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1 Introduction

Symmetries and associated anomalies are an important tool in the study of Quantum Field
Theory. They increase the amount of topological data attached to a theory, are invariant
under continuous deformations of the theory and, in particular, under the Renormalization
Group flow.

Discrete symmetries also open avenues to important examples of “topological manip-
ulations” in Quantum Field Theory. Indeed, gauge theories for a discrete symmetry group
have no dynamics and are intrinsically topological in nature. If we couple a QFT to a
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dynamical discrete gauge field we will obtain a new theory with the same local dynamics,
say encoded in the OPE of gauge-invariant local operators, but different global properties
and correlation functions. This manipulation also commutes with RG flow.

In the context of two-dimensional quantum field theory, the operation of gauging a
discrete symmetry produces an “orbifold.” A surprising feature of Abelian group orbifolds
is that the resulting theory is always endowed in a canonical way with some new discrete
symmetry, allowing for orbifold operations to be composed in intricate ways. A basic
objective of this note is to understand in detail the “composition law” of such orbifold
operations, for both bosonic and fermionic systems.

An important feature of topological manipulations is that their properties are essen-
tially independent of the actual underlying theory and only depend on the properties of
the “topological hooks” employed in defining them. For example, the properties of discrete
gauging operations only depend on the symmetry group and its ’t Hooft anomalies. This
fact can be best understood by physically separating the local degrees of freedom from
their symmetry.

We will review a standard strategy to accomplish this counterintuitive feat for orbifolds
with the help of a three-dimensional topological gauge theory. Such a 3d TFT setup will
allow for a simple characterization of orbifold operations and their composition laws in
terms of the automorphisms of the associated 3d TFT. In particular it will allow us to
prove that the composition of two orbifold operations is always an orbifold.

1.1 Structure of the paper

In section 2 we will discuss orbifolds of bosonic theories and describe in detail the orbifold
composition law for theories with Zp × Zp symmetry, depicted schematically in figure 6.
We will also study the orbifolds of non-trivial Abelian extensions of cyclic groups by way
of example in the case of a Z2 subgroup of Z4.

In section 3 we will discuss orbifolds of fermionic theories and describe in detail the
orbifold composition law for theories with Z2×Zf2 or Zf4 symmetry, depicted schematically
in figure 11 and figure 12 respectively.

In section 4 we discuss applications of the 3d setup to theories with generalized sym-
metries. In this section, we study the special example of current-current deformations of
WZW models, with extra focus on su(2)k.

We also include some appendices reviewing: computational aspects of interfaces in 3d
TFTs in appendix A; the basics of spin structures in 2d in appendix B; helpful identities of
the Arf invariant and cup products in appendix C; and a general discussion of topological
aspects of QFTs in appendix D.

Throughout, we use “dimensions” to mean the number of space-time dimensions (as
opposed to the number of space dimensions). Hence when we say 2d we mean (1+1)d, and
3d means (2+1)d.

2 Bosonic orbifolds and symmetries of 3d gauge theories

Consider a (not spin) two-dimensional Quantum Field Theory T endowed with some dis-
crete symmetry group G. We may attempt to couple the theory to a background flat G

– 2 –



J
H
E
P
0
2
(
2
0
2
1
)
1
3
2

connection, but this can be obstructed by ’t Hooft anomalies.
We should specify carefully what we mean by “’t Hooft anomaly” here. In principle,

coupling an abstract theory with discrete G symmetry to a G flat connection can be
obstructed in a variety of ways. The most serious anomalies indicate that the correct
symmetry group of the theory is simply not G but some larger generalized symmetry
group [1] generated by topological defects of various codimension [2].

We reserve the term ’t Hooft anomaly for obstructions which can be compared between
different theories and cured by adding appropriate extra degrees of freedom which are
endowed with G symmetry, but are actually decoupled from the theory. In other words,
invariance under G gauge transformations at most fails by invertible topological degrees of
freedom [3].

It turns out that our ability to characterize the possible ’t Hooft anomalies for quan-
tum field theories in dimension d is limited by our knowledge of “invertible” quantum field
theories in dimension d and lower (with no assumed symmetry) [4, 5]. If we accept the
standard assumption that no non-trivial invertible bosonic theories (without extra sym-
metry) exist in dimension 2 or lower, except for invertible numbers in d = 0, then the
’t Hooft anomalies relevant to our setup are encoded in a class µ3(T ) in the third group
cohomology H3(G,U(1)). The standard arguments for this identification are explained in
e.g. [2, 3, 6, 7].

The group cohomology class economically encodes all the phase ambiguities which may
occur when we attempt to couple T to a flat G connection. For example, take space to
be a circle with a non-trivial G flat connection, so that the periodicity of local operators
is twisted by the action of some g ∈ G. A possible manifestation of the ’t Hooft anomaly
is that the corresponding Hilbert space only carries a projective representation of the
centralized C(g) ∈ G of g. The possible ways a representation can be projective are
labelled by a class in H2(C(g),U(1)), which here can be computed as the partial integral
igµ3 of µ3 on a circle with holonomy g.1

In general, we can gauge any subgroup H of G for which the ’t Hooft anomaly vanishes,
simply by making the 2d background G connection dynamical over the corresponding H
subgroup. In order to gauge the H symmetry, we have to make an actual choice of how
to resolve all the potential phase ambiguities, which essentially means producing an actual
trivialization of the 3-cocycle µ3 restricted to H, i.e. producing a solution ν2 of

δν2 = µ3|H . (2.1)

This choice is usually called a choice of “discrete torsion.” Two choices are inequivalent if
the difference ν ′2 − ν2 is a non-trivial class in H2(H,U(1)).

Equivalently, if we identify T as a “2d theory with a non-anomalous H symmetry”
for which such a choice has been made once and for all, other choices can be obtained by
stacking T with a 2d SPT phase for H, labelled by a class in H2(H,U(1)) [9, 10].

The orbifold operation produces a new 2d theory [T/ν2H], the orbifold of T by H.
1See [8] for a nice discussion of the physical interpretation of this mathematical operation and general-

izations to fermionic phases.
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3d DW Theory
G Gauge Theory

Action µ3

B[T ]

Connection α
Couple to α∂

T

2d Theory
G Symmetry
Anomaly µ3

Figure 1. We take a 2d theory with G symmetry and anomaly µ3 and use it to produce a boundary
condition for the dynamical 3d DW theory with gauge group G and action µ3. The anomaly of
the 2d theory is cancelled by anomaly inflow from the bulk 3d theory. This picture can also be
understood in terms of a boundary state as depicted in Equation 2.2.

2.1 Orbifolds and 3d gauge theory

There is a standard construction which neatly decouples topological manipulations (like
orbifolds) from the local dynamics of the theory T . There is a bijection between 2d theories
endowed with a G symmetry and boundary conditions for a 3d Dijkgraaf-Witten (DW)
theory, which is the Topological Field Theory defined as a 3d G gauge theory DW[G]µ3

with “action” µ3 [6].
The map in one direction is quite obvious: we simply couple T to the boundary value

α∂ of the dynamical 3d G flat connection α. This produces some “enriched Neumann”
boundary condition B[T ]. The 2d G ’t Hooft anomaly is then cancelled by anomaly inflow
between the bulk 3d G gauge theory and the 2d boundary theory [11–15],2 schematically
depicted in figure 1.

The map in the opposite direction employs a second reference topological “Dirichlet”
boundary condition D, which fixes the restriction α∂ of α at the boundary to equal some
2d background G connection. The original theory T is obtained from a compactification
on a segment with endpoints B[T ] and D. Notice that the Dirichlet boundary condition
D is endowed with the global G symmetry of T while the dynamics of T is now localized
at B[T ], as depicted in figure 2. More precisely, G-invariant local operators in T map to
local operators at B[T ], with the same OPE and local dynamics.3

We have thus literally separated the symmetry of T from the dynamics of T . Any
topological manipulation involving the G global symmetry, such as orbifolds, will only
affect the D boundary condition and will not interfere with the B[T ] boundary condition.

For example, the orbifold theory [T/ν2H] is represented by a different segment com-
pactification, involving a topological “partial Neumann” boundary condition NH,ν2 defined
by restricting the gauge group from G to H at the boundary, with a “boundary action” ν2.

One may immediately wonder if we could define some generalization of an orbifold,
where NH,ν2 is replaced by some other topological boundary condition for the DW theory.

2This anomaly inflow phenomena may be more recognizable in terms of the traditional example for a
connected continuous group G. In this case, a d-dimensional anomaly is cancelled by adding a (d+1)-
dimensional Chern-Simons action as originally described in [11]. A brief overview of the parallels and
discrepancies between the continuous and discrete case are described in [15].

3Other local operators in T have to be attached to a Wilson line stretching all the way to D.
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B[T ] D

M × [0, 1]

Connection α
Compactify

T

α∂

Figure 2. If we take the boundary condition B[T ] for the 3d theory we may produce T by
compactifying B[T ] with Dirichlet boundary conditions on M × [0, 1]. See also appendix A.

Such boundary conditions have a sharp mathematical description as module categories
using the theory of fusion categories.4 Irreducible boundary conditions turn out to be
classified precisely by the (H, ν2) data, so no exotic orbifolds are available [18, 19].

At worst, some topological manipulation of T may produce a theory with multiple
superselection sectors, each coinciding with some orbifold of T . We may denote such a
theory as ⊕i[T/νiHi]. This corresponds to considering a boundary condition ⊕iNHi,νi

with superselection sectors, i.e. a “decomposable module category”.5

An immediate consequence of the 3d TFT interpretation of orbifolds is that it nicely
organizes the relevant manipulations of partition functions for the 2d theories: it promotes
the collection ZT [α] of partition functions on some reference 2d manifold M with flat G
connection α to the “boundary state” for B[T ]:

|T 〉 =
∑
α

ZT [α] |α〉 , (2.2)

where |α〉 are a natural basis of states for the 3d theory.
General 3d TFT technology provides a variety of useful alternative bases for the Hilbert

space, which will be useful later on. In particular, once we choose a basis of 2-cycles, the
space of states on a 2-torus has an alternative basis labelled by the anyons of the 3d TFT.

In any basis, the partition function of any orbifold theory [T/ν2H] is computed as an
inner product 〈NH,ν2 |T 〉 with the boundary state for NH,ν2 . In the α basis, the boundary
state is

〈NH,ν2 | =
∑
α

e
∫
M
ν2(α) 〈α| , (2.3)

where ν2(α) is the pull-back of ν2 to M along α.6

4See [16] for a physics introduction, or [17] for a comprehensive mathematical treatment.
5Physically, any topological boundary condition can be identified by the above bijection with some

enriched Neumann boundary condition involving topological 2d degrees of freedom. As no non-trivial
bosonic 2d order exists, the only possibility is some direct sum

⊕
i
NHi,νi . In higher dimensions, the

classification of topological boundary conditions for the DW theory is much richer.
6The inner product 〈α|β〉 has to be normalized carefully to account for gauge invariance. For Abelian

H, the normalization is 〈α|β〉 = 1
|H|δαβ .
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2.2 Emergent symmetries and the group of orbifolds

It turns out that the orbifold operation never loses information: one can always find a
topological manipulation of [T/ν2H] which will give back T . Generically, this manipulation
is not itself an orbifold. It is instead what is called a “generalized orbifold,” or “2d anyon
condensation.”

Rather than summing over 2d flat connections for some global symmetry, a generalized
orbifold involves sums over certain networks of topological line defects described by a fusion
category, encoding a certain hidden “generalized symmetry” of [T/ν2H] [20–22]. Such
generalized symmetries and orbifolds are quite interesting and we will return to them later
in the note. For now, though, we would like to discuss situations where the orbifold theory
[T/ν2H] has a standard emergent symmetry G′, which can be described without the full
machinery of fusion categories.

The simplest possibility is to take G to be an Abelian group A with trivial(ized)
’t Hooft anomaly. Then the orbifold [T/ν2A] has an emergent, non-anomalous quantum
symmetry group Â, the Pontryagin dual of A [23]. Notice that Â is isomorphic to A, but
not canonically so.

Intuitively, the new symmetry group arises from the action of Wilson lines for the A
gauge fields, which are labelled by characters in Â. Directly gauging Â gives back T . Of
course, we may decide to add some extra discrete torsion ν̂2 when gauging Â in [T/ν2A],
which will produce a new theory [[T/ν2A]/ν̂2Â] with A symmetry, and so on and so forth. Is
there any relation between these new theories and orbifolds of T? How many new theories
can we possibly produce that way?

In 3d terms, the Â symmetry appears as an emergent symmetry of the NA,ν2 Neumann
boundary conditions. Gauging the two-dimensional Â symmetry of NA,ν2 will produce a
new topological boundary condition [NA,ν2/ν̂2Â] with an emergent A symmetry, and so on.
No matter what we do, the resulting boundary conditions for the 3d A gauge theory will
have the form NB,νB2

for some subgroup B of A, so the new theories we produce will all be
orbifolds of T equipped with some emergent A symmetry.

We thus have some collection of topological operations acting on the space of 2d theories
with non-anomalous A symmetry. We would like to characterize such operations and their
composition law.

2.3 Emergent symmetries and dualities

In the example above, we encounter two different-looking ways to present the [T/ν2A] gauge
theory: a slab of A gauge theory with B[T ] and NA,ν2 boundary conditions or a slab of
Â gauge theory, with B[[T/ν2A]] and D boundary conditions. Inspection shows that these
are two different descriptions of the same setup. Namely

• The A gauge theory and the Â gauge theory are different dual descriptions of the
same abstract 3d TFT.

• The boundary conditions NA,ν2 and D are dual descriptions of the same abstract
topological boundary condition.
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• The boundary conditions B[T ] and B[[T/ν2A]] are dual descriptions of the same
abstract boundary condition.

In order to understand this better, we need to recall that a 3d TFT is (conjecturally)
fully captured by some categorical data, which is essentially the Modular Tensor Category C
of topological line defects (aka “anyons”). The anyons in a discrete gauge theory DW[G]µ3

include a collection of Wilson lines labelled by irreps of G. Generic anyons can be presented
as disorder defects carrying discrete flux as well as electric charge.

Topological boundary conditions in a 3d TFT support a fusion category S of boundary
line defects/anyons. The specific category depends on the choice of boundary conditions,
but its Drinfeld center Z[S] is isomorphic to the MTC C of bulk anyons. In particular, this
isomorphism encodes which bulk lines can end at the boundary.

The only boundary lines at Dirichlet boundary conditions are the disorder defects
implementing the G global symmetry, labelled by elements of G. They form the fusion
category denoted as Vecµ3

G . Only bulk Wilson lines can end at a Dirichlet boundary con-
dition and vice versa. We can recognize an abstract 3d TFT as a DW theory DW[G]µ3 by
presenting a topological boundary condition with boundary anyons which fuse according
to the G group law. The cocycle µ3 is the associator for the fusion operation.

We can build a duality groupoid G whose objects are DW theories and whose morphisms
are isomorphisms of 3d TFTs. These may include non-trivial identifications of a DW[G]µ3

with itself, remixing the bulk anyons in a non-trivial manner, as well as different ways to
identify DW[G]µ3 with some DW[G′]µ′3 .

Any such isomorphism in Hom(DW[G]µ3 ,DW[G′]µ′3) has enough information to map
any anyon or boundary condition in DW[G]µ3 to a corresponding anyon or boundary condi-
tion in DW[G′]µ′3 . The image under this map of Dirichlet boundary conditions for DW[G]µ3

must always be some NH′,ν′2
with global G symmetry, so these maps are all orbifolds.

More precisely, we can combine these maps with the identification between boundary
conditions B[T ] of DW[G]µ3 and 2d theories T with G symmetry and anomaly µ3 to obtain
an action of G as a groupoid of orbifold operations acting on 2d theories.

Some of the topological operations do not really change the 2d theory: they only change
the prescription of how the theory is coupled to a flat connection. From the 3d perspective,
they are automorphisms of DW[G]µ3 which fix the Dirichlet boundary conditions. We will
thus find it useful to refine the duality groupoid to an orbifold groupoid, whose nodes
are associated to 3d TFTs equipped with a specific topological boundary condition and
whose morphisms are isomorphisms of 3d TFTs which identify the corresponding boundary
conditions.

The action of these orbifold transformations on the partition functions of the 2d theo-
ries is particularly simple in an anyon basis: they simply permute the element of the basis
in the same way as they permute the anyons.

Notice that most MTC’s do not admit topological boundary conditions. Even if they
do, they may not admit boundary conditions with a group-like fusion category of boundary
anyons, or may admit only one. DW theories for Abelian gauge groups, though, have large
collections of such boundary conditions and are nodes of a rich duality groupoid, which we
will momentarily describe.

– 7 –



J
H
E
P
0
2
(
2
0
2
1
)
1
3
2

IH,ν2

B Gauge Theory A Gauge Theory

NH,ν2

A× B̄ Gauge Theory
Fold at IH,ν2

Figure 3. In the folding trick, we replace the setup with a gauge theory B on the left of the
interface and gauge theory A on the right of the interface, by a product theory A × B̄ with a
corresponding boundary condition.

B[T ] Iν2

A Gauge Theory Â Gauge Theory

B[[T/ν2A]]

Â Gauge Theory
Collide Iν2

Figure 4. Coupling to the 3d bulk literally decouples a theory T from its topological manipulations.
If T corresponds to some boundary condition B[T ] (in blue), and some topological manipulation
corresponds to the interface Iν2 (in yellow), we may produce the theory with the topological ma-
nipulation included (in green), by colliding the boundary B[T ] with Iν2 .

2.4 Duality interfaces

The notion of topological interface is a natural extension of the notion of topological bound-
ary condition. Indeed, by the folding trick, interfaces between theories A and B are pre-
cisely boundary conditions A× B̄, where B̄ is the mirror image of B. See figure 3.

Every theory has a trivial “identity” interface. If we have a duality between DW[G]µ3

and DW[G′]µ′3 , we can start from the identity interface in DW[G]µ3 and only apply the
duality transformation to the side on the right of the interface. The result is a “duality
interface” between DW[G]µ3 and DW[G′]µ′3 , which can be used to implement the duality
on other objects, such as boundary conditions [24, 25].

A useful perspective is that the orbifold operation T 7→ [T/ν2A] lifts to a simple
operation on boundary conditions: the boundary condition B[[T/ν2A]] is obtained by the
collision of B[T ] with the interface Iν2 . The composition of orbifold operations then lifts
to the composition of interfaces Iν2 as depicted in figure 4.7

On general grounds, such an interface must be labelled by some subgroup H of G×G′,
as well as a trivialization ν2 of the pull-back of µ3 − µ′3 to H. Recovering this data from
the original duality map is not an obvious operation. It must be such that the interface

7A basic introduction on how to view and manipulate interfaces of the 3d gauge theories found in this
paper is presented in appendix A.

– 8 –



J
H
E
P
0
2
(
2
0
2
1
)
1
3
2

boundary state
|NH,ν2 | =

∑
α,α′

e
∫
M
ν2(α,α′) |α〉

〈
α′
∣∣ , (2.4)

agrees with the permutation of anyons in the anyon basis. We will give some explicit
examples later on.

2.5 Specialization to pure Abelian gauge theory

Consider now the case of an Abelian gauge group with no anomaly.
The group of anyons is the quantum double A × Â, and the topological spin of an

anyon of charges (a, â) is simply the evaluation of the character χâ(a). So we expect
that the group of orbifold-like topological operations relating theories equipped with an A
symmetry should be the subgroup of Aut(A × Â) preserving the character pairing χ·(·),
which is simply O(A⊕ Â, χ) [26–28].

In [27] the authors connect the algebraic language of lines in the 3d Dijkgraaf-Witten
theory to the gauge-theoretic description. In particular, for a 3d Abelian DW theory with
µ3 = 0, they show that O(A⊕ Â, χ) is generated by combinations of:

1. Universal Kinematical Symmetries. Symmetries of the stack of A-bundles, Bun(A),
which can be identified with Aut(A).

2. Universal Dynamical Symmetries. Symmetries of the topological action for the
Dijkgraaf-Witten theory µ3, which are elements of H2(A,U(1)). This is the group
of 1-gerbes on the stack of A-bundles. Recall a connection on a 1-gerbe is just a
2-form/B-field.

3. Electric-Magnetic Dualities. Symmetries interchanging elements of A and Â at the
level of anyons.

Together, the universal kinematical and dynamical symmetries have the structure
H2(A,U(1))oAut(A), which we recognize as the group of autoequivalences of the spherical
fusion category VecA.

Moreover, we can identify these 3d symmetries with operations acting on our 2d bound-
ary theory. The universal kinematical symmetries come from the automorphisms of A. The
universal dynamical symmetries are clearly discrete torsion terms and/or stacking with a
2d SPT phase, this 2d fact was noticed in-terms of a Kalb-Ramond field in the original
work by Vafa [29] and formalized by Sharpe [30]. The symmetry group of the 2d theory
is just the product of the 3d kinematical and dynamical symmetry groups. Finally, the
electric-magnetic dualities are not symmetries of the 2d theory, but, rather, correspond to
orbifolding the 2d theory.

The authors of [27] also give explicit formulas of how these generating automorphisms
of the MTC data turn into (H, ν2) data from this 3d formalism. In the following examples
we obtain the same results as the authors (in the Zp×Zp case in particular) by starting
with a 2d theory.

– 9 –
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2.6 Examples

In the following examples we will answer the question: how many new theories can we
produce by successive orbifolds? We will warm up by starting from the traditional 2d
orbifold point of view for a theory with A = Z2 symmetry, and then upgrade to slightly
more sophisticated examples with A = Zp×Zp symmetry (p prime). Keeping in mind
that the orbifold story will also be relevant for the fermionic section where a clear and
organized study of orbifolds has become fruitful in the study of 2d dualities and CFT. In
our final example we will investigate theories with an anomaly in the study of orbifolds of
Z4 symmetric theories.

In each section we will interpret the results in the language of 3d interfaces. We
will find that the interesting interfaces are given in the basis of connections by different
cup products. In particular, SPT phases will be implemented by cup products on one
side of an interface, and orbifolds by cup products across interfaces. As we will see, this
similarity arises because of the folding trick. Lastly, our final example provides a formula
for orbifold-interfaces for arbitrary non-anomalous Abelian groups.

Throughout, we illustrate our formulae explicitly by putting the 2d theory on M = T 2,
although this specialization is not necessary. Appropriate generalizations can be made by
replacing the two torus cycles with, say, 2g cycles for a genus M orientable surface.8

2.6.1 Example: theories with Z2 symmetry

Consider a 2d theory T with non-anomalous A = Z2 symmetry on a genus g surface M ,
with partition function ZT . Coupling our Z2 symmetry to a background A connection
allows us to identify the different twisted partition functions, labelled by the holonomies
around the different cycles of M , i.e. ZT [α] where α has 2g-components with αi ∈ {0, 1}.

To gauge the A symmetry, we simply sum over all background flat connections,
producing

Z[T/A] = 1
|A|

∑
α

ZT [α] , (2.5)

where α ∈ H1(M,A). Furthermore, we know that Z[T/A] has a quantum Â symmetry
arising from the action of the Wilson lines for the A gauge fields. Thus, in the same way
that we identify ZT ∼ ZT [α = 0], we have that Z[T/A] is the untwisted sector for our new
Â symmetry, and so we can write more generally

Z[T/A][β] = 1
|A|

∑
α

ei(β,α)ZT [α] , (2.6)

where β ∈ H1(M, Â), and (β, α) is the intersection pairing [16].

8Some care is needed to keep track of local curvature counterterms. As commented in Footnote 6, a
good normalization for Abelian gauge theories is a factor of |A|−1 (the dimension of the unbroken gauge
group). Because of this, gauging does not always “square to the identity” because manifolds of different
genus are not flat. However, if we renormalize by the curvature counterterm |A|1−g on a genus g surface,
then we will arrive at an operation that squares to the identity by collecting a total factor of |A|χ(M).
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Gauge A

Figure 5. For any theory with non-anomalous finite Abelian A symmetry, we obtain a new theory
with Â ∼= A symmetry by gauging all of A. These correspond to the Dirichlet and “entirely-
Neumann” boundary conditions for the associated DW[A]. In the case of a non-anomalous A = Zp
(p prime) this is the complete orbifold groupoid (suppressing multi-edges and edges from a vertex
to itself), as there are only two bosonic irreducible topological boundary conditions.

Invertibility is a straightforward application of the formula twice:

Z[[T/A]/A][γ] = 1
|A|2

∑
β

ei(γ,β)∑
α

ei(β,α)ZT [α] = |A|2g−2ZT [γ] . (2.7)

Orbifolding twice gives back the original theory, up to a curvature counterterm.
The simplest examples of theories related by orbifold are the trivial theory, with

ZT [α] = 1, and a symmetry-breaking phase, with |A| trivial vacua permuted by the A
action, with ZT [α] = |A|δα,0.

For concreteness, using the basis of flat connections around the cycles of a torus,
we have

Z[T/A][β1, β2] = 1
2
∑
α1,α2

(−1)α1β2−α2β1ZT [α1, α2] , (2.8)

where αi and βi label the holonomies.
At this point, there are no more topological manipulations left for our Z2 theory. There

are no nontrivial automorphisms of Z2, and since H2(Z2,U(1)) = 0 there is no discrete
torsion/SPT phase to add to the action. Indeed, the only topological manipulation is to
orbifold it and produce another Z2 theory.

Note the fact that gauging produces an emergent Ẑ2 symmetric theory and “squares to
the identity” is just capturing Kramers-Wannier duality, see [31–35] for recent expositions
and applications. From here, we can draw a graph of the orbifold groupoid: theories
correspond to vertices, and two theories are connected by an edge if they are related by
orbifold as in figure 5.

As previously mentioned, we can study the interface that implements the gauging
operation in our 3d theory. This is clearly just our intersection pairing from above

Igauge[α;β] = (−1)
∫
α∪β . (2.9)

This interface collides with the boundary theory described by ZT [α] and produces the
boundary theory described by Z[T/A][β].

If our boundary manifold is just the torus we can be more concrete and just write

Igauge[α1, α2;β1, β2] = (−1)α1β2−α2β1 . (2.10)

Thus far, we’ve been using partition functions of the 2d theory, which can be identified
with components of the boundary state for the 3d theory in a basis labelled by A-holonomy
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around a cycle, i.e. the basis of A connections. An alternative basis to work in when dealing
with 3d TFTs is a basis of states labelled by anyons.9

The change of basis is a discrete Fourier transform

f̂ [χ] = 1
|A|

∑
a∈A

χ(a)f [a] , (2.11)

to be applied to the holonomy label for one of the cycles of the torus.
We can thus define

Ẑ[α1, α̂2] := 1
2
∑
x

(−1)xα̂2Z[α1, x] , (2.12)

where the first index corresponds to magnetic/vortex charge describing the discrete A flux,
and the second index to the electric charge (the electric charge is often labelled as “even”
or “odd” in the Z2 case).

In the A = Z2 case we have the anyons of the 3d DW[Z2] gauge theory

Z1 = Ẑ[0, 0̂] , Ze = Ẑ[0, 1̂] , Zm = Ẑ[1, 0̂] , Zf = Ẑ[1, 1̂] , (2.13)

which are gauge theoretic realizations of the anyons {1, e,m, f} for the toric code with
trivial associator.

In this basis, our interface is simply

Îgauge[α1, α̂2;β1, β̂2] = δα̂2β1δβ̂2α1
. (2.14)

This is immediately familiar, it maps Z1 7→ Z1 and Zf 7→ Zf , but swaps Ze and Zm.
We see the famous statement that the Kramers-Wannier duality in 2d implements the 3d
electric-magnetic duality and vice-versa.

Moreover, when we claimed we had nothing (topological and bosonic) left to do to our
2d Z2-symmetric theory, we now have proof, because we have connected it to symmetries
of a Dijkgraaf-Witten theory. That is, we know that O(Z2⊕Ẑ2, χ) = Z2, so that we only
have two distinct irreducible bosonic topological boundary conditions for DW[Z2]. These
correspond to “electric” and “magnetic” Dirichlet boundary conditions (if we identify the
bulk Wilson line as being the “electric” line or “magnetic” line respectively).10

The duality groupoid in this case would just include a single vertex, DW[Z2], with a
line connecting it to itself because Hom(DW[Z2],DW[Z2]) = Z2.

The case for arbitrary Zp (p prime) is very similar. As before, we can either orbifold
all of Zp or not, and H2(Zp,U(1)) = 0. The automorphism group of Zp is Zp−1, so the
orbifold groupoid still consists entirely of two vertices joined by a line for the two topological

9These are built by a solid torus geometry with an anyon running in the middle. The definition requires
a choice of cycle in the torus

10In the lattice formulation of the toric code, these topological boundary conditions manifest beautifully
as “smooth” and “rough” boundaries of the lattice [36, 37], where it becomes pictorially clear that one
type of anyon (say, living on plaquettes) is absorbed by the smooth boundary, and vice-versa for the dual.
Superpositions of these topological boundary conditions correspond to a direct sum/reducible boundary
condition.
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boundary conditions (we suppress lines from a vertex to itself, or multiple lines from a
vertex to another). The duality groupoid is still just a single vertex. From the orbifold
groupoid it’s not hard to see that the Z2 orbifolding operation and Zp−1 of automorphisms
mix non-trivially, and that the symmetry group of DW[Zp] is a dihedral group, i.e.

Hom(DW[Zp],DW[Zp]) = O(1, 1;Fp) ∼= D2(p−1) . (2.15)

2.6.2 Example: gauging Zp in Zp ×Zp and discrete torsion

We can now enhance our discussion to an example with discrete torsion. From the original
2d perspective, a choice of discrete torsion is a consistent choice of U(1) weights εν2(α) for
the twisted sectors

Z[T/ν2A][β] = 1
|A|

∑
α

ei(β,α)εν2(α)ZT [α] . (2.16)

It is known that a choice of discrete torsion is specified by an element ν2 ∈ H2(G,U(1)) [29,
30, 38]. In particular, on the torus with flux given by (α1, α2), we have εν2(α1, α2) =
ν2(α1, α2)/ν2(α2, α1). As previously mentioned, we can interpret εν2(α) ∼ eiSν2 [α] as a
partition function for an SPT phase, so changing discrete torsion amounts to stacking our
original theory with a 2d SPT phase. Intuitively, it is a consistent way to insert phase fac-
tors at the trivalent junctions of two (meeting and merging) topological symmetry defects.

The canonical example of discrete torsion is in a theory with non-anomalous A =
Zp×Zp symmetry, then H2(Zp×Zp,U(1)) = Zp. In this case, our 2d manipulations are
(generated by) the automorphisms of Zp×Zp, stacking with an SPT phase, and gauging
subgroups of A. From here we take p to be a prime for simplicity, extensions to non-prime
order cyclic groups are investigated later.

The automorphisms of Zp×Zp form the group GL(2;Fp). For any matrix

M =
(
a b

c d

)
∈ GL(2;Fp) , (2.17)

we can define the associated action πM on (torus) partition functions

πM : Z[αa, αb, βa, βb] 7→ Z[aαa + bβa, aαb + bβb, cαa + dβa, cαb + dβb] . (2.18)

Now, for any prime p, GL(2;Fp) is always generated by two elements. For p = 2 we can
take the generators to be

M1 =
(

1 1
0 1

)
, M2 =

(
1 0
1 1

)
. (2.19)

For p 6= 2 we have to use the slightly more complicated

M1 =
(
ξ 0
0 1

)
, M2 =

(
−1 1
−1 0

)
, (2.20)

where ξ is any generator for (Fp)× [39]. We will write π1 and π2 for πM1 and πM2

respectively.
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Figure 6. On the left is the orbifold groupoid for a theory with Z2×Z2 symmetry. On the right is
the orbifold groupoid for a theory with Z3×Z3. Edges correspond to gauging a Zp subgroup. The
number of vertices in a graph is 2(p+ 1) and the orbifold groupoid, with just Zp gauging marked,
is the complete bipartite graph Kp+1,p+1.

Working on the torus, our topological manipulations include the automorphisms of
Zp×Zp, generated by π1 and π2, changes of discrete torsion (1 ≤ ` ≤ p)

S` : Z[αa, αb, βa, βb] 7→ ω`(αaβb−αbβa)
p Z[αa, αb, βa, βb] , (2.21)

and gauging the “second” Zp as

O2 : Z[αa, αb, βa, βb] 7→
1
p

∑
δ

ωδaβb−δbβap Z[αa, αb, δa, δb] . (2.22)

In this notation, an element of Z2
p is given by a pair (αi, βi) around cycle-i, and ωp is the

principal p-th root of unity. Further note that gauging “one of the other” Zp subgroups of
A, can be done by applying enough of the automorphisms π1 and π2, and then O2.

Of course, we can write these operations algebraically and avoid these torus descrip-
tions, or write them on an arbitrary genus g surface by use of the cup product. For example,
we could just write the SPT phase factor as ω`

∫
α∪β

p .
We can draw our orbifold groupoid as before. Two theories live at the same vertex if

they are related by any element of the group generated by the non-orbifolding operations

〈S1, π1, π2〉 ∼= ZpoGL(2;Fp) . (2.23)

We will denote theories that are related by gauging a Zp subgroup by connecting them by
a line, see figure 6 for p = 2, 3 examples. See also Example 4.3 of [40] for a discussion in
terms of VOAs.

Note from the preceding discussions of 3d gauge theories that if we were also to include
lines denoting gauging the entire Zp×Zp, the graph would be totally connected rather than
just complete bipartite. More generally, for any theory with any symmetry group, if we
were to include lines for all types of orbifolds, then the graph must be totally connected
by virtue of composition of the orbifold interfaces.

Additionally, from both the mathematical theorems and explicitly checking 2d partition
functions, we know that the group of topological manipulations is

〈S1, π1, π2,O2〉 ∼= O(Z4
p, χ) = O(2, 2;Fp) . (2.24)
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As before, we can interpret each of our 2d manipulations as corresponding to an interface
of the 3d theory, implementing one of the symmetries of the associated 3d Zp×Zp gauge
theory:

Iπ1 [γ, δ;α, β] = p2

δγ,α+βδδ,β if p = 2
δγ,ξαδδ,β if p 6= 2

(2.25)

Iπ2 [γ, δ;α, β] = p2

δγ,αδδ,β+α if p = 2
δγ,β−αδδ,−α if p 6= 2

(2.26)

IS` [γ, δ;α, β] = p2 δγ,αδδ,β ω
`
∫
α∪β

p (2.27)

IO2 [γ, δ;α, β] = p δγ,α ω

∫
δ∪β

p . (2.28)

As written, the γ and δ are short for “one of the Zp connections” in a Z2
p theory on one

side of the interface, i.e. on a torus γ ∼ (γa, γb); and similarly for α and β on the other
side of the interface.

A Fourier transform allows us to understand the results in terms of anyons. The π1
and π2 are trivial, and the gauging is again the electric-magnetic duality. Of particular
interest is an interface (say on the torus) corresponding to adding an SPT phase,

ÎS` [γ1, γ̂2, δ1, δ̂2;α1, α̂2, β1, β̂2] = p2δα1γ1δβ1γ1δα̂2,−γ̂2+`δ1δβ̂2,−δ̂2−`γ1
. (2.29)

Interpreting this, the magnetic lines pass through the interface unchanged, but the electric
lines get changed to some new electric lines based on the magnetic flux value. This matches
the physical result in section 3.2 of [27] after sufficient changes of notation and conventions.

In this case the duality groupoid would still contain just a single node DW[Z2
p], which

would have |O(2, 2;Fp)| lines to itself.
More generally, we can study Zkp theories. In this case, the group of all (irreducible

bosonic) topological operations on the 2d bosonic theory would be classified by the group

TB := O(k, k;Fp) . (2.30)

The group of operations which only include automorphisms of Zkp and stacking with SPT
phases is

TB,0 := H2(Zkp,U(1)) o Aut(Zkp) = Z(k2)
2 oGL(k;Fp) . (2.31)

To form the orbifold groupoid for Zkp, we identify vertices of the groupoid with (right)
cosets of TB/TB,0. Given two vertices TB,0g1 and TB,0g2 they are connected by an edge iff

(O1TB,0g1) ∩ (TB,0g2) 6= ∅ . (2.32)

We could also include gauging of larger subgroups (i.e. Zrp 1 < r ≤ k) if we were so inclined.
Thus the number of irreducible bosonic topological boundary conditions is simply

{# Boundary Conditions} = |O(k, k;Fp)|∣∣∣H2(Zkp,U(1))
∣∣∣|GL(2;Fp)|

. (2.33)
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Such facts about group orders are well recorded by mathematicians (see e.g. [41]) and

|O(k, k;Fp)| = 2pk(k−1)(pk − 1)
k−1∏
i=1

(p2i − 1) , (2.34)

|GL(k;Fp)| = (pk − 1)
k−1∏
i=1

(pk − pi) . (2.35)

Plugging this into our formula above tells us that11

{# Boundary Conditions} = 2
k−1∏
i=1

(pi + 1) = (−1; p)k . (2.36)

To wrap up these last two examples, we note that by the folding trick, we can go
back and forth between our topological interfaces between two Zp gauge theories and the
irreducible boundary conditions for a Z2

p gauge theory. Moreover, this explains why stacking
with a 2d SPT phase and orbifolding are both given by a cup product.

For example, if we consider an interface between two non-anomalous Z3 theories, then
by folding it must be a boundary condition for a Z3×Z3 gauge theory. We can enumerate
boundary conditions for the folded theory, because they are labelled by (H, ν2) data, and
find that we get 8 agreeing with our previous discussions:

1. H = {0}. In this case H2(H,U(1)) = 0, and there is only one embedding of H into
Z2

3. Hence there is only one boundary condition of this type. In the unfolded setup
this corresponds to the interface consisting of purely Dirichlet boundary conditions
on both sides of the interface.

2. H = Z3. In this case there are four distinct embeddings of H into Z2
3, but

H2(H,U(1)) = 0 still. It can embed as (α, 0), (0, α), (α, α), or (α, 2α). The first
two boundary conditions unfold to a choice of Neumann boundary conditions on one
side, and Dirichlet boundary conditions on the other. The second pair correspond to
interfaces between two bulk Z3 gauge theories with the same connection, possibly up
to some automorphism of Z3.

3. H = Z2
3. In this case, there is only one choice of embedding: (α, β); but

H2(H,U(1)) = Z3. Hence we have 3 choices of topological boundary condition,
two of which correspond to stacking with some non-trivial SPT phase, which is given
by the cup product of the connections in the product theory. Of course, when we
unfold, we have two theories with connections α and β on their respective sides of
the interface, but possibly coupled by a cup product across the interface.

Again we have 2(p + 1) boundary conditions here in the Z2
p gauge theory, but only

listed 2(p − 1) interfaces in the previous Zp gauge theory example. This is because the
folding process produces some interfaces which are not invertible. In particular we notice
that the (0, 0), (α, 0), (0, α), and (α, β) (with no torsion), describe boundary conditions
which are “completely separable.” That is to say, the fields on one side don’t couple to the
fields on the other and the bulk slabs can be moved away from one another.

11Here (a; q)k denotes the q-Pochhammer Symbol.
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2.6.3 Example: gauging Z2 in a non-anomalous Z4

Consider a 2d theory T with non-anomalous G = Z4 symmetry, and suppose we want to
gauge the H = Z2 subgroup. Z4 is a non-trivial central-extension of K = Zu2 by H

0→ Z2
ι→ Z4

p→ Zu2 → 0 . (2.37)

with ια = 2α and pa = amod 2. We write u (for “ungauged”) to help distinguish the Z2s.
In general, central extensions of K by H are characterized by cohomology classes

κ ∈ H2(K,H), the trivial class corresponds to the “direct product extension” H ×K. In
our case, we have H2(Zu2 ,Z2) ∼= Z2, so Z4 = Z2 oκ Zu2 with non-trivial κ.

Gauging H leaves us with a theory with G′ = K × Ĥ symmetry, the K correspond-
ing to the remaining ungauged symmetry, and the Ĥ corresponding to the new quantum
symmetry from the gauged H.

As explained in appendix B of [42], and very explicitly in [7],12 the gauging of the
Z2 subgroup of Z4 turns the non-triviality of κ into an anomaly in the resulting theory.
A beautifully explicit and physical way to see the anomaly µ3 ∈ H3(G′,U(1)) from κ is
illustrated in section 2.2 of [7].

In our case, a representative for the class corresponding to our group extension is
κ(αu, βu) = αuβu. After gauging, the anomaly µ3 ∈ H3(G′,U(1)) is given by

µ3((αu, α̂), (βu, β̂), (γu, γ̂)) = (−1)γ̂αuβu . (2.38)

This corresponds to the “purely mixed anomaly” in H3(Z2×Z2,U(1)). Mixed, in that
it is only non-vanishing on the “diagonal” Z2 subgroup of G′. Pure in that it is not a
gauge-gravity anomaly.13

We want to know what interface implements the gauging Z4 7→ Zu2 ×Ẑ2. We will obtain
it in two distinct ways to illustrate the power of the folding trick, and to verify it against
our 2d intuition.

First, the easy way: consider the folded theory with gauge group Z4×Zu2 ×Ẑ2, the
topological action is given by the lift of µ3 ∈ H3(G′,U(1)) to µ̃3 ∈ H3(Z4×G′,U(1))
which is trivial on the Z4 factor. The subgroup labelling our interface must be Zd4×Ẑ2
embedding in Z4×Zu2 ×Ẑ2 through π(a, α̂) = (a, amod 2, α̂). Notice that this subgroup
reads in a physically meaningful way: the Zu2 connection corresponds to the proper value of
the Z4 connection that should pass through the orbifold interface, while the Ẑ2 connection
is not dependent on the Z4 data, but will be coupled in some other way. Here, a Roman
letter is used for the Z4 connections, while the Z2 connections are denoted by Greek letters
with appropriate adornments to clarify which Z2 they represent.

On this subgroup, the topological action is given by the pullback

π∗µ̃3((a, α̂), (b, β̂), (c, γ̂)) = (−1)γ̂(amod 2)(bmod 2) . (2.39)
12See also [43, 44].
13In [45], the author presents a basis of 3-cocycles classes for H3(Zkn,U(1)) = Z(k

1)+(k
2)+(k

3)
n , which is also

used in the literature (e.g. [46]). Our anomaly corresponds to what these authors would call ω(12)
II . One can

check that, (−1)γ̂α
uβu

= ω
γ̂(αu+βu−[αu+βu])
4 .

– 17 –



J
H
E
P
0
2
(
2
0
2
1
)
1
3
2

Thus the orbifold interface will be specified by a 2-cochain ν2 on Zd4×Ẑ2 satisfying

δν2 = π∗µ̃3 . (2.40)

It’s not hard to find such a ν2. If instead we were looking for a ν ′2 such that δν ′2 =
1, then the obvious choice would be the generator for H2(Zd4×Ẑ2,U(1)) = Z2 given by
ν ′2((a, α̂), (b, β̂)) = (−1)(amod 2)β̂ . If we want to be able to produce the anomalous phase
factors we can see that

ν2((a, α̂), (b, β̂)) = ω
(amod 2)β̂
4 , (2.41)

will do. That is

δν2((a, α̂), (b, β̂), (c, γ̂)) = ν2((b, β̂), (c, γ̂)) ν2((a, α̂), (b+ c, α̂+ γ̂))
ν2((a+ b, α̂+ β̂), (c, γ̂)) ν2((a, α̂), (b, β̂))

(2.42)

= ω
γ̂((amod 2)+(bmod 2)−(a+bmod 2))
4 (2.43)

= π∗µ̃3 . (2.44)

We now have our finished product, the orbifold interface must be

Iν2 [a; amod 2, α̂] = 2ω
∫

(amod 2)∪α̂
4 . (2.45)

We can now compare this to the answer we would produce if we orbifolded by summing
over the connections for the subgroup.

Naively, to get the partition function for the gauged theory, we want to sum over the
H

ι→ G subgroup. The twisted partition function for the gauged theory must be

Z[T/Z2][αu, α̂] = 1
2

∑
a∈H1(H,M)

ω

∫
2a∪α̂

4 ZT [2a+ αu] , (2.46)

= 1
4

∑
a∈H1(G,M)

Z[a]

2
∑

x∈H1(H,M)
ω

∫
2x∪α̂

4 δa,2x+αu

 . (2.47)

The interface interpolating from a Z4 to a Zu2 ×Ẑ2 theory is simply

I[a;αu, α̂] = 2
∑

x∈H1(H,M)
ω

∫
2x∪α̂

4 δa,2x+αu . (2.48)

Happily, when αu is precisely amod 2, then this interface is just the one we found before

I[a; amod 2, α̂] = 2ω
∫

(amod 2)∪α̂
4 . (2.49)

We can depict the orbifold groupoid from our Z4 theory as in figure 7.
As we can see, we have a more general result than we set out for. This interface gives

us the ability to gauge any cyclic subgroup of any non-anomalous cyclic group (when 2
is replaced by |H| and mod 2 is replaced by mod |K|). Moreover, since every Abelian
group can be written as a product of cyclic groups, by taking appropriate products of the
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Z4 Ẑ4

(Zu2 ×Ẑ2)µ3

Gauge Z4

Gauge Z2 Gauge Ẑ2

Figure 7. Gauging the Z4 symmetry of a Z4 theory produces a theory with a Ẑ4 symmetry.
Gauging the Z2 subgroup of either produces an anomalous theory.

interface above and delta-functions we can gauge any non-anomalous Abelian subgroup of
any Abelian group.

We verify that these interfaces reduce appropriately when we choose different sub-
groups H of G. For example, when H = {0} then K = G and we have

I[a;αu, α̂] = |G|ω
∫
αu∪α̂
|G| = |G| , (2.50)

which, appropriately, does nothing when we insert it. And similarly, when H = G, then

I[a;αu, α̂] = ω

∫
a∪α̂
|G| . (2.51)

The orbifold interface must be invertible. It’s not hard to verify the inverse interface
to I is

J [αu, α̂; a] = |K|ω
∫
α̂∪(a−amod |K|)
|G| δαu,amod |K| , (2.52)

up to a local curvature counterterm. Which reduces on the equivalent Zd4×Ẑ2 subspace to
the cup

J [amod |K|, α̂; a] = |K|ω
∫
α̂∪(a−amod |K|)
|G| . (2.53)

In figure 7 we can get to the Zu2 ×Ẑ2 node in two different ways. Either by gauging the
Z2 ≤ Z4, or by gauging the Z4 to Ẑ4 and then the Ẑ2 subgroup. The resulting partition
functions are not the same. This makes sense because there are “two theories living at a Z4
node” and four at the Z2

2 node. The interface that interpolates between these two theories
is obtained by commuting around the diagram

K[αu, β̂; γ̂u, δ] =
∑
b,ĉ

J [αu, β̂; b]IZ4 [b; ĉ]I[ĉ; γ̂u, δ] ∝ δβ̂,γ̂uδαu,δω
∫
δ∪γ̂u

4 , (2.54)

where the proportionality constant is, again, a local curvature counterterm on g 6= 1. We
see the corresponding 2-cochain, ν2,K = ωα

uβ̂
4 , satisfies δν2,K = ω

γ̂(αu+βu−[αu+βu])
4 , which

is the pullback of the anomaly µ̃3 that we expect.
We see from this analysis that the Z4 DW theory has (unitary) symmetry group Z2

2
(see table 2. of [47] for a different approach to this result), corresponding to “exchanging

– 19 –



J
H
E
P
0
2
(
2
0
2
1
)
1
3
2

DW[Z4] DW[Z2
2]µ3

Figure 8. The theories DW[Z4] and DW[Z2
2]µ3 (denoted by vertices) are dual. There is a Z2

2
of isomorphisms/dualities between them (collapsed into a single edge). The groups of automor-
phisms/symmetries of these theories are both Z2

2 (and edges from a vertex to itself have been
suppressed).

the 1 and 3” in Z4 and gauging, i.e.

Hom(DW[Z4],DW[Z4]) = Z2
2 . (2.55)

Moreover, the existence of invertible interface(s) between DW[Z4] and DW[Z2
2]µ3 the-

ories, tells us that
Hom(DW[Z4],DW[Z2

2]µ3) = Z2
2 , (2.56)

and so there are a Z2
2 of symmetries for the DW[Z2

2]µ3 theory

Hom(DW[Z2
2]µ3 ,DW[Z2

2]µ3) = Z2
2 . (2.57)

The symmetries of the DW[Z2
2]µ3 theory are generated by the automorphism of Z2

2 that
interchanges the two off-diagonal Z2s, and the Z2 of freedom in the toplogical action. We
can draw the duality groupoid for the bulk theories as in figure 8.

3 Fermionic orbifolds and spin-symmetries of 3d gauge theories

In this section we focus on fermionic QFTs. We will assume unitarity, so that the Grass-
mann parity of a local operator is tied to its spin. That means we are working with QFTs
which can include local operators of half-integral spin.

At first sight, that requires one to work with manifolds which are equipped with a
spin structure. The correct statement is a bit more nuanced. Every fermionic theory
has a “Grassmann parity” symmetry Zf2 usually denoted as (−1)F . This symmetry must
commute with other symmetries, but the full symmetry group Gf acting on local operators
may be a central extension of the form

0→ Zf2 → Gf → G→ 0 . (3.1)

Unitarity requires the QFT to couple to “spin-Gf” connections, i.e. connections whose
curvature equals the image of the second Stiefel-Whitney class w2 in Gf . When Gf =
Zf2 × G, that is the same as a choice of a spin structure η and of a G connection α. The
details of the extension affect strongly the possible anomalies and SPT phases for the
system. We will refer to such QFTs as spin-QFTs.

Another crucial point is that the world of spin-QFTs includes several interesting in-
vertible theories: besides U(1) phases in d = 0 one has Grassmann-odd one-dimensional
vector spaces in d = 1 and the Majorana chain/Arf-invariant theory in d = 2, which assigns
partition function (−1)Arf[η] to a manifold depending on whether the spin structure η is
even or odd [48, 49]. For some recent applications of the Arf-invariant see [32, 33, 50–54].
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As a consequence, there is a rich collection of possible ’t Hooft anomalies and discrete
torsion for a 2d spin theory Tf with symmetry group Gf . When Gf = Zf2 × G, they are
classified by the “supercohomology” classes sH3(G) and sH2(G) respectively. A superco-
homology 3-cocycle α consists of three pieces of data: a “Majorana layer” α1, a “Gu-Wen
layer” α2, and a regular bosonic ’t Hooft anomaly α3.

The most dramatic ’t Hooft anomaly a 2d spin theory can have occurs when some
symmetry elements fail to map the theory T back to itself, but instead maps it to T ×Arf.
Such an anomaly is characterized by a morphism G→ Z2 describing which elements of G
have this problem. This is the Majorana layer of the ’t Hooft anomaly, and is specified by
a Z2-valued 1-cocycle, α1.

If the Majorana layer is trivial(ized), the next potential anomaly tells us that the group
G may be extended by a Z2 generator which acts as ±1 on states on a circle, depending
on the circle’s spin structure being even or odd. This is the Gu-Wen layer of the ’t Hooft
anomaly, specified by a Z2-valued 2-cocycle, α2. If the Majorana layer is non-trivial, the
layer is specified by a Z2-valued 2-cochain, α2, such that

δα2 = Sq2α1 , (3.2)

where Sq2 denotes the Steenrod square. In fact, in such a low dimensions, we can always
choose Sq2 to vanish, so α2 can be assumed to be a cocycle.

If the Gu-Wen layer is trivial(ized), then we may still be left with a standard phase
anomaly α3 ∈ H3(G,U(1)). If the Majorana layer is trivial and the Gu-Wen layer is
non-trivial, we have

δα3 = (−1)Sq2α2 . (3.3)

A simple way to think about the supercohomology class α encoding the 2d ’t Hooft
anomaly is that it defines an invertible 3d topological action which depends both on a G
flat connection and a spin structure (or a “spin-Gf” flat connection if Gf is not split).
Similarly, the discrete torsion classes in sH2(G) can be thought of as invertible topological
2d actions.

The notion of “orbifold” should also be refined a bit. If we have a factorization Gf =
Zf2 ×G, or at least Gf = G′f ×G, we can gauge any non-anomalous subgroup H of G by
coupling to a dynamical H connection. The trivialization ν̂2 of the pull-back of µ̂3 to H is
still “super,” so the available choices for such a “fermionic orbifold” are still different from
those available in the bosonic setup. We can even apply a fermionic orbifold operation to
a bosonic theory to produce a new fermionic theory.

If we want to gauge a more general subgroup Hf of Gf , though, we will have to employ
dynamical spin-Hf connections. Effectively, we will be “gauging fermionic parity,” or GSO-
projecting the theory. We should call such an operation a “GSO orbifold.” The resulting
new theory may be bosonic or fermionic, depending on the type of topological 2d action
we employ.

These subtleties carry over to the 3d setups we employ to study orbifolds. When we
study fermionic orbifolds for Gf = Zf2×G, we may choose to employ a simple generalization
of 3d DW theory fDW[G]µ̂3 of 3d DW theory which employs the supercohomology class µ̂3
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as a topological action for a G flat connection and depends on a choice of spin structure in
3d. Such a choice will keep the whole setup fermionic, i.e. the Grassmann parity symmetry
Zf2 will act everywhere while G only acts at the Dirichlet boundary.

This is an intuitive setup, but it requires one to modify the standard MTC tools to
allow for 3d spin-TFTs. The mathematical machinery to do so is a bit under-developed.

An alternative choice, which is necessary anyway to discuss GSO orbifolds or general
Gf , is to push all symmetries, including Zf2 , all the way to the topological boundary. This
can be done by employing a 3d theory of dynamical spin-Gf connections with action µ̂3.
We can denote that as sDW[Gf ]µ̂3 . Crucially, this is a standard bosonic 3d TFT, described
by some standard MTC.14 It simply has the property that some of the Wilson lines will
have topological spin −1 instead of 1, depending on the action of Zf2 on the corresponding
Gf irrep.

The Dirichlet boundary condition for sDW[Gf ]µ̂3 will be “fermionic,” requiring one to
specify the boundary value of the dynamical spin-Gf connection.

Fermionic topological boundary conditions for bosonic 3d TFTs are rather interesting
objects. The simplest example occurs already in the toric code, aka topological Z2 gauge
theory. There are two non-trivial anyons e, m of topological spin +1 and one anyon f of
topological spin −1. There are two irreducible bosonic boundary conditions Be, Bm where
either e or m can end (see section 2.6.1), but there is also a fermionic boundary condition
Bf where f can end. Secretly, the toric code is isomorphic to a topological Zf2 gauge theory,
such that f is the Wilson line and Bf the Dirichlet boundary.15 We will come back to this
momentarily.

Once we have translated our 2d theory Tf to a bosonic boundary condition B[Tf ] for a
bosonic sDW[Gf ]µ̂3 gauge theory equipped with a fermionic topological Dirichlet boundary
condition, we can study all types of orbifolds by varying the choice of topological boundary
condition. Depending on the latter being bosonic or fermionic, the output of the orbifolds
will be a bosonic or a fermionic 2d theory as well.

Our first step, then, should be to enlarge our duality groupoid. We should include both
DW theories and sDW theories, as well as any isomorphisms between them as bosonic TFTs.

The simplest connected component of such a groupoid will be relevant for 2d theories
which only have Zf2 symmetry. The corresponding node is a 3d spin-Zf2 gauge theory.
This is isomorphic to the toric code. After identifying the Wilson line with the f anyon,
we have two ways to identify the disorder defects with e and m, so we have a non-trivial
isomorphism between the spin-Zf2 gauge theory and itself. At the level of 2d theories, this
is the operation of tensoring a theory with the Arf theory.

14It would be interesting to identify such MTC precisely in terms of the data of µ̂3. This is an instance
of the more general problem of reconstructing an MTC from the data of a fermionic boundary condition,
inverting the construction of [55]. Presumably this requires some variant of the Drinfeld center construction.
We leave details for a future investigation.

15A spin-TFT necessarily requires a choice of spin structure, so that even the trivial spin-TFT has a
dependence on spin-structure. The Zf2 gauge theory is the “pure spin structure gauge theory” which can be
constructed by summing over spin structures in the trivial spin-TFT. In the language of [56] the Zf2 gauge
theory is the “shadow” of the trivial spin-TFT. We could recover the trivial spin-TFT from the Zf2 gauge
theory by “condensing” the f line.
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Z2 Gauge Theory Zf2 Gauge Theory

Z2 Z2

Figure 9. The duality groupoid for the Z2 and Zf2 gauge theories can be enhanced as above.
There is a Z2 of symmetries for the Z2 gauge theory, and similarly for the Zf2 theory. There are
non-trivial isomorphisms between the two, generated at the level of 2d theories by the GSO/JW
transformations.

We also have two non-trivial isomorphisms to standard Z2 gauge theory. These map
to the two possible GSO projections of a fermionic theory with Zf2 symmetry to a bosonic
theory with non-anomalous Z2 gauge symmetry. In this way, the GSO projection is a way
to produce a boundary condition for a Z2 gauge theory from a boundary condition of the
Zf2 gauge theory, and the Jordan-Wigner transform is the inverse process. With all of
this preceding discussion in mind, we could enhance our picture of duality groupoids as in
figure 9.

When Gf = Zf2 × G, we should still be able to identify which of these isomorphisms
correspond to fermionic orbifolds. We claim that they are these which preserve the “canon-
ical fermion”, i.e. the Wilson line labelled by the trivial representation of G and non-trivial
for Zf2 . We will comment on this briefly in section 3.2.1.

3.1 Fermionic examples

In the following, we upgrade our previous examples to illustrate the potentially different
phenomena in orbifolds of fermionic theories. This is most interesting when there is a Z2
subgroup of G. Such a subgroup allows a non-trivial mixing of the Z2 flat connections and
spin-structures, since spin-structures are “affine Z2 connections.”

First we will review the case that Tf has just (−1)F symmetry. After that, we return
to Zp×Zp but focus on the new phenomena that occurs when p = 2. Lastly, we complete
the fermionization of our Z4 study from earlier, and understand it explicitly in the example
of a compact boson CFT.

3.1.1 Fermionic example: theories with Zf
2 symmetry

Consider a 2d spin theory Tf with only Gf = (−1)F symmetry. It is now well-known that
the invertible topological phases that can be stacked with such a theory are classified by
Hom(ΩSpin

d (pt),U(1)) = Z2 [49]. Furthermore, we know that the effective action for the
non-trivial element in this cobordism group is given by a low energy continuum version of
the Majorana-Kitaev chain

eiS[η] = (−1)Arf[η] . (3.4)
In appendix B we review Arf algebraically and relate it to the quadratic refinement and

the mod 2 index of the Dirac operator. Another equivalent (and possibly more familiar)
way to think about the theory, is as the 2d analog of the Chern-Simons term obtained
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when integrating out a fermion in 3d [32, 57, 58], say as

(−1)Arf[η] = ZMaj.(m� 0, η)
ZMaj.(m� 0, η) . (3.5)

Some authors may say that the non-trivial Arf phase corresponds to some particular
choice of m > 0 or m < 0 for the fermion. This is true in a specific renormalization scheme.
It can be safer to discuss relative phases if the choice is not clear.

In the language of [59] (see also [60]), a massive Majorana fermion with m > 0 is
isomorphic to the massive Majorana fermion with m < 0 as “anomalous field theories.” But
they are not isomorphic as “absolute field theories” (theories with well-defined partition
functions and Hilbert-spaces). The obstruction to their isomorphism as absolute QFTs is
given precisely by the Arf theory. That is to say, ZMaj.[−m, η] = (−1)Arf[η]ZMaj.[m, η].

If we were now to construct an orbifold groupoid for (−1)F , we would simply have a
single vertex, and inside that vertex would live two absolute theories: our Tf and Tf ⊗Arf.
This is analogous to the bosonic case where T and T ⊗ SPT lived at the same vertex.

We can be more sophisticated in our discussion of orbifold groupoids and ask about
gauging (−1)F /GSO projection, which is obtained by summing over spin-structures [61]. In
this case, each fermionic theory (the one vertex in our case) above has 2 bosonic neighbours,
corresponding to summing over spin structures with or without the Arf theory stacked on
top (relative to one another). These two bosonic neighbours are themselves connected by
a Z2 orbifold. This enlarges our Z2 orbifold groupoid as in figure 10.

Here we are assuming that the gravitational anomaly of Tf , cL−cR in a CFT, is divisible
by 8, which is necessary for the bosonic theory [Tf/Zf2 ] to exist as an absolute 2d theory.
The gravitational anomaly of a fermionic QFT only needs to be a multiple of 1

2 . Looking
at the example of n chiral fermions, i.e. an SO(n)1 WZW model, we see that the 3d TFT
which appears naturally when we “separate” Zf2 from the dynamical degrees of freedom
is the Spin(n)1 Chern-Simons theory. This theory is bosonic, has a canonical topological
fermionic boundary condition and a bosonic gapless boundary condition supporting the
Spin(n)1 WZW model. It is a variant of spin-Zf2 gauge theory, with a different collection
of topological boundary conditions. For example, Spin(8)1 has three fermionic anyons and
three topological fermionic boundary conditions related by a triality symmetry. In that
case, GSO projections produce another fermionic theory and the orbifold groupoid has
three Zf2 nodes. See also [62].

To undo the process of summing over spin-structures, i.e. to re-fermionize, we can
couple our 2d Z2 connection to a spin-structure, performing a generalized Jordan-Wigner
transformation.

At the level of partition functions we can write stacking with Arf as

SF : ZTf [η] 7→ (−1)Arf[η]ZTf [η] . (3.6)

Similarly, we have

OGSO : ZTf [η] 7→ Z[Tf/A][α] ≡ 1
2
∑
η

ση(α)ZTf [η] , (3.7)

– 24 –



J
H
E
P
0
2
(
2
0
2
1
)
1
3
2

(−1)F

Z2

Ẑ2
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Gauge Z2

Figure 10. Gauging the (−1)F symmetry of a spin theory Tf produces a bosonic theory with a
Z2 symmetry. A different bosonic theory can be produced if one first stacks with the invertible
Arf theory. These two phases are related by Z2 orbifold. Stacking with Arf maps the (−1)F node
to itself.

The inverse “Jordan-Wigner transformation” is simply

OJW : Z[Tf/A][α] 7→ ZTf [η] ≡ 1
2
∑
α

ση(α)Z[Tf/A][α] . (3.8)

Here ση(α) = (−1)Arf[α+η]+Arf[α] is the usual quadratic form coupling Z2 gauge fields to
spin-structures (see appendix B).

The corresponding invertible interfaces are simply

ISF [η; ρ] = 2δηρ(−1)Arf[η] , (3.9)
IGSO[η;α] = ση(α) , (3.10)
IJW[α; η] = ση(α) . (3.11)

We can also revisit the folding trick once more. Suppose we are interested in interfaces
between sDW[Zf2 ] and DW[Z2]. We already know there should be two of them correspond-
ing to the two possible GSO projections at the level of 2d theories.

The folding trick tells us that studying such interfaces should be the same as studying
boundary conditions for sDW[Zf2 ×Z2]. In this case, the boundary conditions are labelled
by a subgroup Hf of the finite supergroup Zf2 ×Z2 and an element of sH2(Hb).

From our previous experiences, we know that the Hf in question should take the data
of the spin-structure on one side of an interface to the data of a connection on the other side
of an interface, so we should definitely have Hf = Zf2 ×Z2. The relevant bosonic quotient
is simply Hb = Hf/Zf2 ∼= Z2, and because Hf is a split product of Zf2 and Gb we have that

sH2(Hb) = H2(Hb,U(1))×H1(Hb,Z2)× Z2 (3.12)
= Z2×Z2 . (3.13)

Where the three factors can be interpreted from left to right as giving bosonic discrete
torsion factors, ση factors, and factors of Arf respectively [63]. Note, if the group does not
split, the product is more complicated.
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Now we have 4 potential boundary conditions which we can call: (η, α), (η, α)ση(α),
(η, α)Arf, and (η, α)ση(α)Arf, labelling what the connections look like for such a boundary
condition, and the associated terms in sH2(Z2). It is clear that the two boundary conditions
which are not separable as interfaces are the two which actually couple the Z2 connection
α to η in some way, in particular, the ones which include ση(α) terms.

Thus we conclude that there are two invertible interfaces from sDW[Zf2 ] to DW[Z2],
and they are given by

IGSO1 [η;α] = ση(α) , (3.14)
IGSO2 [η;α] = ση(α)(−1)Arf[η] . (3.15)

3.1.2 Fermionic example: theories with Z2 ×Zf
2 symmetry

In the case Gf = Z2×(−1)F , there are a number of operations we can perform on such a
theory: we can shift the spin-structure by our Z2 gauge field, orbifold the bosonic Z2, and
stack with the Arf theory. Of course, we can also perform a GSO projection and continue
with all the manipulations we encountered with our original Z2×Z2 theory.

In order to simplify things, we will only consider the bosonic operations, those that
map our fermionic theory to a fermionic theory. Then, using the fact that each fermionic
theory has two bosonic neighbours, we can construct the full orbifold groupoid. Such
bosonic operations (shown for the torus) are generated by shifting the spin-structure by
the Z2 gauge field

πF : ZT [αa, αb, ηa, ηb] 7→ ZT [αa, αb, ηa + αa, ηb + αb] , (3.16)

stacking with the Arf theory

SF : ZT [αa, αb, ηa, ηb] 7→ (−1)ηaηbZT [αa, αb, ηa, ηb] , (3.17)

and gauging the bosonic Z2

O1 : ZT [αa, αb, ηa, ηb] 7→
1
2
∑
γ

ωγaαb−γbαap Z[γa, γb, ηa, ηb] . (3.18)

These operations correspond to the interfaces

IπF [γ, η;α, ρ] = 22δγ,αδη,ρ+α , (3.19)
ISF [γ, η;α, ρ] = 22δγ,αδη,ρ(−1)Arf[η] , (3.20)

IO1 [γ, η;α, ρ] = 2δη,ρ(−1)
∫
γ∪α . (3.21)

The group of interfaces here forms a group of 72 elements, in particular, O(2, 2;F2). This
is exactly what we would expect from the duality groupoid picture.

We can also ask what these operations bosonize to, similar to how the Arf interface
became the Kramers-Wannier interface. That is, if one performs one of these operations
on a theory, and then bosonizes, what effect does it have compared to just bosonizing? It’s
not hard to compute, and this is recorded in table 1.
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Fermionic Bosonic
πF S1

SF O2

O1 O1

Table 1. We find that shifting the spin-structure by a Z2 flat connection has the effect of adding a
bosonic SPT phase in the bosonized 2d theory. We see again that stacking with Arf and bosonizing
produces theories related by gauging.

We can now create an orbifold groupoid of fermionic theories. Since our bosonic theory
had 9 lines corresponding to gauging the “second Z2” (recall figure 6), we expect this purely
fermionic orbifold graph to have 9 nodes (one for each fermionization of a bosonic pair as
in figure 10). This makes sense, the manipulations acting on a node form a subgroup

〈πF , SF 〉 ∼= D8 , (3.22)

of the total bosonic operations

〈πF , SF ,O1〉 ∼= O(2, 2;F2) , (3.23)

and we see |O(2, 2;F2)|/|D8| = 9. We can draw this orbifold groupoid as before, producing
the left diagram in figure 11.

We can also combine the fermionic-fermionic orbifolds with the bosonic-bosonic orb-
ifolds by including lines denoting GSO projections, producing the right diagram in figure 11.
This is investigated from a VOA perspective in [40].16

3.1.3 Fermionic example: theories with Z4 and Zf
4 symmetry

To complete our story from the bosonic section 2.6.3, we will fermionize the Z4 and anoma-
lous Z2×Z2 orbifold groupoid which we encountered before.

To make points very concrete, we will phrase everything in terms of the compact
boson CFT, keeping in mind that statements about orbifolds are generic to any theory
with that symmetry and anomaly. Our overview will closely follow the presentation in the
recent paper [33]. We will not review all aspects of the compact boson CFT here, just the
relevant points for our discussion.

Consider the compact boson CFT with radius R, so that X(z, z̄) ∼ X(z, z̄) + 2πR. At
generic R the chiral algebra is extended from Virasoro by the u(1) current generated by
∂X and the local primaries are the vertex operators

Vn,w(R) = VpLpR = eipLXL(z)+ipRXR(z̄) (3.24)

with conformal weights hn,w(R) = α′

4 p
2
L and h̄n,w(R) = α′

4 p
2
R, where17

pL = n

R
+ wR

α′
, pR = n

R
− wR

α′
. (3.25)

16As commented in the reference, “when there is no bosonic theory in sight,” i.e. no way to distinguish
vertices, the graph attains its most symmetric description where “vertices correspond to Lagrangian 2-planes
inside symplectic F4

2.” We will address this example a little more in section 3.2.1.
17The factor of α′ will be left in for easy comparison to other results.
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Figure 11. On the left, the orbifold groupoid for the bosonic topological manipulations for a theory
with Z2×Zf2 symmetry. Lines connect two theories related by gauging the bosonic Z2. On the
right, we superimpose this graph with the results from the gauging in Z2×Z2 theories to produce
the entire orbifold groupoid. The bosonic gauging is marked in blue and red depending on if it
originates from a bosonic or fermionic theory respectively, GSO projections are marked in green.

Here n,w ∈ Z and are interpreted as the number quantizing momentum and winding
respectively. Note that the conformal spin is s = nw. The partition function for this
theory S1[R] is simply

Z(τ) = 1
|η(τ)|2

∑
n∈Z
w∈Z

qhn,w q̄h̄n,w . (3.26)

At generic radius, the compact boson has (U(1)n × U(1)w) o ZC2 global symmetry,
which act on the boson by

ZC2 : XL(z) 7→ −XL(z) , XR(z̄) 7→ −XR(z̄)

U(1)n : XL(z) 7→ XL(z) + R

2 θn , XR(z̄) 7→ XR(z̄) + R

2 θn (3.27)

U(1)w : XL(z) 7→ XL(z) + 1
2Rθw , XR(z̄) 7→ XR(z̄)− 1

2Rθw .

where we take θn,w ∼ θn,w + 2π. In terms of the primaries, this says that

ZC2 : Vn,w 7→ V−n,−w

U(1)n : Vn,w 7→ einθnVn,w (3.28)
U(1)w : Vn,w 7→ eiwθwVn,w .

The ZC2 symmetry is interesting and is well discussed in a number of recent papers,
for example [32, 33, 64] as well as most classic references on CFT. Orbifolding by the
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ZC2 symmetry produces some form of “Ashkin-Teller model,” with two local Virasoro pri-
maries σ1 and σ2 both with conformal weights ( 1

16 ,
1
16). This model can be viewed as two

copies of the Ising CFT deformed by a marginal operator coupling their energy densities
ε1(z, z̄)ε2(z, z̄).

We are more interested in the two Z2 subgroups of the U(1)n and U(1)w, denoted Zn2
and Zw2 respectively. The Zn2 symmetry shifts the compact boson half the circumference
of the circle. Intuitively, orbifolding by this Zn2 symmetry means shifting by half the
circumference of the circle is trivial, hence we see that resultant theory is just the compact
boson on a circle of radius R/2. The conclusion is inverted for the winding orbifold.
Altogether, we have

[S1[R]/Zn2 ] = S1[R/2] , (3.29)
[S1[R]/Zw2 ] = S1[2R] . (3.30)

These two Z2’s may be gauged separately, but have a mixed anomaly precisely as we
investigated in our earlier bosonic example of section 2.6.3. This anomaly is manifest from
our previous argument: in the Zn2 twisted sector X(z, z̄) is wound half a time so that the
winding modes are shifted by a half-integer. In summary, the twisted sector operators for
the Zn2 subgroup have fractional winding and vice-versa

Zn2 twisted: n ∈ Z , w ∈ Z+1
2 , (3.31)

Zw2 twisted: n ∈ Z+1
2 , w ∈ Z . (3.32)

In this case, the twisted partition function can be written

ZS1[R][n1, n2;w1, w2] = 1
|η(q)|2

∑
n∈Z+w1/2
w∈Z+n1/2

(−1)nn2+ww2qhn,w q̄h̄n,w , (3.33)

which we can use to explicitly check all of our previous assertions.
From this presentation we can also very explicitly see how a Z4 symmetry appears.

When we orbifold the Zn2 symmetry (summing over all ni = 0, 1 in the previous formula
and setting wi = 0) we compute

Z[S1[R]/Zn2 ][0, 0] = 1
|η(q)|2

∑
n∈Z
w∈Z

1
2(1 + (−1)n)qhn,w q̄h̄n,w (3.34)

+
∑
n∈Z

w∈Z+1/2

1
2(1 + (−1)n)qhn,w q̄h̄n,w


= 1
|η(q)|2

∑
n∈2Z
w∈ 1

2 Z

qhn,w q̄h̄n,w . (3.35)

It is clear how the orbifold projects out operators with n ∈ 2Z+1, but adds operators
of half-integer winding w ∈ Z+1

2 . This means that the “Zw2 symmetry” is now a “Zw4
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Bosonic Sector Fermionic Sector Range of n Range of w Primaries

H+
Un. H+

NS 2Z Z V2,0 = ΨLΨR

H−Un. H+
R 2Z+1 Z V1,0

H+
Tw. H−R 2Z Z+1

2 V0, 12
H−Tw. H−NS 2Z+1 Z+1

2 ΨL,ΨR

Table 2. Bosonic and fermionic Hilbert spaces and their operators for the Zn2 -associated theories,
comparing bosonic and fermionic Hilbert spaces for the S1[R],S1[R]/Zn2 and Diracn[R] theories, as
well as some of their local primaries. Reproduced from table 1. of [33].

symmetry” fitting into the group extension

1→ Ẑn2 → Zw4 → Zw2 → 1 , (3.36)

because the term (−1)w, can now act by ±1 and ±i. Repeating this analysis for Zw2 , we
reproduce the bosonic orbifold groupoid in figure 7.

We can also fermionize the Zn2 symmetry by the usual generalized Jordan-Wigner
transformation, which we will denote JWn (because it fermionizes the Zn2 ). Thus, we will
define the theory

Diracn[R] := JWn[S1[R]] . (3.37)

We use the name Diracn[R] because at R =
√

2α′ the partition function is that of a free
massless Dirac (c = 1) fermion Ψ(z, z̄) = ΨL(z) + ΨR(z). For other radii, it is the Dirac
fermion deformed by the Thirring operator. We will defer points about conformal manifolds
and deformations to the references.

As in [33], we identify the fermion operators ΨL,R for the Diracn[R] theory with the
primaries

ΨL(z) = V1, 12
, Ψ†L(z) = V−1,− 1

2
, (3.38)

ΨR(z̄) = V1,− 1
2
, Ψ†R(z̄) = V−1, 12

. (3.39)

From this we see that the “Zw2 symmetry” is once again extended, this time to a Zf4 on the
fermions, that is

ΨL(z) 7→ +iΨL(z), Ψ†L(z) 7→ −iΨ†L(z) , (3.40)
ΨR(z) 7→ −iΨR(z), Ψ†R(z) 7→ +iΨ†R(z) . (3.41)

This is just the Zf4 subgroup sitting in the U(1)f symmetry of the Dirac fermion

1→ (−1)F → Zf4 → Zw2 → 1 . (3.42)

We can summarize our discussion as in table 2.
We can write the Zf4 twisted partition function for the Diracn[R] theory as

ZDiracn[R][w1, w2] =
∑

k∈{0,1,2,3}
ωkw2

4
∑

n∈2Z+w1/2+kmod 2
w∈2Z+k/2

qhn,w q̄h̄n,w . (3.43)
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One can check explicitly that we have

ZS1[R][N1, N2;W1,W2] = 1
2
∑
w

ZDiracn[R][w]I[w;N,W ] . (3.44)

where I is the interface taking us from ZDiracn[R][w1, w2] to ZS1[R][N1, N2;W1,W2], and is
given by

I[w;N,W ] = δW,(wmod 2)σ
(4)
w−(wmod 2)(N)ωW1N2

4 , (3.45)

where we have written σ(4)
w (N) = ω2N1N2+w1N2+w2N1

4 .
We can produce an interface between the Diracn[R] theory and the Zn4 theory by simply

composing interfaces, the result is that

J [w;N ] = σ(4)
w (N mod 2)ω

∫
w∪(N−N mod 2)

4 ω
−(N1 mod 2)(w2 mod 2)
4 . (3.46)

Lastly, we can compute the interface between the ZDiracn[R] and ZDiracw[R] parti-
tion functions

K[w;n] = σw−wmod 2(nmod 2)σn−nmod 2(wmod 2)ω
∫

(wmod 2)∪(nmod 2)
4 . (3.47)

If we were to write, more suggestively, the connections w and n as combinations of Z2
connections w = 2ξ + α and n = 2ρ+ β, then this interface looks like

σρ(α)ω
∫
α∪β

4 σξ(β) . (3.48)

As before, we can mirror this entire discussion by swapping every statement about n
and w to complete our orbifold groupoid as in figure 12.

We could also phrase this in terms of Narain lattices and lattice VOAs to explicitly
double check our assertions, and make contact with other presentations (e.g. lattice VOAs).

For any compact boson radius R, the spectrum of dimensionless momenta (`L, `R) =√
α′

2 (pL, pR) forms a lattice in R2. Single-valuedness of the OPE of two of our VOAs
enforces that this ` lattice be integral with the diagonal inner-product of signature (1, 1),
and modular invariance enforces that it is even and self-dual.

It is much more convenient to talk about the lattice of n and w, which is very simply
Z2. Integrality becomes the statement that for any two (n,w) and (n′, w′) in the lattice

nw′ + wn′ ∈ Z , (3.49)

and the lattice being even means for any operator Vn,w that

s = nw ∈ Z . (3.50)

If we want to orbifold by a non-anomalous symmetry G, we restrict this Z2 lattice to
the appropriate invariant sub-lattice Λ = (Z2)G under that symmetry. Then we construct
Λ∗ and seek extensions of the invariant sub-lattice Λ into Λ∗ that are even and self-dual. If
we also want to consider fermionic theories, then we can drop the even condition (allowing
s = nw ∈ 1

2 Z).
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Zw4 Zn4

Zn2 ×Zw2
Zf4 Diracn Zf4 Diracw

Figure 12. Orbifolding a non-anomalous Z2 subgroup of a theory with a Z2×Z2 symmetry and
mixed anomaly produces a theory with Z4 symmetry. We can also fermionize the non-anomalous Z2
symmetries to produce two theories with Zf4 symmetry. By composing the intermediate interfaces,
we can form the complete orbifold groupoid.

For example, to orbifold the Zn2 symmetry of our compact boson, we restrict from the
Z2 lattice to the invariant sub-lattice Λ = {n ∈ 2Z, w ∈ Z}, which corresponds to the
shared subspace of local operators H+

Un., and has dual lattice Λ∗ = {n ∈ Z, w ∈ 1
2 Z}. We

can extend the lattice Λ into Λ∗ in three distinct ways

S1[R] : Λ⊕ (Λ + (1, 0)) , (3.51)
[S1[R]/Zn2 ] : Λ⊕ (Λ + (0, 1/2)) , (3.52)

Diracn[R] : Λ⊕ (Λ + (1, 1/2)) . (3.53)

Clearly in the S1[R] case we are appending H−Un. to the list of local operators; in the
[S1[R]/Zn2 ] we are appending H+

Tw.; and in the fermionic case we are extending Λ to an
odd self-dual lattice (by adding the spin-half operator V1, 12

) which amounts to adding H−NS.
This is depicted in figure 13.

3.2 Spin-structure preserving interfaces

In the preceding bosonic and fermionic examples we computed a number of invertible
interfaces in different 3d theories. Furthermore, in the bosonic examples, we saw how we
could identify the 2d partition functions with anyons of the 3d bulk very explicitly. Anyons
of the 3d gauge theory arise from the boundary theory partition functions (written in terms
of Z2 connections) by Fourier transform.

– 32 –



J
H
E
P
0
2
(
2
0
2
1
)
1
3
2

Momentum n

W
in
di
ng

w

Momentum n

W
in
di
ng

w

Momentum n

W
in
di
ng

w

Momentum n

W
in
di
ng

w

Figure 13. Green diamonds denote the invariant sublattice Λ under the Zn2 symmetry, and the
red squares denote the dual lattice Λ∗ and have integral spacing along momentum and half-integral
spacing along winding. We see that there are only three ways to extend Λ into Λ∗: S1[R] corre-
sponds to the extension by the blue diamond, S1[R/2] by the cyan diamond, and Diracn[R] by the
yellow diamond.

Explicitly, in the case of a Z2-symmetric bosonic theory (on the torus), we identified
the anyons in the toric code with the linear combinations

ẐB[0, 0̂] = 1
2(ZB[0, 0] + ZB[0, 1]) = Z1 (3.54)

ẐB[0, 1̂] = 1
2(ZB[0, 0]− ZB[0, 1]) = Ze (3.55)

ẐB[1, 0̂] = 1
2(ZB[1, 0] + ZB[1, 1]) = Zm (3.56)

ẐB[1, 1̂] = 1
2(ZB[1, 0]− ZB[1, 1]) = Zf . (3.57)

The JW/GSO process provides a way to turn states of the Z2 gauge theory into states
of the Zf2 gauge theory. Thus we may compute

ẐB[a1, â2] = 1
2
∑
a2

(−1)a2â2ZB[a1, a2] (3.58)

= 1
22

∑
a2,ρ1,ρ2

(−1)a2â2σρ(a)(−1)λArf[ρ]ZF [ρ1, ρ2]

= ẐF [a1 + â2, (λ+ 1)a1 + λâ2] . (3.59)
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Here λ = 1 (or 0) if we do (or do not) include Arf in our GSO projection. This tells us that

ẐF [0, 0̂] = 1
2(ZF [0, 0] + ZF [0, 1]) = Z1 (3.60)

ẐF [1, 1̂] = 1
2(ZF [1, 0]∓ ZF [1, 1]) = Ze,m (3.61)

ẐF [1, 0̂] = 1
2(ZF [1, 0]± ZF [1, 1]) = Zm,e (3.62)

ẐF [0, 1̂] = 1
2(ZF [0, 0]− ZF [0, 1]) = Zf . (3.63)

This perfectly matches what we’d expect, the Zf line is ẐF [0, 1], the Wilson line of the
Zf2 gauge theory. We also see there is a choice in identifying the electric and magnetic
lines with the charged or uncharged fermion vortex/Ramond line, and that this factor is
controlled by our choice of adding Arf into GSO projection. Moreover, we see that when
such Ze,m lines pass through the Arf interface of the Zf2 gauge theory, that their roles
are interchanged.

A natural question to ask is which interfaces in the 3d theory do not change the coupling
to spin-structure, i.e. do not change the spin-structure of the 2d theory upon collision.
Physically, such interfaces in the 3d theory must fix the fermionic Wilson line ẐF [0, 1̂].

This problem is trivial in the case of a Zf2 theory. We can see from section 3.1.1 that
the identity interface and Arf interface are the only two.

In the case of Zf2 ×Z2 symmetry, we learned in section 3.1.2 that all of the (bosonic)
topological manipulations were generated by the interfaces πF , SF , and O1. Once again,
it’s not hard to see explicitly (or brute-force check) that the operations which do not change
the coupling to spin-structure are 〈SF ,O1, πFSFπF 〉 ∼= D12.

In general, to find the group of interfaces preserving coupling to spin-structure, we are
simply asking what is the stabilizer of Zf (possibly with other restrictions we may wish
to impose).

3.2.1 Spin-symmetries

Presenting the group of spin-structure preserving interfaces, or at least finding the gener-
ators, is not particularly different from the Zf2 ×Z2 example. Especially when the group
splits as Gf = Zf2 ×G. Morally speaking, the group will be generated by “all the operations
manipulating G” (analogous to O1), “all the fermionic SPT-like operations” (analogous to
SF ), and all the “bosonic automorphisms” and those which act on the fermionic SPT
operations (analogous to πFSFπF ).

While it is easy to present the generators of the group, it’s less simple to determine
which group exactly is generated. Although, in individual cases, the problem is easily
checked by computer.

A partial solution is offered in the slightly broader case where we consider the in-
terfaces corresponding to “spin-symmetries.” Spin-symmetries are effectively those that
treat DW[Z2×G] and sDW[Zf2 ×G] on equal footing. That is to say, they are the symme-
tries of the MTC that map anyons to anyons preserving the braiding, but only preserving
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the square of the topological spin χ·(·)2 (although this is already implied in preserving
the braiding).

As an example, in the toric code this would mean that interfaces which interchanged
an f line with an e or m line would be included, as opposed to just the usual (non-
trivial) interface swapping e and m. We see that overall there should be 6 such interfaces,
because there is an S3 of valid ways to permute the lines {1, e,m, f} of the toric code while
preserving the braiding.

If we were to consider the duality groupoid in figure 9, we would say it collapses down
to a single point with an S3 of spin-symmetries acting on the point.

This also shows us where the S3 comes from two-dimensionally and group-theoretically.
Recall that the two nodes in the figure are connected by a collection of lines (collapsed
down to one line) corresponding to interfaces which implement a GSO projection (or JW
transformation) in the language of 2d theories. Meanwhile, the two (suppressed) lines from
a node to itself correspond to the two symmetries of DW[Z2] and sDW[Zf2 ]. These are
generated by the identity interface, and the interface which swaps Ze and Zm, however it
may be presented in either of the respective realizations.

So, two-dimensionally, we see that the group of spin-symmetries acting on a theory
must be isomorphic to the group 〈SF ,GSO〉 ∼= S3 in the case of the toric code. In terms of
2d topological manipulations, one can check that the group of spin-symmetries is Sp(4;F2)
when Gf = Zf2 ×Z2, for example. Of course, we are just deriving, in 2d language, a result
which is obvious in 3d. Namely that the group of spin-symmetries for, Gf = Zf2 ×Zk−1

2
say, is Sp(2k;F2).

To summarize everything so far, for a 2d bosonic theory with Zk2 symmetry, the (irre-
ducible bosonic) topological operations form the group

TB := O(k, k;F2) . (3.64)

This includes automorphisms of Zk2, stacking with SPT phases, as well as orbifolds. In terms
of the duality groupoid Hom(DW[Zk2],DW[Zk2]) = O(k, k;F2). The group of operations
leaving a phase unchanged is

TB,0 := H2(G,U(1)) o Aut(G) = Z(k2)
2 oGL(k;F2) . (3.65)

The number of nodes in the bosonic orbifold groupoid for Zk2 symmetry is 2, 6, 30, 270,
4590, . . . 18

Similarly, when we study a 2d spin theory with Gf = Zf2 ×Zk−1
2 symmetry, the bosonic

topological manipulations of the fermionic theory form the group

TF := O(k, k;F2) ∼= TB . (3.66)

This includes automorphisms of Zk−1
2 , shifting the spin-structure by Z2 gauge fields, bosonic

orbifolds, and stacking with any fermionic SPT phases and Arf. In terms of the duality
18This is OEIS sequence A028361 “Number of totally isotropic spaces of index n in orthogonal geometry

of dimension 2n.”
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groupoid Hom(sDW[Zf2 ×Zk−1
2 ], sDW[Zf2 ×Zk−1

2 ]) = O(k, k;F2). The analogous group of
operations to TB,0 which act on a vertex is

TF,0 := (Z1+(k−1)+(k−1
2 )

2 ) o (Zk−1
2 oGL(k − 1; 2)) , (3.67)

which has a nice physical interpretation as the group of fermionic invertible phases19 semidi-
rect product with the group formed by shifting the spin-structure by the k−1 independent
Z2 gauge fields in Zk−1

2 , with an additional action of the automorphism group GL(k−1; 2).
If we include spin-symmetries, then TF enlarges to TSpin, which is simply the collection

of things preserving braidings in our gauge theory

TSpin = Sp(2k;F2) . (3.68)

Lastly, we can return to the problem of interfaces which preserve coupling to spin-
structure. If we ask which interfaces from TSpin do so, then we are asking what the
collection of operations is that fixes a line in symplectic F2k

2 (when Gf = Zf2 ×Zk−1
2 ). Such

a stabilizer subgroup forms a maximal parabolic subgroup of Sp(2k;F2). i.e. we want to
know StabTSpin(Zf ). Finding such stabilizer subgroups is well understood for groups of Lie
type (see for example the lecture notes [66]). In particular

StabTSpin(Zf ) = (Z2 oZ2k−2
2 ) o Sp(2k − 2;F2) . (3.69)

In the construction provided in the reference, the first Z2 factor corresponds exactly to
stacking with the Arf interface when mapped onto our problem. However, the construction
does not immediately make the interpretation of the other factors physically clear.

We conclude by mentioning that, numerically, it seems that the subgroup of TF pre-
serving coupling to spin-structure for a Gf = Zf2 ×Zk−1

2 is Z2×Sp(2k − 2;F2). Physically,
this makes sense because for some fixed even spin-structure η the list of operations which
do not change the spin-structure would be the full group of spin-symmetries Sp(2k−2;F2),
because here Arf acts trivially. Then for the odd spin-structures we have a non-trivial
action by Arf and collect an extra Z2 factor. It would be nice to understand these points
in more detail.

4 Generalized symmetries and applications in 2d QFTs

Some 2d QFTs, such as Rational Conformal Field Theories, are endowed with generalized
symmetries, in the form of a fusion category F of topological line defects. Standard G

symmetries with ’t Hooft anomaly µ ∈ H3(G,U(1)) are a special case where the fusion
category is group-like

F = VecµG (4.1)

with associator given by µ.
19Note ΩSpin

2 (B(Zk2)) = Z
1+k+(k

2)
2 [65]. We can give each of the factors a nice physical story, 1 factor

corresponds to the Arf theory, the k factor corresponds to the fSPTs that are not also bosonic SPTs which
are generated by factors of ση in the partition function, and the

(
k
2

)
comes from the fSPTs which are just

bosonic SPTs. We can also “derive” this by treating the k Z2 gauge fields αi and 1 spin-structure σ as
being k+ 1 independent spin-structures σ0 := σ and σi := σ+ αi, then we have k+ 1 independent Arf-like
factors, and still the

(
k
2

)
phases for the Z2 gauge fields viewed as differences of these spin-structures.
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Generalized symmetries impose non-trivial constraints on RG flows. In particular,
they may obstruct the existence of trivial massive RG flow endpoints and require an IR
description involving multiple degenerate massive vacua (or gapless degrees of freedom),
see [67] for a recent exposition, and [64] for a complementary discussion to the one here.

There is a neat trick to classify the possible massive endpoints of such RG flows:
promote the 2d theory T with generalized symmetry F to a 2d boundary condition B for
the Turaev-Viro 3d TFT described by the center Z[F ] [68]. This is a generalization of the
notion of coupling a 2d theory T to a 3d Dijkgraaf-Witten gauge theory with gauge group
G and action µ.20

The map from boundary conditions for Z[F ] to theories with symmetry F is straight-
forward: T is built from a segment compactification with boundary condition B at one
end and the Turaev-Viro canonical boundary condition at the other end. The canonical
boundary condition supports a fusion category F of boundary lines, which is inherited by T .

The inverse map is a bit less obvious, but still straightforward. For example, a space-
like boundary condition may be described by its pairing to the states in the string-net
description of the Turaev-Viro Hilbert space: a basis for the states is labelled by networks
of F lines, and the pairing is given by the partition function of T in the presence of such
a network of F lines.

A bit more formally, if we start from the 2d theory T and an orientation-reversed
topological boundary with boundary lines F̄ , we can reproduce B by a process of “2d
anyon condensation”, condensing products of lined from F and F̄ .21

The topological coupling of T to Z[F ] does not affect the local dynamics, and thus the
RG flow of T maps to an RG flow of B. The endpoint of the B RG flow will generically
be a gapped boundary condition B′ for the Turaev-Viro theory. Then the corresponding
endpoint of the F -preserving RG flow of T must be the 2d theory obtained from the pairing
of B and B′.

We arrive at the following claims:

• The “gapped phases with generalized symmetry F” are classified by gapped boundary
conditions B′ for Z[F ].

• Each gapped phase is a direct sum of degenerate vacua, to be obtained from a segment
compactification of Z[F ] with endpoints B and B′

• The gapped phase has an emergent F ⊗Z[F ] F ′ generalized symmetry, where F ′ is
the fusion category of B′ boundary lines.

When F = VecµG, gapped boundary conditions of the Dijkgraaf-Witten gauge theory
are classified by pairs (H, ν) where H is a subgroup of G and ν trivializes the pullback
of µ to H. These are the usual symmetry-breaking patterns of massive theories with
G symmetry.

20This generalized bulk theory is sometimes referred to as a Levin-Wen model in the condensed matter
literature [69] (see also [70]), where an explicit lattice realization of the bulk 3d TFT is constructed analogous
to the presentation of the toric code as a lattice gauge theory.

21We expect such a strategy to work in any dimension, see appendix D.
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4.1 Special example: current-current deformations of WZW models

Until now, save for the compact boson CFT example, we have focused broadly on general
2d QFTs. But it is hard not to comment on RCFTs, and in particular, the oldest and most
venerable: the Wess-Zumino-Witten models. We will briefly recap some important points
about WZW models and then move on to an example application of our claims.22

The Gk WZW models are 2d RCFTs who are famously equipped with a current algebra

Ja(z)Jb(w) ∼ kδab
(z − w)2 +

∑
c

ifabc
Jc(w)

(z − w) , (4.2)

where the fabc are the structure constants of g. The Laurent modes satisfy the commutation
relations of the gk affine Lie algebra. All of this is the same for the antiholomorphic sector.

To specify the full CFT, as opposed to just a chiral half, we need to specify a consistent
gluing of the chiral and anti-chiral sectors, or modular invariant. This data is provided by
a “mass matrix” Mij which specifies the multiplicity of the irreps of the form Vi ⊗ V̄j in
the Hilbert space

H =
⊕
i,j

MijVi ⊗ V̄j . (4.3)

Modular invariance enforces that M commutes with the modular S and T matrices, and
we further impose uniqueness of vacuumM00 = 1.23

For su(2)k the irreps/primaries Vj are labelled by spins j = 0, 1/2, . . . , k/2, and are
subject to fusion rule

Vj ⊗ Vj′ = V|j−j′| ⊕ V|j−j′|+1 ⊕ · · · ⊕ Vm (4.4)

where m = min{j + j′, k − (j + j′)}.
Moreover, a complete classification of modular invariants for su(2)k was obtained and

shown to follow an ADE classification based on the level k [72–75]. For convenience we
record the A and D type here in their, rarely found, component form

k = Any MAk+1
ij = δij (4.5)

k = 4` MDk/2+2
ij = δijδimod 1,0δjmod 1,0 + δi+j,kδimod 1,0δjmod 1,0 (4.6)

k = 4`− 2 MDk/2+2
ij = δijδimod 1,0δjmod 1,0 + δi+j,kδimod 1,1/2δjmod 1,1/2 . (4.7)

We note that the A-type or “diagonal” modular invariants are defined for all k, while the
D-type modular invariants are defined only for k even. There are also the E6, E7, and E8
modular invariants at levels k = 10, 16, 28 respectively.

Broadly, Verlinde operators are line defects which act on the conformal blocks of a
theory with some current algebra. They are in one-to-one correspondence with primaries
and satisfy well-understood fusion relations in general [76, 77]. For a diagonal RCFT

22After this article appeared as a preprint, but before it was sent for publication, the article [71] appeared
with similar ideas to those contained in this subsection.

23We do this without loss of substance in our understanding because any CFT with M00 > 1 is just a
direct sum of theories.

– 38 –



J
H
E
P
0
2
(
2
0
2
1
)
1
3
2

where the chiral and antichiral sectors are paired identically, like an A-type su(2)k theory,
a Verlinde line labelled by Vi commutes with the chiral algebra(s), and acts on a primary by

Vi |φj〉 = Sij
S0j
|φj〉 . (4.8)

See [67] for an extended discussion. We point out in advance that V k
2
generates a Z2 center

symmetry, and it’s only non-anomalous if k is even.
Said in 3d language, the chiral algebra of the RCFT provides a MTC describing the

anyons of an associated bulk 3d TFT. If we forget the braiding relations for the bulk anyons
(or push the anyons to the boundary) then this forms the fusion category associated with
the Verlinde lines. The authors of [16] call this fusion category Rep(SU(2)k). The Z2
symmetry generated by V k

2
forms a subcategory VecZ2 if k is even, and Vec[1]

Z2
if k is odd.

As explained in [18] (see also [16]), there is a beautiful bijection between the modu-
lar invariants of su(2)k WZW models and indecomposable module categories (irreducible
boundary conditions). In particular, this means we can obtain any su(2)k WZW modular
invariant by (generalized) orbifold of the diagonal model (and vice-versa by composition of
orbifolds). The D-type modular invariants are obtained by the straightforward orbifold of
the non-anomalous Z2 symmetry generated by V k

2
. The E6, E7, and E8 orbifolds require

the full power of 2d anyon condensation.
All of this may be said more three-dimensionally, to the point of our story. It is well

known that given a 2d RCFT with some chiral algebra A, the space of conformal blocks of
the 2d RCFT on Σ is the space of states that a 3d TFT assigns to Σ. Mathematically, we
might capture the data of chiral symmetries by some VOA, in which case this statement
is essentially that the representation category of the VOA is a MTC [20, 78].

The most famous example of this relationship is the one relevant to our purposes,
which says that the canonical quantization of a G Chern-Simons theory at level k on some
surface Σ× R produces the space of conformal blocks of the WZW models with matching
level and group. Moreover, if the surface Σ is “punctured” by Wilson lines, then from the
2d WZW point of view, these points are corresponding operator insertions [79].

The essential mathematical work of [20], and various subsequent pieces, captures all
of the 2d statements about the relationship between 2d RCFT and 3d TFT by using the
mathematical language of algebra objects in the MTC associated to A. We will not review
that here, but will highlight a physical consequence first pointed out in [80] and studied
further in [81].

In particular, the authors of [80] show that the invertible topological interfaces in
the 3d TFT associated to some chiral algebra are in one-to-one correspondence with the
modular invariants of the 2d RCFT. Said in the reverse, a full RCFT (which includes a
choice of modular invariant) is specified by a choice of topological interface in the bulk
3d theory TFT. For example, the identity interface corresponds to the diagonal modular
invariant. Broadly speaking, the results all originate from variations on the folding trick,
by noting that T × T̄ assigns a vector space HΣ ⊗ H∗Σ to a 2-manifold, and so unfolding
gives statements about the full CFT and original chiral algebra.
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×

HΣ H∗Σ

Σ× [0, 2]

Figure 14. A full RCFT includes a choice of chiral algebras and modular invariant. The modular
invariant of the RCFT can be understood as a choice of interface inbetween the chiral halves in the
associated 3d TFT. The Hilbert space of primaries of the form φi,j are in bijection with operators
on the interface which turn a Wilson line of type i into a Wilson line of type j.

The result also gives a neat interpretation to primaries of the full CFT. A primary is
labelled by a pair of representations of the chiral algebra, hence it is labelled by two line
operators in the MTC. We may write it as φi,j where i and j label lines in the bulk TFT.
If we insert such a primary into the CFT, then in 3d terms we must have HΣ punctured
by the line labelled by i, and H∗Σ punctured by the line labelled by j. Thus we obtain a
bijection between primaries of the full CFT and local operators which interpolate from the
Wilson line i to the Wilson line j on the interface. This is depicted in figure 14.

Viewing modular invariants for 2d RCFTs as interfaces in 3d Chern-Simons, we should
investigate the interfaces corresponding to an su(2)k theory. If we refer to the D-type
modular invariants of su(2)k as Do if k = 4` − 2, and De if k = 4`, we can obtain the
algebra for the composition of the topological interfaces. The A-type invariant corresponds
to the identity, and the D-type invariants behave as follows

(MDo)2 =MA , (MDe)2 = 2MDe . (4.9)

At k = 10, 16, 28 we also have the E6, E7, and E8 type modular invariants respectively.
These are subject to the commutative relations

ME6MDo =ME6 , (ME6)2 = 2ME6 , (4.10)
ME7MDe = 2ME7 , (ME7)2 =ME7 +MDe , (4.11)
ME8MDe = 2ME8 , (ME8)2 = 4ME8 . (4.12)

Since the classification of SU(3) modular invariants is now understood [82, 83], one
could perform the same process for the 2-category of surface operators in the SU(3) Chern-
Simons theories.

Next we turn to current-current deformations of WZW, which arise by perturbing the
WZW model by terms of the form J(z)J̄(z̄). We do not immediately require that the
perturbation be isotropic in the Lie-algebra indices, that is to say any perturbation of
the form ∑

a,b

cabJ
a(z)J̄b(z̄) (4.13)

will suffice.
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MIR

Collide

MUV

Σ× S1

Figure 15. Deforming the WZW models by a relevant operator and flowing to the IR, we are left
with two topological interfaces in a 3d Chern-Simons bulk on Σ × S1. If we let the two interfaces
collide and then trace, we obtain the partition function of the relevant 2d TFT up to local curvature
counterterms.

Such a term is obviously classically marginal, but it’s subject to quantum me-
chanical corrections.24 We are most interested in the case that the deformations are
marginally relevant.

Before proceeding further, an obvious question is “how can we couple the two chiral
halves in this 3d picture in a local way?” The answer to this is in the picture: when we
couple the two halves, we quite literally couple them, gluing the segment into a circle. That
is, we compactify the bulk Chern-Simons theory to Σ× S1.

In general, a 3d TFT on Σ× S1 defines an “effective” 2d TFT on Σ. In the functorial
TFT language, this is a special form of “Kaluza-Klein reduction,” where a 2d TFT is
defined from a 3d TFT by Z2d(Σ) = Z3d(Σ× S1) [86]. We recall that a 3d TFT assigns a
Hilbert space HΣ to Σ, and Σ × S1 is simply mapped to the number dimHΣ = TrHΣ(1).
Since 2d TFTs are largely characterized by their ground state degeneracy, then it would be
instructional to compute this quantity, with the appropriate interfaces inserted of course.

After this compactification move and RG flow, the two joined ends must flow to some
interface in the Chern-Simons theory. Since we have classified all interfaces in Chern-
Simons, it must correspond to some modular invariant MIR. If our original interface
describing the full RCFT was called MUV, then we are left with a circle-compactified
Chern-Simons theory with two topological interface insertions, see figure 15. Of course,
away from the torus, the usual subtleties about local curvature counterterms still apply.
These subtleties are nicely spelled out in the case of an Abelian Chern-Simons theory in [87]
and also in [88].

Armed with our relations for the modular invariants of su(2)k, we can obtain the
ground state degeneracy on the torus. The number of ground states is simply the trace of

24There exists some interesting literature (e.g. [84, 85]) studying the conditions for the theory to still be
conformal after perturbations, and the properties of the resulting conformal manifolds.
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MA MDo MDe ME6 ME7 ME8

MA k + 1 k
2 + 2 k

2 + 2 6 7 8

MDo k
2 + 2 k + 1 6

MDe k
2 + 2 k + 4 14 16

ME6 6 6 12

ME7 7 14 17

ME8 8 16 32

Table 3. Traces of products of modular invariants for the su(2)k WZW models. Interfaces in the
SU(2)k Chern-Simons theory correspond to such modular invariants. Equivalently, they compute
the ground state degeneracy of the effective 2d TFT on the torus when the IR and UV theories
correspond to one of these interfaces.

the corresponding collision of our two interfaces, Tr
(
MUVMIR

)
. We record these results in

table 3. Clearly, we have an example where the IR fixed point has multiple gapped vacua,
not explained by spontaneous symmetry breaking considerations. Indeed, a spontaneous
symmetry breaking may even result in an IR interface which is the direct sum of multiple
irreducible interfaces, each contributing multiple vacua.

These topological considerations do not tell us, given some JJ̄ deformation of WZW,
which MIR it flows to. The obvious guess is that the one which is “isotropic,” i.e. of
the form ∑

a J
a(z)J̄a(z̄), flows to the diagonal modular invariant. It would be interesting

to answer this question, which will depend on the specific choice of cab couplings. More
precisely, there will be some phase diagram, with phases labelled by by possible MIR.

5 Conclusion and open questions

Our main conclusion is that bosonic, non-spin 3d TFTs naturally control the combinatorics
of orbifolds and GSO projections of both bosonic or fermionic 2d QFTs. The possible results
of these topological operations are labelled by topological boundary conditions for the 3d
TFT, which may themselves be either bosonic or fermionic.

We have only considered in detail situations where the 3d bosonic TFT is isomor-
phic either to an Abelian Dijkgraaf-Witten (DW) theory, equipped with bosonic Dirichlet
boundary conditions, or a spin-Dijkgraaf-Witten (sDW) theory, equipped with fermionic
Dirichlet boundary conditions.

In general, topological bosonic boundary conditions in an abstract bosonic 3d TFT
are described in terms of Lagrangian algebras in the corresponding MTC. See e.g. [89] and
references within. These detail which bulk lines can end at the boundary, analogously to
Wilson lines in a DW theory ending at a Dirichlet boundary.

Fermionic boundary conditions of a bosonic 3d TFT should admit a similar description
in terms of some Lagrangian super-algebras. It would be nice to spell that out in detail.25

25While this work was in the final stages of preparation, it appears that such a description was indeed
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A Basics of 3d interfaces

Here we will give some intuition on how to think about interfaces as used in the 3d discus-
sions in this paper.

Suppose we are working with some 3d topological theory, then from the axioms for a
TFT, a boundary condition specifies a state. For example, a Dirichlet boundary condition
for a bulk 3d connection, which sets the connection equal to α at the boundary, naturally
provides us with some state

D[α] 7→ |A| |α〉 . (A.1)

Here the |A| factor is required by our convention below for the normalization of states.
It can be justified as following from the fact that Dirichlet boundary conditions break
the A gauge symmetry, while the state is defined by fixing the connection modulo gauge
transformations.

Since we will be dealing concretely with Abelian gauge theories, we normalize the inner
product of these states as

〈α|β〉 = 1
|A|

δαβ . (A.2)

From this, we can understand how to recover the 2d theory from the 3d picture very
easily on a slab M × [0, 1]. T induces a boundary condition,

|T 〉 =
∑
α

ZT [α] |α〉 , (A.3)

on one side of the slab. Now, if we put Dirichlet boundary conditions on the other side,
then we are constructing some segment which computes the partition function of the 2d
theory

T [0, 1]D[α] = |A| 〈T |α〉 = ZT [α] . (A.4)

Similarly, Neumann boundary conditions in the path integral provide us with some
state |N〉 = ∑

α |α〉. Hence, to recover the gauged theory, we use Neumann boundary
conditions on one side

T [0, 1]N = 〈T |N〉 = 1
|A|

∑
α

ZT [α] . (A.5)

spelled out in detail [55].
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Intuitively, an interface is like a two sided boundary condition because it interpolates
between two bulks glued together. Thus in the way a boundary condition corresponds to
a state, an interface corresponds to an operator.

The simplest interface we can construct is the identity interface I1. If in our given
basis it is

I1 =
∑
α,β

I1[α, β] |α〉〈β| , (A.6)

then if we say it should be constrained to the reasonable consistency condition I1 = I1×I1,
we have that

I1[α, β] = |A| δαβ . (A.7)

In general, for any interface

I =
∑
α,β

I[α, β] |α〉〈β| , (A.8)

we have
I[α, β] = |A|2 〈α|I|β〉 . (A.9)

Which corresponds to Dirichlet boundary conditions on both ends of a slab, with the
topological interface I inserted somewhere in between.

Lastly, we should describe how to compose two topological interfaces. Suppose that
the topological interface K is produced by fusing I and J , i.e. that

K

=

I J

(A.10)

Or less pictorially, K = I × J . In terms of the coefficients we have∑
α,β

K[α, β] |α〉〈β| =
∑

α,β,γ,δ

I[α, β] |α〉〈β| J [γ, δ] |γ〉〈δ| (A.11)

=
∑
α,β

(
1
|A|

∑
γ

I[α, γ]J [γ, β]
)
|α〉〈β| , (A.12)

which implies that
K[α, β] = 1

|A|
∑
γ

I[α, γ]J [γ, δ] . (A.13)

In general, we see the product of interfaces comes with a factor of |A| in components.
Let us pass through three of the simplest examples. First, we see how the identity

interface functions. We know that I1[α, β] = |A|δαβ , so that if we hit ZT with I1 we have
the component relation

1
|A|

∑
α

Z[α]I1[α, β] = Z[β] . (A.14)
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The next simplest example is to see how to extract an interface (say the orbifold
interface for a Z2 theory). Well, we know that we can write

Z[T/A][β] = 1
2
∑
α

(−1)
∫
α∪βZT [α] . (A.15)

Then we see that the orbifold interface is given by

IOrbi.[α, β] = (−1)
∫
α∪β . (A.16)

Finally, we can check that the interfaces compose properly in component form. Using
the orbifold interface above, we obtain

1
2
∑
γ

IOrbi.[α, γ]IOrbi.[γ, β] = 1
2
∑
γ

(−1)
∫
α∪γ(−1)

∫
γ∪β (A.17)

= 2δαβ
= I1[α, β] . (A.18)

B Basic facts about spin structures in 2d

Here we recall some basic facts about spin theories and Z2-structures on a 2d orientable
genus g surface that will be useful in understanding examples.

The “background connection” for a spin theory is a choice of spin-structure η on the
manifold, specifying the periodicity condition of the fermions around a given cycle as either
Ramond (periodic) or Neveu-Schwarz (anti-periodic).

Counting, we see there are 22g spin structures onM ; 2g−1(2g−1) of them are “odd” and
2g−1(2g + 1) are “even.” The terms odd and even refer to the number of (fixed chirality)
Dirac zero modes modulo two. To count the splitting of these spin structures one just
needs the fact that the number of Dirac zero modes modulo two is invariant under gluing
of Riemann surfaces, i.e. it is a bordism invariant. Armed with this fact, one can build up
inductively, noting that there is only one odd spin-structure (RR) on the torus, because
only the purely periodic torus spin-structure could have a Majorana zero mode [61].

Now we divert our attention to Z2 structures. We recall that on a surface of genus g
there is a symplectic basis for H1(M,Z2) given by the “a-cycle” and “b-cycle” around each
hole (equivalently our Z2-gauge fields in H1(M,Z2) by Poincaré duality in 2d). This basis
satisfies ai ∩ bj = δij with the cap denoting the intersection pairing.

A quadratic form on H1(M,Z2) is a function q : H1(M,Z2)→ Z2 that satisfies

q(x+ y) = q(x) + q(y) + x ∩ y , (B.1)

and is thusly called a “quadratic refinement” of the intersection number. For example, one
particular quadratic refinement is

qcan(ciai + djbj) = cidi , (B.2)

with sums implied over repeated indices.
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Given any quadratic refinement q, the Arf invariant

Arf[q] =
g∑
i=1

q(ai)q(bi) (B.3)

is actually a basis independent quantity, uniquely classifying q up to isomorphism of
quadratic forms.

Now, a result of Johnson [90] is that there is a bijection between spin structures on
M and quadratic forms on H1(M,Z2). Furthermore, the bijection is simple: given a spin-
structure η define

qη(ai) =

0 if η is anti-periodic around ai ,
1 if η is periodic around ai .

(B.4)

And similarly for qη(bi). From this, we see it makes sense to define the quantity

Arf[η] := Arf[qη] . (B.5)

As an example, on the torus equipped with spin-structure (η1, η2) we have

Arf[η] = qη(a1)qη(b1) = η1η2 . (B.6)

Coming full circle, it is a result of Atiyah [91] that Arf[η] is precisely the mod 2 index
of the Dirac operator described above.

Of course, by Poincaré duality, we have equivalently produced a quadratic form q̃η :
H1(M,Z2)→ Z2 satisfying

q̃η(α+ β)− q̃η(α)− q̃η(β) =
∫
M
α ∪ β . (B.7)

We will be using a multiplicative notation throughout, so it is useful to define

ση(α) = (−1)q̃η(α) . (B.8)

See also [32, 58] for further discussion. Some identities for cups and Arf are included in
appendix C.

C Identities for cups and Arf

By construction, the term ση(α) coupling Z2 gauge fields to spin-structures satisfies

ση(α)ση(β) = ση(α+ β)(−1)
∫
α∪β . (C.1)

Such a function can also be written in terms of the Arf invariant, which is typically
the form that people present when defining GSO projection in the literature

ση(α) = (−1)Arf[α+η]+Arf[η]. (C.2)
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Conversely, the Arf invariant can be written in terms of ση by a normalized sum over
all connections

(−1)Arf[η] = 1√
|H1(M,Z2)|

∑
α

ση(α) . (C.3)

Since Arf[η] is the number of Dirac zero modes modulo 2, then summing over (−1)Arf[η]

will simply count the difference in number between even and odd spin structures, hence

1 = 1√
|H1(M,Z2)|

∑
η

(−1)Arf[η] . (C.4)

For cyclic groups, a helpful identity for colliding interfaces with cup products is

δα,γ = 1√
|H1(M,Zn)|

∑
β

ω

∫
α∪β

n ω

∫
β∪γ

n , (C.5)

where ωn is a principal n-th root of unity.

D Topological aspects of QFTs

There are several variations on the idea of symmetry. A broad generalization of the notion
of discrete symmetry involves collections of topological defects of various dimensionality,
closed under fusion operations. Such collections of defects can be formalized mathemati-
cally in terms of (higher) categories. Because of the topological nature of the defects, this
categorical data is also an RG flow invariant.

We will thus say that some QFT T has a categorical symmetry S if it is equipped
with a collection of topological defects encoded in some higher category S. We will leave
implicit the mathematical properties required on such a symmetry category, which may
depend sensitively on the dimensionality of spacetime, on the bosonic or fermionic nature
of the QFT, etc.

An important observation is that S can be quite large. In particular it could be larger
than the type of categories which are encountered as categorical symmetries of TQFTs.
For example, a gapless 2d theory may have a categorical symmetry S which is too large to
be described by a fusion category.

The existence of categorical symmetries may also allows one to perform certain topo-
logical manipulations on a QFT, akin to the operation of gauging a non-anomalous discrete
symmetry. These manipulations produce new QFTs which have the same local dynamics
as the original one, and share a large collection of local operators, but have different global
properties. Such topological manipulations will commute with RG flow.

To the best of our knowledge, topological manipulations can only employ sub-
collections of S which satisfy the axioms for categorical symmetries of TQFTs. In the
discussion below, we will either restrict to the case where S is sufficiently finite, or only
focus on a fixed sub-category of S which is sufficiently finite.

One may ask a variety of natural questions:

• Do the theories resulting from topological manipulations carry categorical symmetries
as well?
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• Are such topological manipulations invertible?

• What is the result of composing topological manipulations?

• What collection of new theories can be obtained in this manner?

The answers to these questions are independent on the dynamics of the underlying QFT.
Indeed, they are expected to be independent of the specific choice of QFT as well and to
only depend on the actual symmetry category S.

Another general expectation is that the symmetry can be completely decoupled by
the dynamics by a topological sandwich construction, where T is realized as a segment
compactification of a topological field theory D[S] defined in one dimension higher. At one
end of the segment we place a topological boundary condition B[S] supporting a symmetry
category S of boundary defects. At the other end we place a possibly non-topological
boundary theory B[T ;S] which captures the local dynamics of T .

For a standard discrete symmetry, D[S] would be a Dijkgraaf-Witten discrete gauge
theory and B[S] would be Dirichlet boundary conditions.

We expect to have a complete bijection between the collection of “absolute QFTs with
symmetry category S” and the collection of “boundary theories for D[S]”. The map from
the latter to the former is the segment compactification. Invertibility of the map is not
obvious, but it is expected. It is an operation analogue to the operation of coupling T to
a discrete gauge theory in one dimension higher.26 We discuss it in two dimensions in 4.

The higher-dimensional perspective helps answer many of the above-mentioned ques-
tions in a theory-independent manner. Topological manipulations can be applied to B[S]
to produce new topological boundary conditions B′. The resulting QFTs will be described
as segment compactifications involving B[T ;S] and B′. It will have a categorical symme-
try given by the category of topological defects in B′. Indeed, the collection of all possible
theories which can be obtained from T by manipulating the symmetry S should coincide
with the collection of all possible topological boundary conditions B′.
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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