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1 Introduction

The semi-symmetric space sigma model of [1, 2] describes the type II Green-Schwarz super-

string on various AdS supergravity backgrounds, including AdS2×S2×T6 and AdS5×S5.

The model is integrable [3–5] and admits an integrable deformation, the η-deformation,

otherwise known as a Yang-Baxter deformation [6, 7]. This generalises the η-deformations

of the principal chiral model [8, 9] and the symmetric space sigma model [10]. The defor-

mation is governed by an R-matrix that solves the non-split modified classical Yang-Baxter

equation on the superisometry algebra of the undeformed background, that is psu(1, 1|2)
for AdS2 × S2 × T6 and psu(2, 2|4) for AdS5 × S5.

The question of whether the deformed models also describe the type II Green-Schwarz

superstring on a supergravity background has received considerable attention in recent

years. The metric and B-field of the η-deformed AdS5 × S5 superstring were constructed

in [11] and the Ramond-Ramond fluxes in [12] for a particular choice of R-matrix. These

background fields do not solve the type II supergravity equations. It was later understood

that they instead satisfy a set of generalised type II supergravity equations that depend

on a background Killing vector [13, 14].
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A general answer to when the background is expected to be a supergravity background

was given in [15]. The R-matrix should satisfy the so-called unimodularity condition. In

this paper we consider a certain class of solutions to the non-split modified classical Yang-

Baxter equation known as Drinfel’d-Jimbo R-matrices [16–18]. This corresponds to a

q-deformation of the superisometry algebra [7, 10, 19]. Starting from a particular Dynkin

diagram and Cartan-Weyl basis, the Drinfel’d-Jimbo R-matrix annihilates the Cartan gen-

erators and multiplies the positive and negative roots of the superisometry algebra by −i

and +i respectively. As the superisometry algebras are Lie superalgebras they can be de-

scribed by inequivalent Dynkin diagrams. The corresponding R-matrices can then lead to

different deformations.

The R-matrix considered in [12] corresponds to the distinguished Dynkin diagram

# − # − # −⊗− # − # − # , (1.1)

where # and ⊗ denote bosonic and fermionic roots respectively. One can check that this R-

matrix does not satisfy the unimodularity condition of [15] in agreement with the fact that

the background fields do not solve the type II supergravity equations. The various methods

in the literature used for constructing the η-deformed backgrounds, see, for example, [20]

and [21, 22], appear to correspond to considering the distinguished Dynkin diagram. This

is related to the fact that the distinguished Dynkin diagram has the Dynkin diagram

associated to the bosonic subalgebra as a sub-Dynkin diagram.

It is worth recalling that also for non-compact Lie algebras there may be inequivalent

R-matrices, which correspond to reordering the roots relative to the signature matrix. For

AdS2 the isometry algebra is su(1, 1), which has only one non-split R-matrix. However, for

AdS5 the isometry algebra is su(2, 2), which has three non-split R-matrices [7]. These give

rise to different deformations of AdS5 that have been studied in [7, 23, 24]. As these three

R-matrices are different analytic continuations of the su(4) non-split R-matrix to su(2, 2)

it follows that the three metrics and B-fields are analytic continuations of each other [25].

In this paper we investigate different Drinfel’d-Jimbo R-matrices and the corresponding

η-deformed backgrounds. For the two cases we consider, AdS2×S2×T6 and AdS5×S5, we

find that the unimodularity condition of [15] is satisfied if and only if all the simple roots

of the corresponding Dynkin diagram are fermionic. For AdS2 × S2 × T6 we consider the

three inequivalent Dynkin diagrams of psu(1, 1|2)

# −⊗− # , ⊗− # −⊗ , ⊗−⊗−⊗ , (1.2)

and construct backgrounds corresponding to each one. In the first two cases we find the

same background, up to a shift in the B-field by a closed two-form, which agrees with

the background of [13, 20] and solves the generalised type II supergravity equations. In

the final case, that is when all the simple roots are fermionic, we find the one-parameter

background of [26], constructed there by solving the type II supergravity equations directly,

for a specific value of the parameter. As a consequence of the bosonic roots not being simple,

the Ramond-Ramond fluxes mix the AdS2 and S2 sectors in a non-trivial way. In particular,

they depend on a function that does not factorise into functions of the coordinates on AdS2
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and functions of the coordinates on S2. For AdS5 × S5 we consider the Dynkin diagram of

psu(2, 2|4) with all fermionic simple roots

⊗−⊗−⊗−⊗−⊗−⊗−⊗ . (1.3)

We choose an R-matrix that gives the metric and B-field of [11] and derive the Ramond-

Ramond fluxes and dilaton. We verify that the background solves the type II supergravity

equations.

The outline of this paper is as follows. We start in section 2 by summarising the

key results from the literature that we use to construct the supergravity backgrounds. In

section 3 and section 4 we discuss the η-deformations of the AdS2×S2×T6 and AdS5×S5

superstrings respectively. We conclude with a discussion of our results in section 5. Our

conventions for gamma matrices and superalgebras for the η-deformation of the AdS2 ×
S2 × T6 superstring are given in appendix A. For the η-deformation of the AdS5 × S5

superstring we follow the conventions of [12, 27].

2 General background

In this section we summarise the key results that we use in our derivation of the (gener-

alised) supergravity backgrounds for the η-deformations of the AdS2×S2×T6 and AdS5×S5

superstrings.

The η-deformation. The semi-symmetric space sigma model [1, 2] is a sigma model on

the supercoset

G

H
, (2.1)

where the basic Lie superalgebra g = Lie(G) admits a Z4 grading

g = g0 ⊕ g1 ⊕ g2 ⊕ g3 , (2.2)

such that the grade 0 subalgebra g0 is identified with the Lie algebra of H. The subspaces

g0 and g2 have even grading, while the subspaces g1 and g3 have odd grading. We also

introduce the projectors P (i) onto the subspaces gi. Given a basis {TM} of g, we define

KMN = STr[TMTN ] , (2.3)

where STr denotes the supertrace, an ad-invariant and Z4-invariant bilinear form on g,

which is symmetric (respectively antisymmetric) on the even (respectively odd) subspace

of g. We also introduce the inverse of KMN through

KMNK̂NP = δP

M . (2.4)
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The action of the η-deformed semi-symmetric space sigma model for the group-valued

field g ∈ G is [6, 7]1

S = −T

4
(1− η2)

∫
d2σ (γij − ǫij) STr

[
g−1∂ig d̂

1

1− ηRgd̂
g−1∂jg

]
, (2.6)

where T is the overall coupling constant playing the role of the effective string tension,

d2σ = dτdσ, γij is the Weyl invariant worldsheet metric with γττ < 0 and ǫij is the Levi-

Civita symbol with ǫτσ = 1. The deformation parameter η lies in the interval (−1, 1) and

the operators d̂ and d̂t are defined in terms of the Z4 projectors as

d̂ = P (1) +
2

1− η2
P (2) − P (3) , d̂t = −P (1) +

2

1− η2
P (2) + P (3) . (2.7)

The operator Rg = Ad−1
g RAdg acts on X ∈ g as Rg(X) = g−1R(gXg−1)g. The R-matrix

is antisymmetric with respect to the supertrace

STr[R(X)Y ] = − STr[XR(Y )] , (2.8)

and solves the non-split modified classical Yang-Baxter equation

[R(X), R(Y )} −R([R(X), Y }+ [X,R(Y )}) = [X,Y } , X, Y ∈ g . (2.9)

If we consider a purely bosonic group-valued field g, the action (2.6) reduces to the η-

deformed symmetric space sigma model [10]

S = −T

2

∫
d2σ(γij − ǫij) STr

[
g−1∂igP

(2) 1

1− κRgP (2)
g−1∂jg

]
, (2.10)

where we have introduced the deformation parameter of [11].

κ =
2η

1− η2
∈ (−∞,∞) . (2.11)

The η-deformed semi-symmetric space sigma model has q-deformed symmetry [7, 11] with

q = exp

(
− κ

T

)
. (2.12)

such that q is real.

1Given a particular matrix realisation of g, STr is related to the usual matrix supertrace by a normali-

sation chosen such that the bosonic part of the action is given by

S = −
T

2

∫
d2

σ(γij
Gµν − ǫ

ij
Bµν)∂iX

µ
∂jX

ν (2.5)

where Gµν is the target space metric and Bµν the antisymmetric B-field. The fields Xµ are the target space

coordinates.
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Extracting the Ramond-Ramond fluxes. The background superfields of the η-

deformed model (the supervielbein, NS-NS three-from, R-R bispinor, dilatino and gravitino

field strength) can be extracted by comparing with the general form of the type II Green-

Schwarz superstring [28–32] following the procedure outlined in [15]. For completeness we

summarise the important steps here. Defining the operators

O+ = 1 + ηRgd̂
t , O− = 1− ηRgd̂ , M = O−1

− O+ , (2.13)

one observes that

M tP (2)M = P (2) , (2.14)

showing that P (2)MP (2) implements a Lorentz transformation on the grade 2 subspace of

g. Therefore, there exists an element h ∈ H such that

P (2)MP (2) = Ad−1
h P (2) = P (2)Ad−1

h . (2.15)

Introducing A± = O−1
± (g−1dg) and defining the supervielbein as

E(2) = P (2)A+ , E(1) =
√
1− η2Adh P

(1)A+ , E(3) =
√
1− η2P (3)A− , (2.16)

the action and the kappa symmetry variations take the standard Green-Schwarz form. By

calculating the superspace torsion and comparing the result with the general expression

in [14] one can obtain the background superfields. In particular, the formula for the R-R

bispinor is

S1α2β = 8i

(
Adh

(
1 +

2

1− η2
− 4O−1

+

))1α

1γK̂1γ2β , (2.17)

where the indices {I = 1, 2} and {α} combined run over the fermionic generators of g and

the action of an operator O on the basis {TM} is given by

O(TM) = TNO
N

M . (2.18)

This expression can then be compared with the familiar form of the R-R bispinor (written

here for the R-R fluxes of type IIB supergravity in terms of 16×16 chiral gamma matrices)

S = −iσ2γ
aFa −

1

3!
σ1γ

abcFabc −
1

2 · 5! iσ2γ
abcdeFabcde , (2.19)

to extract the R-R fluxes. For backgrounds with less than 32 supersymmetries (such as

AdS2×S2×T6) the gamma matrices involve an additional projector to match the number

of spinor indices.

Since we are only interested in the target space geometry and not its supergeometry it

will be sufficient to take a purely bosonic group-valued field g. Comparing (2.17) and (2.19)

gives the one-form F1, three-form F3 and five-form F5. For standard supergravity back-

grounds the R-R fluxes are then given by

Fn = e−ΦFn , (2.20)
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where the dilaton Φ is

e−2Φ = e−2Φ0 sdet(O+) . (2.21)

The R-R fluxes are defined in terms of the R-R potentials Cn through

Fn = dCn−1 +H ∧ Cn−3 , H = dB , (2.22)

where B is the B-field. Henceforth, we will refer to both the forms Fn and Fn as R-R

fluxes.

In our conventions the Hodge star ⋆ acts on a n-form An = 1
n!Aµ1...µndX

µ1∧· · ·∧dXµn

as

(⋆An)µ1...µd−n
=

1

n!

√
−Gǫµ1...µd−nν1...νnA

ν1...νn , (2.23)

where G is the determinant of the metric. The self-duality condition for the five-form reads

F5 = ⋆F5.

The condition for Weyl invariance. It was shown in [15] that for the η-deformation

to be Weyl invariant, that is for the background fields to solve the type II supergravity

equations, the unimodularity condition

K̂MN STr[[TM , R(TN)}Z] = 0 , ∀Z ∈ g , (2.24)

should be satisfied.

Given a bosonic Lie algebra f and an R-matrix satisfying the modified classical Yang-

Baxter equation on f, the R-bracket

[X,Y ]R = [X,R(Y )] + [R(X), Y ] , X, Y ∈ f , (2.25)

defines an alternative Lie bracket on f [33]. We denote the structure constants of the R-

bracket by f̃MN
P . Then, at least for semi-simple f, the unimodularity condition (2.24) is

equivalent to the unimodularity of the Lie algebra generated by the R-bracket

∑

N

f̃MN
N = 0 , (2.26)

that is the trace of the structure constants vanishes.

For Lie superalgebras the R-bracket

[X,Y }R = [X,R(Y )}+ [R(X), Y } , X, Y ∈ g , (2.27)

again defines an alternative Lie bracket whose structure constants we also denote f̃MN
P . For

Lie superalgebras of the type that we are considering, the unimodularity condition (2.24)

implies that ∑

N

(−1)[N ]f̃MN
N = 0 , (2.28)

where we have [N ] = 0 and [N ] = 1 for bosonic and fermionic generators respectively.

That is the unimodularity condition for Lie superalgebras is equivalent to the supertrace

of the structure constants vanishing.
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For the non-split Drinfel’d-Jimbo R-matrices that we investigate in this paper, the

R-bracket generates the positive Borel superalgebra (with two copies of the positive roots).

In appendix B of [34] the trace of the structure constants of the Borel superalgebra was

computed for the three inequivalent Dynkin diagrams of psl(2|2;C). As we have seen above

the relevant condition for the Weyl anomaly is the supertrace of the structure constants.

While the trace does not vanish for any Dynkin diagram, as we will discuss in section 3,

the supertrace for the Dynkin diagram with all fermionic simple roots is zero.

3 η-deformation of the AdS2 × S2 × T6 superstring

The first case we consider in detail is the η-deformation of the AdS2×S2×T6 superstring.

The Z4 supercoset describing the curved part of the background is

PSU(1, 1|2)
SO(1, 1)× SO(2)

. (3.1)

Considering the η-deformation of the semi-symmetric space sigma model on this supercoset,

we analyse the different possible Drinfel’d-Jimbo R-matrices and find that those associated

with the Dynkin diagram that has all fermionic simple roots satisfy the unimodularity con-

dition (2.24). For three R-matrices, associated with three inequivalent Dynkin diagrams,

we construct the embedding of the 4-dimensional background in 10 dimensions follow-

ing [26, 35] with the remaining compact dimensions given by a six-torus. As expected,

we find that for the unimodular R-matrices the background satisfies the standard type II

supergravity equations, while for the non-unimodular R-matrices the generalised type II

supergravity equations of [13, 14] are satisfied.

3.1 Choice of R-matrix

The superisometry algebra of the AdS2 × S2 semi-symmetric space is psu(1, 1|2). Its com-

plexification psl(2|2;C) admits three inequivalent Dynkin diagrams

# −⊗− # , ⊗− # −⊗ , ⊗−⊗−⊗ . (3.2)

Since the Drinfel’d-Jimbo R-matrix is defined through its action on the Cartan genera-

tors and the positive and negative roots, the three Dynkin diagrams give rise to three

inequivalent R-matrices, and hence different η-deformations.

Following appendix D of [7], inequivalent R-matrices of psu(1, 1|2) can be described

in terms of permutations of 4 elements in the following way. Working with the 4 × 4

supermatrix realisation of (p)su(1, 1|2) given in appendix A, which has the property that

the upper-left and lower-right 2×2 blocks have even grading and generate su(1, 1) and su(2)

respectively, we start from a certain reference R-matrix associated with the distinguished

Dynkin diagram # −⊗− #

R0(M)ij = −iǫijMij , ǫ =





+1 i < j ,

0 i = j ,

−1 i > j .

(3.3)
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Now considering the permutation matrix Pij = δP(i)j a new R-matrix can be constructed as2

RP = Ad−1
P R0AdP . (3.4)

There are 4! possible permutations of 4 elements. Of these the only ones of interest

are those that preserve the ordering of {1, 2} and {3, 4}. This corresponds to considering

R-matrices that have the same action on the su(1, 1) and su(2) subalgebras respectively.

The permutation matrices that correspond to permuting {1, 2} or {3, 4} are related to

elements of SU(1, 1) and SU(2) respectively by multiples of the identity. Therefore, due to

the structure of the permuted R-matrix, these permutation matrices can be absorbed into

a redefinition of the supergroup-valued field g. We additionally only consider one of each

pair of R-matrices related by the permutation
(
1 2 3 4

3 4 1 2

)
, (3.5)

since this amounts to simultaneously analytically continuing AdS2 → S2 and S2 → AdS2
and hence can be easily implemented directly on the (generalised) supergravity background.

We are left with 3 classes of permutations, each corresponding to a different Dynkin

diagram. The particular representatives of these classes that we consider are

P0 =

(
1 2 3 4

1 2 3 4

)
, RP0

= R0 , # −⊗− # , (3.6)

P1 =

(
1 2 3 4

1 3 4 2

)
, RP1

= R1 , ⊗−# −⊗ , (3.7)

P2 =

(
1 2 3 4

1 3 2 4

)
, RP2

= R2 , ⊗−⊗−⊗ . (3.8)

The R-matrix R2, associated with the Dynkin diagram ⊗−⊗−⊗, satisfies the unimodu-

larity condition (2.24), while the remaining two do not.

3.2 The supergravity and generalised supergravity backgrounds

To embed the 4-dimensional backgrounds into 10 dimensions we introduce the flat metric

on the six-torus

ds2T6 = dxidxi, (3.9)

where i = 4, . . . , 9, together with the holomorphic three-form Ω3 and Kähler form J2

Ω3 = dz1 ∧ dz2 ∧ dz3 , J2 =
i

2
(dz̄1 ∧ dz1 + dz̄2 ∧ dz2 + dz̄3 ∧ dz3) , (3.10)

where we choose the complex coordinates as

z1 = x4 − ix5 , z2 = x6 − ix7 , z3 = x8 − ix9 . (3.11)

2From the form of RP it follows that an equivalent way of implementing the permutation and obtaining

the different deformations is to keep the same R-matrix R0 but act with the permutation matrix on the

supermatrix realisation of psu(1, 1|2).
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We then take the following ansatz for the metric, B-field and R-R fluxes

ds2 = ds24 + ds2T6 , B = B2,

F1 = 0 , F5 =
1

2
(1 + ⋆)F̂2 ∧ ReΩ3 ,

F3 = F̂r ReΩ3 + F̂i ImΩ3 + F̂1 ∧ J2 +
1

6
⋆ (F̂1 ∧ J2 ∧ J2 ∧ J2) ,

(3.12)

where ds24 and B2 are the metric and B-field of the η-deformation of AdS2 × S2, F̂r and

F̂i are zero-forms, F̂1 is a one-form and F̂2 is a two-form in 4 dimensions. Contracting the

R-R fluxes with the gamma matrices gives the R-R bispinor

SIJ = P4

[
− 4σIJ

1 eΦ
(
F̂rγ

468 + F̂iγ
579 − F̂aγ

aγ45
)
− ǫIJeΦF̂abγ

abγ468
]
P4 , (3.13)

where the projector

P4 =
1

4
(1− γ4567 − γ4589 − γ6789) , (3.14)

singles out a 4-dimensional subspace of the original 16-dimensional spinor space. This

makes it possible to compare the R-R bispinor (3.13) with the general formula (2.17) since

psu(1, 1|2) indeed has four fermionic generators of grading 1 and four fermionic generators of

grading 3. Note that our conventions for gamma matrices and the superalgebra psu(1, 1|2)
are given in appendix A.

Using the parametrisations

g = e−tP0e− arsinh ρP1e−φP2e− arcsin r P3 , h = e
1

2
ωabJab , (3.15)

for the bosonic group-valued field g ∈ G and the element h ∈ H encoding the Lorentz

transformation Adh, we find that (2.15) is indeed satisfied provided that

ω01 = arsinh
2κρ

1− κ2ρ2
, ω23 = − arcsin

2κr

1 + κ2r2
. (3.16)

The metric and B-field are the same for all three choices of R-matrix and are [11, 25]

ds2 =
1

1− κ2ρ2

(
−(1 + ρ2)dt2 +

dρ2

1 + ρ2

)

+
1

1 + κ2r2

(
(1− r2)dφ2 +

dr2

1− r2

)
+ dxidxi ,

B = − κρ

1− κ2ρ2
dt ∧ dρ− κr

1 + κ2r2
dφ ∧ dr .

(3.17)

Let us recall that the η-deformation of S2 is equivalent to the deformed model of [36] up

to the B-field, which is a closed two-form.

– 9 –
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For the R-matrix R0 (3.6) corresponding to the distinguished Dynkin diagram we find

the following R-R fluxes

F3 = −N(κρReΩ3 + κr ImΩ3) ,

F5 = −N

(
1

1− κ2ρ2
dt ∧ dρ+

κ2ρr

1 + κ2r2
dφ ∧ dr

)
∧ ReΩ3

−N

(
κ2ρr

1− κ2ρ2
dt ∧ dρ− 1

1 + κ2r2
dφ ∧ dr

)
∧ ImΩ3 ,

N =

√
1 + κ2√

1− κ2ρ2
√
1 + κ2r2

,

(3.18)

while for the R-matrix R1 (3.7) we find

F3 = N(κρReΩ3 − κr ImΩ3) ,

F5 = −N

(
1

1− κ2ρ2
dt ∧ dρ− κ2ρr

1 + κ2r2
dφ ∧ dr

)
∧ ReΩ3

+N

(
κ2ρr

1− κ2ρ2
dt ∧ dρ+

1

1 + κ2r2
dφ ∧ dr

)
∧ ImΩ3 ,

N =

√
1 + κ2√

1− κ2ρ2
√
1 + κ2r2

.

(3.19)

These two backgrounds can be related by changing the sign of t and ρ and shifting the B-

field by closed two-form. Therefore, from the perspective of (generalised) supergravity, they

are equivalent. Furthermore, they are equivalent to the background given in appendix F

of [13], which solves the generalised type IIB supergravity equations with a certain choice

of the Killing vector and generalised dilaton one-form.

The shift in the B-field depends only on the AdS2 sector. Even though this

shift is by a closed two-form and hence the Green-Schwarz sigma models on the back-

grounds (3.17), (3.18) and (3.17), (3.19) agree up to a total derivative, this observation

still appears to have an algebraic interpretation. For the R-matrix R1 the roots of su(1, 1)

are not simple roots, while the roots of su(2) are. Therefore, the corresponding sigma model

will exhibit the Poisson-Lie symmetry associated with the su(2) subalgebra exactly, that

is, not up to total derivatives. However, this will not necessarily be the case for the su(1, 1)

subalgebra. Indeed, considering the Poisson-Lie symmetry associated with the full super-

algebra psu(1, 1|2), the deformed su(1, 1) symmetry should involve the fermionic charges.

For the R-matrix R2 (3.8) we find the following R-R fluxes

F3 = −N
(
κr(1 + κ2r2)dρ+ κρ(1− κ2ρ2)dr

)
∧ J2

+N
(
κρ(1− r2)dρ− κr(1 + ρ2)dr

)
∧ dt ∧ dφ ,

F5 = N
(
(1 + κ2r2)dρ− κ2ρr(1 + ρ2)dr

)
∧ dt ∧ ReΩ3

−N
(
κ2ρr(1− r2)dρ+ (1− κ2ρ2)dr

)
∧ dφ ∧ ImΩ3 ,

N =

√
1 + κ2√

1− κ2ρ2
√
1 + κ2r2

1

1− κ2(ρ2 − r2 − ρ2r2)
.

(3.20)
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As expected, this background satisfies the type IIB supergravity equations with the dilaton

e−2Φ = e−2Φ0
(1− κ2ρ2)(1 + κ2r2)

1− κ2(ρ2 − r2 − ρ2r2)
, (3.21)

and ǫtρφr456789 = +1. The R-R potentials are

C2 = − e−Φ0

√
1 + κ2√

1− κ2(ρ2 − r2 − ρ2r2)
(κρrJ2 − κ−1dt ∧ dφ) ,

C4 =
e−Φ0

√
1 + κ2√

1− κ2(ρ2 − r2 − ρ2r2)
(ρ dt ∧ ReΩ3 − r dφ ∧ ImΩ3) .

(3.22)

In fact, this background is known. In [26] a one-parameter, denoted a, family of back-

grounds supporting the metric and B-field of the η-deformed AdS2 × S2 superstring was

constructed. It transpires that the background (3.20) corresponds to the point a = 1.

The one-parameter dilaton of [26] is

e−2Φ = e−2Φ0
(1− κ2ρ2)(1 + κ2r2)

1 + κ2(a2(r2 − ρ2) + r2ρ2)− 2κ
√
1− a2

√
1 + a2κ2rρ

. (3.23)

Taking a ∈ R≥0, we note that this dilaton is an even function of κ only for a = 1. It

would be interesting to understand if there is an R-matrix that gives the one-parameter

background of [26], or if this is only the case for a = 1.

For the R-matrix R2 neither the roots of su(1, 1) nor su(2) are simple roots. There-

fore, this model is not expected to exhibit Poisson-Lie symmetry associated with these

bosonic subalgebras. Indeed, considering the Poisson-Lie symmetry associated with the

full superalgebra psu(1, 1|2), the deformed su(1, 1) and su(2) symmetries should involve

the fermionic charges.

3.3 Limits

To conclude this section we briefly discuss three interesting limits of the supergravity

background (3.17), (3.20). These are the plane-wave, maximal deformation (κ → ∞) and

Pohlmeyer (κ → i) limits. The latter two limits were discussed in [26].

The plane-wave limit [37, 38] is reached by first setting

t = µx+ +
x−

µL2
, φ = µx+ − x−

µL2
, (3.24)

and rescaling

ρ → ρ

L
, r → r

L
, T → L2T , (3.25)

where T is the effective string tension. Also rescaling xi → L−1xi, we then send L → ∞
keeping µ, x±, ρ, r and xi finite. Recalling that the R-R potentials scale with the tension

as C0 ∼ T 0, C2 ∼ T 1 and C4 ∼ T 2, in the limit L → ∞ the two-form C2 is closed, while

the metric, B-field, dilaton and four-form C4 are

ds2 = −4dx−dx+ − µ2(1 + κ2)(ρ2 + r2) (dx+)2 + dρ2 + dr2 + dxidxi ,

B = −µκ(ρ dx+ ∧ dρ+ r dx+ ∧ dr) , e−2Φ = e−2Φ0 ,

C4 = µe−Φ0

√
1 + κ2(ρ dx+ ∧ ReΩ3 − r dx+ ∧ ImΩ3) .

(3.26)
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Further taking µ → 0 gives flat space with vanishing NS-NS and R-R fluxes. To reach the

flat space background directly we can rescale t → L−1t and φ → L−1φ before taking L →
∞, rather than setting (3.24). Both the generalised supergravity backgrounds (3.17), (3.18)

and (3.17), (3.19) also admit the same plane-wave and flat space limits.

The maximal deformation limit [39, 40] is given by first rescaling

t → t

κ
, ρ → ρ

κ
, φ → φ

κ
, r → r

κ
, T → κ2T . (3.27)

We also rescale xi → κ−1xi and then take κ → ∞. This limit corresponds to a contraction

of the q-deformed symmetry algebra [40]. In this limit we find the following supergravity

background

ds2 =
1

1− ρ2

(
−dt2 + dρ2

)
+

1

1 + r2

(
dφ2 + dr2

)
+ dxidxi ,

B = − ρ

1− ρ2
dt ∧ dρ− r

1 + r2
dφ ∧ dr , e−2Φ = e−2Φ0

(1− ρ2)(1 + r2)

1− ρ2 + r2
,

C2 = − e−Φ0

√
1− ρ2 + r2

(ρrJ2 − dt ∧ dφ) ,

C4 =
e−Φ0

√
1− ρ2 + r2

(ρ dt ∧ ReΩ3 − r dφ ∧ ImΩ3) ,

(3.28)

which does not match the mirror AdS2 × S2 × T6 supergravity background of [39,

41]. Note that in the maximal deformation limit the generalised supergravity back-

grounds (3.17), (3.18) and (3.17) (3.19) remain generalised supergravity backgrounds and

hence are different to (3.28). Further rescaling

t → t

L
, ρ → ρ

L
, φ → φ

L
, r → r

L
, T → L2T , (3.29)

together with xi → L−1xi, in the limit L → ∞ we recover flat space with vanishing NS-

NS and R-R fluxes. Indeed, the metric and B-field of the background (3.28) describe an

integrable deformation of flat space with κ-deformed iso(1, 1)⊕ iso(2) symmetry [40, 42].

The Pohlmeyer limit [25] is given by setting

t =
µx+

ǫ
+

ǫx−

µ
, φ =

µx+

ǫ
− ǫx−

µ
, κ = i

√
1− ǫ2 ,

ρ = tanα , r = tanhβ ,

(3.30)

and then taking ǫ → 0+. In this limit the B-field has a divergent part that is a closed

two-form and no finite part. Furthermore, we find that the two-form C2 vanishes. The

remaining background fields give the following simple pp-wave supergravity background

ds2 = −4dx−dx+ − µ2
(
sin2 α+ sinh2 β

)
dx+2 + dα2 + dβ2 + dxidxi , e−2Φ = e−2Φ0 ,

C4 = µe−Φ0(sinα coshβ dx+ ∧ ReΩ3 − cosα sinhβ dx+ ∧ ImΩ3) . (3.31)

Even though it involves taking κ to be imaginary, in the Pohlmeyer limit the background

becomes real. Interestingly, the same background arises in the Pohlmeyer limit of the
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generalised supergravity backgrounds (3.17), (3.18) and (3.17), (3.19) [43]. In all three

cases, taking the limit κ → i without rescaling the coordinates t and φ gives (3.31) with µ =

0, that is flat space. As shown in [25] the light-cone gauge-fixing (x+ = τ) of the pp-wave

background (3.31) leads to the Pohlmeyer-reduced theory of the AdS2×S2 superstring [44],

which is equivalent to the N = 2 supersymmetric sine-Gordon model.

4 η-deformation of the AdS5 × S5 superstring

The second case we consider is the η-deformation of the AdS5 × S5 superstring. The Z4

supercoset describing this background is

PSU(2, 2|4)
Sp(1, 1)× Sp(2)

. (4.1)

Considering the η-deformations of the semi-symmetric space sigma model on the super-

coset (4.1), we analyse the different possible Drinfel’d-Jimbo R-matrices and find that

only those associated with the Dynkin diagram that has all fermionic simple roots satisfy

the unimodularity condition (2.24). Observing that the supergravity backgrounds corre-

sponding to different R-matrices associated with this Dynkin diagram should be related by

analytic continuation, we pick a particular representative and construct the 10-dimensional

background in this case. As expected, we find that the background satisfies the type IIB

supergravity equations.

4.1 Choice of R-matrix

The superisometry algebra of the AdS5 × S5 semi-symmetric space is psu(2, 2|4). Its com-

plexification psl(4|4;C) admits 35 inequivalent Dynkin diagrams. Note that, for our pur-

poses, two Dynkin diagrams that are related by a Z2 reflection in the central node, but are

not identical, are considered inequivalent.

Following appendix D of [7], inequivalent R-matrices of psu(2, 2|4) can be described in

terms of permutations of 8 elements in the following way. Working with the 8 × 8 super-

matrix realisation of psu(2, 2|4) of [12, 27], which has the property that the upper-left and

lower-right 4× 4 blocks have even grading and generate su(2, 2) and su(4) respectively, we

start from the reference R-matrix (3.3) associated with the distinguished Dynkin diagram

# − # − # −⊗− # − # − # . (4.2)

As for the AdS2 × S2 × T6 case, new R-matrices can be constructed using a permutation

matrix as in equation (3.4).

Of the 8! elements of the permutation group S8 we only consider those that preserve

the ordering of {1, 2, 3, 4} and {5, 6, 7, 8}. This corresponds to considering R-matrices that

have the same action on the su(2, 2) and su(4) subalgebras respectively. In [7] it was

shown that permutations reordering {5, 6, 7, 8} all lead to equivalent R-matrices as the

permutation matrix can be absorbed into a redefinition of the supergroup-valued field g.

This is the statement that there is only a single inequivalent R-matrix for su(4).
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On the other hand, permutations reordering {1, 2, 3, 4} lead to three inequivalent R-

matrices [7]. A particular choice of the three permutations is

(
1 2 3 4

1 2 3 4

)
,

(
1 2 3 4

1 3 2 4

)
,

(
1 2 3 4

1 3 4 2

)
. (4.3)

The resulting R-matrices are the three inequivalent non-split Drinfel’d-Jimbo R-matrices

of su(2, 2) and give rise to different deformations of AdS5. However, as shown in [23],

these are related to each other by analytic continuation. As this analytic continuation can

be implemented directly on the (generalised) supergravity background we restrict to the

ordering of {1, 2, 3, 4} that corresponds to the R-matrix of su(2, 2) used in [11, 12].

We additionally only consider one of each pair of R-matrices related by the permutation

(
1 2 3 4 5 6 7 8

5 6 7 8 1 2 3 4

)
, (4.4)

as this amounts to simultaneously analytically continuing AdS5 → S5 and S5 → AdS5 and

hence can also be implemented directly on the (generalised) supergravity background.

We are left with 35 classes of permutations, each corresponding to a different Dynkin

diagram. Of all the associated R-matrices only one satisfies the unimodularity condi-

tion (2.24). This R-matrix is related to the reference R-matrix (3.3) by the permutation

P =

(
1 2 3 4 5 6 7 8

1 5 2 6 3 7 4 8

)
, (4.5)

and hence is associated with the Dynkin diagram that has all fermionic simple roots

⊗−⊗−⊗−⊗−⊗−⊗−⊗ . (4.6)

The explicit action of the R-matrix is given by

R(M)ij = −iǫijMij , ǫ =




0 +1 +1 +1 +1 +1 +1 +1

−1 0 +1 +1 −1 +1 +1 +1

−1 −1 0 +1 −1 −1 +1 +1

−1 −1 −1 0 −1 −1 −1 +1

−1 +1 +1 +1 0 +1 +1 +1

−1 −1 +1 +1 −1 0 +1 +1

−1 −1 −1 +1 −1 −1 0 +1

−1 −1 −1 −1 −1 −1 −1 0




. (4.7)

4.2 The supergravity background

To extract the background fields of the η-deformed AdS5 × S5 superstring for the R-

matrix (4.7) we follow [15] using the same parametrisation for the group-valued field

g ∈ PSU(2, 2|4) as in [11, 12]. For convenience we introduce the variables x = sin ζ
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and w = sin ξ. The metric and B-field are [11]

ds2=
1

1−κ2ρ2

(
−(1+ρ2)dt2+

dρ2

1+ρ2

)
+

ρ2

1+κ2ρ4x2

(
(1−x2)dψ2

1+
dx2

1−x2

)
+ρ2x2dψ2

2

+
1

1+κ2r2

(
(1−r2)dφ2+

dr2

1−r2

)
+

r2

1+κ2r4w2

(
(1−w2)dφ2

1+
dw2

1−w2

)
+r2w2dφ2

2 ,

B=
κρ

1−κ2ρ2
dt∧dρ+

κρ4x

1+κ2ρ4x2
dψ1∧dx+

κr

1+κ2r2
dφ∧dr− κr4w

1+κ2r4w2
dφ1∧dw. (4.8)

For the R-R fluxes we find that the one-form F1 vanishes, while the three-form and five-form

take the form3

F3 = dC2 F5 = dC4 +H ∧ C2

= dĈ2 + F̃3 , = (1 + ⋆)
(
dC4|t +H ∧ Ĉ2|t

)
,

(4.9)

where An|t denotes the part of the n-form An that goes like dt, that is An|t = dt ∧ ιTAn

with Tµ = δ
µ
t . Writing

Ĉ2 =
e−Φ0

2κ
√
1 + κ2(N+N−)

1

2

1

2
cµ1µ2

dXµ1 ∧ dXµ2 ,

F̃3 =
2e−Φ0κ3

√
1 + κ2

(N+N−)
3

2

1

3!
fµ1µ2µ3

dXµ1 ∧ dXµ2 ∧ dXµ3 ,

C4|t =
e−Φ0

2
√
1 + κ2(N+N−)

1

2

1

3!
ctµ1µ2µ3

dt ∧ dXµ1 ∧ dXµ2 ∧ dXµ3 ,

(4.10)

where cµ1µ2
, fµ1µ2µ3

and ctµ1µ2µ3
are completely antisymmetric in the indices µi, the non-

vanishing components are

ctφ=+N+2κ2(1+ρ2)(1−r2) ,

cψ1φ1
=−N+2(1−κ2ρ2)(1+κ2r2) ,

cψ2φ2
=+N−2κ2ρ2r2x2w2(1−κ2ρ2)(1+κ2r2) ,

ctψ2
=−N+2κ2ρ2x2(1+ρ2)(1+κ2r2) ,

ctφ2
=+N+2κ2r2w2(1+ρ2)(1+κ2r2) ,

cψ2φ=−N+2κ2ρ2x2(1−r2)(1−κ2ρ2) ,

cφφ2
=−N−2κ2r2w2(1−r2)(1−κ2ρ2) ,

fρxr =+ρ3rx(1+κ2r4w2)
(
N−2w2(1−κ2ρ2)(1+κ2r2)

)
,

fρrw =+ρr3w(1+κ2ρ4x2)
(
N−2x2(1−κ2ρ2)(1+κ2r2)

)
,

fρxw =+ρ3r2xw(1+κ2r2)
(
r2N−2(1−r2)(1−κ2ρ2)

)
,

fxrw =−ρ2r3xw(1−κ2ρ2)
(
ρ2N+2(1+ρ2)(1+κ2r2)

)
,

3Here Ĉ2 is the R-R potential for the part of F3 that involves the isometries, while F̃3 = dC̃2 involves

no isometries. In principle, there is also a contribution to F5 depending on C̃2. However, we can always

choose a gauge in which this contribution vanishes.
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ctψ1ψ2ρ=+
ρ

1−κ2ρ2

(
N−2x2(1−κ2ρ2)(1+κ2r2)

)
,

ctψ1ψ2x=− ρ2x

1+κ2ρ4x2

(
ρ2N+2(1+ρ2)(1+κ2r2)

)
,

ctψ2φ1r =+
1

κ2r(1−r2)

(
N+2κ4ρ2r2x2(1+ρ2)(1−r2)

)
,

ctψ2φ1w =+
1

κ2w(1+κ2r4w2)

(
N+2κ4ρ2r4x2w2(1+ρ2)(1+κ2r2)

)
,

ctψ1φρ=− ρ

(1−κ2ρ2)(1−κ2ρ2r2x2)

(
(1−r2x2)N−2(1−r2)(1−κ2ρ2)(1+κ2r2x2)

)
,

ctψ1φx=+
ρ2x(ρ2+r2)

(1+κ2ρ4x2)(1−κ2ρ2r2x2)

(
N+2κ2(1+ρ2)(1−r2)

)
, (4.11)

ctψ1φr =+
r

(1+κ2r2)(1−κ2ρ2r2x2)

(
(1+ρ2x2)N−2(1+ρ2)(1+κ2r2)(1−κ2ρ2x2)

)
,

ctψ1φ2ρ=− 1+κ2r2

κ2ρ
(
1−κ2(ρ2−r2−ρ2r2)

)(N+2κ4ρ2r2w2(1+ρ2)(1−r2)
)
,

ctψ1φ2x=− 1

κ2x(1+κ2ρ4x2)

(
N−2κ4ρ4r2x2w2(1+ρ2)(1+κ2r2)

)
,

ctψ1φ2r =+
(1+κ2)r

κ2(1−r2)
(
1−κ2(ρ2−r2−ρ2r2)

)(N+2κ4ρ2r2w2(1+ρ2)(1−r2)
)
,

ctφφ1ρ=− ρ

(1−κ2ρ2)(1−κ2ρ2r2w2)

(
(1−r2w2)N−2(1−r2)(1−κ2ρ2)(1+κ2r2w2)

)
,

ctφφ1r =+
r

(1+κ2r2)(1−κ2ρ2r2w2)

(
(1+ρ2w2)N−2(1+ρ2)(1+κ2r2)(1−κ2ρ2w2)

)
,

ctφφ1w =+
r2w(ρ2+r2)

(1+κ2r4w2)(1−κ2ρ2r2w2)

(
N+2κ2(1+ρ2)(1−r2)

)
,

ctφ1φ2ρ=− (1+κ2)ρr2

(1−κ2ρ2)
(
1−κ2(ρ2−r2−ρ2r2)

)(N−2w2(1−κ2ρ2)(1+κ2r2)
)
,

ctφ1φ2r =− r(1+ρ2)

1−κ2(ρ2−r2−ρ2r2)

(
N−2w2(1−κ2ρ2)(1+κ2r2)

)
,

ctφ1φ2w =− r2w

1+κ2r4w2

(
r2N−2(1+ρ2)(1+κ2r2)

)
,

and

N± = (1− κ2ρ2)(1 + κ2r2)

+ κ2ρ2r2
(√

1 + κ2
√
1− x2

√
1− w2 ± κ

√
1 + ρ2

√
1− r2xw

)2
,

N = (1− κ2ρ2)(1 + κ2r2)

+ κ2ρ2r2
(
(1 + κ2)(1− x2)(1− w2)− κ2(1 + ρ2)(1− r2)x2w2

)
.

(4.12)

As expected, this background satisfies the type IIB supergravity equations with the dilaton

e−2Φ = e−2Φ0
(1− κ2ρ2)(1 + κ2r2)(1 + κ2ρ4x2)(1 + κ2r4w2)

N+N−
, (4.13)

and ǫtψ1ψ2ρxφφ1φ2rw = −1.
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The analytic continuations that correspond to considering the remaining two inequiv-

alent R-matrices of su(2, 2), that is those associated with the two non-trivial permutations

in equation (4.3), are [23]

t → ψ1 , ψ1 → t , ψ2 → ψ2 , ρ → i
√
1 + ρ2 , x → ix ,

t → ψ2 , ψ1 → ψ1 , ψ2 → t , ρ → i
√
1 + ρ2 , x →

√
1 + x2 .

(4.14)

It is simple to check that both these analytic continuations preserve the reality of the

background (4.8), (4.9), (4.13).

4.3 Limits

To conclude this section we briefly discuss four limits of the supergravity back-

ground (4.8), (4.9), (4.13).

In the κ → 0 limit we expect to recover the maximally supersymmetric AdS5 × S5

supergravity background. This is not manifest in the expressions for the R-R fluxes given

above. For example, various components of the R-R potentials diverge in this limit. How-

ever, this is an artifact of our choice of gauge and it is straightforward to check that the

κ → 0 limit of the R-R fluxes indeed gives the expected result.

The plane-wave limit [37, 38], given by equations (3.24), (3.25) and taking L → ∞,

results in the following supergravity background

ds2 = −4dx−dx+ − µ2(1 + κ2)(ρ2 + r2) (dx+)2 + dρ2 + ρ2dΩ3 + dr2 + r2dΩ′
3 ,

dΩ3 = (1− x2)dψ2
1 +

dx2

1− x2
+ x2dψ2

2 , dΩ′
3 = (1− w2)dφ2

1 +
dw2

1− w2
+ w2dφ2

2 ,

B = µκ(ρ dx+ ∧ dρ+ r dx+ ∧ dr) , e−2Φ = e−2Φ0 , F3 = 0 , (4.15)

F5 = 4µ
√
1 + κ2(ρ3x dx+ ∧ dψ1 ∧ dψ2 ∧ dρ ∧ dx− r3w dx+ ∧ dφ1 ∧ dφ2 ∧ dr ∧ dw) ,

which is identical to the plane-wave limit of the generalised supergravity background of [12],

as discussed in [45]. Further taking µ → 0 gives flat space (in angular coordinates) with

vanishing NS-NS and R-R fluxes. As for the AdS2 × S2 × T6 case, we can reach the flat

space background directly by rescaling t → L−1t and φ → L−1φ before taking L → ∞,

rather than using (3.24).

The maximal deformation limit [39, 40], given by equation (3.27) and taking κ → ∞,

is finite, however, it does not match the mirror AdS5 × S5 supergravity background

of [39, 41]. It is also different to the maximal deformation limit of the generalised

supergravity background of [12], which remains a generalised supergravity background.

Additionally rescaling the coordinates as in equation (3.29) and taking L → ∞ we

recover flat space with vanishing NS-NS and R-R fluxes. Indeed, the metric and B-field

of the maximal deformation limit describe an integrable deformation of flat space with

κ-deformed iso(1, 4)⊕ iso(5) symmetry [40, 42].

The Pohlmeyer limit [25], given by equation (3.30) and taking ǫ → 0, is also finite, up to

a divergent part of the B-field that is a closed two-form. However, the resulting supergravity

background has an imaginary B-field and R-R three-form. It is also worth noting that, in
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contrast to the AdS2×S2×T6 case, the limit κ → i, taken without rescaling the coordinates

t and φ, is not finite. This discrepancy might be explained by the fact that the κ → i limit

of sdet(O+) diverges in the AdS5 × S5 case, but is finite in the AdS2 × S2 × T6 case.

5 Discussion

In this paper we have investigated the η-deformation of the AdS2×S2×T6 and AdS5×S5 su-

perstrings for different Drinfel’d-Jimbo R-matrices. In both cases we found that R-matrices

associated with the Dynkin diagram that has all fermionic simple roots satisfy the unimod-

ularity condition (2.24). This is the requirement for the background to satisfy the type II

supergravity equations [15]. It would be interesting to classify those Dynkin diagrams of

basic Lie superalgebras that lead to R-matrices satisfying the unimodularity condition.

For AdS2 × S2 ×T6 we considered the three Dynkin diagrams of psl(2|2;C), explicitly
showing that only when the simple roots are all fermionic do we find a supergravity back-

ground. This background is a particular case of that found in [26]. For AdS5 × S5 we con-

sidered one particular Cartan-Weyl basis with all fermionic simple roots. We constructed

the corresponding R-R fluxes and dilaton that support the metric and B-field of η-deformed

AdS5 × S5 [11] and confirmed that they satisfy the type IIB supergravity equations.

Let us emphasise that inequivalent Dynkin diagrams will typically lead to different R-

R fluxes supporting the same metric and B-field within generalised supergravity. For the

two cases we have considered, demanding Weyl invariance, that is the background solves

the standard type II supergravity equations, picks out the Dynkin diagram that has all

fermionic simple roots as special. However, it is worth noting that in the interesting recent

work [46] progress has been made towards understanding the status of Weyl invariance for

string sigma models on backgrounds solving the generalised type II supergravity equations,

based on earlier results contained in [43, 47].

In both the AdS2×S2×T6 and AdS5×S5 cases the maximal deformation limit of the

supergravity background is finite, but does not recover the mirror supergravity background

of [39, 41]. It therefore remains an open question to understand the connection between

these models. In the Pohlmeyer limit of the η-deformed AdS2 × S2 × T6 background we

recovered the pp-wave supergravity background of [25], whose light-cone gauge-fixing gives

the Pohlmeyer-reduced theory of the AdS2 × S2 superstring [44]. The Pohlmeyer limit of

the η-deformed AdS5×S5 background can also be taken, however in this case the resulting

supergravity background is not real. Understanding the relation between this background

and the Pohlmeyer-reduced theory of the AdS5 × S5 superstring [44] also remains an open

question.

There are a number of AdS supergravity backgrounds that are described by the semi-

symmetric space sigma model [48, 49]. It would be interesting to investigate η-deformations

of these models for different R-matrices. One example is the AdS3 × S3 × T4 superstring,

which has superisometry algebra psu(1, 1|2) ⊕ psu(1, 1|2). As this is two copies of the

superisometry algebra of the AdS2×S2×T6 superstring it follows that R-matrices associated

with the Dynkin diagram that has all fermionic simple roots will satisfy the unimodularity

– 18 –



J
H
E
P
0
1
(
2
0
1
9
)
1
2
5

condition (2.24). A candidate for a corresponding type IIB supergravity background is

given in [26].

When the superisometry algebra of the semi-symmetric space sigma model is of the

form g⊕g, a Wess-Zumino-Witten term can be added that corresponds to introducing NS-

NS flux [50]. Such models also admit a bi-Yang-Baxter deformation [9, 51] with a different

R-matrix and deformation parameter for each copy of g [52]. These can be combined into

a three-parameter deformation of the semi-symmetric space sigma model [53]. It is reason-

able to propose that when the two R-matrices satisfy the unimodularity condition (2.24)

this model is also Weyl invariant. Subject to this being the case one could then study the

corresponding supergravity backgrounds. A candidate for the type IIB supergravity back-

ground corresponding to the bi-Yang-Baxter deformation of the AdS3×S3×T4 superstring

is given in [26].

It was shown in [54, 55] that non-abelian duality with respect to a bosonic Lie algebra

leads to a Weyl anomaly when the trace of the structure constants is non-vanishing. The

anomaly is associated to integrating out the degrees of freedom of this non-unimodular

algebra. While the η-deformation is not equivalent to a non-abelian duality transformation,

the results of this paper suggest that non-abelian duality with respect to a Lie superalgebra

leads to a Weyl anomaly when the supertrace of the structure constants is non-vanishing.

It would be interesting to confirm this by direct computation. See [56] for recent progress

in this direction.

In order to better understand the implications of considering inequivalent Dynkin dia-

grams it would be useful to investigate the Poisson-Lie symmetry [57, 58] and the associated

q-deformed superisometry algebra [7, 10, 19] in more detail. Models with Poisson-Lie sym-

metry can be dualised with respect to this symmetry. A systematic way of performing this

duality is to start from a first-order action on the Drinfel’d double given by the complexi-

fied superisometry algebra and integrate out the degrees of freedom of different maximally

isotropic subalgebras [59, 60]. Indeed, generalising the results of non-abelian duality, there

is evidence that integrating out the degrees of freedom of a non-unimodular algebra is also

associated to a Weyl anomaly in models with Poisson-Lie symmetry [61, 62]. With this in

mind, it may prove insightful to investigate the relation between different possible Poisson-

Lie duals of the η-deformed semi-symmetric space sigma model for R-matrices associated

with inequivalent Dynkin diagrams in the spirit of [34].

A conjecture for the light-cone gauge-fixed S-matrix of the η-deformed AdS5 × S5

superstring based on symmetries has been given in [63, 64] and the resulting finite-size

spectrum analysed in [65, 66]. However, using the reference R-matrix (3.3) associated

with the distinguished Dynkin diagram, the perturbative computation does not match the

expansion of the exact result [12]. It is therefore natural to ask whether instead using an

R-matrix associated with the Dynkin diagram that has all fermionic simple roots provides a

resolution to this disagreement. Finally, understanding the singularity of the backgrounds

at ρ = κ−1 (or for the two backgrounds given by the analytic continuations (4.14) at

x = κ−1(1 + ρ2)−1 and ρ → ∞ respectively) remains an important open problem.
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A Conventions for AdS2 × S2 × T6

In this appendix we give our conventions for the gamma matrices, superalgebras and R-

matrices used in the construction of the (generalised) supergravity backgrounds correspond-

ing to the η-deformation of the AdS2 × S2 × T6 superstring.

A.1 Gamma matrices

4-dimensional gamma matrices. Starting from the Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
, σ± =

1

2
(σ1 ± iσ2) , (A.1)

we define the 4-dimensional gamma matrices

γ̄0 = −iσ3 ⊗ 12 , γ̄1 = σ1 ⊗ 12 , γ̄2 = −12 ⊗ iσ3 , γ̄3 = −12 ⊗ iσ1 . (A.2)

These gamma matrices do not satisfy the Clifford algebra in 1 + 3 dimensions, however

{γ̄0, γ̄1} satisfy the Clifford algebra in 1 + 1 dimensions and {γ̄2, γ̄3} in 2 dimensions.

32-dimensional gamma matrices. We choose the following representation for the ten

32× 32 gamma matrices appearing in the Green Schwarz action

Γ0 = −iσ1 ⊗ 12 ⊗ 12 ⊗ σ3 ⊗ 12 , Γ1 = σ1 ⊗ 12 ⊗ 12 ⊗ σ1 ⊗ 12 ,

Γ2 = σ2 ⊗ 12 ⊗ 12 ⊗ 12 ⊗ σ3 , Γ3 = σ2 ⊗ 12 ⊗ 12 ⊗ 12 ⊗ σ1 ,

Γ4 = σ1 ⊗ σ1 ⊗ σ2 ⊗ σ2 ⊗ 12 , Γ5 = −iσ2 ⊗ σ2 ⊗ σ1 ⊗ 12 ⊗ σ2 ,

Γ6 = σ1 ⊗ U−1(σ2 ⊗ 12)U ⊗ σ2 ⊗ 12 , Γ7 = −iσ2 ⊗ U−1(12 ⊗ σ2)U ⊗ 12 ⊗ σ2 ,

Γ8 = σ1 ⊗ U−1(σ3 ⊗ σ2)U ⊗ σ2 ⊗ 12 , Γ9 = −iσ2 ⊗ U−1(σ2 ⊗ σ3)U ⊗ 12 ⊗ σ2 ,

(A.3)

with

U =
1√
2




√
2 0 0 0

0 1 1 0

0 −1 1 0

0 0 0
√
2


 . (A.4)

They satisfy the Clifford algebra in 1 + 9 dimensions and are related to the 4-dimensional

gamma matrices by

Γa = σ1 ⊗ 14 ⊗ γ̄a , a = 0, 1 , Γa = −iσ2 ⊗ 14 ⊗ γ̄a , a = 2, 3 . (A.5)

Furthermore, we have

Γ11 = Γ0Γ1Γ2Γ3Γ4Γ5Γ6Γ7Γ8Γ9 = σ3 ⊗ 116 . (A.6)
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16-dimensional chiral gamma matrices. The 16×16 chiral gamma matrices are then

identified through

Γa =

(
0 (γa)αβ

(γa)αβ 0

)
, (A.7)

and satisfy γaαβ(γ
b)βγ + γbαβ(γ

a)βγ = 2ηabδγα. The projector

P4 =
1

4
(116 − γ4567 − γ4589 − γ6789) = diag(0, 1, 0, 0)⊗ 14 , (A.8)

appearing in the R-R bispinor (3.13) projects onto a 4-dimensional spinor subspace and

thus can be used to effectively make these matrices 4 × 4 with spinor index α = 1, 2, 3, 4.

In particular, we have

P4γ
aP4 → γ̄a , a = 0, 1, 2, 3 ,

P4γ
aP4 → 0 , a = 4, . . . , 9 ,

(A.9)

where the arrow represents the projection onto 4 dimensions.

A.2 The complexified superalgebra sl(2|2;C)

The bosonic subalgebra of sl(2|2;C) is sl(2;C) ⊕ sl(2;C) ⊕ gl(1;C). We introduce the

corresponding generators K0,K±, L0,L± and C0 along with the eight supercharges Q±ǍÂ.

Here Ǎ = ± is the spinor index associated with the first copy of sl(2;C) and Â = ± to

the second. The first index on the supercharges corresponds to their splitting under the

gl(1;C) outer automorphism

[R,Q±ǍÂ] = ±1

2
Q±ǍÂ . (A.10)

The non-vanishing commutation and anti-commutation relations are

[K0,K±] = ±K± , [K+,K−] = 2K0 ,

[L0,L±] = ±L± , [L+,L−] = 2L0 ,

[K0,Q
B±Â] = ±1

2
QB±Â , [K±,Q

B∓Â] = QB±Â ,

[L0,Q
BǍ±] = ±1

2
QBǍ± , [L±,Q

BǍ∓] = QBǍ± ,

{Q+±+,Q−±−} = ±K± , {Q−±+,Q+±−} = ∓K± ,

{Q++±,Q−−±} = ∓L± , {Q−+±,Q+−±} = ±L± ,

{Q±+±,Q∓−∓} = −K0 ± L0 ∓ C0 , {Q∓+±,Q±−∓} = +K0 ∓ L0 ∓ C0 .

(A.11)

The central element C0 commutes with all generators.

Cartan-Weyl basis. The three Dynkin diagrams of sl(2;C) correspond to inequivalent

sets of simple roots. To identify the roots, let us introduce a generic Cartan-Weyl basis for

sl(2|2;C) composed of the three Cartan generators {hi} and the positive {ei} and negative

{fi} simple roots satisfying the defining relations

[hi, ej ] = aijej , [hi, fj ] = −aijfj , [ei, fj} = δijhj , (A.12)
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where aij is the symmetrised Cartan matrix. The non-simple roots are

e12 = [e1, e2} , e23 = [e2, e3} , e123 = [e1, [e2, e3}} ,
f21 = [f2, f1} , f32 = [f3, f2} , f321 = [f3, [f2, f1}} .

(A.13)

Matrix realisation. To define the action of the R-matrix we use the following matrix

realisation of the complexified superalgebra sl(2|2;C)

K0 = −1

2

(
σ3 0

0 0

)
, K± =

(
σ∓ 0

0 0

)
,

L0 =
1

2

(
0 0

0 σ3

)
, L± =

(
0 0

0 σ±

)
.

Q+++ =

(
0 −N22

0 0

)
, Q−−− =

(
0 0

N22 0

)
,

Q++− =

(
0 N21

0 0

)
, Q−−+ =

(
0 0

N12 0

)
,

Q+−+ =

(
0 −N12

0 0

)
, Q−+− =

(
0 0

−N21 0

)
,

Q+−− =

(
0 N11

0 0

)
, Q−++ =

(
0 0

−N11 0

)
,

(A.14)

where

(Nα̌α̂)β̌β̂ = δα̌β̌δα̂β̂ , α̌, β̌, α̂, β̂ = 1, 2 . (A.15)

In particular, the generators K−, L+ and Q+ǍÂ are upper-triangular matrices, while K+,

L− and Q−ǍÂ are lower-triangular.

Inequivalent R-matrices and associated Dynkin diagrams. The first Dynkin dia-

gram we consider is #−⊗−# with two bosonic simple roots and one fermionic. A choice

of Cartan generators and positive and negative simple roots is

h1 = 2K0 , e1 = −K− , f1 = K+ ,

h2 = −K0 − L0 − C0 , e2 = Q++− , f2 = −Q−−+ ,

h3 = 2L0 , e3 = L+ , f3 = L− .

(A.16)

The associated R-matrix is R0 (3.6), the action of which is given in equation (3.3).

The second Dynkin diagram we consider is ⊗−#−⊗ with one bosonic simple root and

two fermionic. A choice of the Cartan generators and positive and negative simple roots is

h1 = K0 − L0 − C0 , e1 = Q+−− , f1 = Q−++ ,

h2 = 2L0 , e2 = L+ , f2 = L− ,

h3 = K0 − L0 + C0 , e3 = Q−−− , f3 = −Q+++ .

(A.17)
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The associated R-matrix is R1 (3.7), the action of which is the same as in equation (3.3)

except with

ǫ =




0 +1 +1 +1

−1 0 −1 −1

−1 +1 0 +1

−1 +1 −1 0


 . (A.18)

The third and final Dynkin diagram we consider is ⊗ − ⊗ − ⊗ with three fermionic

simple roots. A choice of the Cartan generators and positive and negative simple roots is

h1 = −K0 + L0 − C0 , e1 = Q+++ , f1 = Q−−− ,

h2 = K0 + L0 + C0 , e2 = Q−−+ , f2 = Q++− ,

h3 = K0 − L0 − C0 , e3 = Q+−− , f3 = Q−++ .

(A.19)

The associated R-matrix is R2 (3.8), the action of which is the same as in equation (3.3)

except with

ǫ =




0 +1 +1 +1

−1 0 −1 +1

−1 +1 0 +1

−1 −1 −1 0


 . (A.20)

A.3 The real form psu(1, 1|2)

The real form su(1, 1|2) is given by those elements of the complexified superalgebra

sl(2|2;C) satisfying

M †H +HM = 0 , H =

(
σ3 0

0 12

)
. (A.21)

The superalgebra su(1, 1|2) contains the 1-dimensional ideal u(1) generated by i14. The

quotient of su(1, 1|2) over this u(1) subalgebra defines the superalgebra psu(1, 1|2).
The automorphism

Ω(M) = −K−1M stK , K =

(
σ3 0

0 σ3

)
,

M st = Psu(1,1)M
tPsu(1,1) − Psu(1,1)M

tPsu(2) + Psu(2)M
tPsu(1,1) + Psu(2)M

tPsu(2) ,

(A.22)

where

Psu(1,1) =

(
12 0

0 0

)
, Psu(2) =

(
0 0

0 12

)
, (A.23)

endows the psu(1, 1|2) superalgebra with a Z4 grading and the elements of grade k satisfy

Ω(M) = ikM . The generators below are chosen so that they belong to a specific grading.

Bosonic generators. Our choice for the three su(1, 1) generators is

P0 =
1

2

(
iσ3 0

0 0

)
= −iK0 , P1 =

1

2

(
σ2 0

0 0

)
=

i

2
(K+ −K−) ,

J01 = −[P0, P1] = −1

2

(
σ1 0

0 0

)
= −1

2
(K+ +K−) ,

(A.24)
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and for the three su(2) generators is

P2 =
1

2

(
0 0

0 iσ3

)
= iL0 , P3 =

1

2

(
0 0

0 iσ2

)
=

1

2
(L+ − L−) ,

J23 = +[P2, P3] =
1

2

(
0 0

0 iσ1

)
=

i

2
(L+ + L−) .

(A.25)

Here J01 and J23 generate the so(1, 1)⊕ so(2) grade 0 subalgebra, while the other bosonic

generators Pa, a = 0, 1, 2, 3 are of grade 2.

Fermionic generators. The psu(1, 1|2) superalgebra also contains eight fermionic gen-

erators QIα̌α̂, where I = 1 for generators of grade 1 and I = 2 for grade 3, α̌ = 1, 2 is the

spinor su(1, 1) index and α̂ = 1, 2 is the su(2) spinor index. Explicitly, these generators are

Q1α̌α̂ =
1√
2
i(α̌−α̂)

(
0 Nα̌α̂

iσ3(Nα̌α̂)
tσ3 0

)
,

Q2α̌α̂ =
1√
2
i(α̌−α̂)

(
0 iNα̌α̂

σ3(Nα̌α̂)
tσ3 0

)
.

(A.26)

To make the link with the notation used in the main text and appendix A.1, the spinor

indices α̌ and α̂ can be gathered into a single index, α = 1, 2, 3, 4, and we define the

generators QIα as

Q11 = Q111 , Q12 = Q112 , Q13 = Q121 , Q14 = Q122 . (A.27)
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