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Abstract: We consider the Banfi-Marchesini-Smye (BMS) equation which resums ‘non-

global’ energy logarithms in the QCD evolution of the energy lost by a pair of jets via

soft radiation at large angles. We identify a new physical regime where, besides the energy

logarithms, one has to also resum (anti)collinear logarithms. Such a regime occurs when the

jets are highly collimated (boosted) and the relative angles between successive soft gluon

emissions are strongly increasing. These anti-collinear emissions can violate the correct

time-ordering for time-like cascades and result in large radiative corrections enhanced by

double collinear logs, making the BMS evolution unstable beyond leading order. We isolate

the first such a correction in a recent calculation of the BMS equation to next-to-leading

order by Caron-Huot. To overcome this difficulty, we construct a ‘collinearly-improved’

version of the leading-order BMS equation which resums the double collinear logarithms

to all orders. Our construction is inspired by a recent treatment of the Balitsky-Kovchegov

(BK) equation for the high-energy evolution of a space-like wavefunction, where similar

time-ordering issues occur. We show that the conformal mapping relating the leading-

order BMS and BK equations correctly predicts the physical time-ordering, but it fails to

predict the detailed structure of the collinear improvement.
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1 Introduction

The problem of the non-global logarithms [1–12] refers to the radiation by a jet at large

angles w.r.t. the jet axis, where the standard collinear radiation — which controls the

hadron multiplicity produced by the jet and is enhanced by collinear logs of the type

ln(1/θ2
jet), with θjet � 1 the jet opening angle — is suppressed.

For definiteness, consider a pair of jets produced by the decay of a heavy particle, such

as a Z boson, or the virtual photon in the case of e+e− annihilation. In the center-of-

mass (COM) frame, where the two initial partons — say, a quark-antiquark (qq̄) pair —

are propagating back-to-back and with equal energies (Ea = Eb ≡ E), — we define an

‘exclusion region’ Cout which is separated from the jet axis by large angles and ask for the

probability P (E,E0) that the total energy radiated by the jet within that region be smaller

than a given value E0, necessarily smaller than E (see figure 1). When E0 � E, which

is indeed the typical situation since radiation at large angles is strongly suppressed, the

calculation of this probability in perturbative QCD receives large radiative corrections, of

order
(
αs ln(E/E0)

)n
with n ≥ 1, associated with successive emissions of soft gluons which

are strongly ordered in energy and which propagate at larger and larger angles w.r.t. the jet
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Figure 1. A typical set-up for the emergence of non-global logarithms, as resummed by the BMS

equation.

axis, within the ‘allowed’ region between the jet and Cout (see figure 1). The last (softest)

among these gluons can radiate a gluon with ω > E0 which propagates into Cout, thus reduc-

ing the probability P (E,E0). The ensemble of this evolution with increasing ‘rapidity’ Y ≡
ln(E/E0) is described by the BMS equation (from Banfi, Marchesini, and Smye) [3]. This

equation, which is non-linear (as required by probability conservation), has recently been

extended to next-to-leading order (NLO) accuracy [9]. The energy logarithms resummed

by this equation are generally referred to as non-global, single, logarithms, to emphasise

that (a) they refer to radiation in a restricted region of the angular phase-space and (b)

the energy logarithms are not accompanied by collinear logs (unlike for the usual intra-jet

evolution, where the successive emissions are strongly ordered in both energy and angles).

Yet, as we shall argue in what follows, double non-global logarithms — energy and

collinear — can exist as well: within the COM set-up that we have so far considered, they

emerge when the opening angle θout ≡ 2θ0 characterising the excluded region Cout is small

enough, θ0 � 1. This situation is illustrated in the left panel of figure 2. The probability for

radiation inside the excluded region seems a priori small, since proportional to θ2
0, yet this

can be strongly amplified (and thus become of order one) by the multiple emission of soft

and collinear gluons. Specifically, we shall argue that, when θ0 � 1, radiative corrections

enhanced by the double logarithm ln(E/E0) ln(1/θ2
0) are generated by successive gluon

emissions which accumulate towards Cout: the angles made by these gluons with the central

axis of Cout are strongly decreasing from one emission to the next one. This is turn implies

that the relative angles between 2 successive gluon emissions are strongly decreasing. This

situation is illustrated in the left hand side of figure 2. As we shall further argue, these

double logarithms are properly encoded in the (leading-order) BMS equation.

For our present purposes, it is however more interesting to visualise and compute this

evolution in a boosted frame where the two jets (more precisely, the two initial quarks)

make a small angle equal to 2θ0, whereas the excluded region occupies the whole backward

hemisphere at −1 < cos θ < 0 (see the figure in the right panel of figure 2). This frame is

obtained by boosting the COM frame with a boost factor γ = 1/θ0 along the positive z

– 2 –



J
H
E
P
0
2
(
2
0
1
8
)
0
7
5

axis. In this frame, the double-logarithmic contributions are generated by successive gluon

emissions in the anti -collinear regime, namely such that the emission angles are small,

but strongly increasing from one emission to the next one: θ0 � θ1 � θ2 � · · · � 1.

(Strictly speaking, the emission angles are differences like ∆θi,i−1 ≡ θi − θi−1, but for

the anti-collinear regime under consideration one has ∆θi,i−1 ' θi.) Since by assumption

γ = 1/θ0 � 1, the original quarks have a large longitudinal momentum pz ' γE. Hence

the natural variables for energy ordering in this frame are the gluons longitudinal momenta

kiz, which are strongly decreasing from one emission to the next one: pz � k1z � k2z � . . .

Besides being conceptually intriguing, for reasons to be shortly explained, this boosted

picture is also physically interesting: it corresponds to the actual physical situation for

boosted jets, say as created by the decay of a particle which is very energetic in the labo-

ratory frame (e.g. a Z boson with energy much larger than its mass).

What is rather intriguing about the evolution in this boosted frame is the fact that

the simultaneous ordering with decreasing energy (kz) and increasing angle (θ) may lead

to violations of the physical condition that the gluon formation time τf ∼ 1/(kzθ
2) must

increase along a time-like cascade (since the time-like evolution proceeds towards decreas-

ing virtuality). When computing this evolution from Feynman graphs within light-cone

(time-ordered) perturbation theory, the proper time-ordering is introduced by the energy

denominators, as we shall later check. However, the respective corrections are of higher

order in αs — they start at next-to-leading order (NLO), — hence do not matter for the

leading-order (LO) version of the BMS equation. And indeed, the latter includes contribu-

tions which violate the proper time-ordering in the anti-collinear regime. Albeit they are

formally of higher orders, the radiative corrections associated with time-ordering can be

numerically large, since enhanced by double (anti)collinear logarithms. For the problem

at hand, they bring corrections to the kernel of the BMS equation in the form of a series

in powers of ᾱs ln2(1/θ2
0), with ᾱs ≡ αsNc/π. The first such a correction is indeed present

in the NLO version of the BMS equation [9], albeit this is perhaps not manifest in the

original expressions in ref. [9]. (We shall isolate this contribution from the full NLO kernel

in appendix A.) From the experience with the respective space-like evolution — the BFKL

equation [13–15] and its non-linear generalisations, the Balitsky-Kovchegov (BK) equa-

tion [16, 17] and the Balitsky-JIMWLK hierarchy [16, 18–23], — where a similar problem

arises, we expect such double collinear logs to lead to instabilities in the NLO evolution

and, in any case, to jeopardise the convergence of the perturbative expansion.

In order to restore the predictive power of perturbation theory, it becomes necessary to

resum these large radiative corrections to all orders in ᾱs. Methods in that sense have been

developed in the context of the BFKL/BK evolution [24–26] (see also [27–31] for earlier

resummations proposed in the context of the linear BFKL evolution) and in what follows

we shall extend them to the case of the time-like evolution described by the BMS equation.

More precisely, we shall construct a collinearly-improved version of the BMS equation,

applicable in situations where the proper time-ordering is not automatically satisfied (like

the boosted jets in the right panel of figure 2), by following exactly the same steps as for

the respective improvement of the BK equation [25]. This improvement works in the same

way in both cases: it amounts to modifying the leading-order (BMS or BK) kernel by a
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Figure 2. Di-jet set-ups giving rise to double non-global logarithms. The original partons initiating

the two jets are denoted with labels a and b respectively. Successive gluon emissions contributing to

the double-logarithmic BMS evolution are indicated by numbers 1, 2, . . . . (gluon 2 being emitted

after gluon 1 etc). Left: a pair of back-to-back jets in the COM frame; the exclusion region Cout has

a small opening angle θ0 � 1 around an axis perpendicular to the jet axis. Right: a pair of boosted

jets making a small relative angle θ0 � 1; the exclusion region Cout occupies the whole backward

hemisphere.

multiplicative factor and the respective initial condition at low energy by an additional

term. Both types of corrections resum double collinear logarithms to all orders. The

corrective functions turn out to be the same for the BFKL and BMS equations, only the

corresponding arguments are different. From the experience with the BK equation, we

expect this collinear improvement to considerably slow down the evolution [25, 26] and

thus dramatically modify the physical results in the regime where E � E0 and θ0 � 1.

Returning to the problem of the back-to-back jets, cf. the left figure in figure 2, it is easy

to see that, in that context, the LO BMS evolution does respect the proper time-ordering:

the typical emission angles are (strongly) decreasing from one emission to the next one,

simultaneously with the gluon energies, so the associated formation times are increasing, as

they should. Hence, in that COM set-up one does not expect higher order corrections en-

hanced by double collinear logs and there is no need for resummation. This will be explicitly

checked at NLO in appendix A. It is therefore important to understand why two physical

situations which are a priori equivalent, since related by a boost, can admit such different

mathematical descriptions: the usual (unresummed) BMS equation in the COM frame and,

respectively, the collinearly-improved version of this equation in the boosted frame.

As we shall later explain in more detail, the answer to the above question is related

to the difference between the energy phase-spaces available in the two frames: in the

COM frame, this is simply ln(E/E0), as already discussed, but in the boosted frame it

is considerably increased by the boost, to a value ln(E/E0) + ln(1/θ2
0). Roughly speak-

ing, the collinearly-improved evolution over the larger energy phase-space available in the

boosted frame should produce the same results as the LO BMS evolution over the smaller

phase-space corresponding to the COM frame. This equivalence is however not exact:

it holds only in the double logarithmic approximation (DLA), in which one resums just

the perturbative corrections enhanced by double logarithms (energy-collinear, or collinear-

collinear). In general however, the solutions to the two equations — ‘bare’ and ‘resummed’

— are expected to be different from each other, even after properly matching the respective
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phase-spaces, because of the different ways in which they treat the ‘BFKL diffusion’ (the

non-locality in angles). It would be interesting to study these differences via numerical

solutions, but this goes beyond the scope of the present paper.

Another aspect that we shall address is the interplay between the collinear resummation

and the conformal transformation relating the space-like and time-like evolutions [7, 32].

Let us first recall that, to leading order at least, the BK and BMS evolutions are precisely

related to each other by a stereographic projection mapping angles on the 2-dimensional

sphere (on the BMS side) onto coordinates in the 2-dimensional transverse space (on the

BK side) [32]. This projection is in fact a subset of a more general conformal transformation

in 4-dimensions, which at least in a conformal theory like the N = 4 supersymmetric Yang-

Mills theory, has been conjectured [32, 33] to relate space-like and time-like evolutions to

all orders in the coupling. Within the context of N = 4 SYM, this correspondence has

already been checked to NLO in perturbation theory [9] and also in the strong-coupling

limit, via the AdS/CFT correspondence [33].

The interplay between the conformal transformation and the collinear resummation

turns out to be quite subtle. For the problems at hand, the conformal symmetry is explicitly

broken by the physical set-up, i.e. by the large separation of scales between the relative angle

between the two jets on one hand and the angular opening of the excluded region Cout on the

other hand. This in turn implies an asymmetry in the evolution: the dominant evolution —

the one which generates double logarithms — proceeds either towards increasing emission

angles (in the boosted frame), or towards decreasing angles (in the COM frame). To

leading logarithmic accuracy, both evolutions are described by the leading-order BMS

equation, which has conformal symmetry. Yet, they are physically different — one can

violate the proper time-ordering, while the other cannot, — so they receive different higher-

order corrections. This difference is visible in the radiative corrections enhanced by double

collinear logs, which first appear at NLO and break the conformal symmetry. This is why

these corrections can be large in one regime (when the emissions angles are increasing,

as in the right panel of figure 2), but small in the other (when the emissions angles are

decreasing, as in the left panel of figure 2).

These conclusions are indeed supported by the NLO corrections to the BMS kernel,

as computed in [9], but in order to render them manifest it is important not to use the

‘conformal scheme’, in which the kernel is by construction conformally symmetric. In that

scheme, double-logs appear at NLO in both the ‘collinear’ and the ‘anti-collinear’ regimes,

that is, for both decreasing and increasing angles. This conformal scheme is reminiscent

of the symmetric choice of the energy scale [28–30] in the framework of the NLO BFKL

equation [34–39]. It is likely that the change from the ‘non-conformal’ to the ‘conformal’

scheme can be viewed too as a redefinition of the variable used for the energy evolution,

albeit this is not obvious in the manipulations in [9]. The standard evolution variable (the

logarithm of the energy fraction carried by an emitted gluon, a.k.a. ‘rapidity’) corresponds

in fact to the ‘non-conformal’ scheme. This is the scheme where the physical picture is

most transparent and where the collinear resummations are naturally associated with the

time-ordering of the successive emissions. From the above discussion, it should however

be clear that collinear resummations are also needed in the conformal scheme (in both the

collinear and the anti-collinear regime).
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The lack of conformal invariance for the double collinear logarithms also implies that

the collinear improvements of the BK and BMS equations are not simply related to each

other via a conformal transformation, except in the special limit where all the angles are

small. (This last condition refers both to the emission angles and to the angles involved

in the stereographic projection; see section 5 for details.) This being said, the conformal

transformation is powerful enough to predict the need for time ordering and hence for

collinear improvement. This is so since the transformation law for energy scales which

is inherent this correspondence also involves the scale of the collinear logarithms — the

dipole transverse sizes in the case of the BK equation and the emission angles for the BMS

equation. When this collinear logarithm is relatively large, the emerging evolution variable

is not just the energy anymore, but the formation time in the time-like case (respectively,

the lifetime of the fluctuations in the space-like evolution). This will be explained in

section 5, where we will see that both time-like evolutions that we have discussed so far —

that in the COM frame and that in the boosted frame, — are actually mapped onto the

same space-like evolution — that where the dipole sizes are strongly increasing from one

step to the next one. This particular dipole evolution requires explicit time-ordering1 [24–

26] and this is indeed predicted by the conformal mapping, as we shall see.

This paper is organised as follows. In section 2 we introduce the (leading-order) BMS

equation and demonstrate the emergence of (anti-)collinear logarithms in the 2 regimes

illustrated in figure 2. We also explain the difference between the associated energy phase-

spaces. In section 3 we focus on the anti-collinear evolution for boosted jets and present

two arguments for the time-ordering of the soft gluons. The first argument uses a Lorentz

transformations from the COM frame (energy ordering in the COM frame together with the

boost implies time-ordering in the boosted frame); the second one is based on an explicit

diagrammatic calculation of up to 2 gluon emissions in light-cone perturbation theory.

Incidentally, this calculation also provides a pedagogical derivation of the kernel of the LO

BMS equation (a.k.a. the antenna pattern). In section 4 we shall present our main result:

the collinearly-improved version of the BMS equation (see eq. (4.14)). Finally, in section 5

we discuss the conformal mapping relating time-like and space-like evolutions, i.e. the BMS

and BK equations, in connection with time-ordering. In appendix A we shall revisit the

result for the NLO correction to the BMS kernel [9], with the purpose of extracting the

piece enhanced by a double collinear logarithm.

2 Collinear logarithms in the BMS evolution

In this section, we shall introduce the leading-order BMS equation and demonstrate that

under special circumstances — namely, for the configurations illustrated in figure 2 — this

equation also resums (anti)-collinear logarithms, on top of the energy logarithms that it

was originally meant for. We shall moreover argue that, when these (anti)-collinear logs

are sufficiently large, the BMS equation is not boost-invariant anymore: it can still be used

as it stands in the di-jet COM frame, but not also in a boosted frame where the energy

phase-space available to the evolution is much larger.

1In the space-like case, the gluon lifetimes must decrease in the course of the evolution [24, 25].
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2.1 The BMS equation

In order to write down the BMS equation, we shall consider the final state of e+e− anni-

hilation, as viewed in an arbitrary Lorentz frame. (The complications with the choice of a

frame formally go beyond the leading-logarithmic approximation at high energy and will be

discussed later, starting with the next subsection.) We shall use Pab(E) ≡ Pab(E,E0, Cout)

to denote the probability to deposit a total energy lower than E0 inside the ‘away-from-jet

region’ Cout via radiation from the di-jets initiated by two primary partons, the quark a

and the antiquark b, whose total energy p0
a + p0

b is equal to 2E.

The two energies aforementioned, E0 and E, refer both to the COM frame of the

original qq̄ pair (the frame where p0
a = p0

b = E while ~pa + ~pb = 0), but the probability

Pab(E,E0, Cout) can in principle be computed in any frame (of course, the geometry of the

excluded region Cout can change as well when changing the frame). In general, the function

Pab also depends upon the directions of motions of the primary partons in the Lorentz

frame at hand, that is, upon the two null 4-vectors va and vb, with vµa ≡ pµa/p0
a = (1, ~va),

etc. We shall assume that E � E0, so that the radiative corrections enhanced by powers

of ᾱs ln(E/E0) must be resummed to all orders.

This resummation is the scope of the BMS equation. This equation has been originally

formulated [3] in the limit of a large number of colors2 Nc, in which the emission of a soft

gluon by the original quark-antiquark pair can be viewed as the splitting of the color dipole

(or “color antenna”) (ab) into two new dipoles (ac) and (cb); the index c refers to the

direction of motion (the null-vector vc) of the emitted gluon. By iterating this argument,

the whole high-energy evolution can be described as a change in the distribution of dipoles.

Then the leading-order BMS equation reads [3]

E∂EPab(E) = −ᾱs
∫
Cout

dΩc

4π
wabc Pab(E)+

+ ᾱs

∫
Cin

dΩc

4π
wabc

[
Pac(E)Pbc(E)− Pab(E)

]
, (2.1)

where the kernel wabc describes the angular distribution of the radiation (the ‘antenna

pattern’):

wabc ≡
va · vb

(va · vc)(vc · vb)
=

1− cos θab
(1− cos θac)(1− cos θcb)

. (2.2)

Here, θab is the relative angle between the momenta of the quarks a and b, ~va ·~vb = cos θab,

etc. The angular integrals in the two terms in the r.h.s. of eq. (2.1) run over the directions

of the unit vector ~vc, but they have different — actually, complementary — supports: that

in the first term (the ‘source’, or ‘Sudakov’, term) runs over the excluded region Cout,

whereas that in the second (‘evolution’) term runs over the complementary region of space,

Cin = S2 \ Cout, which in particular includes the 2 jets (see e.g. figure 1). As anticipated

in the Introduction, the most important region for the evolution is the intermediate region

between the jets and the excluded region.

2See also refs. [6, 8] for generalisations to an arbitrary value for Nc, that we shall however not consider

in this paper.
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Eq. (2.1) must be solved with the initial condition that, when E = E0, Pab = 1 for

any dipole (ab). By itself, the ‘evolution’ term in the r.h.s. of eq. (2.1) vanishes for this

particular initial condition, hence the evolution is initiated by the ‘source’ term, which

describes a direct emission from the dipole (ab) to the excluded region. More generally,

during the later stages of the evolution, this ‘source’ term will describe the reduction in

the probability Pab due to emissions from any of the dipoles produced by the evolution

towards Cout. For this reason, it is also known as the ‘Sudakov term’.

The ‘evolution’ term in the r.h.s. of eq. (2.1) is itself built with two pieces. The first

piece, which is positive and quadratic in the probability, describes a real gluon emission. At

large Nc, this emission effectively replaces the original dipole (ab) by the two dipoles (ac)

and (cb), which subsequently develop their own evolutions (leading to the probabilities Pac
and Pbc, respectively). The second piece, which is negative and linear in Pab, comes from

Feynman graphs describing a virtual emission and represents the reduction in the survival

probability for the original dipole. Note that the collinear singularities of the kernel (2.2)

at θac → 0 or θcb → 0 cancel between real and virtual corrections: when e.g. θac → 0, one

has Pac → 1, since there is no emission from a colorless antenna with zero opening angle.

As manifest from eq. (2.1), the high-energy evolution is logarithmic — the probability

Pab depends upon the energy variables E and E0 via the ‘rapidity’ variable Y ≡ ln(E/E0),

— hence it can be equivalently formulated as an evolution with increasing E at fixed E0,

or with decreasing E0 at fixed E. In what follows, we shall adopt the second point of view,

that is, we shall choose the ‘running’ value of the rapidity as Y = ln(E/k) where k = |~k|
is the energy of the last (softest) emitted gluon and obeys E � k � E0. Correspondingly,

we shall replace E∂E → ∂Y in the l.h.s. of eq. (2.1).

So far, we made no special assumption about the geometry of the exclusion region.

From now on, we shall focus on the situation where the associated opening angle θout

as measured in the COM frame is small: θout = 2θ0, with θ0 � 1 (cf. the left panel of

figure 2). In this case, we shall see that the evolution generated by eq. (2.1) also gener-

ates ‘collinear logarithms’, i.e. radiative corrections proportional to the double logarithm

ln(E/E0) ln(1/θ2
0). The physical picture underlying these corrections and also their mag-

nitude turns out to be strongly frame-dependent, so in what follows we shall separately

discuss the evolution in the boosted frame and that in the COM frame.

2.2 Collinear logarithms in the boosted frame

The emergence of the collinear logarithms is conceptually more transparent when the prob-

lem is analysed in the boosted frame, so we shall start by discussing this case. Start-

ing in the COM frame, we perform a boost along the positive z axis with boost factor

γ = 1/ sin θ0 ' 1/θ0 (see section 3.1 for more details on this Lorentz transformation). In

the boosted frame, the quark and the antiquark propagate nearly along the z axis, with

a small relative angle θab = 2θ0 � 1, whereas the excluded region occupies the whole

backward hemisphere at z < 0 (see the right panel of figure 2).

As anticipated in the Introduction, the collinear logs are generated by soft emissions

whose emission angles are strongly increasing, yet remain small: θ0 � θ1 � θ2 � · · · � 1.

At first sight, this might look intriguing, as it is well known that large-angle emissions
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by a colorless antenna are strongly suppressed (see also the discussion of eq. (2.6) below).

However, we shall see that in the problem at hand the large-angle suppression in the

emission probability is exactly compensated by the rapid rise in the observable that we

measure: the deviation Rab ≡ 1−Pab of the probability Pab from unity (that we shall refer

to as the ‘radiance’). This mechanism is in fact similar to that responsible for the emergence

of anti-collinear logs in the context of the BK evolution (see the discussion in [24, 25]), but to

our knowledge it was not previously noticed in the context of the time-like, BMS, evolution.

To see this, it is convenient to solve eq. (2.1) via iterations. As already mentioned, the

‘evolution’ term in the r.h.s. vanishes when evaluated with the initial condition Pab(Y =

0) = 1, hence the first iteration involves solely the ‘source’ term. For the kinematics in the

boosted frame, the latter can be estimated as (with Pab → 1)

− ᾱs
∫
Cout

dΩc

4π
wabc ' −ᾱs

θ2
ab

2

∫ 2π

0

dφc
4π

∫ π

π/2

sin θc dθc
(1− cos θc)2

' −ᾱs
θ2
ab

8
, (2.3)

where we have used θab � 1 together with θc ∈ (π/2, π) to approximate 1− cos θab ' θ2
ab/2

and θac ' θbc ' θc. This implies the following approximation for Rab = 1 − Pab to linear

order in ᾱsY :

Rab(Y ) ' 1

8
ᾱsθ

2
abY . (2.4)

This is a legitimate approximation so long as Rab � 1. Similar estimates can be used for

the other radiances which enter the ‘evolution’ term, that is, Rac and Rbc: indeed, the

polar angle θc made by the first evolution gluon is small as well (albeit large compared to

θ0). We thus deduce

Pac(Y )Pbc(Y )− Pab(Y ) ' −Rac −Rbc +Rab ' −2Rac ' −
1

4
ᾱsθ

2
cY (2.5)

for the combination of ‘real’ and ‘virtual’ terms which enter eq. (2.1). We have successively

used the fact that all the R’s are small enough to neglect the quadratic term RacRbc and the

fact that Rac ' Rbc � Rab (since θac ' θbc ' θc � θab) to neglect the ‘virtual’ contribution.

Notice that it was essential for the previous argument that Rab is proportional to θ2
ab at

small angles. As we shall shortly see, this property remains true after resumming the

energy logarithms ᾱsY to all orders. This is the time-like analog of the ‘color-transparency’

property of the solution to the BK equation (the fact that the dipole scattering amplitude

vanishes like r2 in the limit r → 0). The net result in eq. (2.5) comes from the ‘real’ terms

alone and it rapidly grows with the emission angle, like θ2
c .

The ‘evolution’ term in eq. (2.1) also involves the emission probability (2.2), which for

the kinematics at hand simplifies to

wabc '
2θ2
ab

θ2
acθ

2
bc

'
2θ2
ab

θ4
c

. (2.6)

This rapid decrease ∝ 1/θ4
c of the emission rate with increasing θc reflects the aforemen-

tioned fact that the radiation by a colorless antenna is suppressed at large angles. However,

within eq. (2.1) this decrease is partially compensated by the increase of the radiance of
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the daughter gluons, Rac ' Rbc ∝ θ2
c . The resulting integral over θ2

c is logarithmic, as

anticipated.

Specifically, by inserting eqs. (2.5)–(2.6) into eq. (2.1), one deduces the following

second-order (in ᾱsY ) approximation for Rab(Y ), valid in the double-logarithmic approxi-

mation (i.e. by neglecting second-order terms which are not enhanced by a collinear log),

or ‘DLA’:

Rab(Y ) '
θ2
ab

8
ᾱsY

[
1 +

1

2
ᾱsY ln

1

θ2
ab

]
, (2.7)

where the collinear log ln(1/θ2
ab) has been generated by integrating over θ2

c between θ2
ab and

1 (the precise upper limit is irrelevant to logarithmic accuracy).

Eq. (2.7) illustrates the effects of the high-energy evolution (here, to DLA): the original

contribution (2.4) of one Sudakov emission, which is small since proportional to θ2
ab, receives

radiative corrections enhanced by powers of ᾱsY ln(1/θ2
ab) and thus can become quite large

— meaning that the probability Pab(Y ) can become significantly smaller than unity — for

sufficiently high energy and/or small angle θab. This enhancement will be apparent in a

moment.

The above discussion also shows that higher-order iterations of the Sudakov term are

unimportant in the kinematics of interest, since they are power-suppressed — i.e. multiplied

by higher powers of θ2
ab — compared to its first iteration. In fact, it is easy to resum multiple

Sudakov emissions by the primary dipole to all orders: this amounts to solving a simplified

version of eq. (2.1) in which one keeps the Sudakov term alone, evaluated as in eq. (2.3).

One thus finds P Sudakov
ab = exp (−θ2

abᾱsY/8). In the exponent, θ2
ab appears to be multiplied

by ᾱsY , but this product is still small in the regime of interest for us here. So, in what

follows we shall keep only ‘leading-twist’ terms which are linear in θ2
ab, but which as a result

of the evolution can involve arbitrary powers of ᾱsY ln(1/θ2
ab).

It should be quite clear that the above arguments extend to the subsequent emissions

of soft gluons, so long as the respective angles are strongly increasing, yet small in absolute

value. One can easily write down an approximate version of the (LO) BMS equation, valid

at DLA — that is, an equation which resums solely the terms enhanced by the double

logarithm Y ln(1/θ2
0). To that aim, we first note first that, at DLA, the probability Pab(Y )

depends upon the unit vectors ~va and ~vb only via their relative angle θab. It is convenient

to isolate the dominant dependence upon θab by writing R(θab, Y ) ≡ θ2
abA(θab, Y ). Then,

the DLA version of the BMS equation reads

∂A(θab, Y )

∂Y
=
ᾱs
8

+ ᾱs

∫ 1

θ2ab

dθ2
c

θ2
c

A(θc, Y ) , (2.8)

where to the accuracy of interest one could as well replace θab by θ0. (We recall that

θab = 2θ0, but the relative factor of 2 is irrelevant inside the logarithms.) This equation

can be easily solved via iterations, with the initial condition A(θ, 0) = 0, to yield

A(ρ, Y ) =
ᾱsY

8

∞∑
n=0

(ᾱsY ρ)n

n!(n+ 1)!
=

1

8

√
ᾱsY

ρ
I1(2

√
ᾱsY ρ) (2.9)
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where we have introduced the compact notation ρ ≡ ln(1/θ2
ab) for the collinear logarithm

and I1(x) is the modified Bessel function of first rank. This function grows rapidly3 with the

product Y ρ, but the present approximation is of course valid only so long as R(θab, Y ) =

θ2
abA(θab, Y ) � 1. Eqs. (2.8) and (2.9) describe the dominant evolution leading to the

increase in the radiance R in the regime where the latter is still small. Note that, in this

DLA regime, the emission towards the excluded region Cout is most likely sourced by the last

emitted ‘evolution’ gluon, since this makes the largest polar angle θ and since R(θ, Y ) ∝ θ2.

In general, i.e. if one needs to go beyond the double-logarithmic approximation and

to also cover the non-linear regime where Rab(Y ) ∼ O(1), one must use the full BMS

equation (2.1). This being said, none of these equations — the original BMS equation (2.1)

or its DLA version (2.8) — is fully right for the case of boosted jets: indeed, as we shall

argue at length in what follows, these equations do not properly cover the phase-space for

soft emissions at large angles. As a first step in that sense, let us clarify here the energy

phase-space available to the evolution in the boosted frame.

One may be tempted to identify the (maximal value of the) rapidity Y in the solu-

tion (2.9) with Y = ln(E/E0), but in the boosted frame this would not be right. Note first

that the energy of one of the primary partons in this frame is γE, hence the running value

of the rapidity variable is Y = ln(γE/k) ' ln(γE/kz). We have used the fact that k ' kz
for the gluons which matter in the double-logarithmic regime: their emission angles obey

θ0 � θ � 1, which together with θ ' k⊥/kz implies indeed θ0kz � k⊥ � kz. To deduce

the upper limit on Y , one must understand the lower limit on kz. To that aim, it is easier

to argue in the COM frame and then make a boost.

The softest emissions which matter to DLA in the COM frame have an energy k ∼ E0

and make a very small angle w.r.t. the negative z axis (see the left panel of figure 2);

for them kz is negative and the energy is mostly longitudinal: k ' |kz| � k⊥. When

boosting in the positive z direction, both |kz| and k will be reduced by the boost factor

γ (see section 3.1 for more details on the boost). Accordingly, in the boosted frame, the

softest emissions have an energy k ' kz ∼ E0/γ. This discussion implies that the rapidity

range available to evolution in the boosted frame is Y = ln(γ2E/E0) = Y0 + ρ, where

Y0 ≡ ln(E/E0) is the corresponding range in the COM frame and ρ = ln γ2 = ln(1/θ2
0) is

the collinear logarithm. When θ0 � 1, there is therefore an excess in the phase-space for

the energy evolution in the boosted frame as compared to the COM frame. As we shall

later argue, this excess corresponds to spurious emissions, which are included in the LLA

but do not respect the proper time-ordering condition. Such emissions can be removed by

hand, by enforcing time ordering. Incidentally, the above discussion also shows that the

upper limit on the energy that can be emitted within the backward hemisphere by the

boosted jets is not E0, but the much smaller value θ0E0.

2.3 Collinear logarithms in the COM frame

It is straightforward to ‘boost back’ the gluon kinematics from the boosted frame to the

COM frame and thus establish that the emissions responsible for double logarithms are

3We recall the asymptotic behavior of the modified Bessel function: I1(x) ' ex/
√

2πx.
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those which accumulates towards the negative z axis (the central axis of the excluded region

Cout), as illustrated in the left panel of figure 2. The corresponding Lorentz transformations

will be presented in section 3.1. Here however we would like to develop the argument for

double logs directly in the COM frame. To that aim, we shall consider the two successive

emissions exhibited in the left panel of figure 2, whose propagation angles θi as measured

w.r.t. the negative z axis obey θ0 � θ2 � θ1 � 1.

Consider first the emission of gluon 1 from the original color antenna (ab). In this

frame, θab = π and θa1 ' θ1b ' π/2, hence wabc ' 2: the emission probability shows no

sign of collinear enhancement, as expected for a large angle emission. However, in eq. (2.1)

the emission kernel wabc is multiplied by

Pa1P1b − Pab ' −Ra1 −R1b +Rab (2.10)

where we have again ignored the quadratic term Ra1R1b since we are in the regime where

all the probabilities are close to 1. To leading order in ᾱsY , the radiances are determined

by the Sudakov term in eq. (2.1) as, e.g.

Ra1 ' ᾱsY

∫
Cout

dΩc

4π
wa1c ' ᾱsY

∫ 2π

0

dφc
4π

∫ θ0

0

θcdθc
θ2

1c/2
=

ᾱsY

2

θ2
0

θ2
1

, (2.11)

where we have used θa1 ' θac ' π/2 and θ1c ' θ1 − θc ' θ1 � 1. This result provides the

appropriate factor 1/θ2
1 to render the ensuing integral over θ2

1 logarithmic. Clearly, this

factor expresses the collinear enhancement for the small-angle emission of the gluon c from

the evolution gluon 1. There is a similar enhancement for R1b, but not also for Rab; hence,

Ra1 ' R1b � Rab. Using the above estimates within eq. (2.1), one finds the second-order

(in ᾱsY ) estimate for Rab as follows:

Rab(Y ) ' θ2
0

2
ᾱsY

[
1 +

ᾱsY

2
ln

1

θ2
0

]
. (2.12)

This agrees indeed with eq. (2.7), in view of the fact that θab = 2θ0, with θab the di-jet

angle in the boosted frame.

It is furthermore instructive to consider the emission of the second soft gluon — the

one denoted as ‘2’ in the left panel of figure 2 — since the corresponding geometry is

quite different compared to the first emission. Gluon 2 can be emitted from either the

dipole (a1), or from the dipole (1b), and we shall consider the first case for definiteness.

The relevant emission kernel is wa12 ' 2/θ2
12 ' 2/θ2

1, where we have used the fact that

θ2 � θ1 � 1. This factor 1/θ2
1 provides the logarithmic enhancement for the emission

of the parent gluon 1. That is, the daughter gluon 2 plays here the same role as the

emission inside Cout discussed in relation with eq. (2.11). As in that case, the enhancement

is associated with a small-angle emission — here, of the gluon 2 — by the gluon 1.

Similarly, a factor 1/θ2
2 will be generated by a small-angle emission from the gluon

2 — either the emission of a third ‘evolution’ gluon at an even smaller angle θ3, with

θ0 � θ3 � θ2, or an emission inside Cout. Consider the second case: an emission from

gluon 2 towards the excluded region Cout. By studying this case, one can compute the
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second order correction to Ra1(Y ) and thus exhibit the first collinear logarithm within

Ra1. To that aim, one also needs (cf. eq. (2.11))

Ra2 ' R21 '
ᾱsY

2

θ2
0

θ2
2

� Ra1 '
ᾱsY

2

θ2
0

θ2
1

. (2.13)

By combining the above results, one finds

Ra1(Y ) ' ᾱsY

2

θ2
0

θ2
1

[
1 +

ᾱsY

2
ln
θ2

1

θ2
0

]
, (2.14)

where the collinear log has been generated by integrating over θ2
2 between θ2

0 and θ2
1.

It should be clear by now what is the general pattern of the evolution: when emitting

softer and softer gluons which make smaller and smaller angles θi w.r.t. the negative z axis

(with θi � θ0 though), the associated radiances are larger and larger, since proportional

to θ2
0/θ

2
i , and the associated emission kernels, which scale like 1/θ2

i−1, provide the collinear

enhancement for their parent gluon. It is straightforward to write an approximate (‘DLA’)

version of the BMS equation which resums the double logarithms (energy times collinear)

alone. To that aim, we shall rewrite R(θ, Y ) ≡ (θ2
0/θ

2)A(θ/θ0, Y ) where it is understood

that θ = 1 for the original antenna (ab) and θ = θi for an antenna which includes the

evolution gluon i, with i ≥ 1 (in particular, θ0 � θi � 1). The equation obeyed by the

new function A(θ/θ0, Y ) to the accuracy of interest reads

∂A(θ/θ0, Y )

∂Y
=
ᾱs
2

+ ᾱs

∫ θ2

θ20

dθ2
c

θ2
c

A(θc/θ0, Y ) , (2.15)

to be solved with the initial condition A(θ/θ0, 0) = 0. Clearly, the solution is the same as

shown in eq. (2.9), except for the change 1/8 → 1/2 in the overall normalization and for

the meaning of the logarithmic variable ρ, now defined as ρ ≡ ln(θ2/θ2
0). Given the general

solution A(θ/θ0, Y ), the radiance Rab(Y ) of the original dipole (ab) is obtained by letting

θ → 1, that is, Rab(Y ) = θ2
0A(1/θ0, Y ).

From the above discussion, it should be clear that the present calculation of Rab(Y )

in the COM frame gives the same result as its previous calculation in the boosted frame,

based on eq. (2.8). (To check this, one should also recall the relation θab = 2θ0 for the di-jet

angle in the boosted frame.) In the present context too, the emission towards Cout is pre-

dominantly sourced by the last ‘evolution’ gluon — the one which makes the smallest angle

θ w.r.t. the negative z axis and thus gives the largest value for the radiance R(θ) ∝ 1/θ2.

This formal equivalence between the calculations of Rab(Y ) in the COM frame and

respectively the boosted frame seems to comfort the boost-invariance of the leading-order

BMS equation. However the situation is more subtle. As explained at the end of the

previous section, the phase-space for the energy evolution, that is, the maximal value Ymax

of the rapidity variable Y , is different in the two frames: this is equal to Y0 = ln(E/E0) in

the COM frame, but it is larger, namely Ymax = Y0 + ρ with ρ = ln(1/θ2
0), in the boosted

frame. The boost invariance is in fact broken by our choice of the ‘energy’ variable: in

both frames, it is natural to measure the energy of the emitted gluons by their longitudinal
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momentum, but in the boosted frame this momentum kz is oriented along the positive z

axis, whereas in the COM frame it is rather oriented along the negative z axis. In other

terms, the natural energy variable is the modulus |kz|, or more precisely its ratio w.r.t. the

energy of one of the primary partons; this ratio is not boost invariant.

To render this discussion more transparent, it is useful to introduce the light-cone

variables k+ ≡ (k0+kz)/
√

2 and k− ≡ (k0−kz)/
√

2. Then, the ‘rapidity’ variables are Y + ≡
ln(p+

a /k
+), with p+

a =
√

2γE, in the boosted frame and, respectively, Y − ≡ ln(p−a /k
−),

with p−a = E/
√

2, in the COM frame. These variables Y + and Y − are individually boost-

invariant, but their interchange Y + ↔ Y − is not. Indeed, Y +−Y − = ρ, as it can be easily

checked (see below). The use of different variables in different frames is not just a matter

of convenience, rather it is imposed by the corresponding kinematics.

It might look surprising that the LO BMS equation can lead to violations of the Lorentz

symmetry. But one should recall that this equation has been derived for the case where

the energy logarithm Y0 = ln(E/E0) is the only large logarithm in the problem. That is,

in the original derivation one has implicitly assumed that Y0 � ρ and hence Y + ' Y − to

the accuracy of interest. Here however we are interested in the very asymmetric situation

where θ0 � 1, so the collinear logarithm ρ = ln(1/θ2
0) can be large and comparable to the

rapidity Y0. In this situation, the BMS dynamics is genuinely different in the two frames

at hand: the evolution in the COM frame (which consists in simultaneously decreasing k−

and the emission angle θ) automatically preserves the proper time-ordering, whereas that

in the boosted frame (with decreasing k+ but increasing θ) may lead to violations of the

time-ordering condition, as we shall later explain.

Since the difference between Y + and Y − is important for our present purposes, let

us provide here another argument for its value, which corroborates the one presented

in section 2.2. We start in the COM frame, cf. the left panel of figure 2: the typical

evolution gluons make a small angle θ w.r.t. the negative z axis, hence their transverse and

longitudinal momenta are related by k⊥ ' θ|kz|. Since |kz| ≥ E0 and θ ≥ θ0, we conclude

that the smallest allowed value for k⊥ is k⊥min = θ0E0. Since the transverse momentum is

boost-invariant, this kinematical limit also applies in the boosted frame. But in that frame,

the typical evolution gluons make a small angle θ � 1 w.r.t. the positive z axis, so for them

kz ≥ k⊥. We thus deduce a lower limit on kz in this boosted frame, namely kz ≥ θ0E0,

which agrees with the one found at the end of section 2.2 via a different argument. It is now

easy to check that the maximal values for Y + and Y − are indeed equal to Y +
max = Y0 + ρ

and Y −max = Y0, respectively.

3 Time ordering from light-cone perturbation theory

In this section, we shall clarify the origin of the condition of time ordering in the time-like

evolution. We shall first present a simple kinematical argument in that sense: we will

show that, via the Lorentz transformation relating the two frames illustrated in figure 2,

the condition of energy ordering in the COM frame gets mapped onto the condition of

time ordering in the boosted frame. Then we shall discuss the origin of the latter within
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perturbative QCD. To that aim we shall employ light-cone perturbation theory (LCPT),

which renders the temporal picture of the high-energy evolution manifest. To see the need

for time-ordering, we will eventually need to consider two successive emissions. But before

doing that, we will consider the case of a single emission, as a warm up, and thus derive

the ‘antenna pattern’ (2.2) from LCPT.

3.1 Time ordering from Lorentz transformations

In this section, we shall study some consequences of the Lorentz transformation relating

the kinematics of the high-energy evolution in the COM frame and the boosted frame,

respectively. We start in the COM frame, where the LO BMS evolution with decreasing

energies automatically respects the proper time ordering of the successive emissions — the

formation time increases from one emission to the next one — because the emission angles

are not (strongly) increasing. We then perform a boost to the frame where the primary

quarks make a small angle 2θ0, as shown in the right panel of figure 2.

The COM and boosted frames are related by a boost factor γ = 1/
√

1− v2 with

velocity v = cos θ0; we deduce that γ = 1/sin θ0 ' 1/θ0 is large when θ0 � 1. Let us

denote the four-momentum of the i-th emitted gluon in the COM and boosted frames by

k̄µi = ω̄i(1, sin θ̄i, 0,− cos θ̄i) and kµi = ωi(1, sin θi, 0, cos θi), respectively. (Note that in the

former case the angles are measured with respect to the negative z-axis.) As explained

in the previous sections, the angles are strongly ordered in the two frames, but in the

opposite directions: 1 � θ̄1 � θ̄2 � · · · � θ0 and θ0 � θ1 � θ2 � · · · � 1. Using

the Lorentz transformation law for the energy together with the boost-invariance of the

transverse momentum, one finds

ωi = ω̄i
1− cos θ̄i cos θ0

sin θ0
' ω̄i

θ2
0 + θ̄2

i

2θ0
' ω̄iθ̄

2
i

2θ0
, ωi = ω̄i

sin θ̄i
sin θi

' ω̄iθ̄i
θi

, (3.1)

from where one deduces θiθ̄i ' 2θ0. From (3.1) we immediately see that the ordering in

energies ω̄i � ω̄i+1 in the COM frame corresponds to an ordering in formation times in

the boosted frame:

τi '
1

ωiθ2
i

=
1

2ω̄iθ0
� τi+1. (3.2)

This correspondence has an important implication in how the double logarithms (en-

ergy times collinear) arise in the two frames. In the COM frame, they correspond to a

collinear regime, where the energies and the emission angles are simultaneously decreasing:

ω̄i � ω̄i+1 and θ̄i � θ̄i+1 (which automatically imply the proper time ordering: τ̄i � τ̄i+1).

The double logarithm then simply arises from the unconstrained, double, integral

I = 2ᾱs

∫ 1

θ0

dθ̄1

θ̄1

∫ E

E0

dω̄1

ω̄1
= ᾱs ln

1

θ2
0

ln
E

E0
. (3.3)

Going to the boosted frame, it is clear that the same double logarithm will be generated

by integrating over a different domain in phase-space, where the respective variables θ and

ω are now constrained by time-ordering. It is furthermore clear that one can return to
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unconstrained integrations by changing variables from θ and ω to θ and τ . In order to

deduce the respective integration limits, we shall perform a change of variables in eq. (3.3)

in the form of the Lorentz transformation from the COM frame to the boosted frame. It

is easy to check that dθ̄1dω̄1

θ̄1ω̄1
= dθ1dω1

θ1ω1
, meaning that the integrand preserves the same form

but the integration region in ω1 depends on θ1 in such a way that effectively one has a

logarithmic integral over the formation time τ1 = 1/(ω1θ
2
1):

I = 2ᾱs

∫ 2

2θ0

dθ1

θ1

∫ 2θ0E

θ21

2θ0E0
θ21

dω1

ω1
= 2ᾱs

∫ 2

2θ0

dθ1

θ1

∫ τmax

τ0

dτ1

τ1
= ᾱs ln

1

θ2
0

ln
E

E0
. (3.4)

where τmax ≡ 1/(2E0θ0) and τ0 ≡ 1/(2Eθ0). It is interesting to study the integration limits

for ω1 and also for τ1 in more detail. The upper limit 2θ0E/θ
2
1 ∼ (θ0/θ1)2γE on ω1 is much

smaller, by a factor (θ0/θ1)2 � 1, than the would-be absolute upper limit on the energy of

an emitted gluon, as set by the energy p0
a = γE of the primary quark. Similarly, the lower

limit 2θ0E0/θ
2
1 is much larger, by the factor 1/θ2

1 � 1, than the lowest value ωmin = θ0E0

for the gluon energy that was argued in our previous discussions, in sections 2.2 and 2.3.

Accordingly, the logarithmic phase-space for the integration over ω1 is effectively reduced,

by the condition of time ordering, from its ‘naive’ value Y + ' ln(p0
a/ωmin) down to Y − =

ln(E/E0) = Y + − ρ, with ρ = ln(1/θ0)2. This reduction was anticipated in section 2.2.

Consider finally the integration limits on τ1. The upper limit τmax ∼ 1/ωmin is recog-

nized as the formation time for a gluon with energy ω ∼ ωmin and which makes a polar

angle of order one. This is softest gluon which matter to the DLA evolution, as discussed

in sections 2.2 and 2.3. The lower limit, that can be rewritten as τ0 = 1/(2γEθ2
0), is the

coherence time associated with the original (boosted) dipole, with energy γE and opening

angle 2θ0. This is also the shortest possible formation time, as it corresponds to a very hard

gluon emission with energy ω ∼ γE and which is nearly collinear with its parent quark.

3.2 One gluon emission from a boosted antenna

In this section, we shall use the rules of light-cone perturbation theory (LCPT), in which

emission vertices are explicitly ordered in time and gluons are described by physical po-

larization vectors, to compute the emission of a soft gluon by a boosted antenna. The

result for the emission probability that we shall obtain is of course standard — the ‘an-

tenna pattern’ (2.2), — but its present calculation is perhaps less familiar. Indeed, such

calculations are generally performed within the covariant formalism (notably, the Feynman

gauge), which is more economical. Yet, the formalism to be used has the virtue to make

the physical picture more transparent.

Consider a boosted dipole with small opening angle θab � 1, as illustrated in the

right panel of figure 2. The primary quarks, a and b, have large longitudinal momenta

pza = p0
a cos θa ' p0

a, but comparatively small transverse momenta pa⊥ = p0
a sin θa ' p0

aθa

– 16 –



J
H
E
P
0
2
(
2
0
1
8
)
0
7
5

(A) (B)

(C) (D)

Figure 3. The 4 graphs which contribute to the emission probability of a soft gluon by an antenna

in LCPT.

(and similarly4 for the antiquark b). The radiated gluon is much softer, kz � p0
a, but in

general it still makes a small angle w.r.t. the z axis, θk ' k⊥/kz � 1. It is then convenient

to use light-cone (LC) variables, e.g. k± = (k0±kz)/
√

2. The ‘large component’ k+ '
√

2kz
is the LC longitudinal momentum, whereas the ‘small component’ k− is the LC energy and

is equal to k− = k2
⊥/2k

+ for an on-shell gluon.

We would like to compute the differential probability dP/dk+d2k⊥ for the emission

of a soft gluon. To that aim, one needs to evaluate the 4 Feynman graphs displayed

in figure 3. Graphs A and C describe direct emissions, by either the quark a or the

antiquark b, while graphs B and D describe interference effects between the emissions by

the two fermions. It is perhaps interesting to notice that in the Feynman gauge with gluon

propagator Gµν ∝ gµν , the contributions of the direct emissions, graphs A and C, are both

equal to zero,5 so the whole result comes from the interference terms alone (B and D). This

is a peculiarity of the Feynman gauge, without any deep physical meaning. The physical

picture becomes manifest only in the LC gauge A+ = 0, that we shall employ here.

4In the context of the previous section, we have considered the symmetric situation where θa = θb = θ0
and p0a = p0b . For the present purposes, such a strict symmetry is not needed. We shall merely assume that

the angles θa and θb are both small, such that θab = θa + θb � 1, and that the initial energies p0a and p0b
are comparable with each other.

5Indeed, in the eikonal approximation appropriate for soft gluons, the emission vertices are simply

proportional to the 4-momenta of the on-shell quarks; hence, the contribution of a ‘direct’ graph, say graph

A, is proportional to pµaGµν(k)pνa ∝ p2a = 0.
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We present more details for the interference graph B. After applying the Feynman

rules of LCPT in the LC gauge A+ = 0 (see e.g. [40]), one finds

GB=−g2CF

∫
d3k

(2π)32k+

1

2(p+
a +k+)

1

2(p+
b +k+)

[
ū(pb)γ ·ε(λ)u(pb+k)

][
ū(pa)γ ·ε∗(λ)u(pa+k)

]
× 1

p2a⊥
2p+a

+
k2⊥
2k+
− (pa⊥+k⊥)2

2(p+a +k+)

1
p2b⊥
2p+b

+
k2⊥
2k+
− (pb⊥+k⊥)2

2(p+b +k+)

, (3.5)

where the kinematics of the emitted gluon has been integrated over (with the notation

d3k = dk+d2k⊥), the proper limits being implicitly understood (in particular, k+ is positive

and soft). The overall minus sign occurs because the quark and the antiquark have opposite

color charges. The sum over the gluon polarization states (λ = 1, 2) is understood.

The two energy denominators in the second line of eq. (3.5) have been obtained after

integrating over the gluons emission times — x+
b for the emission by the antiquark b in

the direct amplitude (DA) and, respectively, x+
a for that by the quark a in the complex

conjugate amplitude (CCA); e.g.,

1

Da
≡ i

∫ ∞
0

dx+
a e−i∆Eax

+
a =

1

∆Ea
, (3.6)

where ∆Ea ≡ p−a +k−− (pa+k)− is the difference between the LC energies at the emission

vertex. [(pa+k)− denotes the LC energy of the parton with 3-momentum (p+
a +k+, pa⊥+

k⊥).] Accordingly,

Da = ∆Ea = p−a + k− − (pa + k)− =
p2
a⊥

2p+
a

+
k2
⊥

2k+
− (pa⊥ + k⊥)2

2(p+
a + k+)

. (3.7)

A similar expression holds for the other energy denominator Db.

Let z ≡ k+/(p+
a + k+) denote the longitudinal momentum fraction taken by the gluon;

this is small, z � 1, for a soft emission. Then one can successively write

Da =
1

2(p+
a + k+)

(
p2
a⊥

1− z
+
k2
⊥
z
−
(
pa⊥ + k⊥

)2)
=

z(1− z)

2(p+
a + k+)

(
pa⊥

1− z
− k⊥

z

)2

=
k+(1− z)

4
(va − vk)

2 . (3.8)

In the last line we introduced the transverse velocities of the quark and the gluon,

va ≡
√

2
pa⊥

p+
a
, vk ≡

√
2
k⊥
k+

, (3.9)

which are convenient since directly related to the respective polar angles. For instance, the

gluon angle reads θk ' k⊥/kz ' vk, with vk ≡ |vk|.
The standard BMS regime corresponds to a situation where the various polar angle

are comparable to each other, θk ∼ θa, so the two terms inside the last parenthesis in
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eq. (3.8) are equally important. Together, the two conditions z � 1 and θk ∼ θa imply

k⊥/pa⊥ ∼ k+/p+
a ' z � 1. That is, the emitted gluon is (relatively) ‘soft’ not only for

its longitudinal momentum, but also for its transverse one. In spite of that, in evaluating

eq. (3.8) it was important not to perform kinematical approximations too early. [For

instance, within the braces in the first line, the would-be dominant term p2
a⊥ cancels out in

the difference p2
a⊥/(1− z)−

(
pa⊥ + k⊥

)2
.] But of course it is possible to replace 1− z ' 1

in the prefactor occurring in the final result. We thus conclude that

Da '
k+

4
(va − vk)

2 , Db '
k+

4
(vb − vk)

2 , (3.10)

where Db refers to the energy denominator for the DA.

Consider now the numerators in eq. (3.8), which are built with spinors, Dirac matrices,

and the gluon polarization vector εµ(λ). In the LC gauge A+ = 0, one has

εµ(λ)(k) ≡
(
ε+(λ), ε

−
(λ), e(λ)

)
=

(
0,

k⊥ · e(λ)

k+
, e(λ)

)
,

∑
λ=1,2

ei(λ)e
j
(λ) = δij . (3.11)

Using the fact that the emitted gluon is soft, in the sense that k+ � p+
a and k⊥ � pa⊥,

together with ū(pa)γ
µu(pa) = 2pµ, one finds e.g.

ū(pa)γ ·ε∗(λ)u(pa+k) ' 2pa ·ε∗(λ) =
2p+
a

k+
k⊥ ·e(λ)−2pa⊥ ·e(λ) =

√
2p+
a (vk−va)·e(λ) . (3.12)

As already discussed in relation with eq. (3.8), both terms in the above result — the one

proportional to vk and that proportional to va — are equally important. At a first sight,

this seems to go beyond the standard eikonal approximation, which instructs us to keep

only the coupling between the ‘large’ component p+
a and the ‘minus’ component ε−(λ) of

the polarization vector, which is enhanced at small k+. But a moment of thinking reveals

that the scope of the eikonal approximation must be enlarged in this case, in order to keep

trace of the polar angle made by the parent parton: indeed, although small, this angle

is essential for computing dipole radiation.6 As a matter of fact, we do use the eikonal

approximation, in that we assume that the trajectory (velocity) of the parent quark is not

modified by the emission of a soft gluon; but the information about the angle made by this

trajectory w.r.t. the longitudinal axis cannot be ignored, since it is essential for the present

purposes. This is in agreement with the observation in [5] that the proper formulation of

the eikonal approximation for time-like evolution is in terms of (polar) angles: the angle

of the emitter is not modified by the emission of a soft gluon.

After similarly evaluating the other Dirac factor in eq. (3.8), performing the sum over

λ, and putting together all the above results, one finds

GB = −αsCF

π2

∫
dk+

k+
d2vk

(vk − va) · (vk − vb)

(vk − va)
2 (vk − vb)

2 . (3.13)

6The opening angle θab plays the same role within the time-like evolution of the antenna as the dipole

transverse size in the context of the space-like evolution.
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We have also used d2k⊥ = (k+)2d2vk/2 to change the integration variable from k⊥ to vk
and thus make explicit the fact that the final integral over k+ is logarithmic, as expected.

It is now straightforward to deduce the respective contributions of the other 3 graphs

in figure 3. The other interference graph D gives the same result as shown in eq. (3.13). As

for the direct emissions, graphs A and C, the respective contributions are obtained from

eq. (3.13) by changing the overall sign and replacing (vk − vb) → (vk − va) for graph A

and, vice-versa, (vk − va)→ (vk − vb) for graph C. Hence the result of summing over the

4 graphs amounts to replacing the kernel in eq. (3.13) (including its sign) by

− 2
(vk − va) · (vk − vb)

(vk − va)
2 (vk − vb)

2 +
1

(vk − va)
2 +

1

(vk − vb)
2 =

(va − vb)
2

(vk − va)
2 (vk − vb)

2 . (3.14)

To establish the correspondence with the kernel of the BMS equation (2.1), one needs

to replace the transverse velocities of the various partons by the respective (polar and

azimuthal) angles on S2; e.g. vk → (φk, θk). Consider first the integration measure: one

can write d2vk = dφkvkdvk ' dφkθkdθk ' dΩk, where we have used vk ' θk for small

angles. Finally, the approximation

(vk − va)
2 ' 2

(
1− cos θka

)
' θ2

ka , (3.15)

allows us to recognise eq. (3.14) as the small-angle version of the dipole kernel wabc,

cf. eq. (2.2). To check eq. (3.15), we write the scalar product pa · k in 2 different ways

(in usual coordinates and in the LC ones) and compare the results. On one hand, pa · k =

p0
ak

0(1− cos θka); on the other hand,

pa · k = p+
a k
−+ p−a k

+−pa⊥ ·k⊥ =
p+
a k

2
⊥

2k+
+
k+p2

a⊥
2p+
a
−pa⊥ ·k⊥ =

p+
a k

+

4
(vk − va)

2 . (3.16)

Recalling that p+
a k

+ ' 2p0
ak

0 at high energies (or small angles), one immediately deduces

eq. (3.15).

To summarise, the differential probability for emitting a soft gluon from the quark-

antiquark antenna (ab) reads:

k+ dP

dk+
=

2αsCF

π

∫
dΩk

4π

1− cos θab
(1− cos θka)(1− cos θkb)

, (3.17)

which at large Nc (where 2CF ' Nc) agrees indeed with eq. (2.1).

Let us finally comment on the physical interpretation of the energy denomina-

tors (3.10). Using eq. (3.15) for small angles, we see that e.g. 1/Da ' 4/(k+θ2
ka), which

is the formation time τk for the gluon emission by the quark a (i.e. the time it takes the

gluon to lose coherence w.r.t. its parent parton). As expected, the energy denominators

encode the quantum uncertainty between energy and time. This information will be further

exploited in the next subsection.

3.3 Two-gluon emission: time-ordering from energy denominators

In this subsection, we shall consider two successive gluon emissions, whose longitudinal

momenta are strongly decreasing, p+
a � k+

1 � k+
2 � µ with µ an infrared cutoff, but
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whose emission angles are strongly increasing: θab � θ1a � θ21 � 1. This is the ‘anti-

collinear regime’ in which the LO BMS equation was previously argued to resum double-

logarithmic corrections of the type (ᾱsY ρ)n, where Y = ln(p+
a /µ) is the energy logarithm

and ρ = ln(1/θ2
ab) is the collinear one. In particular, we expect the dominant contribution of

our sequence of two gluon emissions to be of order (ᾱsY ρ)2. Yet, as we would like to show in

what follows, there is an important assumption underlying the LLA, which is not enforced in

the LO BMS equation: this is the fact that the formation time τ2 ∼ 1/(k+
2 θ

2
21) of the softer

gluon is (much) larger than that, τ1 ∼ 1/(k+
1 θ

2
1a), of the harder gluon; that is, τ2 � τ1. This

condition is automatically satisfied in the usual BMS regime where the emission angles are

comparable (in particular, it was always satisfied in previous applications of this equation in

the literature), yet it becomes non-trivial — and its non-enforcement spoils the convergence

of the high-energy approximations — in the anti-collinear regime of interest for us here.

Our purpose in this subsection is merely to demonstrate the emergence of this time-

ordering condition from the energy denominators associated with the 2-gluon graphs.

Hence, we shall not compute such graphs in full generality (that would be quite tedious even

in the LLA, due to the many possible topologies), but merely exhibit the energy denomina-

tors corresponding to selected topologies, which are representative. Also, it is sufficient to

consider only ‘real’ graphs (that is, Feynman diagrams in which both gluons are produced

in the final state) and to study emission amplitudes (rather than probabilities) — indeed,

the information about the formation times is separately included in the DA and in the

CCA, since the respective energy denominators are simply multiplied with each other.

When computing Feynman graphs in LCPT, the time ordering of the emission vertices

is important and in what follows we shall concentrate on graphs where the (harder) gluon

1 is emitted prior to the (softer) gluon 2. By itself, this ordering of the emission vertices

does not guarantee that the formation times obey the expected condition τ2 > τ1. We shall

nevertheless find that the latter is respected by the contributions which matter to LLA. The

discussion of the ‘anti-time-ordered’ graphs in which the softer gluon is the first one to be

emitted is quite non-trivial, but the final conclusion is that such graphs are not important

to the accuracy of interest (we refer to ref. [25] for a detailed argument in that sense,

developed in the context of the space-like evolution of the dipole scattering amplitude).

Under the present assumptions, there are 6 possible topologies contributing to the 2-

gluon amplitude: the 3 graphs shown in figure 4, where gluon 1 is emitted from the quark

a, and the 3 corresponding ones where it is emitted from the antiquark b. As we shall

see, any of these 6 topologies carries the required information about the time-ordering; for

pedagogy we shall discuss those exhibited in figure 4.

Consider first the graph in figure 4.a. This involves the product of two energy denom-

inators, 1/(D1D2), corresponding to the two intermediate states indicated with dashed

lines. Once again, these energy denominators are generated by integrating over the emis-

sion times, x+
1 and x+

2 , associated with the two vertices:

1

D1

1

D2
= −

∫ ∞
0

dx+
1

∫ ∞
x+1

dx+
2 ei∆E1x

+
1 +i∆E2x

+
2 =

1

∆E1 + ∆E2

1

∆E2
, (3.18)

where ∆Ei = Ei+1 − Ei, with i = 1, 2, is the difference between the LC energies of the

partonic states before and after the gluon emission at the vertex i; accordingly, D2 = ∆E2
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(a) (b) (c)

Figure 4. Three over the six topologies contributing to the 2-gluon amplitude in LCPT. As

discussed in the text, we consider only diagrams in which the harder gluon is emitted prior to the

softer one (k+1 � k+2 ). Also, albeit this is not visible in the graphical representation, we consider

emission angles which are much larger than the antenna opening and strongly increasing from the

first emission to the second one (θ2 � θ1 � θab).

and D1 = ∆E1 + ∆E2. As a general rule, Di is equal to the difference between the LC

energy of the final state (here involving the quark-antiquark pair together with 2 gluons)

and the LC energy of the intermediate state at hand.

Let us first consider the second energy denominator 1/D2, since the respective discus-

sion is simpler. By inspection of figure 4.a, one finds (compare to eq. (3.8))

D2 = k−1 + k−2 −
(
k1 + k2

)−
=

k2
1⊥

2k+
1

+
k2

2⊥
2k+

2

− (k1⊥ + k2⊥)2

2(k+
1 + k+

2 )

=
k+

1 k
+
2

4(k+
1 + k+

2 )
(v1 − v2)2 ' k+

2

4
θ2

21 , (3.19)

where the last, approximate, equality follows after using k+
2 � k+

1 together with eq. (3.15).

The energy denominator 1/D2 is recognized as the formation time τ2 for the emission of

the second gluon from the first one. This denominator contains no information about the

relative time ordering of the two emissions, since the first gluon merely acts as a source for

the second one. This information is rather encoded in the first energy denominator 1/D1:

from the uncertainty principle, we expect τ1 ∼ 1/∆E1, but 1/D1 rather involves the sum

∆E1 + ∆E2; specifically,

1

D1
=

1

∆E1 + ∆E2
=

1

1/τ1 + 1/τ2
'


τ1 if τ2 � τ1,

τ2 if τ1 � τ2.
(3.20)

In the usual formulation of the LLA, one effectively replaces 1/D1 → τ1; this ensures

the factorization of the first gluon emission from the second one and also provides the

logarithmic phase-space for the integration over k+
1 . However, as explicit in eq. (3.20)

above, this logarithmic phase-space is truly available only so long as τ2 > τ1; that is, for

the purposes of the LLA, one should rather use 1/D1 ' τ1Θ(τ2 − τ1). The Θ-function

enforces the time-ordering condition that we were anticipating.
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The above argument may look a bit schematic, so let us rephrase it by using more

explicit notations. With reference to figure 4.a, one can successively write

D1 = p−a + k−1 + k−2 −
(
pa + k1 + k2

)−
=
[
p−a + k− −

(
pa + k

)−]
+
[
k−1 + k−2 − k

−]
=

p+
a k

+

4(p+
a + k+)

(vk − va)
2 +

k+
1 k

+
2

4(k+
1 + k+

2 )
(v1 − v2)2

' k+

4
θ2
ka +

k+
2

4
θ2

21 '
k+

1 θ
2
1a

4
Θ(τ2 − τ1) +

k+
2 θ

2
21

4
Θ(τ1 − τ2) . (3.21)

In writing the second equality above we have added and subtracted k− ≡ k2
⊥/2k

+ with7

k⊥ = k1⊥ + k2⊥ and k+ = k+
1 + k+

2 , in order to construct the energy differences ∆E1

and ∆E2. Then we have used eqs. (3.8) and (3.15) separately for ∆E1 and ∆E2, together

with simplifications following from the fact that p+
a � k+

1 � k+
2 . The final approximation

in eq. (3.21), where τ1 ≡ 4/(k+
1 θ

2
1a) and τ2 ≡ 4/(k+

2 θ
2
21), is the same as the last estimate

in eq. (3.20). Notice that, in writing the final result, we have approximated θka ' θ1a,

that is, we have assumed that the direction of propagation of the parent gluon k+, as

described by its transverse velocity vk, is not modified by the emission of the soft gluon

k+
2 . This property is a hallmark of the eikonal approximation in the context of the time-like

evolution [5], so it is instructive to elaborate more on it. Using the definition in eq. (3.9),

one can successively write

vk =
√

2
k1⊥ + k2⊥

k+
1 + k+

2

=
k+

1

k+
1 + k+

2

v1 +
k+

2

k+
1 + k+

2

v2 ' v1 +
k+

2

k+
1

v2 ' v1 , (3.22)

where the only non-trivial approximation is the very last one: this is not trivial since, albeit

k+
1 � k+

2 , one also has v2 ' θ2 � v1 ' θ1. This being said, we shall shortly check that the

condition k+
2 θ2 � k+

1 θ1 remains satisfied. Equivalently, the gluon transverse momenta are

strongly decreasing, k2⊥ � k1⊥, for the emissions contributing to the LLA.

Returning to the final result in eq. (3.21), it is only the time-ordered regime at τ2 > τ1

which contributes to the LLA. Indeed, in this regime D1 ' (k+
1 θ

2
1a)/4 has the right depen-

dence upon k+
1 to generate, together with the other factors occurring when evaluating the

emission probabilities, a logarithmic phase-space for the integral over k+
1 (and similarly for

the integral over k+
2 ). Since k+

2 � k+
1 , the condition τ2 > τ1 is automatically satisfied except

within the anti-collinear evolution, where the emission angles are strongly increasing: θ21 �
θ1a. In that context, the condition τ2 > τ1 implies an upper limit on the angle of the softer

emission: θ2
21 < θ2

1a(k
+
1 /k

+
2 ). Since k+

1 � k+
2 , this constraint still allows for angles θ2 much

larger than θ1. But this constraint also implies k+
2 θ2 � k+

1 θ1, as anticipated after eq. (3.22).

It is easy to extend the above considerations to the two other amplitudes in figure 4.

For the middle graph in figure 4.b, the second energy denominator reads

D2 = p−a + k−2 − (pa + k2)− ' k+
2

4
θ2

2a , (3.23)

7We recall that (pa + k)− denotes the LC energy of the intermediate state with 3-momentum (p+a +

k+, pa⊥ + k⊥), hence
(
pa + k1 + k2

)−
is the same as

(
pa + k

)−
.
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and encodes the formation time for the emission of gluon 2 from the quark a. As for the

first energy denominator D1, this is evaluated exactly as in eqs. (3.20)–(3.21) and carries

the information about the formation time for the gluon 1 and the time-ordering of the two

emissions. Finally, for the graph in figure 4.c, one has D2 = p−b +k−2 −(pb+k2)− ' (k+
2 θ

2
2b)/4

(describing the emission of the softest gluon from the antiquark b), whereas

D1 =
[
p−a + k−1 − (p1 + k1)−

]
+
[
p−b + k−2 − (pb + k2)−

]
' k+

1

4
θ2

1a +
k+

2

4
θ2

2b

' k+
1 θ

2
1a

4
Θ(τ2 − τ1) , (3.24)

with the last estimate holding in the LLA. Note that the expressions of the formation

time for the same gluon may involve different emission angles in different graphs; e.g. τ2 =

4/(k+
2 θ

2
21) for the graph in figure 4.a, but τ2 = 4/(k+

2 θ
2
2b) for that in figure 4.c. Yet this

is not important to the accuracy of interest, since the difference between say θ21 and θ2b

is irrelevant for the emissions at wide angles which must be constrained by time-ordering:

θ21 ' θ2b ' θ2.

To better appreciate the effects of the time-ordering within the anti-collinear evolution,

let us integrate out the intermediate gluon 1 for a fixed kinematics of the gluon 2, such

that p+
a � k+

1 � k+
2 and θ0 � θ1 � θ2 � 1 (we wrote θab = 2θ0, to match the notations

in other sections of the paper). Our calculation will be schematic and restricted to the

double-logarithmic approximation (DLA), where the integrals over k+
1 and θ1 are both

logarithmic. The DLA integral over gluon 1 reads

ᾱs

∫ θ2

θ0

dθ1

θ1

∫ p+a

k+2

dk+
1

k+
1

θ(τ1 − τ0)θ(τ2 − τ1) = ᾱs

∫ θ2

θ0

dθ1

θ1

∫ p+a (θ20/θ
2
1)

k+2 (θ22/θ
2
1)

dk+
1

k+
1

=
ᾱs
2

ln
p+
a θ

2
0

k+
2 θ

2
2

ln
θ2

2

θ2
0

=
ᾱs
2

(
Y + − ρ

)
ρ (3.25)

and involves two time-ordering constraints: the formation time τ1 of the intermediate gluon

1 should be smaller than the respective time, τ2, of the softer gluon 2, but also larger than

the coherence time τ0 = 1/(p+
a θ

2
0) of the original dipole, as explained in section 3.1. These

two constraints have been used to modify the integration limits for the integral over k+
1 : the

upper limit has been reduced from p+
a to p+

a (θ2
0/θ

2
1), whereas the lower limit has been raised

from k+
2 to k+

2 (θ2
2/θ

2
1). In the final result, Y + ≡ ln(p+

a /k
+
2 ) is the rapidity phase-space that

would be available to gluon 1 in the absence of time-ordering, whereas ρ ≡ ln(θ2
2/θ

2
0) is

the respective collinear phase-space. As anticipated at the end of section 2.3 (and further

discussed from a different perspective in section 3.1), the main consequence of time-ordering

is to reduce the phase-space for rapidity evolution from Y + to Y − = Y + − ρ.

In the usual organization of the high-energy resummation in perturbative QCD, the

two terms in the final result in eq. (3.25), that is, ᾱsY
+ρ and ᾱsρ

2, appear at different

orders in ᾱs. To understand that, notice that the subsequent integral over the kinematics of

gluon 2 will generate, in particular, another factor ᾱsY
+ρ. The product (ᾱsY

+ρ)2, which

is quadratic in Y +, is then interpreted as a LO piece, coming from two iterations of the LO

BMS equation. On the other hand, the term linear in Y +, that is, (−ᾱ2
sρ

2Y +), is viewed
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as a NLO correction to the BMS kernel. As clear from the above, this NLO correction is

negative and potentially large (in the anti-collinear kinematics), since enhanced by a double

collinear logarithm. This particular correction is explicitly extracted from the general NLO

result in appendix A. Such large higher-order corrections, which appear when treating the

time-ordering condition within a strict expansion in powers of αs, are expected to spoil the

convergence of the perturbation series. Better methods to enforce time-ordering within the

BMS evolution will be presented in the next section.

4 The collinearly-improved BMS equation

In this section, we will modify the LO BMS equation in order to incorporate the effects of

time-ordering within the anti-collinear evolution of a boosted dipole. As we shall see, this

amounts to a partial resummation of the perturbative expansion to all orders. We shall first

perform this resummation at the level of the DLA, i.e. in the regime where the emission

angles are strongly increasing, and then generalize it to generic values for the emission

angles. The subsequent construction is very similar to that presented in ref. [25] in the

context of the space-like evolution, so in what follows we shall skip some of the details.

If one was interested in the DLA alone, then the inclusion of the proper time-ordering

would be straightforward: it would suffice to use the formation time τ = 1/(k+θ2) instead

of the gluon longitudinal momentum k+ as the energy variable for the evolution. More

precisely, the ‘evolution time’ should be Y − = ln(τmax/τ), with τ comprised within the

range τ0 < τ < τmax. We recall that τ0 = 1/(p+
a θ

2
0) is the coherence time of the primary

qq̄ dipole, whereas τmax = 1/k+
min, with k+

min =
√

2θ0E0, denotes the formation time of the

softest gluon which matters to the DLA evolution. The function A(ρ, Y −) (the relevant

observable to DLA, cf. section 2.2) will obey the standard version of the DLA equation,

that is, eq. (2.8) with Y → Y −. The associated solution, as given by eq. (2.9) with

Y → Y −max = ln(E/E0), would precisely coincide with the corresponding approximation in

the COM frame, cf. eq. (2.15).

Our ultimate interest, however, is not in the DLA equation per se, but in the more

general BMS equation. The natural energy variable for building the BMS evolution of a

boosted dipole which propagates along the positive z axis is Y + = ln(k+/k+
min), as shown

in section 3. In general, the BMS equation is non-local in the emission angles, so one

cannot simply replace Y + → Y − = Y + − ρ as the ‘evolution time’. Indeed, the very

definition of the ‘collinear logarithm’ ρ = ln(1/θ2) becomes ambiguous in the presence of

the non-locality in angles. Besides, ρ is not a monotonous variable anymore: angles can

both increase or decrease during the evolution. To work out the evolution in this more

general context, one must enforce the condition of time-ordering directly in terms of Y +.

For more clarity, we shall preserve the notations Y + and ρ for the respective maximal

values, Y + = ln(p+
a /k

+
min) and ρ = ln(1/θ2

0), and use a subscript c to indicate the kinematics

of the emitted gluon: Y +
c = ln(k+

c /k
+
min), ρc = ln(1/θ2

c ), etc. The relevant time-ordering

conditions read

τ0 < τc < τmax =⇒ 1

p+
a θ2

0

<
1

k+
c θ2

c

<
1

k+
min

=⇒ ρc < Y +
c < Y + − ρ+ ρc . (4.1)
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Clearly, the condition Y + > ρ is required in order to ensure a non-trivial phase-space for

the DLA evolution. The time-ordered version of the BMS equation in the DLA limit reads

(in integral form)

A(ρ, Y +) =
ᾱs
8

(Y + − ρ)Θ(Y + − ρ) + ᾱs

ρ∫
0

dρc

Y +−ρ+ρc∫
ρc

dY +
c A(ρc, Y

+
c ). (4.2)

Both the source term and the evolution term in the r.h.s. of this equation have support at

Y + > ρ alone, hence the same property is valid for its solution A(ρ, Y +). The integral form

in eq. (4.2) is particularly convenient for constructing the exact solution via an iterative

procedure; we thus obtain the following power series

A(ρ, Y +) =
1

8
Θ(Y + − ρ)

∞∑
k=1

ᾱks(Y
+ − ρ)kρk−1

k!(k − 1)!
, (4.3)

which can be readily summed to give

A(ρ, Y +) =
1

8
Θ(Y + − ρ)

√
ᾱs(Y + − ρ)

ρ
I1

(
2
√
ᾱs(Y + − ρ)ρ

)
. (4.4)

As anticipated, this is the same as the DLA solution8 (2.9) with Y → Y + − ρ = Y −.

In particular, the Θ-function enforcing Y + > ρ is the equivalent of the vanishing initial

condition at Y − = 0 in the COM frame.

It should be possible to promote the time-ordered DLA equation (4.2) to full BMS

accuracy, by following steps similar to those detailed in [24] for the case of the BK equation

(i.e. for the space-like evolution). However, still as in that case, the ensuing equation would

have the drawback to be non-local in Y +. Indeed, this is already the case for eq. (4.2),

due to the ρ-dependence of the upper limit on the integral over Y +
c . Here we shall use a

different strategy, which follows the treatment of the BK equation in [25]. Namely, we shall

first rewrite the DLA version of the BMS equation in a local form, that is, in a form in

which the evolution kernel does not depend on Y +. To that aim, we shall use an integral

representation of the modified Bessel function I1 in the complex plane: for Y + > ρ, eq. (4.4)

is equivalent to

A(ρ, Y +) =
1

8

1
2

+i∞∫
1
2
−i∞

dξ

2πi
exp

[
ᾱs

1− ξ
(Y + − ρ) + (1− ξ)ρ

]
− δ(ρ)

8
. (4.5)

The δ-function in the above equation is necessary, as it ensures that the boundary condition

at Y + = ρ is correct, i.e. A(ρ, Y + = ρ) = 0. Now the integral in the r.h.s. of eq. (4.5) is

well defined also for Y + < ρ, where it represents the ordinary (oscillating) Bessel function

J1. So, we shall use eq. (4.5) to define an analytical continuation of A(ρ, Y +) valid for

8Via the simple change of variables Y + ≡ Y − + ρ, eq. (4.2) would take the standard DLA form,

cf. eq. (2.8).
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all positive values of Y +, including the non-physical range at Y + < ρ. For this analytic

continuation, that we shall still denote as A(ρ, Y +) to avoid a proliferation of symbols, we

will now deduce an evolution equation which is local in Y + and is formulated as an initial-

value problem (but including a source term), with the initial condition given at Y + = 0.

Namely, by making a change of the integration variable according to γ = ξ+ᾱs/(1−ξ),
eq. (4.5) can be written in the form of a standard Mellin representation w.r.t. to the variable

ρ, that is

A(ρ, Y +) =
1

8

1
2

+i∞∫
1
2
−i∞

dγ

2πi
J(γ) exp

[
ᾱsχDLA(γ)Y + + (1− γ)ρ

]
− δ(ρ)

8
. (4.6)

There are two new functions appearing in the above. The first is the ‘characteristic function’

χDLA(γ), which is defined as the coefficient of ᾱsY
+ and thus given by

ᾱsχDLA(γ) =
1

2

[
−(1− γ) +

√
(1− γ)2 + 4ᾱs

]
=

ᾱs
1− γ

− ᾱ2
s

(1− γ)3
+

2ᾱ3
s

(1− γ)5
+ · · · , (4.7)

and the second is the Jacobian due to the change of variables, which is related to the

characteristic function and reads

J(γ) = 1− ᾱsχ′DLA(γ) = 1− ᾱs
(1− γ)2

+
3ᾱ2

s

(1− γ)4
+ · · · . (4.8)

Notice that both functions are finite at γ = 1; the poles at γ = 1 appearing after the second

equality in each of eq. (4.7) and eq. (4.8) are just an artifact of expanding in powers of ᾱs
and truncating the series. Also, the first term (the unity) in the r.h.s. of eq. (4.8) for J(γ)

simply cancels the contribution of the δ-function explicit in the r.h.s. of eq. (4.6).

Using the properties of the Mellin transform, one finds that the function A(ρ, Y +)

defined by eq. (4.6) obeys an evolution equation which is local in Y + and in integral form

it reads

A(ρ, Y +) = A(ρ, Y + = 0) +
ᾱs
8
KDLA(ρ)Y + + ᾱs

Y +∫
0

dY +
c

ρ∫
0

dρcKDLA(ρ− ρc)A(ρc, Y
+
c ).

(4.9)

The new evolution kernel KDLA(ρ) is the inverse Mellin transform of χDLA(γ) and is given

by

KDLA(ρ)=

1
2

+i∞∫
1
2
−i∞

dγ

2πi
χDLA(γ)exp[(1−γ)ρ]=

J1

(
2
√
ᾱsρ2

)√
ᾱsρ2

=1− ᾱsρ
2

2
+

(ᾱsρ
2)2

12
+O

(
(ᾱsρ

2)3
)
,

(4.10)

where J1 is a Bessel function of the first kind. We notice not only the resummation of the

source term in terms of the evolution kernel, but also the emergence of an initial condition
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which is formulated at the unphysical point Y + = 0. This initial condition is determined

by eq. (4.6) as

A(ρ, Y + = 0) = −
√
ᾱs
8

J1

(
2
√
ᾱsρ2

)
= − ᾱsρ

8

[
1− ᾱsρ

2

2
+

(ᾱsρ
2)2

12
+O

(
(ᾱsρ

2)3
)]
.

(4.11)

This result for A(ρ, Y + = 0), including its perturbative expansion as shown above, can

also be recovered by letting Y + → 0 in the series in eq. (4.3). In particular, the leading-

order term −ᾱsρ/8 in this expansion is recognised as the piece independent of Y + from

the respective term in eq. (4.3), i.e. A(ρ, Y +) ' ᾱs(Y + − ρ)/8.

Let us see in more detail how eq. (4.9), and in particular the resummed source term,9

arise from the Mellin integral representation in eq. (4.6). To this end, we first differentiate

eq. (4.9) w.r.t. Y + in order to get rid of the initial condition and then substitute A(ρc, Y
+)

from eq. (4.6) and KDLA from its integral representation (4.10) (but only within the last,

integral, term in eq. (4.9)); we thus find

∂A(ρ, Y +)

∂Y +
=
ᾱs
8
KDLA(ρ) +

ᾱs
8

1
2

+i∞∫
1
2
−i∞

dγ

2πi

1
2

+i∞∫
1
2
−i∞

dγc
2πi

ρ∫
0

dρc χDLA(γ) exp [(1− γ)(ρ− ρc)]

× J(γc) exp
[
ᾱsχDLA(γc)Y

+ + (1− γc)ρc
]

− ᾱs
8

ρ∫
0

dρcKDLA(ρ− ρc)δ(ρc). (4.12)

The resummed source term cancels the last term in the above, while for the middle term

we first perform the integration over ρc which sets γc = γ. Thus, we arrive at

∂A(ρ, Y +)

∂Y +
=
ᾱs
8

1
2

+i∞∫
1
2
−i∞

dγ

2πi
J(γ)χDLA(γ) exp

[
ᾱsχDLA(γ)Y + + (1− γ)ρ

]
, (4.13)

which is obviously the derivative of eq. (4.6) w.r.t. Y +. It is a straightforward algebraic

exercise to verify order by order in ᾱs that eq. (4.9) together with eqs. (4.10) and (4.11)

lead to the series solution given in eq. (4.3), thus providing a cross-check for the validity

of our construction.

Eq. (4.9) is valid in the regime where the angles are strongly increasing. To extend this

equation valid to generic values for the emission angles (and thus covering the whole angular

phase-space for the BMS evolution), we first recall the relation between the currently

employed function A(ρ, Y +) and the general BMS observable: namely, we wrote Rab =

1−Pab with Rab(Y ) ' θ2
abA(θab, Y

+) to DLA accuracy. We therefore propose the following,

9Such a term is absent in the respective BK problem [25].
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collinearly-improved, version of the BMS equation

∂Pab(Y
+)

∂Y +
= −ᾱs

∫
Cout

dΩc

4π
wabcKDLA

(√
LacbLbca

)
Pab(Y

+)

+ ᾱs

∫
Cin

dΩc

4π
wabcKDLA

(√
LacbLbca

)[
Pac(Y

+)Pbc(Y
+)− Pab(Y +)

]
, (4.14)

where (recall that θab = 2θ0)

Lacb ≡ ln
1− cos θac
1− cos θab

, Lbca ≡ ln
1− cos θbc
1− cos θab

. (4.15)

The BMS equation in (4.14) is to be solved with the initial condition

Pab(Y
+ = 0) = 1 +

√
ᾱs
4

(1− cos θab)J1(2
√
ᾱsρ2) (4.16)

with the ‘collinear logarithm’ defined in the more general form ρ ≡ − ln[2(1− cos θab)].

Notice that in writing eq. (4.14) it has been possible to use the same argument for

the ‘collinearly-improved’ kernel KDLA everywhere in the angular space — that is, in both

the source term and the evolution term. Indeed, with this particular choice for the argu-

ment, one reproduces the DLA structure in eq. (4.9) in the anti-collinear regime, without

introducing spurious logarithms in the collinear regime. To see this, consider first the

‘evolution’ piece of eq. (4.14): in the anti-collinear regime at θc � θ0, one can write

θac ' θbc ' θc � θab, hence
√
LacbLbca ' ln(θ2

c/θ
2
0) = ρ − ρc, in agreement with eq. (4.9).

On the other hand, in the regime where the soft gluon is nearly collinear with say the

quark a, that is, θac � θab ' θbc, one of the two logarithms in eq. (4.15) becomes large,

Lacb ' − ln(θ2
ab/θ

2
ac), but the other one vanishes, Lbca ' 0, so the resummation becomes

trivial, KDLA ' 1, as it should.

Consider similarly the source term in eq. (4.14), where the integral over θc runs over

the interval [π/2, π], while θab = 2θ0 � 1. One can write cos θac ' cos θbc ' cos θc, where

1− cos θc is of order one whereas 1 − cos θab ' θ2
ab/2 is small. Accordingly, to logarithmic

accuracy one can neglect the dependence on θc inside the logarithms and thus deduce

LacbLbca ' ln2 2(1− cos θc)

θ2
ab

' ln2 1

θ2
0

= ρ2 , (4.17)

in agreement with the source term in eq. (4.9).

The resummed initial condition (4.16) is clearly non-physical (e.g. the initial ‘proba-

bility’ Pab(Y
+ = 0) can be larger than one), but from the above discussion it should be

clear that this is just an artefact of reshuffling the higher-order perturbative corrections

— more precisely, of redistributing the effects of time-ordering between a local (in Y +)

evolution kernel and an effective initial condition at Y + = 0. The physical probability is

eventually obtained by restricting the solution to the collinearly-improved equation to the

domain at Y + ≥ ρ. In that domain, the solution Pab(Y
+) is expected to be well-defined,

that is, positive semidefinite and smaller than 1.

Eq. (4.14) is our main new result in this paper. On top of the LO BMS evolution, this

equation properly resums the double collinear logarithm to all orders. In appendix A we will
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explicitly check that the first non-trivial term in this resummation, i.e. the piece of order

ᾱsρ
2 in the perturbative expansion of KDLA exhibited in eq. (4.10), coincides indeed with

the respective piece from the NLO corrections to the BMS kernel, as obtained by evaluating

the latter in the anti-collinear regime (see notably eqs. (A.16) and (A.35) there).

5 Relating space-like and time-like evolutions with collinear improve-

ment

In the previous sections, we have often mentioned the treatment of the Balitsky-Kovchegov

equation as a source of inspiration for the collinear improvement of the BMS equation. We

have furthermore noticed that the LO versions of these two equations are related to each

other by a precise mathematical transformation — a stereographic projection [32]. This

correspondence was recently shown to remain valid at NLO accuracy [9], but only in the

‘conformal’ sector (i.e. after excluding the NLO corrections associated with the running of

the QCD coupling). We recall that the BK equation describes the space-like evolution of

the light-cone wavefunction of an energetic color dipole (a quark-antiquark pair in a color

singlet state), as probed by the multiple scattering between the dipole and a dense target

(a ‘nucleus’). The existence of such a mathematical correspondence between the space-like

evolution of a hadronic wavefunction and the time-like evolution of a jet is highly non-trivial

and suggests the existence of a deeper equivalence at a physical level.

In this section, we would like to show that, within the context of the LLA, this stere-

ographic projection — more precisely, its extension to a conformal mapping as introduced

in [33, 41] — correctly predicts the need for time-ordering, or, equivalently, for collinear

improvement. That is, the condition of energy ordering on one side of the correspondence

is mapped onto the condition of time-ordering on the other side of the correspondence, in

all the situations where an explicit time-ordering is indeed necessary. On the other hand,

the details of the collinear improvement are not predicted by this correspondence, that is,

one cannot use this conformal mapping to obtain the collinearly-improved BMS equation

from the corresponding version of the BK equation. This is so since the double logarithms

which express the effect of time-ordering order-by-order in perturbation theory explicitly

break the conformal symmetry.

For what follows, it is useful to exhibit the LO BK equation. The natural variables are

the transverse coordinates, since they are not modified by the scattering at high energy.

The equation describes the Y -evolution of the S-matrix Sxy(Y ) for the elastic scattering

between a quark-antiquark pair with transverse coordinates x = (x1, x2) and y = (y1, y2)

and a dense target. Y is the rapidity separation between the right-moving projectile (the

dipole) and the dense target, as measured by the rapidity difference Y = ln(P+/k+) be-

tween the valence quark-antiquark pair (with longitudinal momentum P+) and the softest

gluon from the dipole wavefunction which participates in the scattering (with compara-

tively small longitudinal momentum k+ � P+). The BK equation reads [16, 17]

∂

∂Y
Sxy(Y ) = ᾱs

∫
d2z

2π

(x− y)2

(x− z)2(z − y)2

[
Sxz(Y )Szy(Y )− Sxy(Y )

]
, (5.1)
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Figure 5. The geometry of the stereographic projection. The ‘transverse’ plane is tangent to the

sphere at the ‘North Pole’, while the projection point is the ‘South Pole’. The Equator on the

sphere is projected on a circle in the plane with radius equal to D = 2R.

where z denotes the transverse coordinate of the soft gluon emitted in one step of the

evolution and ᾱs = αsNc/π as before. This equation is strictly valid in the large-Nc

limit where the soft gluon emission can be described as the splitting of the original dipole

(x,y) into two new dipoles (x, z) and (z,y), which then can independently scatter off

the target. The constant function Sxy = 1 is a fixed point of eq. (5.1), but this special

value is only achieved in the absence of any scattering (or target). Conversely, in the

presence of a non-trivial scattering, this equation must be solved with an initial condition

Sxy(Y0) < 1 at the rapidity scale Y0 where one starts the evolution. Then the solution will

obey 0 < Sxy(Y ) < 1 at any Y > Y0.

The formal similarity between the evolution term in the BMS equation (2.1) and the

BK equation (5.1) is manifest by inspection. In particular, in the limit where all the

angles in the BMS problem are small, θab � 1, θac � 1, θc � 1, etc., the antenna kernel

takes the simpler form shown in eq. (2.6); this becomes identical with the dipole kernel

in the BK equation provided one identifies relative angles with transverse separations:

θ2
ab → (x−y)2, θ2

ac → (x−z)2, etc. Similarly, for small polar angles, the solid-angle measure

dΩc ' dφc θcdθc becomes formally similar to the flat measure in the transverse plane. We

thus see emerging a precise mathematical correspondence between the two problems, which

will be discussed in more details and for arbitrary angles in the next section.

5.1 The conformal mapping

Amply used in cartography, the stereographic projection is a mapping that projects a

sphere onto a plane tangent to it. The projection point is the pole on the sphere opposite

to the tangent plane (see figure 5). This projection is conformal, that is, it preserves angles

at which the curves meet.

Consider a point on the sphere with angular coordinates Ω = (θ, φ). The point on the

tangent plane which is associated to it has coordinates x = (x1, x2), with [we recall that
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tan(θ/2) = sin θ/(1 + cos θ)]

x1 = D
sin θ cosφ

1 + cos θ
, x2 = D

sin θ sinφ

1 + cos θ
, (5.2)

where D = 2R is the diameter of the sphere. The actual value of D is irrelevant for what

follows, since it would anyway cancel out in the scale-invariant mapping between the BMS

and BK equations. With this is mind, we shall henceforth choose D = 1, to simplify writing.

The transformation (5.2) can be easily inverted to yield (with D = 1, as mentioned)

cos θ =
1− x2

1 + x2
, sin θ =

2|x|
1 + x2

, cosφ =
x1

|x|
, sinφ =

x2

|x|
. (5.3)

The squared length transforms as

(dx)2 =
1

(1 + cos θ)2
(dθ2 + sin2 θdφ2) ≡ 1

(1 + cos θ)2
dΩ2 , (5.4)

and the area element as

d2Ω = (1 + cos θ)2d2x =
4

(1 + x2)2
d2x . (5.5)

Two limiting cases will be interesting in what follows. When the polar angle θ is small,

θ � 1, the transverse coordinate of the projection point is small as well, |x| � 1, and the

above equations imply θ ' 2|x|. On the other hand, when θ is close to π, eq. (5.3) implies

|x| � 1 and π − θ ' 2/|x|.
Let us now check that this stereographic projection indeed relates the BMS and BK

equations, as anticipated. We shall identify a point Ω = (θ, φ) on the sphere with the

direction of a parton in the final state of the jet and the corresponding projection point

x, cf. eq. (5.2), with the transverse coordinate of a parton from the dipole wavefunction.

Writing cos θab = ~na · ~nb, with ~na = (sin θa cosφa, sin θa sinφa, cos θa) etc., and then using

eq. (5.3), one easily finds

1− cos θab =
2(xa − xb)

2

(1 + x2
a)(1 + x2

b)
, (5.6)

which together with eq. (5.5) for the transformation of the integration measure immediately

implies ∫
dΩc

4π

1− cos θab
(1− cos θac)(1− cos θcb)

=

∫
d2xc
2π

(xa − xb)
2

(xa − xb)2(xb − xc)2
. (5.7)

Notice that all the would-be scale dependent factors like (1 +x2
c) have compensated in the

global transformation, as previously mentioned.

Eq. (5.7) establishes the sought-for correspondence between the angular distribution

and the transverse coordinate distribution in the LO BMS and respectively BK equations.

Here however we will need an additional piece of information, which refers to the respective

energy (or rapidity) phase-spaces, and which follows from a more general, 4-dimensional,

conformal mapping that encompasses the stereographic projection [33, 41]. We shall not

– 32 –



J
H
E
P
0
2
(
2
0
1
8
)
0
7
5

need all the details of this mapping (see [7, 33, 41] for more general discusisons), but only

the correspondence implied by it between the energy density in the jet — in the sense of

energy EJ(Ω) per unit solid angle — and the energy density in the ‘hadron’ (the dipole

together with its descendants) — in the sense of longitudinal momentum EH(x) per unit

transverse area.

For what follows, it is useful to keep in mind the following difference between the BMS

and the BK equations. As already discussed, the BMS equation (2.1) holds as it stands in

any frame — in particular, in the COM frame of the original quarks, or in a boosted frame

where both quarks have large longitudinal momenta. In any such a frame, the rapidity vari-

able Y can be computed as Y = ln(1/x), with x the energy fraction carried by a gluon from

the evolution.10 By contrast, the BK equation (5.1) is necessarily written in a ‘boosted’

frame in which the dipole has a large longitudinal momentum P+; the respective rapidity

Y = ln(P+/k+) is computed from the longitudinal momentum fraction x = k+/P+.

The total momentum P+ of the hadron can be computed as

P+
H =

∫
d2x

∫ ∞
−∞

dx−T++(x+ = 0, x−,x) ≡
∫

d2x EH(x). (5.8)

The conformal mapping allows one to compute the total 4-momentum of the jet in terms

of the hadronic energy density EH(x) [33]:

P+
J =

∫
d2x EH(x), P−J =

∫
d2xx2EH(x), PJ =

√
2

∫
d2xx EH(x) . (5.9)

From these relations, the jet energy is obtained as

EJ ≡
∫

d2Ω EJ(Ω) =
1√
2

(P+
J + P−J ) =

1√
2

∫
d2x (1 + x2) EH(x) . (5.10)

By also using the transformations (5.3)–(5.5), one can deduce the following relation between

the respective energy densities:

EJ(Ω) =

√
2

(1 + cos θ)3
EH(x) . (5.11)

However, this (rigorous) relation is not the most useful one for our present purposes.

Rather, we shall use the global relations (5.9)–(5.10) to heuristically infer a correspondence

between the 4-momenta of the individual gluons in the (time-like and space-like) cascades.

This reads

p+ ↔ k+, p− ↔ x2k+, p↔
√

2x k+ , (5.12)

where we employ the convention that the 4-momentum of a gluon in the time-like cascade

is denoted by pµ, while that in the space-like cascade is denoted by kµ. Notice that these

relations are indeed consistent with the mass-shell condition p− = p2/2p+. For what

10This energy fraction is however not boost invariant, which explains why the range for Y is generally

different in different frames, as explained at the end of section 2.3.
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follows, it is perhaps more suggestive to rewrite these relations in terms of the respective

energies, p0 = (p+ + p−)/
√

2 and respectively k0 ' k+/
√

2. One finds

p ↔ 2x k0 , (5.13)

p0 ↔ (1 + x2)k0 , (5.14)

As a further check of these equations, we note that they are consistent with the trigono-

metrical relation
|p|
p0

= sin θ =
2|x|

1 + x2
. (5.15)

The relation (5.14) between the parton energies in the two types of cascades will play

an important role in what follows. To better appreciate its consequences, let us consider 2

limiting cases:

(i) The parton in the time-like evolution of the jet propagates at a small polar angle

θ � 1. This is the typical situation when the jets are boosted along the positive z axis, like

the hadron in the space-like problem. In this case, the stereographic projection predicts

that the transverse position of the corresponding ‘space-like’ parton is small as well, |x| '
θ/2� 1, hence eq. (5.14) implies that the respective energies can be simply identified with

each other: p0 ↔ k0. Incidentally, the fact that |x| ∼ θ ∼ 1/γ, with γ the parton boost

factor, suggests that the factor x2 in the relation (5.12) between p− and k+ can be viewed

as the expression of Lorentz contraction.

(ii) The parton in the time-like evolution of the jet propagates along the negative

z direction, that is θ ' π. In that case, |x| ' 2/(π − θ) � 1 and eq. (5.14) reduces

to p0 ↔ x2k0. By the uncertainty principle, one has x2 ∼ 1/k2, with k the transverse

momentum of the parton from the space-like wavefunction. Then the quantity x2k0 ∼
k+/k2 is recognised as the lifetime of that parton. We thus see that, quite remarkably, the

energy distribution of the partons in the time-like cascade provides information about the

time-ordering in the corresponding space-like cascade. This information will be discussed

in more detail in the next section.

5.2 Connecting space-like and time-like evolutions

In what follows, we shall use the conformal mapping to study the correspondence between

space-like and time-like evolutions in various set-ups. We shall consider the two situations

for jet evolution that we already discussed — di-jets in the COM frame and in a boosted

frame, respectively — together with two related configurations that will bring some new

features.

I. Di-jets boosted along the positive z axis & excluded region at π/2 < θ < π. In

this case, the two original quarks make a small angle θ0 = 1/γ � 1 w.r.t. the z axis:

θa = θb = θ0. (The corresponding azimuthal angles can be chosen as φa = 0 and φb =

π; see figure 6.) From the previous sections, we know that the dominant emissions —

those which matter in the double-logarithmic approximation (DLA) — are such that the

successive angles are strongly increasing, yet they remain small: θ0 � θ1 � θ2 � · · · � 1.

The stereographic projection implies a similar ordering for the corresponding dipole sizes:

– 34 –



J
H
E
P
0
2
(
2
0
1
8
)
0
7
5

Figure 6. The stereographic projection for the case where the di-jets are boosted along the positive

z axis. The original quark and antiquark, as represented by dashed lines, make a small angle 2θ0 and

are projected onto the points with coordinates xa and xb in the transverse plane. Two successive

soft gluon emissions, with increasing angles θ0 � θ1 � θ2, are projected onto points with increasing

transverse coordinates, |xa − xb| � |x1| � |x2|. The projection relates the anti-collinear time-like

evolution to the anti-collinear space-like evolution.

|x0| � |x1| � |x2| � · · · � 1, where |x0| = |xa − xb|/2 (half of the size of the original

dipole). We recall that a condition like |x| � 1 truly means |x| � D, with D = 2R the

diameter of the projection sphere. But as we shall shortly see, the actual value of R plays

no role, it is only the ordering of the dipole sizes that matters. Such an evolution from

small to large dipole sizes (“hard-to-soft” or “anti-collinear”) is indeed the typical dipole

evolution in the case of asymmetric, dilute-dense, collisions (like in the applications of the

BK equation to deep inelastic scattering or proton-nucleus collisions).

Still from the previous discussion in this paper, we know that the LO BMS evolution of

the boosted jets might violate the proper time ordering — the fact that the formation times

τi ' 1/(p0
i θ

2
i ) must increase from one emission to the next one, — hence this condition

must be enforced by hand. A similar discussion applies to the BK evolution, but in that

context it refers to the lifetime of the space-like fluctuations ∆τi ∼ x2
i k

+
i , which must

decrease along the cascade: ∆τi+1 < ∆τi. This condition might be violated by the LO

BK evolution, which proceeds with decreasing k+ and increasing transverse sizes. As we

now explain, if the need for time-ordering has been properly understood on one side of the

correspondence, then via the conformal mapping it is also predicted for the other side.

Notice first that, since |x| � 1, the energy correspondence in eq. (5.14) instructs us

to simply identify the gluon energies in the two problems, p0 ↔ k0. This is of course

consistent with the first correspondence in eq. (5.12) together with the fact that, in this

boosted frame, we have p0 ' p+/
√

2 and k0 ' k+/
√

2. Assume now that, in view of

our previous experience with the BK equation, we know that successive gluon emissions

in the dipole wavefunction in dilute-dense scattering must be ordered with decreasing

lifetime ∆τ ∼ x2k+. The 4-dimensional conformal mapping identifies x2k+ ↔ θ2p+/4 and

thus instructs us that the corresponding jet evolution should be ordered with increasing
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Figure 7. The stereographic projection in the COM frame of the di-jets and for an exclusion

region making a small angle θ0 around the negative z axis. The successive, soft, gluon emissions

make smaller and smaller angles w.r.t. the negative z axis, θ0 � θ̄2 � θ̄1. They are projected onto

points with increasing transverse coordinates in the tangent plane: |xa − xb| � |x1| � |x2|. The

projection relates the collinear time-like evolution to the anti-collinear space-like evolution.

formation time τ ∼ 1/p+θ2. We thus see that, via this conformal mapping, we could have

anticipated the need for collinear improvement in the BMS evolution on the basis of the

corresponding improvement of the BK equation [24–26].

II. Di-jets in the COM frame & small exclusion region around θ = π. Now θa =

θb = π/2 and the exclusion region itself makes a small angle θ0 w.r.t. the negative z axis,

see figure 7. The emissions which matter at DLA are those which accumulate towards

θ0: writing θ̄i ≡ π − θi, one has θ0 � · · · � θ̄2 � θ̄1 � 1. The transverse coordinates

|xi| ' 2/θ̄i in the corresponding space-like evolution are again strongly increasing from one

emission to the next one, but now they are all large: 1� |x1| � |x2| � · · · � 2/θ0. (Notice

that, in these dimensionless variables, the original quark and antiquark legs of the dipole

have |xa| = |xb| = 1 and |xa − xb| = 2; see figure 7.) The energy correspondence (5.14)

therefore implies p0
i ↔ x2

i k
0
i . As already discussed, the jet evolution with decreasing p0

and decreasing θ̄ automatically obeys the correct time-ordering. But the above mapping of

the energy variables implies that, on the space-like side, the evolution of the dipole should

be ordered with decreasing lifetimes ∆τi ∼ x2
i k

0
i .

This discussion is in agreement with the fact that the problem of the dipole evolution

is actually the same in the two above configurations I and II, albeit the respective jet

problems are indeed different (one requires time-ordering, the other one does not) and in

spite of the fact that all the dipole sizes are “small” (|xi| � 1) in case I, but “large”

(|xi| � 1) in case II. This confirms the fact that what matters at a physical level is the

direction of the evolution — from small to large dipoles in both problems above — and not

the absolute sizes of the dipoles predicted by the stereographic projection (which depend

upon the unphysical parameter D). Note also that the Lorentz boost which relates the

two jet problems, I and II, and which has indeed physical consequences for the time-like

evolution, corresponds via the conformal mapping to an overall dilation of the dipole sizes,

which is totally irrelevant as it can be undone via a rescaling of the parameter D.
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Figure 8. The stereographic projection in the COM frame of the di-jets and for an exclusion

region making a small angle θ0 around the positive z axis. The successive, soft, gluon emissions

make smaller and smaller angles w.r.t. the positive z axis, θ0 � θ2 � θ1. They are projected onto

points with decreasing transverse coordinates in the tangent plane: |x2| � |x1| � |xa − xb|. The

evolution is collinear on both sides of the correspondence.

III. Di-jets in the COM frame & small exclusion region around θ = 0. From the

viewpoint of the jet dynamics, this situation, which is illustrated in figure 8, is physically

equivalent to that discussed at point II above: it is obtained from the latter via a reflection

w.r.t. the (x, y) plane (the plane θ = π/2 crossing the projection sphere along its diameter).

Hence, clearly, the dominant evolution consists in small angle emissions which accumulate

towards the positive z axis: θ0 � · · · � θ2 � θ1 � 1. Yet, the dipole evolution which is

associated to it by the conformal mapping is opposite to that described at point II: the

transverse sizes |xi| ' θi/2 are small and strongly decreasing from one emission to the

next one: 2/θ0 � · · · � |x2| � |x1| � 1. Physically, this “collinear” (or “soft-to-hard”)

evolution is realized in situations where the target size r0 is much smaller than the size

r = |xa − xb| of the original qq̄ pair from the projectile: r0 � r. More precisely, the

situation presented here corresponds to the case where the small target with size r0 is

located (in the transverse plane) at the middle of the ‘big’ projectile dipole — indeed, the

transverse coordinates xi accumulate towards x = 0. This is the counterpart of the fact

that, in the corresponding jet problem, the excluded region makes a small angle around an

axis which is perpendicular on the jet axis.

For such collinear evolutions, the proper time-ordering conditions are automatically

satisfied — both for the jet problem and for the dipole one, — so one can use the respective

energies as the right ordering variables. This is indeed consistent with the conformal

mapping, which simply identifies the gluon energies in the two problems: p0 ↔ k0.

IV. Di-jets boosted along the negative z axis & excluded region at 0 < θ < π/2. This

situation (see figure 9) is similar to that discussed at the previous point, in that the jet

evolution is not new — it is equivalent to that discussed at point I (so in particular it

requires time-ordering), — whereas the dipole evolution proceeds towards smaller and

smaller dipoles sizes, hence it automatically fulfils the proper time-ordering for a space-like

cascade. We have indeed |xi| ' 2/θ̄i � 1 where θ̄i ≡ π−θi is small, but strongly increasing
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Figure 9. The stereographic projection for the case where the di-jets are boosted along the

negative z axis. Two successive soft gluon emissions, which make increasing angles θ0 � θ̄1 � θ̄2
w.r.t. the negative z axis, are projected onto points with decreasing transverse coordinates,

|x2| � |x1| � |xa − xb|. The projection relates the anti-collinear time-like evolution to the

collinear space-like evolution.

from one emission to the next one. Once again, the need for time ordering on the jet side

is correctly predicted by the conformal mapping: using p0 ↔ x2k0 and x2 ↔ 4/θ̄2, we

conclude that the ordering with decreasing k0 in the space-like evolution corresponds to an

ordering with increasing lifetime τ ∼ 1/(p0θ̄2) in the time-like evolution.

Since the need for time-ordering is correctly predicted by the conformal mapping, one

may wonder whether the collinearly-improved versions of the BMS and BK equations can

be directly related to each other via this mathematical operation. For instance, could

one obtain the evolution term in the resummed BMS equation (4.14) by directly applying

the conformal mapping to the corresponding term in the resummed BK equation, that is,

eq. (32) in ref. [25] ? The answer is no, as we argue now: the double collinear logarithms

which are concerned by these resummations are not invariant under conformal transfor-

mations (they break the invariance under inversion). To see this, consider the argument

ρ ≡
√
LacbLbca of the corrective factor KDLA in the BMS kernel in eq. (4.14). This is

rewritten here for convenience:

ρ2 = ln
1− cos θac
1− cos θab

ln
1− cos θbc
1− cos θab

. (5.16)

Via the conformal transformation (5.6), this double angular logarithm gets mapped onto

ρ2 ←→ ln
(xa − xc)

2(D2 + x2
b)

(xa − xb)2(D2 + x2
c)

ln
(xb − xc)

2(D2 + x2
a)

(xa − xb)2(D2 + x2
c)
, (5.17)

where we have reintroduced a generic value D for the diameter of the projection sphere,

for more clarity. Clearly, the r.h.s. of eq. (5.17) is not satisfactory in that it depends upon

the unphysical scale D. This reflects the lack of conformal symmetry of eq. (5.16), as

anticipated. The would-be argument of KDLA in the resummed BK equation is the same

as the limit of eq. (5.17) when D →∞, namely

ρ2
∣∣∣
BK

= ln
(xa − xc)

2

(xa − xb)2
ln

(xb − xc)
2

(xa − xb)2
. (5.18)
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This is merely the statement that the collinearly-improved BK and BMS equations can

indeed be related to each other in the limit where all the angles on the BMS side are small.

In that case, the conformal transformation (5.6) reduces to

θ2
ab ↔ 4(xa − xb)

2 , (5.19)

which correctly relates the respective limits of the variables ρ2 in both problems. This

covers our cases I and III above, in which both evolutions obey indeed the same pattern:

the variables ρ2 are both large in case I (and then they require all-order resummations),

but they are both small, i.e. of O(1), in case III, when no improvement is needed. On

the other hand, in the more interesting situations at point II and IV, where one of the

two evolutions requires collinear-improvement but the other one does not, it is not possible

to relate the respective versions of the evolution equations via a conformal mapping. For

instance, in case IV, the double logarithm angular for the first emission can be estimated

as (recall that θ̄c ≡ π − θc is much larger than the original angle θab = 2θ)

ρ2 ' ln2 θ̄
2
c

θ2
0

. (5.20)

This is large, ρ2 � 1, which signals the need for collinear resummation. The prediction of

the conformal mapping for the corresponding double transverse log, that is (cf. eq. (5.17)

where |xa| = |xb| = 2/θ0 � |xc| � D and |xa − xb| = 2|xa|)

ρ2 ' ln2 x2
a

x2
c

. (5.21)

This is large too (it is numerically the same as eq. (5.20), by construction), which would

suggest the need for resummation. But this conclusion would be wrong, as we know by

now. And indeed the correct result for the double transverse logarithm, cf. eq. (5.18), is

actually of O(1).

6 Conclusions and perspectives

In this paper, we have used guidance from recent progress with the BK equation together

with its analogy with the BMS equation to identify new physical regimes for the “non-

global” jet evolution in which the anti-collinear logarithms become large and their resum-

mation is important in some cases. The prototype situation in that sense is the energy

loss by a boosted jet (or pair of jets) via soft radiation at large angles with respect to the

boost axis. For that case, we have built a collinearly improved version of the BMS equa-

tion which resums to all orders radiative corrections enhanced by double (anti)collinear

logarithms. Our construction has revealed some intriguing aspects, some of which call for

further studies.

For instance we have found that two physical situations which are a priori equivalent,

since merely related by a Lorentz boost, require different mathematical treatments. In

the COM frame where the two jets propagate back-to-back, the standard (leading-order)
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BMS equation remains a correct approximation even in the limit where the excluded region

has a very small opening angle. On the contrary, in the boosted frame where the small

angle is the angle made by the two jets (whereas the excluded region covers the whole

backward hemisphere), a correct calculation requires the collinearly-improved equation.

The difference between having collinear improvement or not approximately compensates

for the difference between the energy phase-spaces which are available to the evolution in the

two Lorentz frames. However, this compensation is not exact, so it would be interesting to

study (say, via explicit numerical solutions) the difference between the physical predictions

of the two calculations.

Furthermore, we have found that the correspondence between the BMS and the BK

equations become more subtle in the anti-collinear regimes. For instance, a same physical

regime on the BMS side — say, the case of boosted jets, which requires collinear improve-

ment — can be mapped onto two different physical regimes on the BK side — one which

requires improvement, the other one which does not, — depending upon the orientation

of the di-jet axis with respect to the projection point. Moreover, the conformal mapping

connecting the two equations works only qualitatively when it comes to the collinear im-

provement: it correctly predicts whether such an improvement is needed or not, but the

structure of the resummation is properly reproduced only in the small angle (small dipole

sizes) approximation.

Throughout this analysis, we considered only one type of next-to-leading (and higher)

order perturbative corrections, those enhanced by double (anti)collinear logarithms, which

have the role to implement the proper time ordering of successive soft gluon emissions order

by order in perturbation theory. From the experience with both the BK and the BMS

equations, we know that there are also other perturbative corrections which are important,

notably those associated with the running of the coupling. In fact, such corrections should

be even more important for the time-like (BMS) evolution than for the space-like (BK)

one. Indeed, the proper scale for evaluating the running coupling in the context of the BK

(or BFKL) equation is the smallest dipole size involved in a splitting. Yet, for the typical

BFKL splittings, the dipole sizes are commensurable, so the running of the coupling does

not strongly bias the direction of the evolution. For the BMS equation on the other hand,

the scale for the running coupling should be the hardest transverse momentum at a gluon

splitting. The typical splittings are such that angles are commensurable, but the energies

— hence, also the transverse momenta k⊥ ' ωθ — are strongly decreasing. This implies

that (i) the running of the coupling is indeed important (it favors the evolution towards

decreasing energies, as this corresponds to increasing values for the running coupling), and

(ii) the argument of the running coupling can be taken as the transverse momentum of the

parent gluon. This was already noticed in the original literature on the BMS equation [3, 5].

The situation becomes slightly more subtle for the anticollinear emissions that we discussed

at length in this paper (say, in the context of the boosted jet), where the angles are strongly

increasing from one emission to the next one. Yet, as discussed in section 3, the gluon

transverse momenta are still decreasing, so the previous conclusion about the argument of

the running coupling remains unchanged.
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Finally, it would be interesting to understand in more detail the correspondence be-

tween the time-like and the space-like evolutions. It would be for instance interesting to

know whether such a correspondence holds graph-by-graph (at least, in light-cone pertur-

bation theory, where the partonic pictures becomes manifest) and also to better understand

its limitations (notably, in relation with the running coupling corrections).
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A NLO kernels and double collinear logarithms

As we have seen in the main text, time ordering for the emissions in the boosted frame leads

to a resummation of large double collinear logarithms to all orders in ᾱs. Here we shall see

how the lowest order double logarithm of such a series emerges from the complete NLO

calculation of [9]. The result there has been given in terms of an evolution Hamiltonian

which can act on desired observables and determine the evolution of jets. This Hamiltonian

is expanded as

H = −αs
4π
K(1) − α2

s

16π2
K(2), (A.1)

where the NLO piece in the non-conformal scheme is given as a sum of three terms to be

found in eq. (3.20) of [9]. Only the part of the first term which contains one or no adjoint

unitary matrices is relevant for our purposes and we rewrite it here as

K(2) ⊃
∑
a,b,c

∫
d2Ω1

4π

d2Ω2

4π
K

(2)
abc;12ifABC

[
− LA′

a U
A′A
1 RB

bR
C
c −RA

aL
B′
b U

B′B
2 RC

c + LA
aU

BB′
2 RB′

b L
C
c

+ UAA′
1 RA′

a L
B
bL

C
c +RA

aR
B
bR

C
c − LA

aL
B
bL

C
c

]
, (A.2)

where the kernel K
(2)
abc;12 reads (cf. eq. (3.12a) of [9])

K
(2)
abc;12 =

1

α1aα2b

(
αab
α12

+
αacαbc
α1cα2c

− α1bαac
α1cα12

− αbcα2a

α12α2c

)
ln
α2

1c

α2
2c

, (A.3)

with the notation αab = (1 − cos θab)/2. In general, the left and right Lie derivatives in

eq. (A.2) obey

[RA
a , R

B
b ] = iδabf

ABCRC
a , [LA

a , L
B
b ] = −iδabf

ABCLC
a , [RA

a , L
B
b ] = 0, (A.4)
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and act on unitary matrices11 according to

LA
aUd = δadT

AUa, RA
aUd = δadUaT

A, LA
aU
†
d = −δadU †aTA, RA

aU
†
d = −δadTAU †a ,

(A.5)

where U in the above can belong to an arbitrary representation of SU(Nc) and TA are the

respective generators.

Let us focus on the terms of the Hamiltonian which contain two right derivatives,

one left and one U -matrix, i.e. on the first two terms in eq. (A.2). Given the property

K
(2)
bac;21 = −K(2)

abc;12 of the kernel in eq. (A.3), the two terms contribute equally, thus

K
(2)
ULRR = −2

∑
a,b,c

∫
d2Ω1

4π

d2Ω2

4π
K

(2)
abc;12ifABCRA

aL
B′
b U

B′B
2 RC

c . (A.6)

It is clear that one can integrate over Ω1 and we naturally define a new kernel12

K
(2)
abc;2 =

∫
d2Ω1

4π
K

(2)
abc;12. (A.7)

We shall do the integration first in the small angle approximation, in which one has αab '
θ2
ab/4 and similarly for the other angles, and in the strongly ordered regime

θab, θac, θbc � θ1 � θ2. (A.8)

In the above θ1 stands collectively for the angles between gluon 1 and any of the partons

a, b and c, while θ2 stands for those between gluon 2 and any of the partons a, b, c and 1.

In this region the kernel in eq. (A.3) becomes

K
(2)
abc;12 ' −

32

θ4
2

θ2
ab − θ2

ac − θ2
bc

θ2
1

ln
θ2

2

θ2
1

, (A.9)

and now it is straightforward to integrate over d2Ω1 ' πdθ2
1. We easily see that the

logarithmically dominated integration gives

K
(2)
abc;2 '

∫ θ22

θ2min

πdθ2
1

4π
K

(2)
abc;12 ' −

4(θ2
ab − θ2

ac − θ2
bc)

θ4
2

ln2 θ2
2

θ2
min

, (A.10)

where θmin is any of θab, θac, or θbc to the order of accuracy. Therefore, we already see

the large double logarithm in the Hamiltonian kernel, which is further accompanied by the

multiplicative factor ∼ θ2
ab/θ

4
2 representing the “standard” collinear behavior. Notice also

the symmetry K
(2)
bac;2 = K

(2)
abc;2.

In order to calculate the respective NLO contribution to the BMS equation, we shall

act with the Hamiltonian on the fundamental dipole

Pde =
1

Nc
tr
(
VdV

†
e

)
, (A.11)

11They don’t act on those U ’s appearing in the Hamiltonian.
12We use the notation K(2) for many different quantities, but there should be nowhere any source of

confusion since we shall also always write the associated indices.
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which in the current framework is the probability appearing in the BMS equation. Let

us note here that the two right derivatives in eq. (A.6) are implicitly assumed to be sym-

metrized [9], i.e. RA
aR

C
c → {RA

aR
C
c , R

C
cR

A
a}/2. This of course becomes relevant only when

a = c, and due to the antisymmetry of the structure constants fABC, the two right deriva-

tives must act on different V -matrices in order to obtain a non-vanishing result. Thus we

have

ifABCRA
aU

B′B
2 LB′

b R
C
c Pde =

ifABC

Nc
(δbd − δbe)(δadδce − δaeδcd)UB′B

2 tr
(
tB
′
Vdt

CtAV †e
)

= −1

2
(δbd − δbe)(δadδce − δaeδcd)UB′B

2 tr
(
tB
′
Vdt

BV †e
)
, (A.12)

and using first UB′B
2 tB

′
= V2t

BV †2 and subsequently standard Fierz rearrangement, we get

ifABCRA
aU

B′B
2 LB′

b R
C
c Pde = −N

2
c

4
(δbd − δbe)(δadδce − δaeδcd)

(
Pd2P2e −

1

N2
c

Pde

)
. (A.13)

It remains to “contract” the indices in the structures appearing in eqs. (A.10) and (A.13)

and we readily obtain∑
a,b,c

(δbd − δbe)(δadδce − δaeδcd)(θ2
ab − θ2

ac − θ2
bc) = −4θ2

de. (A.14)

Putting everything together we arrive at

K
(2)
ULRRPde = 2N2

c

∫
dθ2

2 θ
2
de

θ4
2

ln2 θ2
2

θ2
de

(
Pd2P2e −

1

N2
c

Pde

)
. (A.15)

It is not hard to understand that the two terms with two left derivatives, one right and one

U -matrix in eq. (A.2) will give a contribution equal to the above. Furthermore, the terms

with three (same) derivatives and no U -matrix will add a contribution −(2CF/Nc)Pde, so

that we simply need to replace (1/N2
c )Pde → Pde in eq. (A.15). Taking into account both

the LO and the NLO terms in the expansion given in eq. (A.1) we can finally write (with

the relabeling d, e→ a, b)

HPab =
ᾱs
2

∫
dθ2

2 θ
2
ab

θ4
2

(
1− ᾱs

2
ln2 θ2

2

θ2
ab

)
(Pa2P2b − Pab) , (A.16)

valid in the regime θab � θ2.

It becomes natural to ask whether similar double logarithms occur when gluons are

radiated at smaller and smaller angles. We shall show that this is not the case, but given

the individual strong UV singularities of each term in eq. (A.3), we must perform the exact

integration of the kernel in eq. (A.7). In order to simplify our task, we shall directly work

with the BMS equation (and not at the Hamiltonian level). Eqs. (A.11)–(A.13) are still

valid and therefore the kernel to be integrated simplifies, more precisely we have∑
a,b,c

(δbd − δbe)(δadδce − δaeδcd)K
(2)
abc;12 = K

(2)
dde;12 −K

(2)
edd;12 −K

(2)
dee;12 +K

(2)
eed;12. (A.17)
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It is easy to see that K
(2)
edd;12 = K

(2)
dee;12 = 0, while

K
(2)
dde;12 =

αde
αd2α2e

(
αde

αd1α1e
− α2e

α21α1e
− αd2

αd1α12

)
ln
α2

1e

α2
2e

≡ αde
αd2α2e

K̃
(2)
dde;12, (A.18)

and of course similarly for K
(2)
eed;12. We immediately observe that the prefactor and all three

terms in the parenthesis in eq. (A.18) correspond to elementary antenna patterns. Since

we shall integrate over d2Ω1, we have temporarily defined the kernel K̃
(2)
dde;12 by leaving

aside the antenna pattern in the prefactor which does not involve the gluon 1.

In order to perform the integration over d2Ω1, we shall find it very convenient to make

a change of variables from angles to transverse coordinates according to the stereographic

projection. That is, we define (as before, D denotes the diameter of the sphere used for

the projection)

αab =
D2x2

ab

(D2 + x2
a)(D

2 + x2
b)
, (A.19)

where the dependence upon D2 cancels when considering a conformal invariant quantity,

like the antenna pattern accompanied by the relevant integration measure:∫
d2Ω1

4π

αab
αa1α1b

=

∫
d2x1

π

x2
ab

x2
a1x

2
1b

. (A.20)

Then we have

K̃
(2)
dde;2 =

∫
d2Ω1

4π
K̃

(2)
dde;12 =2

∫
d2x1

π

(
x2
de

x2
d1x

2
1e

− x2
2e

x2
21x

2
1e

−
x2
d2

x2
d1x

2
12

)(
ln
x2

1e

x2
2e

+ln
D2+x2

2

D2+x2
1

)
.

(A.21)

For the moment we shall neglect the last logarithmic term, but we shall comment towards

the end of the calculation on its importance and the changes it brings to our results.

Now, the three terms will be integrated separately in d = 2 + 2ε dimensions and we

shall need three basic integrals. The first one is

J1 =
1

π

∫
ddz x2

z2(x− z)2
= (πx2)ε

Γ2(ε)Γ(1− ε)
Γ(2ε)

=
2

ε
+ 2

(
lnx2 + lnπ + γE

)
, (A.22)

where of course after the last equality we have dropped terms that vanish when ε→ 0, and

with γE = 0.577 . . . the Euler-Mascheroni constant. The second one is

J2 =
1

π

∫
ddz x2

z2(x− z)2
ln z2 = lim

γ→0

d

dγ

1

π

∫
ddz x2z2γ

z2(x− z)2

= lim
γ→0

d

dγ
πε
(
x2
)γ+ε (1− γ)Γ(1− γ − ε)Γ(γ + ε)Γ(ε)

Γ(2− γ)Γ(γ + 2ε)
(A.23)

= − 1

ε2
+

1

ε

(
lnx2 − lnπ − γE

)
+

[
3

2
ln2 x2 + (lnπ + γE) lnx2 +

π2

12
− 1

2
(lnπ + γE)2

]
.

The above two integrals have been calculated in the “standard way”; the denominators

(including the z2γ in J2) have been combined by introducing a Feynman parameter via the

general formula
1

AaBb
=

Γ(a+ b)

Γ(a)Γ(b)

∫ 1

0
du

ua−1(1− u)b−1

[Au+B(1− u)]a+b
, (A.24)
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then, after a shift in z, the d2z integration has been performed by making use of∫
ddz(

z2 + ∆
)n = πd/2

Γ(n− d/2)

Γ(n)
∆d/2−n, (A.25)

with ∆ = u(1 − u)x2, and finally the integration over u has been done by relying once

again on eq. (A.24) (this time from “right to left” and with A = B = 1, but with different

exponents). The third integral we need is a finite one and reads (cf. eq. (120) in [43])

J3 =
1

π

∫
d2z x2

z2(x− z)2
ln

(z − y)4

y2(x− y)2
= ln2 (x− y)2

y2
. (A.26)

The integrand in eq. (A.26) becomes singular when z → 0 or z → x, however the two

singularities cancel each other due to the presence of the logarithm.

Employing the expressions for J1 and J2 we find for the first two contribution in

eq. (A.21)

2

∫
ddx1

π

x2
de

x2
d1x

2
1e

ln
x2

1e

x2
2e

=− 2

ε2
+

2

ε

(
lnx2

de−lnπ−γE

)
+

[
3ln2x2

de+2(lnπ+γE)lnx2
de

+
π2

6
−(lnπ+γE)2

]
− 4

ε
lnx2

2e−4
(
lnx2

de+lnπ+γE

)
lnx2

2e, (A.27)

and

−2

∫
ddx1

π

x2
2e

x2
21x

2
1e

ln
x2

1e

x2
2e

=+
2

ε2
− 2

ε

(
lnx2

2e−lnπ−γE

)
−
[
3ln2x2

2e+2(lnπ+γE)lnx2
2e

+
π2

6
−(lnπ+γE)2

]
+

4

ε
lnx2

2e+4
(
lnx2

2e+lnπ+γE

)
lnx2

2e. (A.28)

Regarding the contribution from the third term in eq. (A.21) we first “decompose” it as

− 2

∫
ddx1

π

x2
d2

x2
d1x

2
12

ln
x2

1e

x2
2e

= −
∫

ddx1

π

x2
d2

x2
d1x

2
12

ln
(x12 − xe2)4

x2
e2x

2
de

−
∫

ddx1

π

x2
d2

x2
d1x

2
12

ln
x2
de

x2
2e

.

(A.29)

Using the expressions for J3 (after setting d = 2 in the first term in eq. (A.29)) and J1 we

get

− 2

∫
ddx1

π

x2
d2

x2
d1x

2
12

ln
x2

1e

x2
2e

= − ln2 x
2
2e

x2
de

− 2

ε
ln
x2
de

x2
2e

− 2
(

lnx2
d2 + lnπ + γE

)
ln
x2
de

x2
2e

. (A.30)

Putting together eqs. (A.27), (A.28) and (A.30) we see that all the divergencies cancel

(notice that for the cancellation of the single pole all three terms contribute) and the

remaining finite piece after some rearrangement reads13

K̃
(2)
dde;2 = 2 ln

x2
d2

x2
de

ln
x2

2e

x2
de

. (A.31)

13All the finite terms involving π2, lnπ and γE cancel.
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Since this is symmetric in d and e, we eventually obtain an identical double logarithm from

K̃
(2)
eed;2.

At this point of the calculation let us go back to the angle coordinates. The inverse to

the transformation in eq. (A.19) is given by

x2
ab

D2
=

αab
(1− αa)(1− αb)

=
2(1− cos θab)

(1 + cos θa)(1 + cos θb)
, (A.32)

and returning to eq. (A.31) we have

K̃
(2)
dde;2 = 2 ln

αd2(1− αe)
αde(1− α2)

ln
α2e(1− αd)
αde(1− α2)

. (A.33)

We note that there is no large logarithmic contribution when the gluon 2 is very close to one

of the legs d or e: although one of the logarithms gets large, the other vanishes. It looks like

issues will arise when the gluon 2 is radiated close to π, however such singularities cannot

be present as one can see immediately by a direct inspection of the unintegrated kernel in

eq. (A.18). Eventually they should cancel with the logarithmic term neglected in eq. (A.21).

Instead of performing the exact calculation of this contribution, we shall equivalently drop

all the factors (1− αi) in eq. (A.33), and the error in such a procedure is at most of order

O(ᾱ2
s), but not enhanced by a large logarithm. Thus, for what follows we shall simply take

K̃
(2)
dde;2 = 2 ln

αd2

αde
ln
α2e

αde
. (A.34)

It only remains to assemble the various parts of the calculation, and the steps are

identical to those we took in order to derive eq. (A.15) and subsequently eq. (A.16). We

arrive at (again with the relabeling d, e→ a, b)

HPab =
ᾱs
2

∫
dΩ2

4π

αab
αa2α2b

(
1− ᾱs

2
ln
αa2

αab
ln
α2b

αab

)
(Pa2P2b − Pab) . (A.35)

Needless to say, when angles are small and strongly ordered according to θab � θa2 '
θ2b � 1, eq. (A.35) reduces to eq. (A.16). Still, we would like to emphasize once again that

the double logarithm in the above equation doesn’t get large in any other special “corner”

of the phase space.

To go from the non-conformal to the conformal scheme one changes the observables

on which the Hamiltonian is acting [9, 43]. This induces a change in the kernels of the

Hamiltonian, and the particular logarithmic structure of eq. (A.3), which led to the large

double logarithm in eq. (A.16), dissappears. However, a new logarithmic term arises in a

different kernel of the Hamiltonian, as can be readily seen in [9] by comparing the N = 4

SYM part of eq. (3.12b) with eq. (3.33) there, and is the one which will give large double

logarithmic contributions. To be more precise, the change in the kernel of interest is

δK
(2)cs
ab;12 =

2αab
αa1α12α2b

ln
αabα12

αa2α1b
, (A.36)

and the corresponding term in the NLO BMS equation in the conformal scheme reads

δHcsP cs
ab =

ᾱ2
s

8

∫
d2Ω1

4π

d2Ω2

4π
δK

(2)cs
ab;12 (P cs

a1P
cs
12P

cs
2b − P cs

a1P
cs
1b). (A.37)
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The kernel in eq. (A.36) in the small angle approximation and with strongly increasing

angles, i.e. when θab � θ1 � θ2 (with the notation already explained after eq. (A.8)),

becomes

δK
(2)cs
ab;12 ' −

32θ2
ab

θ4
2θ

2
1

ln
θ2

1

θ2
ab

, (A.38)

thus it exhibits a logarithmic enhancement. We shall work in the region where all proba-

bilities are close to unity, so let us define P = 1 − R as in the main text. Then one has

P cs
a1P

cs
12P

cs
2b − P cs

a1P
cs
1b ' −Rcs

12 −Rcs
2b +Rcs

1b ' −2Rcs
2 , where the last approximate equality is

valid in the aforementioned strongly ordered regime, and eq. (A.37) reads

δHcsRcs
ab = − ᾱ

2
s

2

∫
dθ2

2 θ
2
ab

θ2
2

Rcs
2

∫ θ22

θ2ab

dθ2
1

θ2
1

ln
θ2

1

θ2
ab

. (A.39)

Now it is straightforward to integrate over dθ2
1 and by furthermore including the LO term

of the BMS equation in the regime of interest we finally arrive at

HcsRcs
ab = ᾱs

∫
dθ2

2 θ
2
ab

θ4
2

(
1− ᾱs

4
ln2 θ2

2

θ2
ab

)
Rcs

2 . (A.40)

Notice that the coefficient of the double logarithmic contribution in the conformal scheme

above is half of the respective coefficient in the non-conformal scheme (cf. eq. (A.16)).

Furthermore, contrary to what happens in the non-conformal scheme, large logarithms

emerge also in the case that angles get smaller and smaller. One can see that there are two

strongly ordered regimes in which the logarithm of the kernel in eq. (A.36) can become

large: (i) when θab ' θa1 ' θa2 � θ1b ' θ2b � θ12 and (ii) when θab ' θ1b ' θ2b � θa1 '
θa2 � θ12. They contribute the same and a straightforward calculation, analogous to the

one that led us to eq. (A.40) above, gives

HcsRcs
ab = ᾱs

∫
dθ2

12

θ2
12

(
1− ᾱs

4
ln2 θ

2
ab

θ2
12

)
Rcs

12. (A.41)
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