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1 Introduction

With the discovery of the Higgs boson at the LHC, an important step towards a complete

identification of the structure of the mechanism of mass generation in the electroweak

theory has been taken. However, it is clear that one needs suitable extensions of the

current version of the Standard Model (SM) in order to solve some important theoretical

and phenomenological issues which do not find an answer within the same model. These

include, for instance, the absence of a mechanism which could account for the masses of
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the three generations of neutrinos, or the origin of its chiral nature as well as of the gauge

charge assignments of the flavor sector. At theoretical level, the latter are constrained only

by the gauge symmetry together with the mechanism of cancelation of the gauge and of the

gravitational anomalies, which provide significant restrictions on the possible interactions.

Analogously, the issue concerning the instability of the scalar potential of the SM under

the perturbative renormalization group (RG) evolution up to the Planck scale, which is

another critical aspect of the same model, noticed long ago, has been exploited in the

past [1–5] to constrain the Higgs mass, and it has been instrumental for later Higgs searches,

but it has also been viewed as one of its unappealing features. In this case, the basic

motivation hinged on the belief that any approach which tries to connect the SM directly

with the Planck scale is probably untenable, as epitomised by the gauge-hierarchy problem.

With the recent LHC activity and the significant exclusion limits on the parameter

space of possible supersymmetric models which have emerged from it, recurrent attempts

to connect the SM with larger physical scales, particularly the Planck scale, have resur-

faced. In particular, the assumption of a big desert scenario, without any intermediate new

physics, have forced many to reconsider the issue of its vacuum stability. In this frame-

work, finer inspections of the perturbative RG evolution of the SM scalar potential have

become quite popular [6–11]. It has been pointed out that although the SM scalar potential

develops a new deeper minimum, the lifetime of the unstable electroweak vacuum is found

to be much larger than the age of the Universe. This feature, called metastability, taken

at face value, suggests that the extrapolation of the SM up to the Planck scale does not

necessarily require the introduction of new physics. These issues have been and are widely

debated also in cosmology [12–28], for a potential both at zero and at finite temperature.

The role of these analyses has been to clarify, in view of the measured value of the Higgs

mass, if the SM stands solidly in a quantum field theory and cosmological context and,

specifically, whether additional contributions to the running would resolve the issue related

to its behavior.

1.1 Stability and the role of the Yukawa couplings

The study of the shape of the Higgs effective potential Veff(H), for large values of the Higgs

field, larger than the Higgs vev v (H � v), is critically important for coming to reasonable

conclusions concerning the stability of the SM. If another minimum is found at Hmin, then

the requirement of stability imposes that Veff(v) < Veff(Hmin). In the opposite situation,

the potential could be either completely unstable or metastable.

As mentioned above, if Veff(Hmin) < Veff(v), a metastable condition could be accepted

as far as the tunnelling time τ for the transition from the false to the true vacuum of the

Higgs field is larger than the age of our Universe TU . In the opposite case, with τ < TU ,

one encounters a complete instability, which must be excluded. The RG analyses points to

a metastable behavior which runs quite close to the region of instability in the parameter

space [8].

One of the unappealing issues of the SM potential lays in its critical dependence on

the top quark (Mt) and Higgs (MH) masses. In fact, the effect of the fermions, and of the

Yukawa of the top quark in particular, on the RG evolution, is to drive the Higgs quartic
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couplings λ towards negative values, upsetting the vacuum stability already at 109−10 GeV,

but allowing for a long-lived vacuum. For this reason, in the pure SM scenario, precise

measurements of the value of the top mass and the resolution of the ambiguities in the use

of different renormalization schemes for its evaluation are important in order to lift the

controversy [29, 30].

This leaves open the possibility that new physics, around the electroweak scale and

above, but below the Planck scale MP , will drastically change this scenario, reducing such

sensitivity or eliminating it all together [31–41]. In these analyses, the magnitude and the

sign of the different contributions to the beta function βλ of the Higgs quartic coupling is

crucial for a correct prediction.

Obviously, even simple modifications of the gauge structure of the SM, with the inclu-

sion of one extra U(1) symmetry in the neutral currents sector allow to envision completely

different scenarios where the issue of stability or of metastability finds alternative solutions.

Also in this case, though, the large Yukawas of other heavy fermions play a similar role

as the top quark, hinting that a complete solution of this issue involves the entire heavy

flavor sector [40].

The goal of our analysis, in this work, is to illustrate how the requirement of stability

under the RG evolution of the parameters of the model is linked to the flavor sector of

the same theory, as soon as we enlarge the scalar potential even in a minimal way. We

will investigate this point rather thoroughly, by addressing the case of an extra U(1)B−L
symmetry, where B and L are the baryon and lepton numbers respectively, extending our

previous one-loop analysis [40] to two-loop level, and detailing many features which we

have not discussed before. The model invokes a single extra Higgs scalar (the heavier

Higgs) in the breaking of the extra abelian symmetry, beside the ordinary Higgs doublet

of the SM. Several previous phenomenological analyses have addressed some of the salient

features of this model, which is a front-runner in the hunting for a possible extra Z ′ at the

LHC [31, 32, 42–49]. B-L is an anomaly-free and conserved symmetry of the SM, which

plays an important role in grand unified theory (GUT’s).

The current study is also characterized by the obvious inclusion in the RG running of

the one-loop matching conditions at the electroweak scale, formerly considered by us only

at tree-level. As we are going to show, these are essential in order to determine correctly

the regions of stability of the potential. Our equations also keep into account the effects due

to the kinetic mixing of U(1)B−L with the hypercharge. We have assumed for simplicity

that the coupling g̃ which parameterizes the mixing is vanishing at the electroweak scale,

and gets only generated radiatively in the upward running. For this reason, our analysis is

here focused on a pure B-L extra gauge structure at the electroweak scale. However, using

our results, one can easily address different scenarios, under the assumption of a diagonal

B-L and hypercharge (Y ) symmetries at the GUT scale, with a kinetic mixing induced by

a reverse evolution from the GUT scale towards the electroweak one.

Moreover, our work invokes a suitable mechanism of mass generation of the light neu-

trinos of the SM. As in a previous work [40], we consider a scenario based on a type-I seesaw

realized with three heavy right-handed (RH) neutrinos which can be easily generalized to

other mechanisms, such as to a type-II, -III, or to an inverse seesaw.
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Concerning the specific charge assignments of the RH neutrinos, we rely on the general

conditions of anomaly cancellation. The solutions of the corresponding equations depend

significantly on the number of heavy RH neutrinos (νhi) selected in the model, which in

our case is one per generation, and we have opted for a symmetric charge assignment of

the νhi under U(1)B−L. Obviously, other solutions can be considered as well.

In any case, the pattern that emerges from this analysis is quite insensitive to the gauge

charges, while remaining quite sensitive to all the other parameters which characterize the

potential and the fermion sector. As we are going to point out, these can be traded for

the mass of the extra Z ′, MZ′ , and its gauge coupling g′, the mixing angle θ of the two

Higgses, the mass of the heavy Higgs MH and the masses of the RH neutrinos.

2 Charge assignment

The gauge symmetric extension that we consider has the same content of the SM augmented

by a single extra U(1)′ factor, i.e. SU(3)×SU(2)×U(1)Y ×U(1)′, with U(1)′ later identified

with U(1)B−L. The Higgs sector includes one extra complex scalar χ, beside the Higgs, H,

which will be discussed thoroughly in the next sections.

In this section we briefly review the conditions imposed by the cancellation of the

anomalies, which constrain significantly the U(1)′ charge assignments of the model. As

already discussed in previous analysis [50], these conditions can be combined with extra

requirements on the mass generation in the fermion sector, i.e. on the type of operators

chosen in order to provide masses for the neutrinos. In general, these extra requirements

may involve operators of mass dimension larger than four. In this context, the choice, for

instance, of a type-I seesaw for the neutrino masses with three SM singlet right-handed

neutrinos is, for sure, quite economical and carries the advantage of preserving the renor-

malizability of the model.

We assign generic charges zQ, zL for the left-handed (LH) quark and lepton doublets

QiL, L
i, and the charges zu, zd, ze for the right-handed (RH) uiR, diR and eiR quarks and

leptons. The charges of the RH neutrinos νR,k are denoted as zk. Notice that we will omit

the indices from the definition of the charges since the conditions for anomaly cancellation

will be universal, the same for each fermion generation. Finally, the charges of the two

scalars H and χ are denoted as zH and zχ respectively.

We have the following cancellation conditions for the non-abelian SU(2) and SU(3)

anomalies

U(1)′SU(2)SU(2) : 3zQ + zL = 0 ,

U(1)′SU(3)SU(3) : 2zQ − zu − zd = 0 , (2.1)

which fix zL = −3zQ and zd = 2zQ − zu in terms of zQ and zu. Two other conditions are

U(1)′U(1)Y U(1)Y : zQ − 8zu − 2zd + 3zL − 6ze = 0 ,

U(1)′U(1)′U(1)Y : z2
Q − 2z2

u + z2
d − z2

L + z2
e = 0, (2.2)

for the mixed U(1) anomalies. From the first of the two requirements in eq. (2.2) one

can immediately extract the relation ze = −2zQ − zu, while the second condition of the
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same equation is automatically satisfied using the solutions found from eq. (2.1). We have

summarized in table 1 the spectrum of the theory that we will be using in our phenomeno-

logical study.

The constraints on the charges zk of the SM singlet fermions are obtained from the

conditions of cancellation of the U(1)′ cubic anomalies, together with those from the grav-

itational anomaly. The latter involve the U(1)′ current and two gravitons G (i.e. two in-

sertions of the stress-energy tensor of the SM). In the general case with n singlet fermions

one has, respectively

U(1)′U(1)′U(1)′ :
n∑
k=1

z3
k = 3

[
6z3
Q − 3z3

u − 3z3
d + 2z3

L − z3
e

]
= 3(zu − 4zQ)3 , (2.3)

for the cubic anomaly and

U(1)′GG :

n∑
k=1

zk = 3 [6zQ − 3zu − 3zd + 2zL − ze] = 3(zu − 4zQ) , (2.4)

for the gravitational anomaly, where we have used the constraints extracted from eqs. (2.1)

and (2.2). Finally, combining together the two conditions in eq. (2.4), one obtains the

cubic relation (
n∑
k=1

zk

)3

= 9

n∑
k=1

z3
k. (2.5)

For instance, the constraints in eq. (2.4) imply, for n = 0 and n = 1, the condition zu = 4zQ,

which brings either to the trivial solution or to a solution which is Y -sequential. In this

latter case the U(1)′ charge assignment is proportional to that of U(1)Y . In the n = 2 case

one obtains, instead, z1 = −z2.

An interesting solution which is non-sequential in Y is found for n = 3. In this case each

of the νR,k is assigned to a separate generation. For example, the choice z1 = z2 = z3 ≡ zν
allows to find the simple solution zν = zu − 4zQ. The cancellation instead becomes inter-

generational by choosing, for instance, the less restrictive condition z1 = z2 6= z3. In this

case eq. (2.4) gives z1 = z2 = −4/5z3, with z3 = 20zQ − 5zu, as one can easily verify.

The cancellation of the gravitational anomalies, can be imposed, in general, at inter-

generational level. In the present analysis we will opt, however, for a completely symmetric

(family independent) assignment of the RH neutrinos charges z1 = z2 = z3, which allow to

reduce the corresponding parameter space. With this choice, the U(1)′GG constraint from

the gravitational anomaly reduces to a single equation for just one charge. On the other

hand, the cancellation of the analogue gravitational anomalies in the SM, obtained from

the U(1)YGG sector, is a natural consequence of the hypercharge assignments of the same

model, and does not generate any additional constraint.

As we have shown above, the solutions of the anomaly cancellation conditions are

defined in terms of the two free U(1)′ charges, zQ and zu, of the LH quark doublet QL and

of the RH up quark uR. Notice also that the generators of the U(1)′ gauge group can be

re-expressed, in general, as a linear combination of the SM hypercharge, Y , and the B-L
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SU(3)c SU(2)w U(1)Y U(1)′

QL 3 2 1/6 zQ

uR 3 1 2/3 zu

dR 3 1 -1/3 2zQ − zu
L 1 2 -1/2 −3zQ

eR 1 1 -1 −2zQ − zu
H 1 2 1/2 zH

νR,k 1 1 0 zk

χ 1 1 0 zχ

Table 1. Charge assignment of fermions and scalars in the U(1)′ SM extension.

quantum number, YB−L. Indeed, we have

z = αY Y + αB−LYB−L. (2.6)

In eq. (2.6) the coefficients αY and αB−L are functions of the two independent charges and

are explicitly given by αY = 2zu − 2zQ and αB−L = 4zQ − zu. In the B-L case, we set

αY = 0 (i.e. zu = zQ).

The charges of the two scalars can be fixed from the requirement of gauge invariance

of the Yukawa interactions. From the Yukawa coupling of the electron L̄HeR we have

(3zQ) + zH + (−2zQ − zu) = 0, (2.7)

which gives zH = zu − zQ, implying that the ordinary Higgs field is singlet respect to B-L.

Concerning the charge of the scalar field χ, the Majorana mass term χνcRνR, in the case

of family independent (symmetric) charge assignment zν = zu − 4zQ, we get the condition

zχ = −2zν . For a B-L charge assignment we obtain zχ = 2, zu = zQ = 1/3.

3 Kinetic mixing

As we have mentioned, we include in our analysis the kinetic mixing between the hyper-

charge U(1)Y and an extra abelian symmetry through a coupling g̃. We briefly elaborate

on this point, before moving on and investigate the structure of the RG equations.

Working in full generality, we consider a theory with two U(1) gauge symmetries

(U(1)1 × U(1)2) and a single fermion ψ which couples to the two gauge fields A1
µ and A2

µ

by the currents

jµk = qkψ̄γ
µψ (3.1)

with charges qk. The kinetic term in the gauge Lagrangian is given by

L12 = −1

4
FA

1

µν F
A1 µν − 1

4
FA

2

µν F
A2 µν − κ

2
FA

1

µν F
A2µν (3.2)
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with field strengths

FAk
µν = ∂µA

k
ν − ∂νAkµ. (3.3)

The corresponding interaction Lagrangian is given by

Lint = g1 (jµ1A
1
µ) + g2 (jµ2A

2
µ) (3.4)

where we have denoted with g1 and g2 the couplings of the two abelian symmetries. This

expression will be soon generalized to the case of a realistic theory with a fermion spectrum

charged under the SU(3)× SU(2)×U(1)Y ×U(1)′ symmetry.

The mixing term κ in the kinetic Lagrangian can be eliminated performing a rotation

by an angle φ = π/4 of the two gauge fields Akµ, followed by a rescaling. The rotation is

given by (
A1
µ

A2
µ

)
=

(
cosφ − sinφ

sinφ cosφ

)(
B̄1
µ

B̄2
µ

)
(3.5)

which brings eq. (3.2) into the form

L12 = −1− κ
4

F B̄
1

µν F
B̄1 µν − 1 + κ

4
F B̄

2

µν F
B̄2 µν (3.6)

in terms of a kinetically diagonal basis B̄i
µ (i = 1, 2). The rescaling involves the matrix

relation (
B̄1
µ

B̄2
µ

)
=

(
1√
1−κ 0

0 1√
1+κ

)(
B1
µ

B2
µ

)
(3.7)

expressed by a new orthogonal basis (B1, B2). The total transformation whence takes

the form (
A1
µ

A2
µ

)
= Rκ

(
B1
µ

B2
µ

)
(3.8)

with

Rκ =
1√
2

(
1√
1−κ −

1√
1+κ

1√
1−κ

1√
1+κ

)
(3.9)

and allows to re-express eq. (3.2) in the standard form as

L12 = −1

4
FB

1

µν F
B1 µν − 1

4
FB

2

µν F
B2 µν . (3.10)

Notice that Rκ is a matrix of Gl(2, R). After these fields redefinitions, the two gauge

currents j1 and j2 will mix with the two gauge fields B1 and B2.

Having eliminated the kinetic mixing with eq. (3.8), the interaction term in the La-

grangian is parameterized by the covariant derivative

Dµ = ∂µ + iQTGBµ , Bµ ≡

(
B1
µ

B2
µ

)
(3.11)
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where QT = (q1, q2) is the charge array and G is a matrix product of the original coupling

(g1, g2) with the orthogonal matrix Rκ

G =

(
g1 0

0 g2

)
Rκ ≡

(
g11 g12

g21 g22

)
. (3.12)

It is convenient to introduce the rotation matrix

OR =

(
cos θ − sin θ

sin θ cos θ

)
=

1√
g2

22 + g2
21

(
g22 g21

−g21 g22

)
, (3.13)

and parametrize the coupling matrix G in terms of three independent couplings (g, g′, g̃),

directly related to the original couplings g1, g2 and to the mixing parameter κ. With the

inclusion of this extra rotation, the coupling matrix G can be set in a triangular form

G̃ = GOTR =

(
g g̃

0 g′

)
, (3.14)

where the off-diagonal coupling g̃ parametrizes the mixing between the U(1) abelian

symmetries.

After the triangularization of the abelian coupling matrix, the complete gauge-

covariant derivative given by

Dµ = ∂µ + iQT G̃ORBµ . (3.15)

The new linear combinations of the gauge fields(
Bµ
B′µ

)
= OR

(
B1
µ

B2
µ

)
(3.16)

provides the diagonal basis for the kinetic terms of the Lagrangian. This approach is

directly applicable to an original gauge symmetry SU(3)×SU(2)×U(1)Y ×U(1)z, assuming

the existence of a kinetic mixing between the two U(1)′s of the form given by eq. (3.2). If

we denote with Y and z the corresponding charges (q1 = Y, q2 = z), the covariant derivative

is taken to be of the non diagonal form

Dµ = ∂µ + ig3T
aGaµ + ig2t

aW a
µ + igY Bµ + i(g̃Y + g′z)B′µ (3.17)

where g and g′ are the coupling constants associated with U(1)Y and U(1)′ respectively.

As discussed above, we will be setting g̃ to zero at the electroweak scale, but allow its

running in the complete RG evolution, as will be specified in one of the following sections.

Before giving the expressions of the β functions of the model in the presence of kinetic

mixing, we turn to a discussion of the fermionic interactions and of the scalar potential,

with the identification of the physical parameters which will be used in the numerical study

of the running.
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4 Fermionic interactions

4.1 Gauge interactions

Coming to the interactions between the fermions and the massive gauge bosons Z, Z ′,

these can be written in the form

Lint = −JµZZµ − J
µ
Z′Z

′
µ, (4.1)

where the weak currents are given by

JµZ/Z′ =
∑

f=ν,e,u,d

ψ̄fγ
µ
(
C
Z/Z′

f,L PL + C
Z/Z′

f,R PR

)
ψf , (4.2)

with the chirality projectors defined as usual PR,L = (1± γ5)/2. The couplings C
Z/Z′

f,L/R are

explicitly given by

CZf,L = e
c′

swcw

(
T 3
f − s2

wQf
)

+ ḡf,L s
′ , CZf,R = − esw c

′

cw
Qf + ḡf,R s

′ ,

CZ
′

f,L = − e s′

swcw

(
T 3
f − s2

wQf
)

+ ḡf,L c
′ , CZ

′
f,R = e

sw s
′

cw
Qf + ḡf,R c

′ , (4.3)

where we have used the shorthand notation sw ≡ sin θw, cw ≡ cos θw, s′ ≡ sin θ′ and

c′ ≡ cos θ′, with T 3
f being the third component of the weak isospin, Qf the electric charge

and ḡf,L/R = g̃Yf,L/R + g′zf,L/R. Notice that in eq. (4.2), concerning the neutrino sector,

we have presented, for the sake of simplicity, the weak currents in terms of the interaction

eigenstates νL and νR. These must be rotated into the mass eigenstates νl and νh of the

light and heavy neutrinos states respectively.

4.2 Yukawa interactions

In a type-I seesaw scenario for the masses of the light neutrinos mνl we adopt the following

Yukawa Lagrangian

−LY = Y ij
d QiLHd

j
R+Y ij

u QiLH̃u
j
R+Y ij

e LiHejR+Y ij
ν LiH̃νjR+Y ij

N (νiR)cνjRχ+ h.c. , (4.4)

which is the sum of the SM contributions and of the terms involving the RH neutrinos,

one for each family. Notice that the effective Majorana mass term MνcRνR, needed for the

implementation of the seesaw mechanism, is dynamically generated by the vev of the χ

scalar field.

The gauge invariance of the Yukawa interactions fixes the remaining U(1)′ charges. In

particular we obtain

zH = zu − zQ , zν = zu − 4zQ , zχ = −2zν . (4.5)

Notice that the introduction of a Dirac Yukawa term for each of the three RH neutrinos

automatically requires the universality of their U(1)′ charges, fixed accordingly to the

results of the previous section, in which the cancellation of the gravitational anomalies has

– 9 –
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been enforced. On the other hand, the last term in eq. (4.4), which provide a Majorana

mass for the RH neutrinos, establishes a relation between zχ and zν . Having fixed zχ = 2,

the U(1)′ charge of the RH neutrino is, therefore, uniquely determined. Combining this

result with that obtained from the gauge invariance of the Dirac Yukawa interaction for

the RH neutrinos, one can also extract the relation between zQ and zu, reducing to one

the number of the independent U(1)′ charges. It is important to remember that the three

relations in eq. (4.5) are not extracted from the anomaly cancellation conditions and are

obtained only from the particular structure of the Yukawa Lagrangian in eq. (4.4).

After spontaneous symmetry breaking, the effective Lagrangian with a Dirac (Md) and

Majorana (Mm) mass terms for the LH and RH neutrinos will be of the form

−LνY = M ij
d (νiL)cνjR +

1

2
M ij
m νiR ν

j
R + h.c. , (4.6)

where

Md = Yν
v√
2

Mm = YN v
′√2 (4.7)

inherit the flavor index structure from the corresponding Yukawa matrices.

To infer the order of the Yukawa couplings that this mechanism introduces, we set the

values of the three light neutrinos (νi) masses mνi down to the eV scale and consider the

effects of having chosen Mm around the TeV scale. This choice is justified, for instance,

within supersymmetric scenarios [51], but finds one of its most interesting feature for

being accessible at a typical LHC energy. At the same time the value of Mm results from

the interplay of the Yukawa coupling YN with the unknown value of the U(1)′ symmetry

breaking scale v′ and, therefore, remains completely unset. We have reviewed in appendix

B the derivation of the relation involving the light and heavy neutrino states in terms of

Md and Mm which is given by

Mνl ' −M
T
d M

−1
m Md , Mνh 'Mm . (4.8)

From the formula for the light neutrino mass in eq. (4.8) it is instead possible to extract the

size of the Yukawa coupling Yν . Choosing the scale of Mm around TeV, and considering

mνl ∼ eV, the Yukawa Yν must be . 10−6, a value which is too small to affect the evolution

of the RG evolution. On the other hand, YN could be even of O(1) and, henceforth, it can

play a significant role.

For the sake of simplicity, we consider diagonal Yukawa couplings which lead to di-

agonal neutrino mass matrices Mνl and Mνh . The neutrino spectrum generated by the

type-I seesaw mechanism is now at hand presenting, for each generation, two kind of dif-

ferent states(
νli
νchi

)
=

(
cosαi sinαi
− sinαi cosαi

)(
νLi

νcRi

)
with tan 2αi = −2

Mdi

Mmi

. (4.9)

We find that a light physical neutrino with mass in mνl is a mixing of SM LH neutrino

with a highly damped RH sterile part. In the opposite, the heavy counterpart is a linear

combination of the SM sterile RH neutrino with a weak LH component. The damping

being generated by the ratio between the Dirac mass Md and the big scale of the Majorana

mass term Mm.
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5 The Higgs sector and spontaneous symmetry breaking

We now turn to a description of the parameters of the extended Higgs sector. This sector

is characterized by the usual SU(2) doublet H and a SM singlet complex scalar χ. With

this field content the most general renormalizable scalar potential is given by

V (H,χ) = m2
1H
†H +m2

2χ
†χ+ λ1(H†H)2 + λ2(χ†χ)2 + λ3(H†H)(χ†χ) (5.1)

as a function of 5 parameters, two masses m2
1,m

2
2 and of three quartic coupling λi. The

stability of the potential is achieved by the following conditions

λ1 > 0 , λ2 > 0 , 4λ1λ2 − λ2
3 > 0 , (5.2)

which are obtained by requiring the corresponding Hessian matrix to be positive definite

at large field values. The spontaneous symmetry breaking pattern is obtained when the

two scalar fields acquire vacuum expectation values (vev)

< H >=
1√
2

(
0

v

)
, < χ >=

v′√
2
, (5.3)

whose expressions, determined by the minimization conditions, are

v2 =
m2

2 λ3/2−m2
1 λ2

λ1λ2 − λ2
3/4

, v′2 =
m2

1 λ3/2−m2
2 λ1

λ1λ2 − λ2
3/4

. (5.4)

After spontaneous symmetry breaking, the mixing between the two scalar fields can be

removed by an orthogonal transformation which rotates H and χ into the two mass eigen-

states h1 and h2 (
h1

h2

)
=

(
cos θ − sin θ

sin θ cos θ

)(
H

χ

)
(5.5)

with −π/2 < θ < π/2. The masses of the scalar eigenstates are

m2
h1,2 = λ1v

2 + λ2v
′2 ∓

√
(λ1v2 − λ2v′2)2 + (λ3vv′)

2 , (5.6)

and one can easily derive the relations

λ1 =
m2
h1

4v2
(1 + cos 2θ) +

m2
h2

4v2
(1− cos 2θ) ,

λ2 =
m2
h1

4v′2
(1− cos 2θ) +

m2
h2

4v′2
(1 + cos 2θ) ,

λ3 = sin 2θ

(
m2
h2
−m2

h1

2vv′

)
, (5.7)

which can be used to set the initial conditions on the scalar couplings through the physical

masses mh1,2 , the two vevs v, v′ and the mixing angle θ. From eq. (5.7) one can immediately

derive the relation

tan 2θ =
λ3vv

′

λ1v2 − λ2v′2
, (5.8)
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which allows to express the mixing of the two scalars in terms of the three independent

couplings of the potential and the two vevs v, v′. Notice that while the couplings λi in

eq. (5.7) can be taken as the independent parameters of the potential after imposing the

vacuum conditions eq. (5.4), eq. (5.8) is a trivial identity, derived from the former.

After spontaneous symmetry breaking, one obtains for the W± mass the usual SM

expression, MW = g2v/2, while the masses of the neutral gauge bosons are obtained from

the Lagrangian

v2

8
(g2W

3
µ − gBµ − ḡB′µ)2 +

v′2

2
(g′zχB

′
µ)2, (5.9)

where we have assumed a nonzero kinetic mixing of the two B,B′ gauge fields, as expressed

in eq. (3.17). We have also defined the new coupling ḡ = g̃ + 2g′zH , which involves the

kinetic mixing g̃ and the U(1)′ gauge coupling g′. zH and zχ are the U(1)′ charges of the

two scalar fields. In the case of a B-L symmetry, since zH = 0, then the new coupling ḡ

coincides with the coupling of the kinetic mixing, ḡ = g̃.

The diagonalization of the mass matrix extracted from the previous expression gives

the relations between mass and interaction eigenstates Bµ

Wµ
3

B′µ

 =

 cos θw − sin θw cos θ′ sin θw sin θ′

sin θw cos θw cos θ′ − cos θw sin θ′

0 sin θ′ cos θ′


 Aµ

Zµ

Z ′µ

 (5.10)

where θw is the usual Weinberg angle of the SM, and θ′ is a new mixing angle, with

−π/4 ≤ θ′ ≤ π/4 defined as

tan 2θ′ =
2ḡ
√
g2

2 + g2

ḡ2 + (2zχg′ v′/v)2 − g2
2 − g2

. (5.11)

The relation above can be re-expressed in terms of the masses of the two gauge bosons.

The masses of the Z and Z ′ gauge bosons are given by

MZ,Z′ =
√
g2

2 + g2
v

2

[
1

2

(
ḡ2 + (2zχg

′ v′/v)2

g2
2 + g2

+ 1

)
∓ ḡ

sin 2θ′
√
g2

2 + g2

] 1
2

. (5.12)

A bound on the mixing angle θ′ has been obtained from the LEP experiment [52] which

constrains θ′ to small values, namely |θ′| . 10−3. In this case the expressions for the gauge

boson masses simplify considerably to

MZ '
v

2

√
g2

2 + g2 , MZ′ ' v

2

√
ḡ2 + (2zχg′ v′/v)2 , (5.13)

and

θ′ ' ḡ
M2
Z

M2
Z′ −M2

Z

(5.14)

can be used in order to quickly grasp the dependence of the mixing angle θ′ in terms

of MZ,Z′ .
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Notice that the kinetic mixing between the two U(1) gauge fields can be taken to

vanish, without loss of generality, at any particular scale, but it can be reintroduced by

the RG evolution [53–55]. As already mentioned above, in the present analysis we have

chosen a vanishing g̃ at the electroweak scale, which is one of the boundary conditions of

our RG study. Also notice that, for g̃ = 0, the tree-level mixing between the Z ′ and the

SM gauge bosons is absent only for zH = 0, which occurs when the U(1)′ charges are those

of U(1)B−L.

5.1 The parameter choice

We conclude this section with few comments about the physical parameters of the model,

which we will be using in our numerical study in the sections below. The original 5

parameters of the potential (m2
1,m

2
2, λi), after imposing the vacuum conditions eq. (5.4),

can be replaced with the two physical masses of the Higgses, the two vevs v, v′, and the

scalar mixing angle θ. After eliminating v and mh1 (respectively identified with the SM vev

and Higgs mass, v ' 246 GeV, mh1 ' 125 GeV) using the current LHC data, we are left

with mh2 , the mass of the extra Higgs, θ and v′ as extra parameters. We can re-express v′

in terms of the physical mass of the Z ′ using eq. (5.13), which involves as relevant unknown

parameter the gauge coupling g′ and the kinetic mixing g̃. Henceforth, the potential can be

conveniently investigated in terms of the physical masses MZ′ and mh2 , and of the mixing

angle θ. For a given mass of the extra Z ′, one can use the two couplings (g′, g̃) as additional

parameters, whose values are taken as boundary conditions at the electroweak scale. A

typical study of the stability of the potential would then involve (MZ′ ,mh2 , θ), together

with (g′, g̃). The inclusion of the RH neutrinos renders this study more complex, since the

evolution will couple the previous parameters to the mass of the RH neutrino mνh . As we

are going to see, the requirement of stability of the potential through the running of its

RG equations, will in general select specific regions of the (mνh ,mh2) plane, for assigned

values of the couplings, MZ′ and θ.

As we will discuss in the sections below, the variables MZ′/g′, θ and mh2 will have

to satisfy some bounds from LEP (eqs. (8.1) and (8.2) respectively) while (g′, g̃) will be

constrained by the requirements of perturbativity along the entire RG flow (eq. (8.3)).

One final comment concerns the mass of the heavy RH neutrino, which is also directly

related to the vev v′ as for MZ′ , as shown in eqs. (4.7), (4.8). Therefore, an independent

variation of mνh respect to MZ′ , causes YN , the Yukawa of the RH neutrino, to vary. For

a given mass of the extra Z ′, with fixed couplings (g′, g̃) at the electroweak scale, the

variation of mνh is entirely accounted for by a variation of YN .

6 One-loop β-functions for a general charge assignment

We are now in the position to start a renormalization group analysis using a basis of

diagonal kinetic terms and with eq. (3.17) as the minimal form of the covariant derivative.

Consequently, the contribution coming from the abelian sector to the couplings include g,

g′ and g̃ as given by eq. (3.14), the latter accounting for the mixing. We will simplify the

structure of the SM Yukawa sector by retaining only the contribution coming from the
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top quark (Y 3,3
u = Yt), thereby omitting the Yukawas of the 3 light neutrinos. On the

other hand, we have taken the Yukawas of the heavy neutrinos to be universal (generation

independent) Y i,j
N = YNδ

i,j .

We present, in this section, the one-loop β-functions for the dimensionless parameters

for a generic charge assignment. The corresponding two-loop corrections can be found in

appendix A.

We start from the rotated gauge coupling sector which, as already said, contain no

trace of g21, if the β-functions undergo the same rotation given in eq. (3.13). At one-loop

order, the evolution of the gauge couplings is defined by the β functions

β(1)
g =

41g3

6
, β(1)

g2 = −19g2
3

6
, β(1)

g3 = −7g3
3 ,

β
(1)
g′ = g′

2
(

46g̃zQ
3

+
50g̃zu

3

)
+

41g′g̃2

6
+ g′

3 (−44zQzu + 134z2
Q + 18z2

u

)
, (6.1)

coupled with the β-function accounting for the mixing between the two U(1) factors

β
(1)
g̃ = g̃

(
41g2

3
− 44g′

2
zQzu + 134g′

2
z2
Q + 18g′

2
z2
u

)
+ g̃2

(
46g′zQ

3
+

50g′zu
3

)
+

41g̃3

6
+

46

3
g2g′zQ +

50

3
g2g′zu . (6.2)

It is clear from eq. (6.2) that even imposing a zero starting value for g̃, an abelian mixing

can be radiatively generated by the evolution.

The Yukawa sector is described by the evolution of just two real terms

β
(1)
Yt

= Yt

(
−g′g̃zQ − 4g′g̃zu −

17g̃2

12
− 17g2

12
− 9g2

2

4
− 8g2

3 − 3g′
2
z2
Q − 3g′

2
z2
u

)
+

9Y 3
t

2

β
(1)
YN

= YN

(
48g′

2
zQzu − 96g′

2
z2
Q − 6g′

2
z2
u

)
+ 10Y 3

N , (6.3)

and together with the evolution of the scalar quartic parameters

β
(1)
λ1

= λ1

(
12g′g̃zQ−12g′g̃zu−3g̃2−3g2−9g2

2 +24g′
2
zQzu−12g′

2
z2
Q−12g′

2
z2
u+12Y 2

t

)
−3g2g′g̃zQ + 3g2g′g̃zu +

3

4
g2g̃2 − 36g′

3
g̃zQz

2
u + 36g′

3
g̃z2
Qzu − 12g′

3
g̃z3
Q + 12g′

3
g̃z3
u

−18g′
2
g̃2zQzu + 9g′

2
g̃2z2

Q + 9g′
2
g̃2z2

u − 3g′g̃3zQ − 3g2
2g
′g̃zQ + 3g′g̃3zu + 3g2

2g
′g̃zu

+
3g̃4

8
+

3

4
g2

2 g̃
2 +

3g4

8
− 6g2g′

2
zQzu + 3g2g′

2
z2
Q + 3g2g′

2
z2
u +

3

4
g2

2g
2 − 6g2

2g
′2zQzu

+3g2
2g
′2z2

Q + 3g2
2g
′2z2

u +
9g4

2

8
− 24g′

4
zQz

3
u + 36g′

4
z2
Qz

2
u − 24g′

4
z3
Qzu + 6g′

4
z4
Q

+6g′
4
z4
u + 24λ2

1 + λ2
3 − 6Y 4

t , (6.4)

β
(1)
λ2

= −1536g′
4
zQz

3
u + 9216g′

4
z2
Qz

2
u − 24576g′

4
z3
Qzu + 24576g′

4
z4
Q + 96g′

4
z4
u

+λ2

(
384g′

2
zQzu − 768g′

2
z2
Q − 48g′

2
z2
u + 24Y 2

N

)
+ 20λ2

2 + 2λ2
3 − 48Y 4

N , (6.5)
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β
(1)
λ3

= λ3

(
6g′g̃zQ − 6g′g̃zu −

3g̃2

2
− 3g2

2
− 9g2

2

2
+ 204g′

2
zQzu − 390g′

2
z2
Q − 30g′

2
z2
u

+12λ1 + 8λ2 + 12Y 2
N + 6Y 2

t

)
− 432g′

3
g̃zQz

2
u + 1152g′

3
g̃z2
Qzu − 768g′

3
g̃z3
Q

+48g′
3
g̃z3
u − 96g′

2
g̃2zQzu + 192g′

2
g̃2z2

Q + 12g′
2
g̃2z2

u − 480g′
4
zQz

3
u + 1584g′

4
z2
Qz

2
u

−1920g′
4
z3
Qzu + 768g′

4
z4
Q + 48g′

4
z4
u + 4λ2

3 , (6.6)

provide a closed system of differential equations to evolve the scalar potential towards any

final scale.

7 The matching conditions at the electroweak scale

Before coming to a discussion of the main phenomenological implications of our analysis, we

pause for a moment, discussing a point which is essential in order to secure the consistency

of the evolution, which concerns the determination of the initial (matching) conditions.

We recall that the RGE’s employed in this work have been computed in the MS renor-

malization framework at two-loop order. These equations must be supplemented with

suitable one-loop boundary conditions defined in the same scheme. These consist of MS

renormalized couplings and masses evaluated at a given energy scale which correspond to

the starting scale of the RG running.

In general, the initial conditions can be unknown free parameters introduced by the

specific model which is under investigation, and are directly associated to some measured

observables. In order to determine the latter, the MS parameters at the starting scale must

be related to these physical observables. This task can be accomplished in two different

ways: 1) one can adopt the MS renormalization from the very beginning and obtain the

needed MS parameters directly from a set of measured observables or 2) use a scheme,

as the on-shell (OS) one largely used in the electroweak theory, in which the renormalized

parameters are expressed in terms of the physical quantities, the pole masses and the Fermi

constant, and then translate the on-shell parameters to the corresponding MS expressions

through appropriate matching conditions. In this work we adopt the second strategy which

is quite common in the literature on the perturbative corrections in the SM.

The matching conditions are easily extracted from the obvious relation

α0 = αOS + δαOS = αMS(µ) + δαMS, (7.1)

where α0, αOS and αMS denote, respectively, the bare, the on-shell and the MS expressions

of a generic parameter α. From eq. (7.1) one can extract a MS parameter in terms of its

on-shell version obtaining, at one-loop order,

αMS = αOS + δαOS − δαMS = αOS + δαOS|finite (7.2)

where the last expression is simply a consequence of the definition of the MS renormalization

scheme, in which the counterterms only subtract the UV singular parts. It is clear from

eq. (7.2) that the matching conditions between the OS and the MS schemes are defined
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from the finite part of the OS counterterm. Notice that, at tree level, the MS parameters

coincide with their OS version.

In our analysis we have adopted a mixed renormalization procedure in which the

known SM parameters are renormalized in the on-shell scheme, while the MS is used for

the additional couplings and masses introduced by the extended gauge and neutrino sectors

and for the vacuum expectation value v′ of the extra scalar. On the other hand, for the

sake of simplicity, all the remaining parameters in the scalar sector, containing both the

Higgs-like quartic coupling and the two new quartic interactions, are renormalized in the

on-shell scheme. Such a mixed scheme is not unusual in QFTs as it is already employed,

for instance, in the SM, and in particular for the computation of the strong corrections to

electroweak observables.

As shown in [55], one of the interesting features of this hybrid renormalization scheme,

besides its simplicity, is that the Appelquist-Carrazzone decoupling theorem is explicit

manifest. Indeed, the SM limit of measurable quantities is straightforwardly obtained for

v′ → ∞, with v′ defined in the MS scheme. This has been the main motivation for our

renormalization setup.

The SM-like parameters which enter into this RG study are the quartic coupling λ1 of

the SU(2) doublet H, the Yukawa of the top quark Yt and the gauge coupling constants

g, g2 and g3. These are computed in terms of the pole masses of the Higgs mh1 , of the

top Mt, of the weak gauge bosons MZ and MW , and of the Fermi constant GF . All these

quantities are then translated in the MS scheme using eq. (7.2). Notice that for the SU(3)

strong coupling constant g3 there is no need to introduce matching conditions because it

is directly extracted in the MS renormalization framework as α3(MZ).

On the other hand, the other unknown dimensionless parameters introduced by the

U(1)′ extension, with the only exception of the those of the scalar potential, are directly

employed in the MS scheme from the very beginning (or, equivalently, are matched to their

counterparts at tree level). These are the abelian gauge coupling constants, g′ and g̃, and

the Yukawa of the right-handed neutrinos YN . Instead, the quartic couplings λ2 and λ3

are matched at one-loop from the on-shell physical mass of the heavy scalar mh2 and from

the the mixing angle θ.

One of the most important SM parameters needed in the determination of the initial

conditions of our RG study is the Fermi constant GF . Using its definition in the effective

Fermi theory

GF√
2

=
g2

0

8M2
W,0

(1 + ∆r0) =
1

2v2
0

(1 + ∆r0) , (7.3)

we obtain the counterterm of the vev v in the on-shell scheme δv2
OS = ∆r0/(

√
2GF ).

We recall that GF is extracted from the muon lifetime, computed in the Fermi theory

augmented by QED corrections. As a consequence, the computation of the ∆r0 electroweak

corrections to the µ decay requires the subtraction of the pure QED contributions. At one-

loop order ∆r0 can be decomposed as

∆r0 = V − ΠWW

M2
W

+

√
2

GF
B + E , (7.4)
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Figure 1. Some of the new-physics diagrams appearing in the one-loop perturbative expansion

of the µ decay. These define the radiative corrections to GF . In particular, the diagrams in

figures (a), (b) enter in the computation of B, those in figures (c), (d) define V , figures (e)–(h)

enter in the calculation of the W self-energy and figures (i)–(j) in the external leg corrections E.

where V and B denote vertex and box corrections, ΠWW is the W boson self-energy eval-

uated at zero momentum and E corresponds to the wave-functions contributions. All of

them are computed at zero external momenta and are affected by SM-like corrections as

well as new-physics effects. Notice also that we have chosen a renormalization prescrip-

tion in which the tadpoles are included in the perturbative expansion. This property has

the advantage to provide a gauge-independent definition of the mass counterterms and of

∆r0. Nevertheless, the dimensionless parameters appearing in the Lagrangian, which are

the interesting ones for our analysis, are not affected by this choice and the results are

independent of the tadpole corrections. In figure 1 we show some of the one-loop pertur-

bative contributions to the µ decay which are needed in the computation of the matching

condition of GF . The corrections proportional to the neutrino mixing angle αi, as the ones

depicted in figure 2, have been neglected due to the smallness of the ratio between the

Dirac and the Majorana masses. The counterterms of the top Yukawa and of the SU(2)

gauge couplings, needed in the matching procedure, are obtained exploiting the relations

Mt = YtOS
vOS√

2
, M2

W = g2
2 OS

v2
OS

4
, (7.5)

which preserve their SM-like form, and read as

δYtOS = YtOS

(
δMt

Mt
− δvOS

vOS

)
, δg2 OS = g2 OS

(
δM2

W

2M2
W

− δvOS

vOS

)
. (7.6)
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Figure 2. Some of the one-loop box diagrams defining the µ decay proportional to the neutrino

mixing angle.

The determination of counterterms of the abelian gauge coupling g deserves a special

attention because its defining relation gets modified in the U(1)′ extension with respect

to the SM case as one can see from eq. (5.12). Nevertheless, the departure from the SM

expression, parametrized by the mixing angle θ′, is very small and eq. (5.13) can be safely

employed leading to

δgOS = gOS

(
1

2

δM2
Z − δM2

W

M2
Z −M2

W

− δvOS

vOS

)
. (7.7)

In the previous equation δvOS is obtained from ∆r0 as explained above, while the top,

the W and the Z boson mass counterterms in the on-shell renormalization scheme are

computed from the corresponding self-energies

δMt = Re Σt(p/ = Mt) , δM2
W = Re ΠWW (p2 = M2

W ) , δM2
Z = Re ΠZZ(p2 = M2

Z) .

(7.8)

The remaining two abelian coupling constants, g′ and g̃, could be related, in principle, to

the pole mass of the Z ′ and to the OS expression of the mixing angle θ′ through eq. (5.11)

and (5.12). Nevertheless, being these two free parameters of the U(1)′ extension, the use

of the matching conditions in this case is not mandatory and we can work directly with

their MS expression. Therefore, in all of the following analyses, g′ and g̃ should always be

understood as computed within the MS.

The major differences in the matching relations, with respect to the SM case, are

found in the scalar sector due to the presence of new quartic interactions. Using the

defining equations in eq. (5.7) we obtain

δλ1 OS =
m2
h1

4v2
OS

(1 + cos 2θOS)

(
δm2

h1

m2
h1

− 2
δvOS

vOS
− 2δθOS tan θOS

)

+
m2
h2

4v2
OS

(1− cos 2θOS)

(
δm2

h2

m2
h2

− 2
δvOS

vOS
+ 2δθOS cot θOS

)
,

δλ2 OS =
m2
h1

4v′2OS

(1− cos 2θOS)

(
δm2

h1

m2
h1

+ 2δθOS cot θOS

)

+
m2
h2

4v′2OS

(1 + cos 2θOS)

(
δm2

h2

m2
h2

− 2δθOS tan θOS

)
,

δλ3 OS = λ3 OS

(
δm2

h2
− δm2

h1

m2
h2
−m2

h1

− δvOS

vOS
+ 2δθOS cot 2θOS

)
, (7.9)
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where

δm2
hi

= Re Πhihi(p
2 = m2

hi
) , δθOS =

Re Πh1h2(p2 = m2
h1

)

m2
h1
−m2

h2

. (7.10)

Notice that, in the last of the previous equations, the mixed scalar self-energy Πh1h2 has

been evaluated at p2 = m2
h1

. This choice enforces the absence of mixing between the two

tree-level mass eigenstates h1, h2 also at one-loop level and at a particular scale, given

by mh1 .

8 Two-loop numerical analysis

The allowed parameter space of the model can be strongly restricted if we require the

vacuum stability and the perturbativity up to a given scale Q. This may be chosen to

coincide with the GUT, Planck or any other scale where new physics scenarios are expected

to appear. Obviously, these conditions are often not sufficient to select a bounded region of

the same space, and new assumptions must be added, for instance in the form of suitable

benchmark points where to sharpen the physics predictions.

Significant bounds are derived mainly from previous LEP-II analysis [52], which limit

the gauge mixing angle |θ′| . 10−3, and force us to consider only the sector for which

the condition

MZ′/g′ ≥ 7 TeV , (8.1)

holds [56]. Besides, the addition of a new heavy scalar in the spectrum modifies the coupling

of the light Higgs to the SM particles by a factor of cos θ. Therefore the electroweak

precision measurements, through the S, T, U parameters [57], may be used to constrain the

scalar mixing angle together with the heavy Higgs mass leading to the bound

θ . 0.44 , mh2 ≥ 500 GeV (8.2)

for mh1 = 125 GeV.

8.1 Weak coupling evolution for a general U(1)’ charge assignment and in the

B-L model

As we have discussed in the previous sections, the requirement of cancellation of the gauge

and of the gravitational anomalies has allowed us to reduce the U(1)′ charges to just two

parameters zQ and zu. Together with the constraint from the LEP-II results, reported in

eq. (8.1), we also require the perturbativity of the evolution of the coupling of the new

abelian sector which gives the conditions

g′(Q′) <
√

4π , g̃(Q′) <
√

4π Q′ ≤ Q, (8.3)

up to the given final evolution scale Q. Here, the free parameters are the values g′(Qew) = g′

and g̃(Qew) = g̃ of the couplings at the electroweak scale, identified with the top quark

mass. In addition, to process any allowed point in parameter space and investigate the
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(c)

Figure 3. Values of the free U(1)′ charges zQ and zu for which the perturbativity constraint is

satisfied up to 105 GeV (blue region), 109 GeV (green region), 1015 GeV (yellow region) and 1019 GeV

(red region) for g′ = 0.1 (a) and g′ = 0.2 (b). In (c) it is shown the same study for the charges

αY = 2 zu − 2 zQ and αB−L = 4 zQ − zu and g = 0.1. The shadowed areas are excluded regions

corresponding to MZ′ = 2.5 TeV (pink shadows) and MZ′ = 5 TeV (green shadows) respectively.

The black thick dot indicates the B-L charge assignment.

perturbativity of the couplings and the stability of the scalar potential under the two-loop

RG evolution we need to implement the appropriate matching conditions as illustrated in

section 7.

We show in figure 3 the region of parameter space in which the perturbativity is

maintained up to 105 GeV (blue region), 109 GeV (green region), 1015 GeV (yellow region)

and 1019 GeV (red region), as a function of the free charges zQ and zu, or αY and αB−L.
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Figure 4. Evolutions of the Yukawa coupling of the RH neutrinos for different initial values at the

electroweak scale. The running of the top quark Yt is shown for comparison.

The shadowed areas in pink and green are the excluded regions according to eq. (8.1).

They correspond to two different choices of MZ′ equal to 2.5 and 5 TeV respectively. The

plots shows that the validity of perturbation theory up to MP requires the charge values

|zQ| . 1.5 and |zu| . 3, and that this bound becomes more stringent as g′ grows. The

thick point in each of the three plots corresponds to the charge assignment of a U(1)B−L
abelian symmetry. We have set to zero the parameter of the kinetic mixing (g̃) and varied

only g′, the coupling of the extra Z ′, set to 0.1 and 0.2 in panel (a) and (b) respectively.

Clearly, in both cases, the U(1)B−L charge assignment guarantees a perturbative evolution

up to the Planck scale. In panel (c) we have plotted the same regions of perturbativity

and the corresponding exclusion areas of (a) using the (αY , αB−L) parameterization for a

generic extra U(1)′ symmetry.

As we have already discussed in the previous sections, the cancellation of gauge and

gravitational anomalies naturally requires the introduction of SM singlet fermions which

can dynamically acquire a Majorana mass through their Yukawa coupling to the extra

scalar χ controlled by YN in a type-I seesaw. In this scenario the mass of the heavy

neutrinos can be of the same order of magnitude of the vev of the extra Higgs, which can

be easily chosen in the TeV range, with a Yukawa coupling ∼ O(1). Values of YN ∼ O(1)

require a detailed RG analysis in order to identify the perturbativity and stability regions

in the parameter space of these models. As shown below, the Yukawa coupling YN , and,

equivalently, the mass of the heavy neutrinos, has a fundamental role in this study.

In figure 4 we show the evolution of YN for different initial values at the electroweak

scale. Differently from the Yukawa of the top quark, YN grows at a higher rate as we

increase the starting value of YN . The analysis shows that for g′ = 0.1 and MZ′ = 2.5 TeV,

a value of YN ∼ 0.45 at the electroweak scale spoils the perturbativity of the model at
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Figure 5. (a) and (b): maximum evolution scale Q where the abelian gauge sector remains

perturbative, as a function of the initial condition on g′, fixed at the electroweak scale. Results are

shown for MZ′ = 2.5 TeV (panel (a)) and 5 TeV (panel (b)). The shadowed regions are excluded by

LEP. (c), (d) and (e): running of the g′ and g̃ couplings with initial conditions g̃ = 0 and g′ = 0.1

(lower curve), g′ = 0.2, 0.3 and g′ = 0.4 (upper curve) at the electroweak scale, for mνh ranging

between 500 GeV (black thick line) and 1.5 TeV (red thick line).
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Q = MP . The decreasing behavior of Yt is due to the negative contributions of the QCD

corrections to the corresponding β function which are obviously absent in the evolution of

the Yukawas of the RH neutrinos.

The study of the perturbativity of the abelian sector, investigated by the evolution

of the coupling of the extra Z ′ and the size of the kinetic mixing g̃, provides significant

information on the possible scenarios available in the B-L case. This analysis is presented

in figure 5 where we show five plots related to the evolution of the abelian couplings. In

particular, we try to identify the regions in the parameter space of this model where the

evolution is perturbative along the RG running up to a given final scale Q. We show in

panel (a) the maximum value of such evolution scale (Q) allowed for a given initial value

of the coupling g′, with g̃ = 0 (pure B-L case) and MZ′ = 2.5 TeV, mh2 = 500 GeV. For

instance, for g′ ∼ 0.45 at the electroweak scale, the RG evolution remain perturbative only

up to the GUT scale (1015 GeV), but it violates the limits from LEP given in eq. (8.1). For

smaller values of the same coupling, such as g′ . 0.35, the model is weakly coupled for any

value of the final scale Q up to MP and satisfies eq. (8.1). We have varied the mass of the

heavy neutrinos mνh continuously from 500 up to 1500 GeV, thereby identifying a colored

area bounded by the two black and red curves. The continuous boundary curves refer to

the choices of mνh = 500 GeV and 1.5 TeV respectively. The two horizontal black lines in

the same plot identify the values of Q corresponding to the GUT (1015 GeV) and Planck

scales (1019 GeV).

The analysis is repeated in the case of MZ′ = 5 TeV (panel (b)), where now the

experimentally allowed initial values of g′ are for g′ . 0.7, with the shadowed region

being therefore excluded by LEP data. Notice that in this case the two boundary curves

describing the variation with the heavy neutrino mass appear to be superimposed and

undistinguishable. As it can be inferred from eq. (6.1), the Yukawa of the heavy neutrino

affects the evolution of the abelian coupling only at two-loop level, thus explaining such

mild dependence on it. Moreover, for a heavier Z ′ the effect of the RH neutrino mass

is more suppressed, since for a given mνh , a larger MZ′ (thus a bigger v′) corresponds

to a smaller YN . This explains the different bandwidths in the two panels for the same

span of mνh .

Notice that in both panels the bounds from the requirement of perturbativity are

implicitly taken into account in the identification of the maximum stability scale, while

the LEP bounds are shown an shadowed regions. Incidentally, both for MZ′ = 2.5 and

5 TeV and for the chosen initial parameters, we find that the gauge coupling has to satisfy

the condition g′ . 0.35 at the electroweak scale in order to maintain perturbativity up

to Planck scale and to fulfill the LEP bound eq. (8.1). In panel (a) the LEP and the

perturbativity bounds tend to coincide, while in (b) the latter is far more significant, with

the shadowed region excluding values of the gauge coupling g′ > 0.35.

In panels (c), (d) and (e) we have investigated the evolution of the g′ and of the g̃

couplings, the latter describing the impact of the kinetic mixing, which are responsible for

the behaviors discussed above. In panels (c) and (d), we plot the running of g′ as a function

of the evolution scale Q, for a varying heavy neutrino mass. The shadowed areas are the

regions excluded by the bound eq. (8.1). Notice that the growth of g′ is very similar in both
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panels, and in the case of a heavier extra Z ′ it is quite insensitive to the change of the heavy

neutrino mass, for the same reasons illustrated for the previous plots. The growth of this

coupling is quite moderate for initial conditions g′ . 0.2 but its RG trajectory undergoes

a rapid steepening for larger initial values.

A similar analysis (panel (e)) is presented for the coupling which parameterizes the

kinetic mixing of U(1)Y and U(1)B−L. The evolution of the kinetic mixing g̃ is strongly

correlated with the size of the initial condition on g′. The RG trajectories, in this case,

steepen very fast as g′ grows. We have chosen four values of g′ at the electroweak scale

equally spaced in the interval (0.1-0.4). We start with a vanishing kinetic mixing at the

electroweak scale and let the coupling be radiatively generated by the evolution. By se-

lecting initial values of g′ . 0.3 the evolution of the mixing satisfies the perturbativity

bound up to the Planck scale. For larger initial values, such as g′ ∼ 0.4, both couplings

(g′, g̃) will violate the perturbativity below the Planck scale. In this plot, the shadowed

regions are bounded by the two trajectories generated by masses of the heavy RH neutrinos

mνh = 500 GeV (black curve) and 1.5 TeV (red curve) which appear to be separated only

for g′ >∼ 0.3 and Q >∼ 1013 GeV.

8.2 Two-loop effects and the vacuum stability bounds

8.2.1 Dependence of the stability region on higher-order effects

The information about the vacuum stability is enclosed in the structure of the potential

for large fields value, that is, in the quartic scalar interaction terms, stated in the three

positivity conditions of eq. (5.2). In the SM, where only one term of this kind is present

(λ), the stability condition coincides with the positivity of this coupling. As we are going

to show in this section, the stability bound is significantly affected also by the order of the

evolution, which is crucial in order to reach definitive conclusions regarding the dynamics

of the U(1)B−L model. The result of this analysis is shown in figure 6. In this study

we want to emphasize the role of the two-loop corrections on the RG running and of the

one-loop matchings on the initial conditions. For the sake of simplicity we choose fixed

values for the mass of the heavy Higgs and of the right-handed neutrinos both of 500 GeV,

and θ = 0. The mass of the Z ′ is reported in each plot.

We show in panel (a) the RG running of λ1 at one- and two-loop levels. Notice that

at one-loop level, for the chosen initial conditions, the maximum stability scale Q in the

RG trajectory of this coupling is below the GUT scale, at 1014 GeV. Two loop effects are

clearly essential in order to verify its positivity up to the Planck scale.

A similar investigation is carried out for the quartic coupling of the heavy Higgs field

λ2. In panel (b) it is shown that both the one-loop and the two-loop evolutions indicate that

this coupling evolves rather slowly and stays positive up to the Planck scale for the chosen

mh2 and mνh . We have selected two different initial conditions at the electroweak scale

corresponding to two different values of the mass of the Z ′, MZ′ = 2.5 TeV (black curve),

MZ′ = 5 TeV (red curve). In this case the two-loop effects are quite small, independently

of the chosen initial conditions.
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(a) (b)

(c) (d)

Figure 6. RG running of the quartic couplings in the scalar potential: (a) evolution of λ1, (b)

evolution of λ2, (c) evolution of λ3, (d) evolution of σ = 4λ1λ2 − λ23. One- and two-loop effects

are shown.

Figure 7. The evolution of λ1. Two-loop evolution with the one-loop matching (continuous

line); two-loop evolution without matching (dotted line); one-loop evolution without matching

(dashed line).
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Figure 8. (a) Maximum stability and perturbativity scale in the (mh2
, θ) parameter space for

MZ′ = 2.5 TeV and g′ = 0.1, (b) Maximum stability and perturbativity scale in the (mh2
, θ)

parameter space for MZ′ = 2.5 TeV and g′ = 0.15 .

In panel (c) we extend our analysis to the mixed χ−H quartic coupling, which enters

into the stability condition by the quantity σ ≡ 4λ1λ2−λ2
3, the latter plotted in panel (d).

Notice that, in this case, the flip in sign of λ3, as shown in (c), is not problematic for the

stability bound if the two-loop RG equations are employed, since σ stays anyhow positive

over the entire range of the evolution, as also shown in (d). Also in this case, it is clear

that two-loop effects are essential in order to revert the trend of the evolution, which

otherwise causes σ to turn negative below the GUT scale, thereby generating a vacuum

instability. In (d) we show the trajectories of σ for two values of MZ′ reported in the

same figure. In both cases an instability is generated at 1014 GeV by the one-loop running,

which is completely eliminated by the two loop effects. Notice that two loop effects, in

general, tend to change the concavity of the σ evolution. This interesting behavior can

be understood from a cursory look at all the panel (a), (b) and (c), due to the different

slopes of the corresponding curves over the entire evolution region. We conclude that the

inclusion of two-loop effects in the RG evolution is mandatory for a consistent analysis of

the stability of the scalar potential and for the identification of the available parameter

space of the model.

In order to show the impact of the matching conditions we study the behavior of

λ1 in figure 7 where the matched and the unmatched evolutions are shown. We have

indicated with a continuous line the two-loop RG running of the same coupling with one-

loop matching and with a dotted line the unmatched case. The dashed line refers to

the one-loop result, with the tree-level matching. It is clear that, as for the two-loop β

functions, the one-loop matching relations on the initial condition improve the stability of

the potential and are necessary for the consistency of the perturbative approach. Moreover,
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Figure 9. (a) Maximum stability and perturbativity scale as a function of mνh for MZ′ = 2.5 TeV

(black lines) and MZ′ = 5 TeV (red lines) each with two different values of g′. (b) The evolution

of λ2 with MZ′ = 2.5TeV and g′ = 0.1 for values of mνh between 2.1 TeV and 2.4 TeV. (c) The

evolution of λ2 with MZ′ = 2.5 TeV and g′ = 0.3 for values of mνh between 2.1 TeV and 2.25 TeV.

we have explicitly verified that these contributions become more sizeable as soon as we

switch on the scalar mixing parameters θ of the two Higgses.

8.2.2 Dependence of the stability region on θ,mh2, and mνh

Having shown the importance of the two-loop corrections in the analysis of the stability of

U(1)B−L, we are now going to investigate this issue more closely by focusing our attention

on its parametric dependence on the scalar mixing angle θ, on the mass of the heavy Higgs

and of the RH neutrinos.

The bounds from the electroweak precision measurements reported in eq. (8.2) can

then be used to reduce the space of parameters in the (mh2 , θ) plane. In figure 8 we plot

in different colors the regions of stability and perturbativity for different final evolution

scales Q. The (mh2 , θ) region shown in all the panels is the one allowed by the bounds in

eq. (8.2), with the areas marked in blue, green, yellow and red identifying stable evolutions

with final scales Q equal to 105, 109, 1015 and 1019 GeV respectively. We have selected

MZ′ = 2.5 TeV and a mass of the RH neutrinos mνh= 500 GeV. The choices of the values

of the couplings, g′ = 0.1 in panel (a) and g′ = 0.15 in panel (b) show the sensitivity of
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these regions on such small changes of g′. Notice that in panel (b) the requirement of

having a stable evolution up to the Planck scale requires that mh2 . 6 TeV. In general, as

clear from the plots, such a requirement reduces significantly the bound given in eq. (8.2),

suggesting that the smallness of the scalar mixing can be inferred by the condition of RG

stability. In particular, θ has to be smaller that 0.3 in order to have a stable evolution of

the scalar potential at least up to the GUT scale.

A study of the dependence of the stability region on the mass of the RH neutrino is

presented in figure 9, where (panel (a)) the curves in black and red refer to values of the

mass of the extra Z ′ of 2.5 and 5 TeV respectively, each with a more stable (g′ = 0.1) and

a less stable (g′ = 0.3) coupling assignment. Notice that both branches are characterized

by a drastic change of the Q value of maximum stability, around mνh ∼ 2.2 and 4.3 TeV

respectively. As the mass of the heavy neutrino grows, the effects of its Yukawa coupling

YN dominate on the evolution of λ2 driving it towards negative values and, therefore,

destabilizing the vacuum of the scalar potential. This behavior is caused by the large

and negative Y 4
N contribution to the β function of λ2, as one can see already at one-loop

level from eq. (6.5) [33, 40, 58]. Clearly, the role of this coupling is similar to that of

Yt, the Yukawa of the top, which is responsible for driving the SM vacuum towards an

instability. Once more we want to stress that the destabilizing role of a large YN is twofold:

it can spoil both the stability of the scalar potential and the perturbativity, as shown in

figure 4. Moreover, it is clear from the same figure that YN grows significantly for large

final evolution scales, thus increasing its destabilizing effect on vacuum.

More insight into this behavior of the potential can be deduced also from panel (b)

and (c) of the same figure. Here we show a plot of the λ2 coupling versus the evolution

scale Q. The region of parameter space explored in panel (b) corresponds to the case

MZ′=2.5 TeV and g′ = 0.1, with the mass of the RH neutrinos between 2.1 and 2.4 TeV. As

shown an instability emerges for mνh around 2.2 TeV turning λ2 negative and destabilizing

the potential. A similar analysis is illustrated in panel (c) where g′ = 0.3 has been chosen.

It is clear, from this analysis, that a stable evolution up to a significantly large scale, such

as the GUT scale or larger, is favored by values of mνh . 2 TeV and is worsened by an

increase in the size of the coupling g′.

8.2.3 Dependence of the stability region in the (mνh,mh2) plane

In figure 10 we show the stability regions up to 105 GeV (blue region), 109 GeV (green

region), 1015 GeV (yellow region) and 1019 GeV (red region) in the (mνh ,mh2) plane. In

panel (a) we compare their shapes in the case of a two-loop versus a one-loop implementa-

tion of the running for a vanishing scalar mixing θ. The two-loop RG result is pictured in

the larger panel, while the smaller subpanel on the bottom right reproduces the same plot

but uniformly rescaled and at one-loop level. As we have already observed, the two plots

show clearly that the inclusion of the two-loop corrections is essential in order to improve

the stability of the potential up to the Planck scale. Notice that in the small subpanel, the

red and the yellow regions, which in the larger plot characterize a stable potential up to

the Planck and GUT scale respectively, are replaced by a green area, corresponding to a

stability which can reach only 109 GeV.
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In panel (b) we have varied the scalar mixing angle to the value of θ = 0.1. Also in

this case the effects of a nonzero θ to the shape of the stability regions are quite significant.

In general, the upper bound on mh2 in the (mνh ,mh2) plane is far stronger compared to

panel (a), showing that, for a RH neutrino of 2 TeV, no values of the heavy Higgs mass can

accomodate the requirement of stability above 105 GeV. Notice also that the upper bound

on the heavy Higgs mass mh2 is barely influenced by the heavy neutrino mass but it is

strongly controlled by its vacuum expectation value v′ and the scalar mixing angle θ, see

figure 8.

In panels (c) and (d) the region of Planck scale stability is investigated in terms of

its dependence on the initial conditions at the electroweak scale of the gauge coupling g′

(panel (c)) and of θ (panel (d)). We find that the region of stability grows larger as the

gauge coupling and the scalar mixing decrease.

9 Comments and conclusions

The identification of possible approaches which could set significant exclusion limits on

the parameter space of new physics models at the LHC is, for sure, of direct theoretical

and experimental significance. Among these, the requirement of stability of the scalar

potential up to a very large scale, such as the GUT scale or even the Planck scale, has a

clear physical appealing, although metastable vacuum states, as in the case of the SM, could

also be acceptable. The case of simple abelian extensions of the gauge structure, which

require a minimally enlarged Higgs sector, with just one extra scalar, define a minimal

framework in which to explore the requirements of stability.

Our results clearly indicate that the sensitivity of the evolution on the large Yukawa

coupling of the top quark, present in the SM, is probably part of a more general scenario

which includes other similar couplings sharing a similar behaviour. This picture emerges

as soon as we allow a more complete description of the light neutrino masses. With these

motivations, we have investigated in some detail the case of a B-L extension of the SM,

accompanied by a type-I seesaw for the generation of the neutrino masses, realized by RH

neutrinos. In such U(1)′ extensions, the gauge charges of the RH neutrinos are naturally

constrained by the condition of cancellation of the gauge and gravitational anomalies. In

our analysis we have specifically chosen a family universal charge assignment for these neu-

trinos, one per generation. The choice of a type-I seesaw, obviously, is model dependent,

but the approach can be extended to other mechanisms as well. The phenomenological

advantage of a mechanism of this type, besides its simplicity, is to involve a vev of the

extra Higgs which can be easily accommodated in the TeV range, at the reach, in princi-

ple, of LHC searches. In this regard the model has been largely investigated starting from

early LEP searches [52], to the most recent analyses of its LHC visibility. Such minimal

yet rich extension of the SM has found a lot of attention along the years, covering the

entire spectrum of the model, in search of specific experimental signatures at the LHC.

From the extra scalar sector [33] to its gauge [42, 44, 46–49] and neutrino sector [42], the

TeV B-L scenario has shown to provide a promising window of experimental visibility, if

realized in nature, for the present and forthcoming experiments at the LHC. Moreover the
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Figure 10. (a): stability regions at two-loops (large panel) and at one-loop (small subpanel) for

θ = 0 in the (mh2
,mνh) plane. (b) Stability regions at two-loops for θ = 0.1. (c) Regions of stability

up to Planck scale for different values of g′ and θ = 0. (d) Regions of stability up to Planck scale

for different values of θ and g′ = 0.1

aforementioned analysis have been carried out in the minimal U(1)B−L extension in which

the mixing between the Z and the Z ′ gauge bosons has been neglected. A more complete

analysis of the kinetic mixing of this model, although quite constrained by electroweak

precision data [62], and the possibility of exploring different charge assignments for the

new abelian gauge symmetry are left to future studies.
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The RG analysis has been performed employing two-loop β functions and one-loop match-

ing relations on the initial conditions at the electroweak scale. We have shown that such

higher-order corrections affect considerably the running of the couplings and, probably,

should always be kept into account in any significant phenomenological analysis. They are

essential for a consistent identification of the allowed regions in the parameter space of a

given model, under the requirements of perturbativity and of vacuum stability.

Following this reasoning, one finds that a charge assignment of B-L type, as shown in

figures 3 and 5, can be characterized by a perturbative behaviour up to the Planck scale.

We have seen that the requirements of perturbativity and stability of the scalar poten-

tial constrain the masses of the heavy Higgs and of the RH neutrinos quite significantly.

The boundaries of the allowed region, for a given mass of the Z ′, depend on the values

of the scalar mixing angle θ and of the abelian coupling g′. We have also verified that

the transition from a region of stability to an unstable one can be quite abrupt, and may

depend quite significantly on the mass of the RH neutrino, as illustrated in figure 9. This

feature can be ascribed to the evolution of the scalar coupling λ2, and, in particular, to the

Yukawa (YN ) of the RH neutrinos which affects their masses. As already mentioned above,

the roles of YN and of Yt, from this perspective, appear to be quite similar. Finally, we have

also investigated the impact of the kinetic mixing on the evolution of the U(1)Y ×U(1)B−L
symmetries.

There are other aspects, not touched in this analysis, and that we leave to future

studies, which concern the inclusion of this model into a specific unified theory. It is well

know that multiple U(1) factors are often encountered in the breaking of a GUT scenario,

or in the construction of effective theories from string models [63, 64] so that it is natural

to ask what a vacuum stability analysis can add in predictivity using the corresponding

RGE’s. From our point of view its use in this context can be dual. Without any prior

knowledge of a particular breaking pattern, the study of the instabilities of the scalar

potential gives an indication of the validity of the SM × U(1)B−L gauge symmetry as

a residual one, valid at low energy, before calling for a UV completion (either of GUT

type or else). More significant theoretical constraints on the parameter space can instead

be drawn when the model is embedded in a particular GUT scenario. In this case the

stability of the vacuum between the threshold scales of the intermediate breakings is a

necessary condition for its consistency. From this perspective, our study clarifies that a

heavy neutrino mass may challenge specific GUT models. Indeed, we have shown that

the running of the corresponding Yukawa couplings could spoil the perturbativity and the

stability of the vacuum if a new threshold is not sufficiently near the TeV scale.

Another important point concerns the role of a TeV B-L scenario respect to the con-

straints that could be imposed by requiring a successful leptogenesis. Analysis in this

direction have been presented in [65–67]. We have verified that also in the model that we

have considered, the value of the baryon abundance nB ∼ 10−2 ε ηTSp
, which depends on

product of the CP-asymmetry of the heavy neutrinos decays (ε) and on the efficiency factor

(ηTSp
), can account for the current estimated value of nB ∼ 10−10. ηTSp

is temperature

dependent and is calculated at the sphaleron freeze-out temperature (ηTSp
). It is respon-

sible for the amount of washout of the baryon asymmetry, which can be dangerously low
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when the condition MZ′ > 2Mνh is realized [67]. Always in a context of a very strong

near-degeneracy of the heavy neutrinos, a pattern which can be completely encompassed

by our choice of a scalar YN , we have found regions, in the parameter space that we have

analysed, which are compatible with leptogenesis. For instance, for a mass of the extra

Z ′ of 2.5 TeV and a coupling g′ = 0.1, we have verified that the requirement of a maxi-

mal value of the CP-asymmetry parameter ε starts to allow leptogenesis (ηTSp
∼ 10−8) if

Mνh ≥ 200 GeV. Meanwhile, less stringent values of ε, ε ∼ O(10−1)−O(10−2), are feasible

if Mνh ≥ 400 GeV and 1 TeV respectively. We have found, as expected, that an increment

of the strength of the Z ′ coupling g′ strongly disfavours the leptogenesis scenario, since it

intensifies the washout of the asymmetry, for a 2.5 TeV gauge boson.
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A Two-loop β-functions in B-L

We give in this appendix with the complete set of the two-loop β-functions, for the charge

assignment zQ = 1
3 and zu = 1

3 , required for the stability analysis.

β-functions of gauge coupling constants:
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β-functions of Yukawa interactions:
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β-functions of quartic scalar interactions:
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B Neutrino mass eigenstates in type-I seesaw

To investigate the nature of the neutrino mass eigenstates we introduce a six dimensional

vector in flavor space ψ = (νL, ν
c
R) so that eq. (4.6) becomes

−LνY =
1

2
ψTMψ + h.c. , (B.1)

with a 6× 6 mass matrix M of the form

M =

(
0 MT

d

Md Mm

)
=

1√
2

(
0 v Y T

ν

v Yν 2 v′ YN

)
. (B.2)

For the sake of simplicity, all the flavor indices have been omitted. The mass matrix

obtained in eq. (B.2) can be formally set in a block-diagonal form with the help of a

unitary matrix U , implicitly defined as(
Mνl 0

0 Mνh

)
= UT

(
0 MT

d

Md Mm

)
U , (B.3)

where Mνl and Mνh are (generally non diagonal) 3 × 3 blocks. When expressed in terms

of the rotated states ψ′ = (νl, ν
c
h) = U−1ψ the following matrix structure arises

−LνY =
1

2
M ij
νl
νilν

j
l +

1

2
M ij
νh
νihν

j
h + h.c. , (B.4)
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Notice that the Dirac mass matrix Md has entries at most of the order of the electroweak

scale, meanwhile the Majorana mass Mm for the sterile neutrinos is usually allowed to rise

up to the GUT scale or even up to Planck scale.

Such hierarchy is necessary for the implementation of the seesaw mechanism and trans-

lates into a hierarchy between Mνl and Mνh . The same separation in scales justifies the

use of a particular Ansatz [59] for the unitary matrix U employed to block-diagonalize the

mass matrix in eq. (B.2)

U = exp

(
0 V
−V† 0

)
'

(
1− 1

2 VV
† V

−V† 1− 1
2 V
†V

)
, (B.5)

where V is a non-diagonal 3×3 matrix with small elements. Inserting the matrix expansion

given in eq. (B.5) into eq. (B.3) one obtains in the following constraints

0 ' Md −MmV† −
1

2
VTV∗Md − VTMT

d V† −
1

2
MdVV† ,

Mνl ' −V
∗Md −MT

d V† + V∗MmV† ,

Mνh ' Mm + VTMT
d +MdV −

1

2
VTV∗Mm −

1

2
MmV†V . (B.6)

The first equality in eq. (B.6), evaluated at leading order in V, is used to fix V† 'M−1
m Md.

From the remaining conditions we are now able to recover the usual type-I seesaw relations

for the light and the heavy mass matrices given in eq. (4.8).

In order to completely resolve the neutrino spectrum, the mass matrices mνl and mνh

must be separately diagonalized, leading to

LTMνlL
−1 = diag (mνl1 ,mνl2 ,mνl3) ,

HTMνhH
−1 = diag (mνh1 ,mνh2 ,mνh3) , (B.7)

for the light and the heavy neutrino mass eigenstates. This further step is of fundamental

importance to investigate the (non-unitary) nature of neutrino mixing in a type-I seesaw

scenario, given its role in defining the corresponding Pontecorvo-Maki-Nakagawa-Sakata

(PMNS) matrix [60, 61] as UPMNS = L†c(1 + η)L, where Lc diagonalizes the mass matrix

for the charged leptons and η = −VV†/2.

Such fine-grained analysis, however, is an unnecessary complication in our study and,

for the sake of simplicity, we consider diagonal Yukawa couplings.
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