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aLaboratoire de Physique Théorique et Hautes Energies (LPTHE),
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1 Introduction

Quarter-BPS dyons in string compactifications with N = 4 supersymmetry in four dimen-

sions offer a particularly tractable framework for understanding exact quantum properties

of black holes. In some models, it has recently become possible to compute the exact in-

dexed degeneracies of all duality orbits of these dyons at all points in the moduli space.

The spectrum reveals an intricate moduli dependence and a complicated structure of walls

of marginal stability which is nevertheless precisely computable. Such detailed knowledge

of the microscopic spectrum has made it possible now to probe some of the finer aspects

of black hole physics such as subleading corrections to the quantum Wald entropy, both

perturbative [1, 2] and even nonperturbative [3–5].

In this note we consider some simple but nontrivial perturbative tests of these non-

perturbative counting formulae for quarter-BPS dyons. We consider, for purposes of il-

lustration, the simplest model with N = 4 supersymmetry obtained by compactifying the

heterotic string on T 6. The U-duality group G(Z) in this case is

SL(2, Z)×O(6, 22; Z). (1.1)

In the heterotic frame, the first factor corresponds to the electric-magnetic duality and

the second factor corresponds to T-duality. A dyon with an electric charge vector Qi and

magnetic charge vector P i has charge vector

Γ =

[

Qi

P i

]

, (1.2)

where the index i transforms in the vector representation of O(6, 22; Z) and the doublet

(Q,P ) transforms in the fundamental representation of SL(2, Z). If the vectors Q and P

are parallel then the BPS state preserves one half of the supersymmetries, if not only a

quarter of the supersymmetries.

– 1 –
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A major simplification in this model results from the fact that all inequivalent duality

orbits can be completely classified.1 For the purposes of dyon counting, inequivalent duality

orbits are labeled essentially by a single integer I which is a duality invariant [6–8] defined by

I = gcd(Q ∧ P ) . (1.3)

We refer to I as an arithmetic duality invariant to underscore the fact that it is an invariant

of the arithmetic duality group G(Z) which cannot be expressed as an invariant of the con-

tinuous duality group G(R). For each I, one can define the matrix of T-duality invariants

Λ =

(

Q2 Q · P

Q · P P 2

)

=

(

2n l

l 2m

)

. (1.4)

Integrality of (n,m, l) follows from the fact that the charge lattice is even integral. The

counting is then captured by a partition function ZI(Ω) that depends on the matrix

Ω =

(

τ z

z σ

)

(1.5)

of the three chemical potentials (τ, σ, z) conjugate to the integers (n,m, l) respectively.2

The dyon degeneracies for a given value of I are given by Fourier coefficients of of ZI(Ω).

The degeneracies are moduli dependent because the Fourier coefficients depend on the

choice of the Fourier contours which in turn depend on the moduli in a precise way [6, 9, 10].

These counting formulae, which we review in § 3, were obtained generalizing earlier

work for I = 1 [2, 11–15]. Partition functions for arbitrary values I were proposed first from

macroscopic considerations [16, 17] so that the Wald entropy of corresponding black holes

and the structure of wall-crossings is correctly reproduced. A microscopic two-dimensional

superconformal field theory was proposed for this system in [18] from considerations of

instanton moduli space in multi KK-monopole background.

Since there are several subtleties associated with the instanton moduli space and es-

pecially the moduli space of multi KK-monopoles, it is desirable to have additional tests

of these counting formulae, which are at the same time independent of considerations of

Wald entropy and wall crossings. One such useful microscopic test was devised in [19, 20]

by considering a class of charge configurations that can be realized both in string theory

and in nonabelian gauge theory. Comparing with the field theory counting obtained using

very different methods, one obtains a successful test of the stringy counting. Moreover,

since these states have very small charges, the test is independent of considerations from

black hole physics which corresponds to the opposite limit of large charges.

1We note in passing that a classification of duality orbits is more subtle for models with both higher

and lower supersymmetry. For example, a complete classification of orbits of the E7,7(Z) duality group

for N = 8 is not yet known. In models with N = 2 supersymmetry, on the other hand, the moduli space

typically receives large quantum corrections and the precise form of the arithmetic duality group itself is

often not known.
2More accurately, one has a collection of partition functions that can be obtained from ZI by the action

of an element of SL(2, Z)/Γ0(I) that is determined by arithmetic T-duality invariants [8].

– 2 –
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In this note we devise another independent microscopic test the string theory counting

formulae. Our strategy will be to identify some states that are nonperturbative in one

frame but are perturbative in another. A similar strategy has of course been used very

successfully for half-BPS states in the study of various dualities. However, in N = 4 gauge

theory, the quarter-BPS states are necessarily nonperturbative and can never be mapped

to any perturbative states. This is because the only perturbative BPS states in gauge

theory are the gauge bosons which are half-BPS. This might lead one to expect that the

same is true also in string theory. Amusingly, this is not the case and some quarter-BPS

states in string theory do map to perturbative states. Moreover, these states, even though

perturbative, have nontrivial values of the arithmetic invariant. Consequently, one obtains

a simple test of the microscopic counting formulae for quarter-BPS dyons for nontrivial

values of I by comparing it with the perturbative counting.

2 A class of states

Without loss of generality one can work at a point in the moduli space where the T 6 is a

product T 4×T 2 because the partition functions are independent of moduli. One can further

focus on a smaller charge sector invariant under SO(2, 2) ⊂ SO(6, 22) using U-duality. In

this sector, the dyon has the following charge configuration

Γ =

[

Q

P

]

=

[

ñ, n; w̃, w

W̃ , W ; K̃, K

]

. (2.1)

In the heterotic frame, the gauge fields associated with these charges arise from the re-

duction of the metric and the antisymmetric B field along a T 2 ∼ S × S̃. The charges n

and w represent, respectively, the momenta and winding along the circle S. The K charge

corresponds to Kaluza-Klein monopole associated with the circle S, and W represents the

charge of NS5-branes associated with the circle S but wrapping T 4 × S̃. The charges with

the tilde are the analogues for the S̃ circle.

The charge configuration of our interest is of the following form:

Γn =

[

Q

P

]

=

[

0, n; 0, 0

1, 0; 0, 0

]

. (2.2)

It is evident that the matrix of duality invariants Λ defined in (1.4) vanishes for these states

but the arithmetic duality invariant I defined in (1.3) is nevertheless nontrivial and equals

n. Moreover, since the electric charge vector is not parallel to the magnetic charge vector

the state is quarter-BPS and not half-BPS.

Under six-dimensional string-string duality, the heterotic NS5-brane is mapped to

Type-IIA fundamental string, and the momenta are mapped to momenta. Thus, in the

Type-II frame, our state corresponds to a perturbative Type-II fundamental string with

winding number one with n units of momentum along the S circle. We now proceed to

discuss the nonperturbative and perturbative counting of these states.

– 3 –
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3 Nonperturbative counting

Let us summarize the prescription for extracting the nonperturbative degeneracies. At a

given point µ in the moduli space, the degeneracies for I = 1, are given by the fourier

coefficients

d1(Λ)|µ =

∫

C(µ)
dΩ

e−πiTr(ΩΛ)

Φ10(Ω)
. (3.1)

where Φ10 is the well-known Igusa cusp form that transforms as Siegel modular form of

Sp(2, Z) with weight ten [11]. The precise dependence of the contour C(µ) on the moduli

is as in [10].

For general values of I, we first choose a charge configuration of the form

Γ =

[

Q = IQ0

P0

]

(3.2)

with gcd(Q ∧ P ) = I. The degeneracies dI are then given by the Fourier coefficients of

a modified elliptic genus of this superconformal field theory [18], and can be expressed in

terms of d1:

dI(Λ)|µ =
∑

s|I

s d1(Λs)|µ , (3.3)

where we have defined

Λs =

(

Q2/s2 Q · P/s

Q · P/s P 2

)

. (3.4)

Note that Λs thus defined has integral entries for the charge configuration (3.2). More

general charge configurations with same values of I but different values of the arithmetic

T-duality invariants can be first brought to this form by an S-duality transformation [8]

which is an element of SL(2, Z)/Γ0(I). Then the degeneracies are defined as above to

ensure S-duality invariance.

The degeneracy defined by the formulae (3.1) and (3.3) evidently has a complicated

dependence on moduli. We will find though in § 5 that for our states which have Λ = 0,

the moduli dependence disappears. Moreover, the degeneracy in fact vanishes because this

particular Fourier coefficient of 1/Φ10 is zero. Both these facts agree with the perturbative

counting which we now describe.

4 Perturbative counting

Our charge configuration (2.2) maps to a perturbative state in IIA compactified on K3×

S1 × S̃1 fundamental string with unit winding and n units of momentum along S1. The

computation of the perturbative degeneracies is straightforward but not entirely trivial. In

particular, we will see that the indexed degeneracy does not vanish for half-BPS states but

does vanish for quarter-BPS states.

For this purpose, we choose the light-cone gauge in Green-Schwarz formalism, and we

work in the orbifold limit of K3 ∼ T 4/Z2. The worldsheet field thus have a target manifold

– 4 –
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R
2×T 2×T 4/Z2. The fields are classified according to Spin(2)1×Spin(2)2×SU(2)L×SU(2)R

representations where the first two Spin(2) factors are the tangent space rotations in R
2 and

T 2 whereas the last two SU(2) factors are the tangent space rotations of the un-orbifolded

T 4. The light-cone Green-Schwarz fermions transform as

8s =

(

+
1

2
;+

1

2
; 2, 1

)

⊕

(

+
1

2
;−

1

2
; 1, 2

)

⊕

(

−
1

2
;+

1

2
; 1, 2

)

⊕

(

−
1

2
;−

1

2
; 2, 1

)

(4.1)

8c =

(

+
1

2
;−

1

2
; 2, 1

)

⊕

(

+
1

2
;+

1

2
; 1, 2

)

⊕

(

−
1

2
;−

1

2
; 1, 2

)

⊕

(

−
1

2
;+

1

2
; 2, 1

)

(4.2)

The orbifold Z2 acts on the SU(2)R factor. Consequently the representation (1, 2) is pro-

jected out and we are left with eight real fermion zero modes. The eight bosons transform

as

8v = (±1; 0; 1, 1) ⊕ (0;±1; 1, 1) ⊕ (0; 0; 2, 2). (4.3)

We want to compute the partition function

Z(q, q̄, y) = Tr(−1)FL+FRqL0 q̄L̄0y2J , (4.4)

where the trace is taken over oscillator modes. The J operator is the generator of the

Spin(2)1. Tracing over the oscillator states gives

Z(q, q̄, y) = (y
1

2 − y−
1

2 )4
∏

n≥1,j=±1

(1− q̄nyj)2(1− qnyj)2

(1− q̄n)2(1− q̄ny2j)(1 − qn)2(1− qny2j)
×

×TrK3(−1)FL+FRqL0 q̄L̄0y2J . (4.5)

The last K3 factor corresponds to the fields which transform under SU(2)R and get twisted.

There are four bosons that transform as (0; 0; 2, 2) and fermions that transform as

left-moving:

(

+
1

2
;−

1

2
; 1, 2

)

⊕

(

−
1

2
;+

1

2
; 1, 2

)

right-moving:

(

+
1

2
;+

1

2
; 1, 2

)

⊕

(

−
1

2
;−

1

2
; 1, 2

)

. (4.6)

Tracing over oscilator modes of these fields gives

TrK3(−1)FL+FRqL0 q̄L̄0y2J = 8

[

ϑ2(τ, ν)2ϑ2(τ̄ , ν)2

ϑ2(τ, 0)2ϑ2(τ̄ , 0)2
+

ϑ3(τ, ν)2ϑ3(τ̄ , ν)2

ϑ3(τ, 0)2ϑ3(τ̄ , 0)2
+

ϑ4(τ, ν)2ϑ4(τ̄ , ν)2

ϑ4(τ, 0)2ϑ4(τ̄ , 0)2

]

+(y
1

2 − y−
1

2 )4(. . .)

The last term , which we denote by dots, will not be important for our computation as it

contributes with additional fermion zero modes.

The quarter-BPS dyons break twelve supersymmetries which lead to six complex

fermion zero modes. Hence the degeneracy is captured by a helicity supertrace B6 which

can extracted from Z(q, q̄, y) by acting with six y derivatives before setting y = 1 [21, 22].

This particular helicity supertrace has been computed in [23] and found to be zero as a

– 5 –
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result of an accidental cancelation between quarter-BPS multiplets which is not a conse-

quence of supersymmetry. We present the computation in a slightly different form below.

Note that Z(q, q̄, y) has explicitly a factor of (y1/2−y−1/2)4, which means that we only

need to take two further derivatives on the (q, q̄) dependent piece. That is

1

2

d2

dy2

[

Z(q, q̄, y)

(y1/2 − y−1/2)4

]

|y=1

=
1

2

d2

dy2







∏

n≥1,j=±1

(1− q̄nyj)2(1− qnyj)2

(1− q̄n)2(1− q̄ny2j)(1 − qn)2(1− qny2j)







y=1

× 24

+
1

2

d2

dy2

{

TrK3(−1)FL+FRqL0 q̄L̄0y2J
}

y=1
. (4.7)

Because the partition function is q ←→ q̄ symmetric we will have quarter-BPS states by

exciting either the left or right-moving sectors. We consider the states with right-movers

in the ground states with arbitrary left-moving oscillations with degeneracy d(m). The

generating function for these degeneracies is

∑

m

d(m)qm = 16×





∑

s≥1

∑

n≥1

s(3− (−1)s)qns − s(1 + (−1)s)q(n− 1

2
)s





= 16×
∑

s≥1

∑

n≥1

s(3− (−1)s)qns −
∑

s≥1

∑

n≥1

64sq(n− 1

2
)2s . (4.8)

The level matching condition is

L0 − L̄0 = nw = I, (4.9)

where w and n are respectively the winding and momenta along the circle S. The BPS

condition sets L̄0 = 0. Setting L0 = I for our configuration yields

d(I) = 16





∑

s|I

s(3 + (−1)s+1)− 4
∑

(2s+1)|I

I

2s + 1



 (4.10)

This strange sum over divisors actually vanishes. To see this note that any number I can

be written as I = 2N Iodd, for some N , where Iodd is odd. The complete set of divisors of

I is
{

2iŝj

}

(4.11)

where i goes from 0 to N and j runs through the divisors of Iodd. The sum (4.10) simpli-

fies to

d(I) = 16

[

∑

ŝ

4ŝ + 2ŝ

N
∑

i=1

2i − 4.2N ŝ

]

(4.12)

= 16

[

∑

ŝ

4ŝ + 4ŝ(2N − 1)− 4.2N ŝ

]

= 0 (4.13)

– 6 –
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The same result was found in [23] as a consequence a theta identity eq. (B.22).

Note that for n = 0, we actually have a half-BPS state which is dual the perturbative

state also of the heterotic string. Since it breaks only eight supersymmetries, there are

only four complex fermion zero modes. Hence we need to take only the fourth derivative

of the partition function (4.5) to compute the helicity supertrace B4. For B4, one correctly

obtains a nonzero multiplicity which moreover equals 24 consistent with the heterotic

counting [21]. We thus see that vanishing of B6 in our case is accidental. It is not a

consequence of cancelation between bosons and fermions within a multiplet but rather of

cancelation between full supermultiplets.

5 A test

We would now like to reproduce two interesting facts about the perturbative counting from

the perspective of the nonperturbative counting.

First, the degeneracy of perturbative states is expected to be moduli independent. On

the other hand, the nonperturbative spectrum a priori has a sensitive moduli dependence.

The states could even decay upon crossing walls of marginal stability. For the class of

states, that we have considered, however, the moduli dependence disappears. To see this,

we note first that d1 is S-duality covariant

d1(Λ
′)|µ′ = d1(Λ)|µ (5.1)

and thus the degeneracy of a given configuration Λ at a given point in the moduli space µ

equals the degeneracy of the dual charge configuration Λ′ at another point µ′ in the moduli

space which is an image of µ under S-duality. Now since Λ = 0 is invariant under with

S-duality, we have

d1(0)|µ′ = d1(0)|µ (5.2)

Furthermore, using the natural embedding of the SL(2, Z) S-duality group in Sp(2, Z), it is

known that moduli space is divided into chambers separated by walls and one can go from

any chamber to any other chamber by an S-duality transformation. One can thus cover

the entire moduli space by S-duality transformations starting from any given chamber [10].

Therefore, using (3.3) we conclude that dI(0)|µ is independent of µ for any µ.

Second, it is easy to check from the expansion of the explicit expression for 1/Φ10 that

d1(0) = 0 and hence we conclude from (3.3) that

dI(0) = 0 . (5.3)

Note that the vanishing of d1(0) itself is a consequence of a peculiar fact about 1/Φ10 that

a particular Fourier coefficient vanishes which is not true for a general Siegel form. The

vanishing of dI(0) depends in addition on the fact that dI is expressible in terms of d1 as

in (3.3). Thus, the vanishing of degeneracies for this specific charge configurations, even

though simple to verify, constitutes a nontrivial test of (3.3). Recall that our degeneracies

are actually indexed degeneracies and hence they can be zero or even negative.

In conclusion, both the actual degeneracy and the moduli dependence of the nonper-

turbative counting is in complete agreement with the perturbative counting.

– 7 –
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