and J2 = 2. The wrapping contribution can

be obtained either by computing the Lüscher corrections or from the TBA/Y-system, as

in the abovementioned papers. The wrapping correction to the one-magnon state and the

calculation of the corresponding wrapped Feynman graph will be discussed in section 6.
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4.2 Spectrum of χFT3

4.2.1 Dispersion relation

As a starting point to determine the dispersion relation of the χFT3 model, we consider

the twisted Bethe equations for the su(2) × su(2) sector of the ABJM model written in

appendix D. The simplest excited state we will be studying contains a single magnon

Tr
[
(Y 1Y †4 )L−1(Y 2Y †4 )

]
(4.18)

which corresponds to the excitation of one su(2) wing of the su(2) × su(2) subsector. At

the level of Bethe roots, this is equivalent to setting K4̄ = K3 = 0 and excite a single root

K4 = 1. The following discussion then parallels the one from the previous section. The

resulting Bethe equation for this state is simply given by

q−L1 q−L2 q+L
3 eiLp = 1 , (4.19)

which fixes the momentum p to be given solely in terms of the twists q1, q2 and q3. We

consider now the original dispersion relation of ABJM, namely

γ =

√
1

4
+ 4h(λ)2 sin(p/2)2 − 1

2
. (4.20)

In the double scaling limit, we use that at weak coupling h(λ) ' λ which leads to the

following effective dispersion relation

γ = −1

2
+

√
1

4
− λ2 q1q2q

−1
3 = −1

2
+

1

2

√
1− 4 ξ . (4.21)

Notice now that the effective coupling λ2 q1q2q
−1
3 = ξ3/(ξ1ξ2) ≡ ξ is consistent with the

Lagrangian coupling defined in (3.13). This simple dispersion relation is exactly the same

as in the doubled scaled model from N = 4 SYM (see (4.5)). However, it now arises from

the re-summation of a series of 3D ladder diagrams discussed in section 3. Such ladder

diagrams were previously computed in [38] and they produce precisely the anomalous

dimension given in (4.21).

4.2.2 Multi-magnon states

We consider now multi-magnon states in the χFT3 of the form

Tr
[
(Y 1Y †4 )L−N1(Y 2Y †4 )N1

]
+ permutations. (4.22)

At the level of the twisted Bethe equations (D.1), this type of operators is contained in

the closed su(2) sector and it amounts to setting the number of roots to K4̄ = K3 = 0 and

K4 = N1. The equations we will be considering are then the following

q−L1 q−L2 q+L
3

(
x+

4,k

x−4,k

)L
=

K4∏
j 6=k

[
u4,k − u4,j + i

u4,k − u4,j − i
σBES(u4,k, u4,j)

]
. (4.23)
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We now proceed in complete analogy to the case of the twisted N = 4 SYM. Namely, we

perform the following crossing transformation on the Zhukovski variables which allows us

to get the properly double scaled equations

x−4,k → 1/x−4,k , x
+
4,k → x+

4,k . (4.24)

Upon expanding for small λ we are led to the double scaled equations,

ξ−L (u2
4,j + 1/4)L =

K4∏
j 6=k

[
u4,k − u4,j + i

u4,k − u4,j − i
σm,m0 (u4,k, u4,j)

]
(4.25)

where ξ = λ2q1q2
q3

= ξ1ξ2
ξ3

is precisely the coupling constant appearing in the La-

grangian (3.13). The dressing factor is given here by the same formula (4.12) and the

energy has the following expression

γ =

K4∑
k=1

i

(
u4,k +

i

2

)
. (4.26)

This set of equations is analogous to the equations (4.13) for the broken su(2) sector

of N = 4 SYM. However, despite of the similarities they can be used to compute UV

divergences of very different, three-dimensional Feynman graphs, as discussed in section 3.

5 Computing multi-loop graphs from the ABA spectrum

The goal of this section is to provide a method of the study, and sometimes of explicit

calculation, of multi-loop Feynman integrals entering the two-point functions and the di-

latation operator of the bi-scalar model described above, by exploiting a combination of

direct graph computation and of the integrability of the dilatation operator of the model.

The specific feature of our model where each order of perturbation theory is defined by

at most a single Feynman graph, makes possible the study of certain individual graphs

unachievable by conventional methods.

5.1 The dilatation operator

Let us begin by introducing generic flavour structures needed for the construction of the

dilatation operator. In the bi-scalar model, the dilatation operator will depend on a very

limited number of such structures as there is a single interaction vertex. Consider the

standard basis of states where the reference state Tr
[
(φ1)L

]
is represented by | ↑ . . . ↑〉 and

the excitations φ2 are placed on top of it as spins pointing down e.g.,

Tr
[
φ1φ2φ1φ1 . . .

]
≡ | ↑↓↑↑ . . . 〉 . (5.1)

We consider here for simplicity the closed “broken su(2)” sector of the model formed by the

operators of the type (2.14). Then the typical flavour structures in this basis are defined by

X (. . . , a, b, c, . . . ) ≡
L∑
i=1

. . .
(
σ+
i+aσ

−
i+a+1

)(
σ+
i+bσ

−
i+b+1

)(
σ+
i+cσ

−
i+c+1

)
. . . . (5.2)
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where σ+
j =

( 0 1
0 0

)
and σ−j =

( 0 0
1 0

)
are acting on the spin at the site j. Pictorially, each

factor in every term corresponds to exchanging the positions of φ2 and φ1 provided φ2 is

to the left of φ1 (the term σ−j σ
+
j+1 is absent). Equipped with this structure, we can easily

write down the expected form of the dilatation operator as a linear combination of the

structures allowed by the Lagrangian, with arbitrary coefficients. These coefficients can

then be in principle fixed from the computation of corresponding Feynman integrals. The

peculiarity of this bi-scalar chiral model is that for a given structure at a given loop order

there is a single Feynman integral contributing to it at that loop order.5

Accounting for the symmetries of the dilatation operator, we are led to the linear

combination of the following structures up to four loops6

δD = ξ2 C11X (1)

+ ξ4 C21 (X (1, 2) + X (2, 1))

+ ξ6
(
C31 (X (1, 3, 2) + X (2, 1, 3)) + C32X (3, 2, 1) + C33X (1, 2, 3)

)
+ ξ8

[
C41X (2, 1, 3, 2) + C42 (X (2, 1, 4, 3) + X (1, 3, 2, 4))

+ C43(X (1, 4, 3, 2) + X (1, 2, 4, 3)) + C44(X (3, 2, 1, 4) + X (2, 1, 3, 4))

+ C45(X (1, 2, 3, 4) + X (4, 3, 2, 1))
]
.

(5.3)

Some of these coefficients depend on the renormalization scheme for subtraction of the

divergences. In the next section, we will restrict ourselves to the minimal subtraction

scheme in dimensional regularization and will fix completely the dilatation operator within

this scheme. This also allows to fix, in the same scheme, the eigenvectors representing

operators with particular dimensions. Potentially, this might be useful for computing more

complicated quantities such as multi-point correlators.

5.2 Two-point functions in dimensional regularization

One way of extracting the dilatation operator is through the perturbative computation of

two-point correlation functions of local operators. Let us very briefly review how to do

it in the dimensional regularization scheme, fixing some useful notations along the way.

Consider a bare two point function

Gbare
αβ ≡ 〈Obare †

α (x)Obare
β (0)〉 (5.4)

in dimensional regularization, where the dimension D is set to be 4−2ε with the parameter

ε serving as regulator. To avoid the cluttering of formulas we suppress the arguments of

Gbare
αβ . In perturbation theory, the structure of Gbare

αβ is given by

Gbare
αβ =

1

x2∆0

(
Nαβ +

∞∑
n=1

ξ2n (x−2µ2)nε I(n)
αβ (ε)

)
, (5.5)

5Of course, due to the renormalization, products of graphs giving rise to that structure at lower loop

orders will also contribute to the coefficients of structures at a given loop order.
6This form of the dilatation operator is similar to the one for the original N = 4 SYM employed, for

instance, in [44]. The differences are in the structures defined by X s which contrasts with the full standard

permutation operator, and in that we only allow for the so-called maximal range interactions (that is the

interactions that reshuffle the spins in a maximal way).
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where µ is a scale introduced to keep the coupling constant dimensionless, N is a tree

level normalization factor and the n−loop Feynman integrals I(n)
αβ (ε) generically admit a

Laurent series in ε of the form

I(n)
αβ (ε) =

c
(n)
n

εn
+
c

(n)
n−1

εn−1
+ · · ·+ c

(n)
1

ε
+ c

(n)
0 +O(ε) . (5.6)

Note that we are considering a slightly different regularization as compared to the

most standard dimensional regularization, where the scalar propagators appear raised to

the power 1− ε. Therefore, in our scheme each n−loop integral spits out a factor of x−2nε

instead of x+2nε. This scheme is convenient for computing the loop integrals using IBP

identities with FIRE [45], which requires the propagators to have integer powers.

In order to extract the anomalous dimension of the local operators, we renormalize

them by constructing the wave-function Zαβ also as a Laurent series in ε, in such a way

that the renormalized two point function is finite in the limit ε → 0 and it is given by

the standard conformal invariant form. More concretely, the renormalized operators are

defined through

Oα = Zαβ Obare
β . (5.7)

where the wave-function Zαβ is a function of ε and of the coupling ξ (and of the corre-

sponding scale µ) only. The nth-loop term of the wave-function is generically given by the

follolwing expansion

Zαβ
∣∣
n−loop

=
z

(n)
n

εn
+
z

(n)
n−1

εn−1
+ · · ·+ z

(n)
1

ε
, (5.8)

where we have truncated the series in ε up to the term ε−1. This simply corresponds to

the choice of a minimal subtraction renormalization scheme. The coefficients of the wave-

function and the corresponding anomalous dimension are simultaneously fixed by solving

the following set of equations7

lim
ε→0

[
Z∗αρ Gbare

ργ Zβγ
]

=
[
C (x2)−∆0−(δD)

]
αβ
, (5.9)

where (δD)αβ is the (anomalous part of) the dilatation operator which provides the anoma-

lous dimensions upon diagonalization and Cαβ is a normalization constant. In the next sec-

tion we will use this set of equations to first confirm the prediction of the asymptotic Bethe

ansatz up to four loops (where all integrals are well known) and then make a prediction

for a particular combination of five-loop integrals as an illustration.8

5.3 Two magnons at four loops

In this section we consider the anomalous dimensions for N = 2 up to four loops. The

length of the operators L is taken to be sufficiently large such that no wrapping diagrams

contribute at this loop order, i.e. L > 4. This ensures that no φ1 particle interacts with

any φ2 particle more than once.

7The scale µ does not play any role in this discussion and hence we have set it to one.
8We have not found these particular five-loop integrals in the literature.
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The following diagrams contribute to the bare two-point function up to four loops

for L = 7,

Gαβ = 13×3 +


0 0

0

0



+


0

0

+


0



+


+O(ξ10) . (5.10)

Although almost each entry of these diagrams is a different graph, some of the entries

share the spacetime integral and the bare mixing matrix of the two point functions is given

in terms of the following integrals:

Gαβ = 13×3 +

 0, I[;1] 0

I[;1] 0 I[;1]

0 I[;1] I[;1]

 ξ2 +

 I[;2] 0 I[;2]

0 I2
[;1] I[;2]

I[;2] I[;2] I
2
[;1]

 ξ4

+

 0 I[0;1,2] I[;3]

I[0;1,2] I[;3] I[;1]I[;2]

I[;3] I[;1]I[;2] I[;1]I[;2]

 ξ6 +

 I[0;2,2] I[;4] I[0;1,3]

I[;4] I[1;2,2] I[;1]I[;3]

I[2;3,1] I[;1]I[;3] I[;2]I[;2]

 ξ8 +O(ξ10) , (5.11)

where I[a1,...,am;b1,...,bm] denotes anm-magnon graph, for which the ith magnon is ai−1 sites to

the right of the (i−1)’th one, and crosses bi vacua. They can be read off from the graphical

representation in equation (5.11). Note that some of these integrals are equivalent because

two Feynman graphs that are related by a 180◦ rotation give rise to the same kinematical

factor, such as I[0;1,3] and I[2;3,1].

These integrals have UV divergences for each integration vertex that is attached to

one of the external vertices by two powers of a scalar propagator. To regulate these UV

divergences, we consider these integrals in 4 − 2ε dimensions but keep the propagators

as 1/x2.

Being logarithmically divergent, these integrals have a Laurent expansion in ε

as follows:

I[a1,...,am;b1,...,bm] =
∞∑

k=−h
I

(k)
[a1,...,am;b1,...,bm]ε

k , (5.12)

where h =
∑m

i=1 bi is the number of loop integrations, i.e. the total number of interactions

undergone by all magnons.

The values of the integrals considered in this section can be found in appendix E.

– 25 –



J
H
E
P
0
3
(
2
0
1
8
)
0
7
7

We now plug (5.11) into the defining formula of the dilatation operator (5.9) and allow

for arbitrary entries for the wave-function Z. Once we solve these equations we obtain the

following dilatation operator

δD =


−2ξ4 + 4(1− 2ζ3)ξ8 −2ξ2 − 2ξ6 − 10ξ8 −2ξ4 − 4ξ6 − 8ξ8

3

−2ξ2 + 2ξ6 − 10ξ8 −4ξ6 + 2ξ8 −2ξ2 − 2ξ4

−2ξ4 − 4ξ6 + 8ξ8

3 −2ξ2 − 2ξ4 −2ξ2

 , (5.13)

which fixes the constants Cij of the ansatz (5.3) to be

C11 = −2, C21 = −2, C31 = 2, C32 = −2, C33 = −4,

C41 = −4(2ζ(3)− 1), C42 = 2, C43 =
8

3
, C44 = −8

3
, C45 = −10 .

(5.14)

We can now check that the eigenvalues of this dilatation operator match exactly with the

solutions of the Bethe equations (4.13).

5.4 Predictions at five loops

In this section, we illustrate how to make use of the spectrum to compute the UV di-

vergences of multi-loop Feynman integrals of the φ4 interaction type. We will focus on

five-loop integrals but one can equally well generate information about even higher loops.

Essentially we reverse the sequence of steps described in the previous section. We start

by writing the five-loop integrals as a series in ε with arbitrary coefficients and solve the set

of equations (5.9) in terms of these coefficients. We then diagonalize the resulting dilata-

tion operator and equate its eigenvalues to the integrability prediction from the solutions

of (4.13). The structure of the five loop contribution to the bare two point function for

L = 7 operators with two magnons is given by the following graphs

Gαβ
∣∣
5 loops

=


 =

 I[;5] I[0;2,3] I[0;1,4]

I[1;3,2] I[;4]I[;1] I[1;2,3]

I[3;4,1] I[2;3,2] I[;3]I[;2]

 (5.15)

where in the second equality we have explicitly written the graphs in terms of the corre-

sponding integrals in our notation. The information provided by the spectrum is going to

be used to fix the 1/ε terms of the integrals. The remaining higher order poles are almost

completely fixed as a condition for the exponentiation of the result as given in (5.9). There

is some freedom here related to the choice of subtraction scheme. This manifests itself in

the fact that the 1/ε2 terms of the integrals are fixed up to a constant which we denote by
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d1 below. As a solution of the equations (5.9) we find

I[0;1,4] = − 16

15ε5
− 13

6ε4
+

37
10 + 4π2

9

ε3
+
−144 d1 + 5440ζ3 + 325π2 + 612

360ε2
+
p1

ε

I[1;3,2] = − 12

5ε5
− 43

6ε4
+

13
10 + π2

ε3
+

144 d1 + 10080ζ3 + 1075π2 + 4548

360ε2
+
p2

ε

I[2;3,2] = − 4

3ε5
− 7

2ε4
+

19
6 + 5π2

9

ε3
+
−144 d1 + 5360ζ3 + 525π2 + 3588

360ε2
+
p3

ε

I[;5] = − 4

15ε5
+

15 + π2

9ε3
+

52ζ3
9 −

14
3

ε2
+
p4

ε

(5.16)

Now we inject the spectrum information from the solution of the Bethe equations. This

fixes p4 and imposes a nontrivial relation between the constants p1, p2 and p3. They read

p2 = −p1 −
196ζ3

9
+

133π4

360
− 25π2

12
− 401

15

p3 = p1 +
238ζ3

45
+

2π2

9
− 176

15
− 11π4

360

p4 = −56ζ3

3
+

181

15
− 17π2

36
− 31π4

360

(5.17)

The conclusion is that the computation up to the order 1/ε of a single five-loop integral,

say I[0;1,4] which looks simpler than the other two, would fix the unknowns d1 and p1 and

therefore constrain the other two integrals completely. Therefore, we profit substantially

from using the spectrum.9

This clearly carries over to the higher loops and one can raise the question of how

efficient is this method for constraining higher loop integrals. In order to answer this we

observe that what we did here is equivalent to fixing as much as possible the Hamiltonian

from the spectrum constraints. This has been extensively done for both N = 4 SYM [44]

and ABJM [46, 47]. In our context the difference is that we can relate a particular,

connected or disconnected graph to each unknown coefficient of the Hamiltonian. From this

point of view it is clear that the spectrum is not enough due to similarity transformations

one can perform without changing the spectrum. As the loop order increases, the number

of unknowns will also increase and in order to fix it completely we have to supplement

the spectrum with explicit results for particular integrals. Therefore, when complemented

with other methods for determining some higher loop integrals, this has the potential of

providing valuable information about them.

6 Wrapping effects in the bi-scalar chiral model

We will discuss here the wrapping effects for the simplest single-magnon operator

OL(x) = Tr[(φ1)L−1 φ2] , (6.1)

9We could have also applied this method to the previous four loop example. In this case, we have three

two-magnon integrals at four loops. We have checked that by computing one of these integrals one recovers

the two other integrals already known in the literature.
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in the bi-scalar model (2.5). As seen before, for asymptotically long such operators their

anomalous dimension is described by the expression (4.6). This dispersion relation turns

out to be the same also for the DS limit stemming from the β−deformed SYM, so that

the asymptotic anomalous dimensions of this operator coincide for these two distinct mod-

els. Perhaps more non-trivial is the fact that this equality of the asymptotic anomalous

dimensions of both models actually persists when the wrapping correction are included.

This follows from the diagrammatic analysis of the perturbative two point functions for

these operators. It turns out that in both models the only allowed vertex is the one from

the single interacting term of the bi-scalar model. The leading wrapping correction γwrap
L

is of order ξ2L and we will focus on it from now on. In order to extract it, we follow the

observation above and use the results of the computation of γwrap
L in the β-deformed N = 4

SYM known in the literature, both from the direct Feynman graph computation [24] and

from integrability [43] (with a perfect match between the results of these two methods)

and take its DS limit.

In conjunction with the dimensionally regularized expression for unwrapped graphs at

any L computed in appendix E, integrability of χFT4 allows us to determine the spiral

graphs in figure 7 for any L.

The result of [24] states that the contribution of the wrapping diagrams to the anoma-

lous dimension is given by the following expression

γwrap
L (g, q) = − 2L(4πg)2L

PL (c(0)
L − c

(L−1)
L

)
− 2

bL2 c−1∑
j=0

(
c

(j)
L − c

(−j+L−1)
L

)
I

(j+1)
L


+ γABA

L−loop(g, q) , (6.2)

where

c
(j)
L =

(
q − 1

q

)2
(
q−2j+2L−2 +

(
1

q

)−2j+2L−2
)
. (6.3)

Here γABA
L−loop is the L-loop asymptotic Bethe ansatz contribution10 to the anomalous di-

mension for an operator with length greater than L (which in our model arises precisely

from the single-magnon L-loop ladder graph). Additionally we have that

PL =
2

(4π)2LL

(
2L− 3

L− 1

)
ζ2L−3 (6.4)

is the leading term in a wheel-type graph and I
(j)
L is explicitly given for some j in [24].

In the DS limit, only the term with j = 0 contributes to (6.2) since c
(j)
L = q−2j+2L(1 +

O(q−2)) and the corresponding integral is given by (see [24] for explicit expressions)

I
(1)
L =

1

2
PL +

1

L

L−3∑
k=L−1−bL−1

2 c

(
2k + 1

2k + 3− L

)
ζ2k+1 +

1

2L
[1 + (−1)L](L− 2)ζL−1 . (6.5)

10The addition of the term γABA
L−loop is justified by the fact that in [24] the authors consider the full L-loop

contribution on top of the asymptotic result for this type of operators. That requires the subtraction of the

L−loop graphs with (L+ 1)-range of interaction. In our model, this last contribution is precisely given by

the L−loop asymptotic Bethe ansatz contribution.
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Hence, keeping the leading q2L term in (6.2) we obtain for the one-wrapping contribution

to the dimension of one-magnon operator in the bi-scalar model

γwrap
L (g, q)− γABA

L−loop(g, q) = ξ2LfL , (6.6)

where

fL=− 2(4π)2L

2
L−3∑

k=L−1−bL−1
2 c

(
2k + 1

2k + 3− L

)
ζ2k+1 + [1 + (−1)L](L− 2)ζL−1

 . (6.7)

We will now proceed to compute the first wrapping graph drawn in figure 7. In perturbation

theory, up L loops, the length-L operators are renormalised by the following graphs:

L−1∑
k=1

L−1

1 2

k−1

kL−2

+
3

4L−2

L−1

L

1

2

(6.8)

We will use for that the knowledge of the asymptotic one-magnon (amputated) graphs at

any L and at any n < L loops, i.e. before the wrapping order determined in appendix E11

in dimensional regularization,

Gn≥2(x, ε) = (x2)−nε
n∏
k=1

Γ(1− ε)Γ(−kε)Γ(1 + kε)

Γ(1− (k + 1)ε)Γ(2 + (k − 1)ε)
= (x2)−nε

∞∑
k=−n

εkG(k)
n . (6.9)

Let us now define the wrapped Feynman integral in equation (6.8) as a Laurent series in ε

KL(ε) = GL(ε) +
tL
ε

+O(ε0) (6.10)

where GL(ε) =
G

(L)
L

εL
+

G
(L−1)
L

εL−1 + · · ·+ G
(2)
L
ε2

with the coefficients defined through (6.9). All the

coefficients of the higher order poles in ε ought to be the same as for the unwrapped graphs

at lengths greater than L+ 1. Given the uniqueness of the graphs at each loop order this

is the only possibility for them to exponentiate into the scheme independent anomalous

dimension, which is finite and unambigous in the ε limit. The first order pole tL/ε represents

the only correction relevant to wrapping. We can fix it by the knowledge of one-wrapping

contribution to the anomalous dimension (6.6) (which is known also from integrability

computations of [43] - a potentially more powerful method than the direct Feynman graph

calculus). In order to relate the first order pole coefficient tL to the anomalous dimension

we follow the standard renormalization of the operator OL(x). Since there is no mixing for

this particular type of operators, it renormalizes multiplicatively by

Oren
L = Z OL (6.11)

11The momentum-space versions of these integrals were computed in [48], which would correspond to

position space integrals with propagators of the form (x2
ab)
−1+ε.
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L tL

4
1365

36
− 7

36
π2 − 41ζ3

9

5
6727

40
− 245π2

288
− 335ζ3

18
− 169π4

11520
− 8ζ5

6
62601

80
− 301π2

80
− 4991ζ3

45
− 351π4

3200
− 712ζ5

75
+

23π2ζ3

180
− 70ζ7

3

7

4753177

1260
− 49049π2

2880
− 44891ζ3

72
− 110551π4

172800
+

5929π2ζ3

5184

− 49567ζ5

720
− 393677π6

87091200
+

102487ζ2
3

12960
− 12ζ7 − 72ζ9

Table 2. We present a few examples of the coefficient of the 1/ε pole of the first wrapping integral

at order L. The higher order poles coincide with those for the unwrapped single-magnon integrals

given in (6.9)

where Z is such that the poles in ε coming from the quantum corrections to the bare oper-

ator OL will be cancelled. Once we determine it the corresponding anomalous dimension

is given by the standard form

γ = lim
ε→0

[
−ε ξ ∂ logZ

∂ξ

]
. (6.12)

Following this procedure, we compute Z at L-loop order from the above one-magnon

unwrapped graphs (6.9) at n < L loops and at order L we use the wrapped diagram

given in (6.10). Equating the result for the anomalous dimension as given by (6.11) to the

wrapping result (6.2) we fix the tL at any desired loop order. As illustration we have some

results presented in table 2 which can be easily generated for any loop L.

7 Conclusions

In this paper, we studied the properties of chiral field theories — χFTs emerging from the

γ-deformed N = 4 SYM theory and ABJM model in the double scaling (DS) limit which

combines a strong γ-twist with the weak coupling limit. While such a DS limit was already

proposed in [8] by two of the authors for the N = 4 SYM, a similar DS limit for ABJM is a

new result of this paper. On the one hand, these theories do not have any supersymmetry

(apart from a very special choice of effective couplings for the β-deformation where some

supersymmetry survives: N = 1 in the case of N = 4 SYM or N = 2 for ABJM) and they

do not contain the gauge fields anymore. On the other hand they possess a much simpler

Feynman graph expansion. Say, for the simplest such χFT model considered here — the

four dimensional bi-scalar χFT4 — for most of the interesting physical quantities, such as

multi-point correlation functions, there is at most a single planar graph per loop order.

A remarkable property of both χFT4 and χFT3 theories is their quantum integrability

in the ’t Hooft approximation. Unlike their “mother”-theories, the integrability in these
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χFTs is visible explicitly, say, for various two-point correlation functions, on the level of a

single integrable planar graph at each order of perturbation theory.

The integrability holds for all local single-trace operators which can be constructed in

these χFTs, provided that their length is greater than two. This can be the BMN vac-

uum operator, which is unprotected for the twisted theories, as well as more complicated

multi-magnon operators. For the BMN state, integrability becomes transparent since the

corresponding wheel graphs, which make up the only contribution in perturbation theory,

appear to have the same bulk structure as a “fishnet” graph with a square lattice structure:

such fishnet graphs are shown in [9] to represent an integrable statistical mechanical sys-

tem. The integrability for the wheel graphs can be also explicitly demonstrated from the

integrable su(2, 2) spin chain construction [49]. However, for more complicated states, such

as multi-magnon operators, we have to rely on more hypothetical but nevertheless well-

established integrability methods for the spectral problem of the twisted “mother”-theories

of our χFTs — N = 4 SYM and ABJM. On the other hand, we are able to establish the

single Feynman graph at each loop order corresponding to a given local single-trace oper-

ator and pose the question: what is the precise spin-chain picture behind its integrability

in the planar limit. This question is yet to be answered.

In this paper we studied operators with magnons, i.e. with insertions of new fields into

the BMN vacuum. We clarified the Feynman graph picture for the renormalization of such

operators. We explored the integrability of spectral equations for the asymptotic limit

of very long operators in the form of Beisert-Staudacher ABA equations. We managed

to reduce these equations in the DS limit for both N = 4 SYM and ABJM, at least in

specific interesting sectors: for the operators in the sector with (broken) su(3) symmetry

for N = 4 SYM, and in the sector with (broken) su(2) for ABJM. It would be interesting

to double-scale the full system of ABA equations and to get the corresponding full set of

DS ABA equations for the complete 4D χFT with 3-coupling action (2.3), as well as for

its 3D analog (3.5). Even for the bi-scalar χFT (2.5) we do not yet understand how to get

the double scaled ABA for the operators mixing both chiralities (any single-trace product

of φ1, φ2, φ†1, φ
†
2).

A very simple Feynman graph picture of our χFTs suggests a possibility to use in-

tegrability as a new, powerful tool of exact computations of a large variety of multi-loop

Feynman integrals. Some classes of graphs, such as one-magnon graphs on figures 6 or

single- and double-wheel graphs of the type drawn on figures 5, admit computations at

arbitrary loop order. We demonstrated here the efficiency of ABA equations that, when

combined with the direct computations of some multi-loop graphs in dimensional regular-

ization, fixes completely some unknown five loop two-magnon graphs of the length L ≥ 6

for the bi-scalar χFT.

The ultimate method for studying the spectrum of anomalous dimensions in these

integrable χFTs should be the twisted QSC equations of [13].12 But the appropriate

12See also [11] for a similar twisted QSC for a different problem — of a cusped Wilson line. Recently,

the QSC equations have been established for the cusped Wilson line [50] in a similar limit for a simpler

problem of computation of quark-antiquark potental in planar N = 4 SYM, where the DS limit of QSC

sums up a ladder of Feynman graphs.
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Figure 13. Even though the presence of magnons in single-trace operators imposes different

boundary conditions, the bulk of these “spider-web” diagrams that renormalise these operators is

still a square lattice.

doubly scaled version of this QSC is yet to be found. We hope that the ABA equations

established in the current paper are a significant step in this direction.

The perturbation theory computing the anomalous dimension of an operator contains,

in sufficiently high order of perturbation theory, the “wrapped” Feynman graphs, where

the magnon lines make at least one full circle around the operator. ABA is not enough

for studying the wrapping contribution and the Y-system/TBA/QSC equations are for

the moment the only method to compute them. For the χFTs studied here, the typical

graphs (say, having sufficiently many loops but not too many external legs at the boundary)

are of a “fishnet” type, i.e., containing large pieces of regular rectangular lattice. For a

particular complicated operator, the graphs computing its anomalous dimension could be

quite involved, such as for example “spider-web” graphs of figure 13. The double scaled

QSC approach should be able to compute, at least numerically or analytically, to a high

order of perturbation theory, the corresponding anomalous dimensions which are given in

the case of planar χFTs by a limited combination of graphs. This provides many scheme

independent relations among these graphs. If completed by some direct graph calculus in

a given scheme, these relations provide the method of direct computation of those graphs.

We demonstrated here the method by computing, using the integrability of mixing matrix,

the unwrapped graphs of bi-scalar χFT4 at four and (partially) at five loops in the minimal

dimensional regularization scheme.

The χFTs studied here should be a good, and still non-trivial testing ground for an

even more complicated important problem: computation of structure constants in planar

N = 4 SYM. There has been recently progress in this problem [14–16, 51, 52], but the

current methods allow only for the ABA analogue of this quantity and some wrapping

corrections. The emerging difficulties concern the wrapping effects, both in direct dia-

grammatic approach, due to the large number and complexity of diagrams, as well as in
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the hexagon approach where important analyticity ingredients are still missing. The χFTs,

thanks to the drastic simplification of Feynman diagramatics on the one hand, and to a

more direct integrability approach to “fishnet” graphs, has good chances to clarify the

emerging problems and to help moving forward towards the complete construction of the

OPE for local operators in planar N = 4 SYM. Moreover, the study of the running of the

double-trace couplings, or even of some non-planar, O(1/N2) effects might be accessible

for computations in all orders of perturbation theory due to the simplicity of diagrammat-

ics and spin chain type integrability of the related Feynman graphs for which the fishnet

structure will be still the typical bulk element.

Another interesting set of physical quantities to explore in χFT are the scattering

amplitudes. For example, in the bi-scalar χFT the scattering amplitude of two species of

bosons is given by a single finite Feynman graph depending on the ordering of external

particles, i.e. a single loop-order gives the full contribution. The computation of such ob-

jects and the observation of its Yangian symmetry claimed to be present in the amplitudes

of the “mother”-theories, is another curious direction of research.

An important question to answer is: do these χFTs have any gravity duals? On the

one hand, from the standard twisted AdS/CFT point of view, we are at the weak coupling

on the CFT side which means the strong coupling, i.e. strong quantum fluctuations on

the string side. That is why the standard classical gamma-twisted AdS picture [20] is

not directly applicable. On the other hand, the planar graph expansion, especially in

the strong coupling regime, suggests a world-sheet picture for sufficiently big graphs. The

χFTs suggest the existence of only chiral, or only anti-chiral excitations on this hypothetical

world-sheet. It might be also possible to combine both chiralities within the same string

model, order by order in the string coupling, as one does in the standard critical string

theory in the flat background. It would be good to understand the fate of the tachyon in

the gamma-deformed string theory on AdS5 × S5 background.
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A Action of γ-twisted N = 4 SYM

The lagrangian of γ-deformed N = 4 SYM reads (see e.g. [17])

L = NcTr

[
−1

4
FµνF

µν − 1

2
Dµφ†iDµφ

i + iψ̄α̇AD
α
α̇ψ

A
α

]
+ Lint

where i = 1, 2, 3 A = 1, 2, 3, 4, Dα
α̇ = Dµ(σ̃µ)αα̇ with (σ̃µ)αα̇ = (−iσ2, iσ3, I,−iσ1)αα̇ and

Lint = Ncg Tr

[
g

4
{φ†i , φ

i}{φ†j , φ
j} − g e−iεijkγkφ†iφ

†
jφ
iφj

− e−
i
2
γ−j ψ̄jφ

jψ̄4 + e+ i
2
γ−j ψ̄4φ

jψ̄j + iεijke
i
2
εjkmγ

+
mψkφiψj

− e+ i
2
γ−j ψ4φ

†
jψj + e−

i
2
γ−j ψjφ

†
jψ4 + iεijke

i
2
εjkmγ

+
mψ̄kφ

†
i ψ̄j

]
.

where the summation is assumed w.r.t. doubly and triply repeating indices. We suppress

the Lorentz indices of fermions, assuming the contractions ψαi ψj,α and ψ̄i,α̇ψ̄
α̇
j . We also use

the notations

γ±1 = −γ3 ± γ2

2
, γ±2 = −γ1 ± γ3

2
, γ±3 = −γ2 ± γ1

2
.

The parameters of the γ-deformation qj = e−
i
2
γj j = 1, 2, 3 are related to the Cartan

subalgebra: u(1)3 ⊂ su(4) ∼= so(6).

B γ-twisted ABJM

We present here explicit form of the part of the γ-twisted ABJM action involving the

fermion-scalar interactions. It reads

Lferm = −Ncλ (2πi) Tr

[
−4Y iY †j ΨiΨ

†j + 4Y †i Y
jΨ†iΨj − Y iY †i ΨjΨ

†j + Y †i Y
iΨ†jΨj

− Y 4Y †4 ΨiΨ
†i + Y †4 Y

4Ψ†iΨi − Y iY †i Ψ4Ψ†4 + Y †i Y
iΨ†4Ψ4 + Y 4Y †4 Ψ4Ψ†4

− Y †4 Y
4Ψ†4Ψ4 + 2 εijk e

−iεijkγ−j Y †i ΨjY
†
k Ψ4 − 2 εijk e

−iεijkγ−j ΨiY
†
j ΨiY

†
4

− 2 eiγ
−
i Y †4 Y

iΨ†4Ψi + 2 e−iγ
−
i Y iY †4 ΨiΨ

†4 − 2 εijk e
iεijkγ

−
j Y iΨ†4Y kΨ†j

+ 2 εijk e
iεijkγ

−
j Ψ†iY 4Ψ†iYj + 2 e−iγ

−
i Y 4Ψ†iΨ4Y

†
i − 2 eiγ

−
i Y †i Ψ4Ψ†iY 4

+
2

3

3∑
l=1

(
3 e−iεijlγ

+
l − 2

)(
Y iY †j ΨiΨ

†j − Y †i Y
jΨ†iΨj

)]
, (B.1)

where the indices i, j, k are summed from 1 to 3.

B.1 Strongly twisted β-deformed ABJM Lagrangian

In the double scaling limit of the β-deformed ABJM which was described in the main text

(see (3.14)), we obtain the following N = 2 supersymmetric χFT3 model

L = Nc Tr

[
−∂µY †A∂

µY A + iΨ†A/∂ΨA

]
+ Lint (B.2)
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with the interacting term given by

Lint = ξ3 Tr

[
Y 2Y †4 Y

3Y †2 Y
4Y †3 + Y 1Y †4 Y

3Y †1 Y
4Y †3 + Y 1Y †2 Y

4Y †1 Y
2Y †4 + Y 1Y †2 Y

3Y †1 Y
2Y †3

]
− i ξ3

2
Tr

[
2Y 4Y †1 Ψ4Ψ1† − 2Y †2 Y

4Ψ2†Ψ4 + 2Y 3Y †2 Ψ3Ψ2† − 2Y †1 Y
3Ψ1†Ψ3

+ 2Y 2Y †4 Ψ2Ψ4† − 2Y †3 Y
2Ψ3†Ψ2 + 2Y 1Y †3 Ψ1Ψ3† − 2Y †4 Y

1Ψ4†Ψ1

− Y 3Ψ1†Y 4Ψ2† − Y 4Ψ2†Y 3Ψ1† + Y 1Ψ4†Y 2Ψ3† + Y 2Ψ3†Y 1Ψ4†

+ Y †1 Ψ4Y
†

2 Ψ3 + Y †2 Ψ3Y
†

1 Ψ4 − Y †3 Ψ1Y
†

4 Ψ2 − Y †4 Ψ2Y
†

3 Ψ1

]
. (B.3)

C Twisted Asymptotic Bethe equations for γ-deformed N = 4 SYM

In this appendix we remind the full twisted Asymptotic Bethe equations for the γ-deformed

N = 4 SYM. The full twisted version was first discussed in [2, 5]. In the conventions

of [2, 26] they read

q−J2−J3
1 qJ1+J3

2 q−J1+J2
3 =

K4∏
i=1

1− 1
x+

4,ix1,j

1− 1
x−4,ix1,j

K2∏
l=1

u1,j − u2,l + i/2

u1,j − u2,l − i/2

1 =

K2∏
k=1
k 6=l

u2,l − u2,k − i
u2,l − u2,k + i

K1∏
j=1

u2,l − u1,j + i/2

u2,l − u1,j − i/2

K3∏
j=1

u2,l − u3,j + i/2

u2,l − u3,j − i/2

q−J2−J3
1 qJ1−J3

2 q−J1−J2
3 =

K4∏
i=1

x+
4,i − x3,j

x−4,i − x3,j

K2∏
l=1

u3,j − u2,l + i/2

u3,j − u2,l − i/2

q2J3
1 q2J3

2 q
2(J1+J2)
3 =

(
x−4,k

x+
4,k

)L K4∏
i=1
i 6=l

x+
4,k − x

−
4,i

x−4,k − x
+
4,i

1− 1
x+

4,kx
−
4,i

1− 1
x−4,kx

+
4,i

σ(pk, pi)
2
K3∏
j=1

x−4,k − x3,j

x+
4,k − x3,j

×
K1∏
j=1

1− 1
x−4,kx1,j

1− 1
x+

4,kx1,j

K5∏
j=1

x−4,k − x5,j

x+
4,k − x5,j

K7∏
j=1

1− 1
x−4,kx7,j

1− 1
x+

4,kx7,j

qJ2−J3
1 q−J1−J3

2 q−J1−J2
3 =

K4∏
i=1

x+
4,i − x5,j

x−4,i − x5,j

K6∏
l=1

u5,j − u6,l + i/2

u5,j − u6,l − i/2

1 =

K6∏
k=1
k 6=l

u6,l − u6,k − i
u6,l − u6,k + i

K5∏
j=1

u6,l − u5,j + i/2

u6,l − u5,j − i/2

K7∏
j=1

u6,l − u7,j + i/2

u6,l − u7,j − i/2

qJ2−J3
1 q−J1+J3

2 q−J1+J2
3 =

K4∏
i=1

1− 1
x+

4,ix7,j

1− 1
x−4,ix7,j

K6∏
l=1

u7,j − u6,l + i/2

u7,j − u6,l − i/2
.
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where qj = e−
i
2
γj , j = 1, 2, 3 are the gamma-twist parameters. The total momentum

condition is now given by
K4∏
k=1

x+
4,k

x−4,k
= q−2J3

2 q−2J2
3 . (C.1)

The number of roots at seven different nodes of the ABA Dynkin diagram is given in terms

of the charges by

K1 =
1

2
(L−B − J1 − J2 + J3) ,

K2 =
1

2
(∆0 − J1 − J2 + J3 − S1 − S2) ,

K3 =
1

2
(B − L+ 2∆0 − J1 − J2 + J3)

K4 = ∆0 − J1 ,

K5 =
1

2
(2∆0 −B − L− J1 − J2 − J3)

K6 =
1

2
(∆0 − J1 − J2 − J3 − S1 + S2)

K7 =
1

2
(B + L− J1 − J2 − J3) .

(C.2)

Finally, the anomalous dimension is given by

γ = 2ig

K4∑
k=1

(
1

x+
4,k

− 1

x−4,k

)
. (C.3)

D Twisted asymptotic Bethe equations for γ-deformed ABJM13

We present here the twisted Bethe equations for the closed sector su(2)× su(2) of ABJM

q−L1 q−L2 q
−2K4̄+L
3

(
x+

4,k

x−4,k

)L
=

K4∏
j 6=k

u4,k − u4,j + i

u4,k − u4,j − i

K4∏
j 6=k

σBES(u4,k, u4,j)

K4̄∏
j=1

σBES(u4,k, u4̄,j) ,

q−L1 qL2 q
2K4−L
3

(
x+

4̄,k

x−
4̄,k

)L
=

K4̄∏
j=1

u4̄,k − u4̄,j + i

u4̄,k − u4̄,j − i

K4̄∏
j 6=k

σBES(u4̄,k, u4̄,j)

K4∏
j=1

σBES(u4̄,k, u4,j) ,

(D.1)

where qi = e−iγi .

E Feynman integrals

In this appendix we list the values of the integrals that enter the two point functions

considered in the main text. These integrals are UV divergent and we regulate these

13The untwisted ABJM Bethe equations were first proposed in [53].
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divergences by integrating loop momenta in 4 − 2ε dimensions but keeping the position-

space propagators four dimensional, such that generic one and two magnon integrals are

defined as:

I[;h1] ≡

[
h1∏
i=1

∫
dDxb1,i
πD

]
1

x2
1 b1,1

[
h1∏
i=1

1

x2
1 b1,i

x2
b1,i b1,(i+1)

xb1,i2

]
(E.1)

I[d1;h1,h2] ≡

[
h1∏
i=1

∫
dDxb1,i
πD

][
h2∏
i=1

∫
dDxb2,i
πD

]
1

x2
1 b1,1

1

x2
1 b2,1

[
d1∏
i=1

1

x2
1 b1,i

x2
b1,i b1,(i+1)

x2
b1,i2

]

×

 h1∏
i=d1+1

1

x2
1 b2,i

x2
b1,i b1,(i+1)

x2
b1,i b2,i

x2
b2,i b2,(i+1)

x2
b1,i 2


×

 h2∏
i=h1−d1+1

1

x2
1 b2,i

x2
b2,i b2,(i+1)

x2
b2,i,2

 (E.2)

where we identified xb1h1+1
≡ x2 and xb2h2+1

≡ x2. If a standard dimensionful expression

is factored out, then they take the form

I[;h1] ≡ (x2
12)−h1(1+ε)−1e−(h1)γEε I[;h1]

I[d1;h1,h2] ≡ (x2
12)−h2−d1−2−(h1+h2)εe−(h1+h2)γEε I[d1;h1,h2] (E.3)

where the factors I have a Laurent series near ε → 0 with coefficients that are rational

numbers or zeta values.

These integrals can be efficiently related through IBP identities using FIRE [45] to

master integrals provided in [54] to a sufficiently large order in ε, namely,

I[;1] =
−2

ε
− 2 + ζ2ε+

(
ζ2 +

14ζ3

3

)
ε2 +O(ε3) (E.4a)

I[;2] = I[0;1,1] =
2

ε2
+

3

ε
− (2ζ2 + 1)−

(
1 + 3ζ2 +

28ζ3

3

)
ε

−
(

3 + 3ζ2 + 4ζ3 −
21ζ4

2

)
ε2 +O(ε3)

(E.4b)

I[;3] = − 4

3ε3
− 2

ε2
+

(
8

3
+ 2ζ2

)
1

ε
+

(
3ζ2 +

32

3
ζ3

)
+

(
−16

3
− 2π2

3
+
π4

8
− 18ζ3

)
ε

+

(
8− 91π4

240
− 568ζ3

3
− 8π2ζ3

3
+

504ζ5

5

)
ε2 +O(ε3)

(E.4c)

I[0;1,2] = I[1;2,1] = − 8

3ε3
− 6

ε2
+

4ζ2

ε
+

(
16

3
+ 9ζ2 +

52

3
ζ3

)
−
(

16

3
− 33ζ4

2
− 2ζ3

)
ε

−
(

40

3
+ 8ζ2 + 256ζ3 +

147ζ4

8
− 26ζ2ζ3 +

668ζ5

5

)
ε2 +O(ε3)

(E.4d)
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I[;4] =
2

3ε4
+

2

3ε3
− 17 + 8ζ2

6ε2
+

(
19

6
− 4ζ2

3
− 80ζ3

9

)
1

ε

+

(
2

3
+

17ζ2

3
+

208ζ3

9
− 28ζ4

3

)
+O(ε)

(E.4e)

I[0;2,2] =
4

3ε4
+

3

ε3
−
(

8

3
+
ζ2

3

)
1

ε2
−
(

7 + 6ζ2 +
106ζ3

9

)
1

ε

+

(
46

3
+

16ζ2

3
+ 8ζ3 −

29ζ4

3

)
+O(ε)

(E.4f)

I[1;2,2] =
10

3ε4
+

29

3ε3
+

(
13

6
+

20ζ2

3

)
1

ε2
−
(

213

18
+

58ζ2

3
+

256ζ3

9

)
1

ε

+

(
87

9
− 13

3
ζ2 −

80

9
ζ3 −

68

3
ζ4

)
+O(ε)

(E.4g)

I[0;1,3] = I[2,3,1] =
2

ε4
+

29

6ε3
− 2 + 4ζ2

ε2
−
(

20

3
+

29ζ2

3
+

56ζ3

3

)
1

ε

+
19

2
+ 4ζ2 +

68

9
− 16ζ3 +O(ε)

(E.4h)

A different but related class of integrals we have considered in this paper are the

amputated versions of the one-magnon integrals (E.1):

Iamp
[;h1] ≡

[
h1∏
i=1

∫
dDxb1,i
πD

]
1

x2
1 b1,1

[
h1−1∏
i=1

1

x2
1 b1,i

x2
b1,i b1,(i+1)

]
1

x2
b1,h1

2

, (E.5)

These integrals are obtained from the one-magnon integrals (E.1) by removing all propa-

gators that reach the external vertex x2 apart from 1/x2
b1,h1

2. If this propagator was not

present, the integral would have a sub bubble with an IR divergence and therefore it acts

as an IR regulator.

The integrals (E.5) are nothing but nested bubble integrals and by noting the recursive

structure

Iamp
[;h1] =

1(
x2

12

)ε Γ(1− ε)Γ(−h1ε)Γ(1 + h1ε)

Γ(1− (h1 + 1)ε)Γ(2 + (h1 − 1)ε)
Iamp

[;h1−1] , (E.6)

it is easy to find their value in an arbibtrary dimension and for any h1 as:

Iamp
[;h1](0) =

Γh1(1− ε)
(x2

12)1+h1ε

h1∏
k=1

Γ(−kε)Γ(1 + kε)

Γ(1− (k + 1)ε)Γ(2 + (k − 1)ε)
. (E.7)
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