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1 Introduction

T.D. Lee has shown decades ago that in the general two-Higgs-doublet model (THDM) CP

violation is possible in the Higgs sector [1]. Meanwhile a lot of effort has been spent to inves-

tigate the THDM; see for instance the review [2] and references therein. In particular, some

progress could be made employing the bilinear approach. The bilinears appear naturally in

the Higgs potential in any n-Higgs doublet model (nHDM), since only the gauge-invariant

scalar products of the Higgs-boson doublet fields may appear in the potential. The bilinear

formalism was developed in detail in [3, 4] and independently in [5].

Initiated by these works, many aspects of the THDM and the general nHDM were

considered within this formalism. For instance, CP-violation properties of the THDM

were presented in [5, 6]. Different symmetries of the THDM and the general nHDM were

considered in some detail employing bilinears; see for instance [7–13]

In this work we will focus on the three-Higgs-doublet model (3HDM). Many of the

properties of this model are direct generalizations of the THDM, but there appear also

new aspects. As we will see in detail, the space of Higgs-boson doublets does, in terms

of bilinears, not correspond to the forward light cone space, as in case of the THDM [4],

but to a certain subspace; see [5, 6, 14]. Driven mainly by the quark- and neutrino mixing

data, several 3HDM’s have been proposed; see for instance [15–18]

– 1 –



J
H
E
P
0
2
(
2
0
1
5
)
0
5
8

In an analogous way to the study of the THDM in [4] we will discuss in the following

stability, electroweak symmetry breaking, and the stationarity points of the potential for

any 3HDM. Throughout the study we will illustrate the general results by a simple illus-

trative 3HDM example. In the appendix we will demonstrate the power of the developed

formalism in an explicit non-trivial example, a 3HDM based on an O(2)×Z2 symmetry [19].

2 Bilinears

We consider the tree-level Higgs potential of models with three Higgs-boson doublets sat-

isfying SU(2)L × U(1)Y electroweak gauge symmetry. This is a generalization of the case

of two Higgs-boson doublets which were discussed in detail in [4].

We assume that all doublets carry hypercharge y = +1/2 and denote the complex

doublet fields by

ϕi(x) =

(

ϕ+
i (x)

ϕ0
i (x)

)

; i = 1, 2, 3. (2.1)

In the most general SU(2)L ×U(1)Y gauge invariant Higgs potential the Higgs-boson dou-

blets enter solely via products of the following form:

ϕi(x)
†ϕj(x), i, j ∈ {1, 2, 3}. (2.2)

It is convenient to discuss the properties of the Higgs potential such as its stability

and its stationary points in terms of gauge invariant bilinears.

First we introduce the 3× 2 matrix of the Higgs-boson fields in the following way,

φ =







ϕ+
1 ϕ0

1

ϕ+
2 ϕ0

2

ϕ+
3 ϕ0

3






=







ϕT
1

ϕT
2

ϕT
3






. (2.3)

We arrange all possible SU(2)L ×U(1)Y invariant scalar products into the hermitian 3× 3

matrix

K = φφ† =







ϕ†
1ϕ1 ϕ†

2ϕ1 ϕ†
3ϕ1

ϕ†
1ϕ2 ϕ†

2ϕ2 ϕ†
3ϕ2

ϕ†
1ϕ3 ϕ†

2ϕ3 ϕ†
3ϕ3






. (2.4)

A basis for the 3× 3 matrices is given by

λα, α = 0, 1, . . . , 8 (2.5)

where

λ0 =

√

2

3
13 (2.6)

and λa, a = 1, . . . , 8, are the Gell-Mann matrices. Here and in the following greek indices

(α, β, . . .) run from 0 to 8 and latin indices (a, b, . . .) from 1 to 8. We have

tr(λαλβ) = 2δαβ , tr(λα) =
√
6 δα0. (2.7)
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The decomposition of K (2.4) reads now

K =
1

2
Kαλα (2.8)

where the real coefficients Kα are given by

Kα = K∗
α = tr(Kλα). (2.9)

With the matrix K, as defined in terms of the doublets in (2.4), as well as the decomposi-

tion (2.8), (2.9), we immediately express the scalar products in terms of the bilinears,

ϕ†
1ϕ1 =

K0√
6
+

K3

2
+

K8

2
√
3
, ϕ†

1ϕ2 =
1

2
(K1 + iK2) , ϕ†

1ϕ3 =
1

2
(K4 + iK5) ,

ϕ†
2ϕ2 =

K0√
6
− K3

2
+

K8

2
√
3
, ϕ†

2ϕ3 =
1

2
(K6 + iK7) , ϕ†

3ϕ3 =
K0√
6
− K8√

3
. (2.10)

The matrix K (2.4) is positive semidefinite which follows directly from its definition.

This in turn gives
√

3

2
K0 = tr(K) ≥ 0, det(K) ≥ 0 . (2.11)

The hermitian matrix K (2.4) is constructed from the Higgs field matrix, K = φφ†.

Therefore, the nine coefficients Kα of its decomposition (2.8) are completely fixed given

the Higgs-boson fields.

Since the 3 × 2 matrix φ has trivially rank smaller or equal 2, this holds also for the

matrix K. On the other hand, any hermitian 3 × 3 matrix with rank equal or smaller

than 2 which clearly has then vanishing determinant, det(K) = 0, determines the Higgs-

boson fields ϕi, i = 1, 2, 3 uniquely, up to a gauge transformation. This was shown in detail

in [4] in their theorem 5 for the general case of n-Higgs-boson doublets. In appendix A we

show that the gauge orbits of the three Higgs fields (2.1) are characterised by the following

set in the 9-dimensional space of (K0, . . . ,K8):

K0 ≥ 0,

(tr(K))2 − tr(K2) = K2
0 − 1

2
KaKa ≥ 0,

det(K) =
1

12
GαβγKαKβKγ = 0.

(2.12)

Here Gαβγ are completely symmetric constants defined in (A.25), (A.26). That is, to every

gauge orbit of the Higgs-boson fields corresponds exactly one vector (Kα) satisfying (2.12)

and vice versa. The first two relations of (2.12) are analogous to the light cone conditions

of the THDM; see (36) of [4]. The determinant relation, trilinear in the Kα, is specific for

the 3HDM.

Based on the bilinears we shall in the following discuss the potential, basis transforma-

tions, stability, minimization, and electroweak symmetry breaking of the general 3HDM.
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3 The 3HDM potential and basis transformations

In terms of the bilinear coefficients, K0, Ka, a = 1, . . . , 8 we can write the general 3HDM

potential in the form

V = ξ0K0 + ξaKa + η00K
2
0 + 2K0ηaKa +KaηabKb, (3.1)

where the 54 parameters ξ0, ξa, η00, ηa and ηab = ηba are real. The potential (3.1) contains

all possible linear and quadratic terms of the bilinears — corresponding to all gauge invari-

ant quadratic and quartic terms of the Higgs-boson doublets. Terms higher than quadratic

in the bilinears should not appear in the potential with view of renormalizability. Any con-

stant term in the potential can be dropped and therefore (3.1) is the most general 3HDM

potential. We also introduce the notation

K = (K1, . . . ,K8)
T, ξ = (ξ1, . . . , ξ8)

T, η = (η1, . . . , η8)
T,

E = (ηab), (Ẽαβ) =

(

η00 ηb
ηa ηab

)

.
(3.2)

We can then write the potential (3.1) in the compact form

V = ξαKα +KαẼαβKβ . (3.3)

Let us now consider a change of basis of the Higgs-boson fields, ϕi(x) → ϕ′
i(x), where







ϕ′
1(x)

T

ϕ′
2(x)

T

ϕ′
3(x)

T






= U







ϕ1(x)
T

ϕ2(x)
T

ϕ3(x)
T






, (3.4)

with U ∈ U(3) a 3 × 3 unitary transformation, that is, U †U = 13. From (3.4) we have

φ′(x) = Uφ(x), for the matrix K (2.4)

K ′(x) = UK(x)U †, (3.5)

and for the bilinears

K ′
0(x) = K0(x), K ′

a(x) = Rab(U)Kb(x). (3.6)

Here Rab(U) is defined by

U †λaU = Rab(U)λb. (3.7)

The matrix R(U) has the properties

R∗(U) = R(U), RT(U)R(U) = 18, detR(U) = 1, (3.8)

that is, R(U) ∈ SO(8). But the R(U) form only a subset of SO(8).

For the bilinears a pure phase transformation, U = exp(iα)13, plays no role. We shall,

therefore, consider here only transformations (3.4) with U ∈ SU(3). In the transformation
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of the bilinears (3.6) Rab(U) is then the 8 × 8 matrix corresponding to U in the adjoint

representation of SU(3).

The Higgs potential (3.1) remains unchanged under the replacement (3.6) if we perform

an appropriate transformation of the parameters

ξ′0 = ξ0, ξ′ = R(U) ξ,

η′00 = η00, η′ = R(U)η, E′ = R(U)E RT(U).
(3.9)

In the pure 3HDM potential, that is the model without fermions, we can use (3.9) to bring

e.g. ξ to a standard form. Consider the hermitian matrix

Λξ = ξaλa. (3.10)

Applying a transformation U ∈ SU(3) we get with (3.7)–(3.9)

UΛξU
† = Rba(U)ξaλb = ξ′bλb ≡ Λξ′ . (3.11)

With a suitable transformation U we can, therefore, diagonalise Λξ. That is, we always

can achieve the form

Λξ′ = ξ′3λ3 + ξ′8λ8, ξ′ =
(

0, 0, ξ′3, 0, 0, 0, 0, ξ
′
8

)T
. (3.12)

The number of relevant parameters of the general 3HDM potential is, therefore,

54− 6 = 48. (3.13)

Note that instead of ξ we could have chosen η in the above argument. Note also the slick

proof of (3.12) and (3.13) employing the bilinear formalism.

Let us remark on the basis transformations with respect to the 3-Higgs-doublet model.

In a realistic model we have to consider, besides the Higgs potential, kinetic terms for

the Higgs-boson doublet fields as well as Yukawa terms which provide couplings of the

Higgs-boson doublets to fermions. Under a basis transformation, that is, a transformation

of the Higgs-boson doublets of the form (3.4), or equivalently, in terms of the bilinears,

a transformation of the form (3.6), the kinetic terms of the Higgs doublets will remain

invariant. However, we emphasize that, in general, the Yukawa couplings are not invariant

under such a change of basis.

In order to illustrate the use of the bilinears we will consider a simple illustrative

example of an explicit 3HDM Higgs potential,

Vexpl = −µ2ϕ†
1ϕ1 + λ(ϕ†

1ϕ1 + ϕ†
2ϕ2 + ϕ†

3ϕ3)
2. (3.14)

Here µ2 > 0 is a parameter of dimension mass squared and λ > 0 is dimensionless. Em-

ploying (2.10) we write this potential in terms of the bilinears as

Vexpl = − µ2

√
6
K0 −

µ2

2
K3 −

µ2

2
√
3
K8 +

3

2
λK2

0 . (3.15)

This corresponds to the general form (3.1) with parameters,

ξ0 = − µ2

√
6
, ξ = µ2

(

0, 0,−1

2
, 0, 0, 0, 0,− 1

2
√
3

)T

, η00 =
3

2
λ, η = 0, E = 0. (3.16)

In appendix B we present a detailed study of a more involved 3HDM.
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4 Stability of the 3HDM

Let us now analyse stability of the general 3HDM potential (3.1), given in terms of the

bilinears K0 and K on the domain determined by (2.12). This can be done in an analogous

way to the THDM; see [4]. The case
√

3/2K0 = ϕ†
1ϕ1 + ϕ†

2ϕ2 + ϕ†
3ϕ3 = 0 corresponds to

vanishing Higgs-boson fields and V = 0. For K0 > 0 we define

k =
K

K0
=

(

Ka

K0

)

. (4.1)

Due to (2.12) we have for k the domain Dk:

2− k2 ≥ 0,

det(
√

2/313 + kaλa) = 0.
(4.2)

The domain boundary, ∂Dk, is characterised by

2− k2 = 0. (4.3)

From (3.1) and (4.1) we obtain, for K0 > 0, V = V2 + V4 with

V2 = K0 J2(k), J2(k) := ξ0 + ξTk, (4.4)

V4 = K2
0 J4(k), J4(k) := η00 + 2ηTk + kTEk (4.5)

where we introduce the functions J2(k) and J4(k) on the domain (4.2).

A stable potential means that it is bounded from below. The stability is determined

by the behaviour of V in the limit K0 → ∞, that is, by the signs of J4(k) and J2(k)

in (4.4), (4.5). For a model to be at least marginally stable, the conditions

J4(k) > 0 or

J4(k) = 0 and J2(k) ≥ 0
(4.6)

for all k ∈ Dk, that is, all k satisfying (4.2) are necessary and sufficient, since this is

equivalent to V ≥ 0 for K0 → ∞ in all possible allowed directions k. The more strict

stability property V → ∞ for K0 → ∞ and any allowed k requires V to be stable either

in the strong or the weak sense. For strong stability we require

J4(k) > 0 (4.7)

for all k ∈ Dk; see (4.2). For stability in the weak sense we require for all k ∈ Dk

J4(k) ≥ 0,

J2(k) > 0 for all k where J4(k) = 0.
(4.8)

To check that J4(k) is positive (semi-)definite, it is sufficient to consider its value for

all stationary points on the domain Dk. This holds because the global minimum of the

continuous function J4(k) is reached on the compact domain Dk, and the global minimum

is among those stationary points.

– 6 –
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To obtain the stationary points of J4(k) in the interior of the domain Dk we add

to J4(k) the second condition in (4.2) with a Lagrange multiplier u. The stationary points

are then obtained from

∇k1,...,k8

[

J4(k)− u

(

det(
√

2/313 + kaλa)

)]

= 0,

det(
√

2/313 + kaλa) = 0,

2− k2 > 0.

(4.9)

For the stationary points on the boundary ∂Dk we have to add the condition (4.3) with a

second Lagrange multiplier. We get then

∇k1,...,k8

[

J4(k)− u1

(

det(
√

2/313 + kaλa)
)

− u2(2− k2)

]

= 0,

det(
√

2/313 + kaλa) = 0,

2− k2 = 0.

(4.10)

All stationary points satisfying (4.9) or (4.10) have to fulfill the condition J4(k) > 0 for

stability in the strong sense. If for all stationary points we have J4(k) ≥ 0, then for every

solution k with J4(k) = 0 we have to have J2(k) > 0 for stability in the weak sense, or at

least J2(k) = 0 for marginal stability. If none of these conditions is fulfilled, that is, if we

find at least one stationary direction k with J4(k) < 0 or J4(k) = 0 but J2(k) < 0, the

potential is unstable.

In our explicit example, Vexpl, (3.15), the functions J2(k) and J4(k) read

J2(k) =

(

− 1√
6
− k3

2
− k8

2
√
3

)

µ2, J4(k) =
3

2
λ. (4.11)

Obviously, J4(k) is always positive for λ > 0 in any direction k, therefore, the potential is

stable in the strong sense. That is, stability is here guarantied by the quartic terms of the

potential alone.

5 Electroweak symmetry breaking of the 3HDM

Suppose now that the 3HDM potential is stable, that is, bounded from below. Then the

global minimum will be among the stationary points of V . In the following the different

types of minima with respect to electroweak symmetry breaking are discussed and the

corresponding stationarity equations are presented.

As we have discussed in section 2, the space of the Higgs-boson doublets is determined,

up to electroweak gauge transformations, by the space of the hermitian 3 × 3 matrices K

with rank smaller or equal 2. Since the rank of the matrix K is equal to the rank of the

Higgs-boson field matrix φ (2.3) we can distinguish the different types of minima with

respect to electroweak symmetry breaking as follows. At the global minimum, that is, the

– 7 –
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vacuum configuration, we write the 3× 2 matrix of the Higgs-boson fields as

〈φ〉 =







v+1 v01
v+2 v02
v+3 v03






. (5.1)

In the case this matrix has rank 2, we cannot, by a SU(2)L × U(1)Y transformation,

achieve a form with all charged components v+i , i = 1, 2, 3 vanishing. This means that

the full SU(2)L × U(1)Y is broken. In case we have at the minimum a matrix 〈φ〉 with

rank one, we can, by a SU(2)L × U(1)Y transformation, achieve a form with all charged

components v+i vanishing. The unbroken U(1) gauge group can then be identified with

the electromagnetic gauge group. Therefore, a minimum with rank one corresponds to the

electroweak-symmetry breaking SU(2)L×U(1)Y →U(1)em. Eventually, a vanishing matrix

at the minimum, 〈φ〉 = 0, corresponds to an unbroken electroweak symmetry. Of course,

only a minimum with a partially broken electroweak symmetry is physically acceptable.

We study now the matrix Kv corresponding to 〈φ〉 (5.1)

Kv = 〈φ〉〈φ〉† = 1

2
Kvαλα. (5.2)

For an acceptable vacuum 〈φ〉, Kv must have rank 1. From (A.14) we see that Kv has

rank 1 and is positive semidefinite if and only if

trKv =

√

3

2
Kv0 > 0,

2K2
v0 −KvaKva = 0,

det(Kv) = 0.

(5.3)

By a suitable U(3) transformation (3.4) we can bring the vacuum value 〈φ〉 of rank 1 to

the form

〈φ〉 =







0 0

0 0

0 v0/
√
2






, v0 > 0. (5.4)

In a realistic model v0 must be the usual Higgs-boson vacuum expectation value,

v0 ≈ 246GeV. (5.5)

With (5.4) we get in this basis a particularly simple form for Kv respectively Kvα:

Kv =
1

2







0 0 0

0 0 0

0 0 v20






=

1

2
Kvαλα,

(Kvα) =
v20√
6

(

1, 0, . . . , 0, −
√
2
)T

.

(5.6)

– 8 –
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Another possible choice for the vacuum expectation value, obtainable by a suitable

transformation (3.4) is

〈φ〉 =







0 v0/
√
2

0 0

0 0






, v0 > 0. (5.7)

Here we get

Kv =
1

2







v20 0 0

0 0 0

0 0 0






,

(Kvα) = v20

(

1√
6
, 0, 0, 1

2 , 0, 0, 0, 0,
1

2
√
3

)T
.

(5.8)

In the cases where 〈φ〉 of (5.1) has rank 2 or rank 0 also the matrixKv, (5.2), has rank 2

or zero, respectively. The corresponding conditions for Kv are given explicitly in (A.13)

and (A.15), respectively. We can, therefore, summarise our findings for the vacuum values

to a given potential V as follows.

Let 〈φ〉 be the vacuum expectation value of the Higgs-boson field matrix to a given,

stable, potential V and Kv = 〈φ〉〈φ〉† = Kvαλα/2. The gauge symmetry SU(2)L × U(1)Y
is fully broken by the vacuum if and only if

Kv0 > 0, 2K2
v0 −KvaKva > 0. (5.9)

We have the breaking SU(2)L ×U(1)Y → U(1)em if and only if

Kv0 > 0, 2K2
v0 −KvaKva = 0. (5.10)

We have no breaking of SU(2)L ×U(1)Y if and only if

Kvα = 0. (5.11)

Of course, we always have

detKv =
1

12
GαβγKvαKvβKvγ = 0 (5.12)

with Gαβγ defined in (A.25).

6 Stationary points

Following the study of stability and electroweak symmetry breaking in the last two sections

we shall now present the stationarity equations. We suppose again that the potential is

stable. Then the global minimum is among the stationary points of V .

We classify the stationary points by the rank of the stationarity matrix K. In the

following we use the conditions for K having rank 0, 1, 2, or 3 as given in appendix A;

see (A.12)–(A.15).

– 9 –
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The matrix K = 0, respectively Kα = 0, α = 0, . . . , 8, always corresponds to a

stationary point of V with value V (Kα) = 0.

All stationarity matricesK = Kαλα/2 of rank 1 are obtained from the following system

of equations where u1 and u2 are Lagrange multipliers:

∇K0,...,K8

[

V (K0, . . . ,K8)− u1(2K
2
0 −KaKa)− u2 det(K)

]

= 0,

2K2
0 −KaKa = 0,

det(K) = 0,

K0 > 0.

(6.1)

Using (3.3) and (A.27) we can write (6.1) explicitly as follows,

ξα + 2ẼαβKβ − 2u1 (3δα0δβ0 − δαβ)Kβ − u2
4
GαβγKβKγ = 0,

(3δα0δβ0 − δαβ)KαKβ = 0,

GαβγKαKβKγ = 0,

K0 > 0.

(6.2)

All stationarity matricesK = Kαλα/2 of rank 2 are obtained from the following system

of equations where u is a Lagrange multiplier:

∇K0,...,K8

[

V (K0, . . . ,K8)− u det(K)

]

= 0,

2K2
0 −KaKa > 0,

det(K) = 0,

K0 > 0.

(6.3)

Explicitly we get here

ξα + 2ẼαβKβ − u

4
GαβγKβKγ = 0,

(3δα0δβ0 − δαβ)KαKβ > 0,

GαβγKαKβKγ = 0,

K0 > 0.

(6.4)

The stationarity matrix K = Kαλα/2 with the lowest value of V (K0, . . . ,K8) gives the

global minimum Kv of the potential. Note that in general there may be degenerate global

minima with the same potential value.

Systems of equations of the kind (6.1), (6.3) can be solved via the Groebner-basis

approach or homotopy continuation; see for instance [20, 21].

7 The potential after symmetry breaking

In this section we discuss the potential after symmetry breaking and the procedure to

calculate the physical Higgs-boson masses and self couplings in the 3HDM. We will as-

sume that the potential is stable and leads to the desired electroweak symmetry breaking
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SU(2)L×U(1)Y → U(1)em. In particular, the global minimum is then a solution of the set

of equations (6.1), or equivalently (6.2). In this case we can, in the unitary gauge, by an

electroweak gauge transformation always achieve the form (5.7) for the vacuum expecta-

tion value of the Higgs-field matrix. For the original Higgs fields expressed in terms of the

physical fields we get

ϕ1(x) =
1√
2

(

0

v0 + h0(x)

)

, ϕ2/3(x) =

(

H+
2/3(x)

1√
2

(

H0
2/3(x) + iA0

2/3(x)
)

)

, (7.1)

with v0 real and positive, neutral fields h0(x), H
0
2 (x), A

0
2(x), H

0
3 (x), A

0
3(x), as well as the

complex charged fields H+
2 (x) and H+

3 (x). The negatively charged Higgs-boson fields are

defined by H−
2/3(x) =

(

H+
2/3(x)

)†
. Thus, we have in the 3HDM the following physical fields

five neutral fields: h0(x), H0
2 (x), A0

2(x), H0
3 (x), A0

3(x)

two charged fields: H+
2 (x), H+

3 (x).
(7.2)

In general, however, the physical fields of definite mass are linear combinations of the fields

in (7.2). Obviously, the 3 original complex doublets of any 3HDM, corresponding to 12 real

degrees of freedom, yield 5 real fields and 2 complex fields, with the 3 remaining degrees

of freedom absorbed via the mechanism of electroweak symmetry breaking.

We shall now give explicit expressions for the mass matrices and the self couplings of

the physical Higgs bosons using the bilinear formalism. We have assumed that we have a

potential V leading to the desired electroweak symmetry breaking. That is, the vacuum

matrix Kv has rank 1 and, by a suitable basis transformation (3.5), can be brought to

the form (5.8). We see from (A.20) that the corresponding matrix Mv = 0 and, therefore,

with (A.24) we get

Mvα = GαβγKvβKvγ = 0. (7.3)

From (6.2) we find then that the Kvα satisfy

2ẼαβKvβ = −ξα + 2u1(3δα0δβ0 − δαβ)Kvβ ,

(3δα0δβ0 − δαβ)KvαKvβ = 0,

Kv0 > 0.

(7.4)

In the following we work in the special basis where Kv has the form (5.8). We expand

K, respectively Kα, in terms of the physical Higgs boson fields as

Kα(x) = Kvα +K(1)
α (x) +K(2)

α (x), (7.5)

where K
(1)
α (x) and K

(2)
α (x) are linear and quadratic, respectively, in the physical fields.
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With (7.1) we get

K(1)
α (x) =

2

v0
h0(x)Kvα +K ′(1)

α (x),

(

K
′(1)
α (x)

)

= v0

(

0, H0
2 (x), A

0
2(x), 0, H

0
3 (x), A

0
3(x), 0, 0, 0

)T
,

(7.6)

K
(2)
0 (x) =

1√
6

[

h20(x) +
(

H0
2 (x)

)2
+
(

A0
2(x)

)2
+
(

H0
3 (x)

)2
+
(

A0
3(x)

)2
]

+

√

2

3

[

H−
2 (x)H+

2 (x) +H−
3 (x)H+

3 (x)
]

,

K
(2)
1 (x) = h0(x)H

0
2 (x),

K
(2)
2 (x) = h0(x)A

0
2(x),

K
(2)
3 (x) =

1

2

[

h20(x)−
(

H0
2 (x)

)2 −
(

A0
2(x)

)2
]

−H−
2 (x)H+

2 (x),

K
(2)
4 (x) = h0(x)H

0
3 (x),

K
(2)
5 (x) = h0(x)A

0
3(x),

K
(2)
6 (x) = H0

2 (x)H
0
3 (x) +A0

2(x)A
0
3(x) +H−

2 (x)H+
3 (x) +H−

3 (x)H+
2 (x),

K
(2)
7 (x) = H0

2 (x)A
0
3(x)−A0

2(x)H
0
3 (x)− i

(

H−
2 (x)H+

3 (x)−H−
3 (x)H+

2 (x)
)

,

K
(2)
8 (x) =

1

2
√
3

[

h20(x) +
(

H0
2 (x)

)2
+
(

A0
2(x)

)2 − 2
(

H0
3 (x)

)2 − 2
(

A0
3(x)

)2
]

+
1√
3

[

H−
2 (x)H+

2 (x)− 2H−
3 (x)H+

3 (x)
]

.

(7.7)

Similarly, we will expand V in the terms of order zero to four in the physical fields.

V = V (0) + V (1) + V (2) + V (3) + V (4). (7.8)

Using (3.3) and (7.5) we get

V (0) = Kvαξα +KvαẼαβKvβ ,

V (1) = K(1)
α (x)ξα + 2K(1)

α (x)ẼαβKvβ ,

V (2) = K(2)
α (x)ξα + 2K(2)

α (x)ẼαβKvβ +K(1)
α (x)ẼαβK

(1)
β (x),

V (3) = 2K(2)
α (x)ẼαβK

(1)
β (x),

V (4) = K(2)
α (x)ẼαβK

(2)
β (x).

(7.9)
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Using now (7.4) and (7.6) we find easily

V (0) =
1

2
v20

(

1√
6
ξ0 +

1

2
ξ3 +

1

2
√
3
ξ8

)

, (7.10)

V (1) = 0, (7.11)

V (2) = m2
ch

(

H−
2 (x)H+

2 (x) +H−
3 (x)H+

3 (x)
)

+
(

h0(x), H
0
2 (x), A

0
2(x), H

0
3 (x), A

0
3(x)

) 1

2
M

2
n















h0(x)

H0
2 (x)

A0
2(x)

H0
3 (x)

A0
3(x)















(7.12)

where

m2

ch
= 2u1v

2

0
, (7.13)

M
2

n
=



















−4
(

1
√

6
ξ0 +

1

2
ξ3 +

1

2
√

3
ξ8

)

−2ξ1 −2ξ2 −2ξ4 −2ξ5

−2ξ1 2 (u1 + η11) v
2

0
2η12v

2

0
2η14v

2

0
2η15v

2

0

−2ξ2 2η21v
2

0
2 (u1 + η22) v

2

0
2η24v

2

0
2η25v

2

0

−2ξ4 2η41v
2

0
2η42v

2

0
2 (u1 + η44) v

2

0
2η45v

2

0

−2ξ5 2η51v
2

0
2η52v

2

0
2η54v

2

0
2 (u1 + η55) v

2

0



















.

(7.14)

We see from (7.10) that, in our special basis, we must have

1√
6
ξ0 +

1

2
ξ3 +

1

2
√
3
ξ8 < 0. (7.15)

This holds because at our electroweak-symmetry-breaking vacuum point the potential value

must be below the trivial stationary value V = 0. Furthermore, we must have V (1) = 0,

see (7.11), since we are expanding around the true minimum of the potential. From (7.12)–

(7.14) we read off the mass matrices of the physical Higgs-boson fields. The two charged

pairs H±
2 and H±

3 have the same mass, as was already found in [10]. From (7.13) we see

that the mass squared of the charged fields is given by two times the Lagrange multiplier

u1 times the square of the vacuum expectation value, v20. This shows that for the true

minimum of the potential the Lagrange multiplier u1 in (6.1) and (6.2) must satisfy

u1 ≥ 0. (7.16)

The analogous relation for the THDM was given in (145) of [4]. In (7.14) we give the

squared mass matrix of the neutral fields, always using our special basis.

Finally we can read off the Higgs-boson self couplings from the last two equations

in (7.9) inserting (7.6) and (7.7).

In our example 3HDM Higgs potential, (3.15), we find stationary points for vanishing

fields, corresponding to an unbroken EW symmetry, from the set (6.3) we get no solution

with K0 > 0, and from the set (6.1) we get one real solution with
√
6

2
K0 =

√
3K8 = K3 =

µ2

2λ
, K1/2/4/5/6/7 = 0, u1 =

λ

2
(7.17)
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with any value for the Lagrange multiplier u2 6= 0. The corresponding potential value is

V (0) = −1/4·(µ2)2/λ and is the deepest stationary point and therefore the global minimum.

From (5.8) we see that the global minimum corresponds to a vacuum expectation value

v0 =
√

µ2/λ. In this model the physical fields (7.2) are the fields of definite mass with

m2
h0

= 2µ2 = 2λv20 for h0 and m2 = µ2 = λv20 for all other fields.

8 Conclusion

The three-Higgs-doublet model has been studied as a generalization of the THDM. Sta-

bility, electroweak symmetry breaking, and the types of stationary points of the potential

have been investigated. Explicit sets of equations have been presented which allow to de-

termine the stability of any 3HDM and, in case of a stable potential, to find the global

minimum or the degenerate global minima in case the potential has such. For the case of

partial electroweak symmetry breaking SU(2)L × U(1)Y → U(1)em we have given explicit

expressions for the squared masses of the physical Higgs bosons. The use of bilinears turns

out to be very helpful: in particular, irrelevant gauge degrees of freedom are avoided and

the degree of the polynomial equations which are to be solved is reduced in this formal-

ism. In general, the sets of equations which determine stability and the stationary points

are rather involved. However, approaches like the Groebner-basis approach or homotopy

continuation may be applied to solve these systems of equations in an efficient way. This

is demonstrated for a non-trivial example in appendix B.

Acknowledgments

The work of M.M. was supported, in part, by Fondecyt (Chile) Grant No. 1140568.

A Properties of the matrix K

Here we want to discuss the properties of the matrix K (2.4) with respect to its rank.

First we note that the 3 × 3 matrix K is hermitian and positive semidefinite. Hence,

we can, by a unitary transformation, diagonalise this matrix,

UKU † =







κ1 0 0

0 κ2 0

0 0 κ3






, (A.1)

with all κi ≥ 0. In particular, we have,

tr(K) = κ1 + κ2 + κ3,

(tr(K))2 − tr(K2) = 2κ1κ2 + 2κ2κ3 + 2κ1κ3,

det(K) = κ1κ2κ3.

(A.2)

Employing the properties of the Gell-Mann matrices (2.7) we can write the second trace

condition in the form

(tr(K))2 − tr(K2) = K2
0 − 1

2
KaKa. (A.3)
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Suppose now that the matrix K has rank 3, then, we have to have for all three κi

κi > 0. (A.4)

It follows immediately from (A.2)

tr(K) > 0, (tr(K))2 − tr(K2) > 0, det(K) > 0. (A.5)

If, for the reverse, we have for a hermitian matrix K the conditions (A.5) fulfilled, then,

using (A.2) we find that we must have all κi > 0. That is, K has rank 3 and is positive

definite.

Suppose the matrix K has rank 2, then, without loss of generality, we can assume

κ1 > 0, κ2 > 0, κ3 = 0. (A.6)

It follows immediately from (A.2) that

tr(K) > 0, (tr(K))2 − tr(K2) > 0, det(K) = 0. (A.7)

If, for the reverse, we have for a hermitian matrix K the conditions (A.7) fulfilled, then,

from the last equation in (A.2) at least one κi = 0. Without loss of generality we can

suppose κ3 = 0. We have then

tr(K) = κ1 + κ2 > 0,

(tr(K))2 − tr(K2) = 2κ1κ2 > 0
(A.8)

which implies κ1 > 0 and κ2 > 0. That is, K has rank 2 and is positive semidefinite.

Next suppose the matrix K has rank 1, then, without loss of generality, we can assume

κ1 > 0, κ2 = 0, κ3 = 0. (A.9)

It follows immediately from (A.2)

tr(K) > 0, (tr(K))2 − tr(K2) = 0, det(K) = 0. (A.10)

On the other hand, having the conditions (A.10) for a hermitian matrix K fulfilled, em-

ploying (A.2), the determinant condition requires that at least one κi vanishes, for instance

κ3 = 0 without loss of generality. Then the second condition requires that another eigen-

value has to vanish, for instance κ2 = 0. Eventually, the first condition then dictates that

the remaining κ1 > 0. Hence, K has rank 1 and is positive semidefinite.

Finally, suppose the matrix K has rank 0, then, clearly, all κi have to vanish, corre-

sponding to

tr(K) = 0, (tr(K))2 − tr(K2) = 0, det(K) = 0. (A.11)

Vice versa, starting with the conditions (A.11) for a hermitian matrix K, the determinant

condition requires that one eigenvalue, for instance κ3 = 0 has to vanish, the second

condition in turn requires that another, say κ2 = 0, and the first trace condition that also

the third κ1 = 0. This means K = 0. Therefore, we have shown the following theorem.
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Theorem 1. Let K = Kαλα/2 be a hermitian matrix. K has rank 3 and is positive definite

if and only if

tr(K) =

√

3

2
K0 > 0,

2K2
0 −KaKa > 0,

det(K) > 0.

(A.12)

K has rank 2 and is positive semidefinite if and only if

tr(K) =

√

3

2
K0 > 0,

2K2
0 −KaKa > 0,

det(K) = 0.

(A.13)

K has rank 1 and is positive semidefinite if and only if

tr(K) =

√

3

2
K0 > 0,

2K2
0 −KaKa = 0,

det(K) = 0.

(A.14)

K = 0 if and only if

tr(K) =

√

3

2
K0 = 0,

2K2
0 −KaKa = 0,

det(K) = 0.

(A.15)

With this theorem we have expressed the properties of the matrix K in terms of the

expansion coefficients Kα, α = 0, . . . , 8. The conditions explicitly written in terms of K0

and Ka in (A.12) to (A.15) are of the type of light-cone conditions familiar from the two-

Higgs-doublet model; see (36) of [4]. But the determinant condition, trilinear in Kα, is

specific for the 3HDM.

To express also det(K) in terms of the expansion coefficients Kα, α = 0, . . . , 8, we

proceed as follows (see also [13]). We introduce, along with the matrix K, a matrix

M = (Mij):

Mij = ǫiklǫjmnKmkKnl. (A.16)

For a hermitian matrix K also M is hermitian. For any U ∈ U(3) we have the relation

ǫijkUii′Ujj′Ukk′ = ǫi′j′k′ det(U). (A.17)

Using this we find easily that under a transformation (3.5) of K we get also for M

M ′ = U M U †. (A.18)

Furthermore we find

det(K) =
1

3!
tr(KM). (A.19)

Consider now a unitary transformation U which diagonalises K; see (A.1).
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We find then from (A.16)

UMU † =







2κ2κ3 0 0

0 2κ1κ3 0

0 0 2κ1κ2






, (A.20)

and

det(K) =
1

3!
tr(KM) = κ1κ2κ3, (A.21)

tr(M) = (tr(K))2 − tr(K2). (A.22)

As for K in (2.8) we can expand M in terms of λα,

M =
1

2
Mαλα, Mα = tr(Mλα). (A.23)

Inserting here (A.16) we get the expression of Mα in terms of the Kβ (2.9) as follows:

Mα = GαβγKβKγ (A.24)

where

Gαβγ =
1

4

{

tr(λα) tr(λβ) tr(λγ) + tr(λαλβλγ + λαλγλβ)− tr(λα) tr(λβλγ)

− tr(λβ) tr(λγλα)− tr(λγ) tr(λαλβ)

}

. (A.25)

Clearly, Gαβγ is completely symmetric in α, β, γ. Explicitly we get

G0βγ =

√

3

2
δβ0δγ0 −

1√
6
δβγ , Gabc = dabc (A.26)

with dabc the usual symmetric constants of SU(3); see, for instance, appendix C of [22].

From (A.19), (A.23), and (A.24) we find

detK =
1

12
KαMα =

1

12
GαβγKαKβKγ . (A.27)

This is the desired expression of det(K) in terms of the Kα.

B Example of a 3HDM Higgs potential

Let us apply the developed formalism to a non-trivial 3HDM potential. We emphasize that

any specific 3HDM can be treated along the following lines. We will apply the homotopy

continuation approach to solve the systems of polynomial equations allowing us to discuss

stability and the stationarity points of the model. Of course, other methods may be

applied, like the Groebner-basis approach. These methods were successfully applied to

Higgs potentials in the past; see for instance [20, 21]. In these works brief introductions to

Groebner-bases and homotopy continuation can also be found.
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The model we want to study was presented in [19] and is based on a O(2)×Z2 symmetry

involving three Higgs-boson doublets. All the elementary particles and in particular the

three Higgs-boson doublets are assigned to irreducible representations of the O(2) × Z2

symmetry. For the three Higgs-boson doublets the assignments were chosen as given in

table 1. Here, the group O(2) is decomposed into unitary rotations U(1) and reflections s.

The general 3HDM Higgs potential, symmetric under O(2) × Z2 except for the term

proportional to µm reads

VO(2)×Z2
= µ0ϕ

†
3ϕ3 + µ12

(

ϕ†
1ϕ1 + ϕ†

2ϕ2

)

+ µm

(

ϕ†
1ϕ2 + ϕ†

2ϕ1

)

+ a1(ϕ
†
3ϕ3)

2 + a2ϕ
†
3ϕ3

(

ϕ†
1ϕ1 + ϕ†

2ϕ2

)

+ a3

(

ϕ†
3ϕ1 · ϕ†

1ϕ3 + ϕ†
3ϕ2 · ϕ†

2ϕ3

)

+ a4ϕ
†
3ϕ1 · ϕ†

3ϕ2 + a∗4ϕ
†
1ϕ3 · ϕ†

2ϕ3 + a5

(

(ϕ†
1ϕ1)

2 + (ϕ†
2ϕ2)

2
)

+ a6ϕ
†
1ϕ1 · ϕ†

2ϕ2 + a7ϕ
†
1ϕ2 · ϕ†

2ϕ1. (B.1)

The term µm

(

ϕ†
1ϕ2 + ϕ†

2ϕ1

)

breaks the U(1) symmetry softly (for details we refer to [19]).

This model has nine real parameters and one complex parameter a4, corresponding to

eleven real parameters in total.

With the help of (2.10) we write the potential in terms of bilinears. We identify the

parameters of the potential (B.1), but written in the form (3.1), as

ξ0=
1√
6
(µ0 + 2µ12), ξ=

(

µm, 0, 0, 0, 0, 0, 0,
1√
3
(µ12 − µ0)

)T

,

η00=
1

6
(a1 + 2a2 + 2a5 + a6),

η=

(

0, 0, 0, 0, 0, 0, 0,

√
2

6
(−a1 − a2/2 + a5 + a6/2)

)T

,

E=
1

4





























a7 0 0 0 0 0 0 0

0 a7 0 0 0 0 0 0

0 0 2a5−a6 0 0 0 0 0

0 0 0 a3 0 Re(a4) Im(a4) 0

0 0 0 0 a3 Im(a4) −Re(a4) 0

0 0 0 Re(a4) Im(a4) a3 0 0

0 0 0 Im(a4) −Re(a4) 0 a3 0

0 0 0 0 0 0 0 4/3a1−4/3a2+2/3a5+1/3a6





























.

(B.2)

Obviously, all parameters are real in terms of bilinears.

We choose as an explicit numerical example the following values for the parameters,

where we take only the quartic couplings from the reference point in [19]:

a1 = 2.5, a2 = 3, a3 = −5, a4 = −0.0474041, a5 = 1.5, a6 = 2, a7 = 3,

µ0 = −90, 774GeV2, µ12 = −75, 645GeV2, µm = −45, 387GeV2.
(B.3)
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s U(1) Z2
(

ϕ1

ϕ2

) (

0 1

1 0

) (

e2iθ 0

0 e−2iθ

)

12

ϕ3 1 1 -1

Table 1. Assignments of the transformation behaviour of the Higgs-boson doublets under the

symmetries s, U(1), and Z2.

Actually, we have plugged all quartic parameters into the equations (6.1) and have solved

numerically these equations employing Kv0 = v20/
√
6 (see (5.6) with v0 as given in (5.5)) for

the mass parameters. In this way we ensure that there is at least one stationary solution of

the system of equations (6.1) which corresponds to the correct vacuum expectation value.

Let us note that this procedure by no means guarantees that the corresponding potential is

stable and has a global minimum with the correct partially broken electroweak symmetry

— as we will show below.

The stability and stationarity equations are polynomial systems of equations as given

in (4.9), (4.10) and (6.1), (6.3), respectively. In this example we apply for all the polynomial

systems of equations (and additional inequalities) the homotopy continuation approach as

implemented in the PHCpack package [23]. We first look for solutions disregarding the

inequalities and then select by hand all solutions which fulfill them. Since all indeterminants

have to be real we discard also all complex solutions. Technically, we take into account

all solutions with all indeterminants having an imaginary part smaller than 0.001. With

respect to time consumption of our computations we remark that the most involved case

of systems of equations we encounter (that is the set (6.1) with eleven equations in eleven

invariants) took about 160 seconds on an ordinary PC.

We start with studying stability of the potential; see section 4. To this end we sepa-

rate the quadratic and the quartic terms of the potential. Inserting the parameters (B.2)

into (4.4), (4.5), yields

J2(k)=
µ0 + 2µ12√

6
+

(

µ12 − µ0√
3

)

k8 + µmk1,

J4(k)=
1

6
(a1+2a2+2a5+a6)+

1

3
√
2
(−2a1−a2+2a5+a6)k8+

a7
4
(k21+k22)+

1

4
(2a5−a6)k23

+
a3
4
(k24+k25+k26+k27)+

Re(a4)

2
(k4k6−k5k7)+

Im(a4)

2
(k4k7+k5k6)

+
1

12
(4a1−4a2+2a5+a6)k

2
8

(B.4)

with the parameters given in (B.3). Now we have to find the stationary points of J4(k),

that is, we have to solve the systems of equations (4.9) and (4.10), respectively. Apart from

the inequality equation this yields a system of nine polynomial equations in nine invariants,

respectively, ten polynomial equations in ten invariants. In case of (4.9) the invariants are
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the eight components of the vector k and one Lagrange multiplier u, in case of (4.10) the

invariants are the components of the vector k and two Lagrange multipliers u1 and u2.

With respect to the system (4.9) we detect four solutions k and u fulfilling the inequal-

ity 2− k2 > 0. Plugging these solutions into J4(k) in (B.4) we find solely positive values.

With respect to the systems (4.10) we find six solutions which give, with respect to J4(k),

also positive values. Stability in general requires that there is no stationary direction k

with J4(k) < 0 or J4(k) = 0 but J2(k) < 0. In our example J4(k) is positive for all

stationary directions k, therefore, the potential is stable in the strong sense for the chosen

parameters.

Since the potential with parameters (B.3) is stable we proceed by studying the station-

ary points; see section 6. To this end we plug the parameters (B.2) into the potential (3.1).

This gives

V =
µ0 + 2µ12√

6
K0 +

(

µ12 − µ0√
3

)

K8 + µmK1

+
1

6
(a1+2a2+2a5+a6)K

2
0+

a7
4
K2

1+
a7
4
K2

2+
1

4
(2a5−a6)K

2
3+

a3
4
(K2

4+K2
5+K2

6+K2
7 )

+
Re(a4)

2
(K4K6−K5K7)+

Im(a4)

2
(K4K7+K5K6)+

1

3
√
2
(−2a1−a2+2a5+a6)K0K8

+
1

12
(4a1−4a2+2a5+a6)K

2
8 .

(B.5)

Now we have to solve the systems of polynomial equations (6.3) (corresponding to solutions

which break electroweak symmetry fully) and (6.1) (corresponding to solutions with break

electroweak symmetry partially leaving the electromagnetic U(1) symmetry intact). These

systems consist of ten equations in ten invariants, respectively, eleven equations in eleven

invariants, besides the inequalities.

For the set of equality equations (6.3) we find one real solution fulfilling the inequalities

2K2
0 −KaKa > 0 and K0 > 0,

K0 = 24, 705.6GeV2, K1 = 30, 258GeV2, K8 = 17, 469.5GeV2, K2/3/4/5/6/7 = 0.

(B.6)

This solution corresponds to a potential value of V (K) = −1.83109 · 109 GeV4. Since this

solution originates from the set (6.3) it corresponds to a stationary point with fully broken

electroweak symmetry.

Eventually, from the set (6.1) we get one solution fulfilling the inequality K0 > 0,

which differs from (B.6) by a different sign for the bilinear K1:

K0 = 24, 705.6GeV2, K1 = −30, 258GeV2, K8 = 17, 469.5GeV2, K2/3/4/5/6/7 = 0.

(B.7)

This solution corresponds to a potential value of V (K) = 9.15547 · 108 GeV4 and a sta-

tionary point with the correct electroweak symmetry breaking. As required by the choice

of initial parameters, this stationary point corresponds to a vacuum-expectation value of

v0 =
√√

6K0 = 246GeV.
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In addition, we always have the trivial solution with vanishing bilinears, corresponding

to a vanishing potential. This solution corresponds to an unbroken electroweak symmetry.

The global minimum is given by the stationary point corresponding to the deepest

potential value. In this example the deepest stationary point is given by (B.6) and corre-

sponds to a fully broken electroweak symmetry which is physically not acceptable.

Our analysis clearly shows that requiring the potential to have a stationary point

giving the desired electroweak symmetry breaking and vacuum expectation value does not

guarantee that one has a viable model. In contrast, the study of stability and all stationary

points reveals where the true global minimum of the potential is. Then one has to check

if, at this global minimum, one has the desired partial electroweak symmetry breaking. As

we have seen, our methods employing bilinears allow to perform these investigations in an

efficient way.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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