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1 Introduction

One of the best understood dualities is “level/rank” duality in Chern-Simons (CS) gauge

theories. An infinite sequence of level/rank dualities equates

SU(N)−k ↔ U(k)N , (1.1)

for all N, k ≥ 1, where the subscript indicates the Chern-Simons level. The theories are

dual in that the observables of both theories are identical [1–3].

There has been an accumulation of evidence this decade for dualities between non-

supersymmetric Chern-Simons theories coupled to fundamental matter [4–8]. These con-

jectured dualities may be thought of as taking the level/rank dualities, adding suitable

matter content on both sides, and tuning to a conformal field theory (CFT). The basic

sequences of interest in this work were precisely formulated by Aharony and read [7]:

SU(N)
−k+

Nf
2

with Nf Dirac fermions ↔ U(k)N with Nf scalars , (1.2)

U(k)
N−

Nf
2

with Nf Dirac Fermions ↔ SU(N)−k with Nf scalars . (1.3)
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There are also time-reversed versions of the dualities. All interactions in the fermionic

theories arise from the gauge interactions, while the scalars are understood to be “Wilson-

Fisher” (WF) scalars, meaning that on the scalar side of the duality one turns on a |φ|4

potential and mass term and tunes to criticality. Both dualities require Nf ≤ k, although

there is a proposal [9] to extend the dualities slightly beyond this “flavor bound.” Because

the dualities (1.2) and (1.3) relate theories with fundamental fermions to theories with

fundamental bosons, they have been dubbed “3d bosonization.”

These dualities have been the subject of recent attention from a variety of viewpoints.

For the special case N = k = Nf = 1, these dualities are related to the surface states

of time-reversal invariant topological insulators and the fractional quantum Hall effect at

half filling [10–13], lead to a web of dualities [14–17], and can even be proven on the

lattice [18]. They are crucial actors in mapping out the phase diagram of QCD3 as well

as some of its cousins. At large N, k, with N/k finite, they are dual to a peculiar theory

of gravity known as Vasiliev theory [4–6]. These theories are in fact solvable in this limit,

and much is known of their thermal physics and scattering amplitudes [4–6, 19–21]. Away

from N = k = Nf = 1, they imply a web of dualities for gauge theories with product gauge

groups and (bi)fundamental matter [22], known as quiver gauge theories, and have been

embedded intro string theory [23] (see also [24]). For other interesting works see e.g. [25–31].

The dualities (1.2) and (1.3) remain unproven, and in the absence of supersymmetry,

it is difficult to envisage a proof. Nevertheless there is significant evidence that they are

true. The best evidence comes from direct computations at large N, k with N/k finite.

The exact global symmetries and their ’t Hooft anomalies match [32], as do the quantum

numbers of baryon and monopole operators [7]. At large N , these dualities appear to be

inherited from a three-dimensional version of Seiberg duality [33, 34], and there is some

expectation that the non-supersymmetric bosonization dualities are always the offspring of

a parent supersymmetric duality (see e.g. [19, 33–36]).

Finally, it is expected that the Chern-Simons-matter theories in (1.2) and (1.3) possess

at least one relevant operator, the mass operator for the fundamental fermions or bosons.

Deforming by this mass operator triggers a flow to a massive phase, described in the infrared

(IR) by a topological field theory (TFT). The precise low-energy TFT depends on the sign

of the mass. One then thinks of the Chern-Simons-matter theories in (1.2) and (1.3) as

describing a second order transition separating these two phases. Crucially, the IR TFTs

describing the massive phases of one side of the duality match those of the other [7]. For

example, deforming SU(N)
−k+

Nf
2

theory coupled to Nf fermions by a negative mass leads

to a SU(N)−k TFT in the IR, while deforming U(k)N theory coupled to scalars by a positive

mass-squared leads to an IR U(k)N TFT. These TFTs are identical by virtue of level/rank

duality. A similar computation matches the other phases.

In this note we propose a new infinite sequence of bosonization dualities between

Chern-Simons-matter theories with both fundamental fermions and bosons.1 It reads

SU(N)
−k+

Nf
2

with Nf ψ ,Ns φ ↔ U(k)N−Ns
2

with Nf Φ , Ns Ψ , (1.4)

1A related conjecture was made some years ago for Nf = Ns = 1 [33].
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where ψ indicates a Dirac fermion and φ a WF scalar, and we require Nf ≤ k,Ns ≤
N but (Nf , Ns) 6= (k,N). On both sides we impose a manifest SU(Nf ) × SU(Ns) ×
U(1) × U(1) global symmetry. (On the SU(N) side the U(1)’s rotate the fundamental

fermions and bosons, while on the U(k) side one rotates the fundamental fields but the

other is a monopole symmetry.) As we will discuss, at large N , the only relevant or

marginal operators consistent with this symmetry are scalar and fermion masses as well as

(ψ̄ ·φ)(φ† ·ψ), where the dots indicate a contraction of gauge indices. This last operator is

the unsung hero of this note. It is important for the following reason. The theories in (1.4)

have a phase in which the gauge group is partially Higgsed, and in this phase this operator

gives a mass ∼ |φ|2 to the fermions which are neutral under the unbroken gauge group. To

find its dimension at large N , we use that at large N the theories in (1.4) may be obtained as

the endpoint of a double trace flow from the free-field fixed point triggered by (|φ|2)2. The

quartic operator picks up a 1/N suppressed anomalous dimension relative to the free-field

fixed point, ∆ = 3 +O(1/N), so that it is approximately marginal. In order for the duality

to work, we find that it must be present on both sides of the duality with a coefficient

whose sign is that of the Chern-Simons level, i.e. negative for the SU(N)
−k+

Nf
2

theory and

positive for the U(k)N−Ns
2

theory. More precisely, we require these signs in the deep IR of

the Higgs phases. Curiously, in supersymmetric Chern-Simons-matter theories with level

k and at least N = 2 supersymmetry, the coupling of this operator is fixed to be ∼ 1/k.

As far as we know the sign of the O(1/N) correction to this dimension has not yet been

computed. If it is positive, then this operator is slightly irrelevant yet important in the

IR, in which case it is dangerously irrelevant. If the sign is negative so that the operator is

relevant, then its coefficient is not a free parameter and must be tuned to realize a CFT.

Both possibilities are of interest and warrant future study. In either case it is clear that the

sign of this coupling in the deep IR is not a choice but must be fixed by the dynamics, and

it is not clear if the dynamics choose the sign we need for the duality to hold. Turning the

matter around, if we regard the duality (1.4) as sacrosanct, then we are making an implicit

claim about the flow of this operator which would be nice to explicitly check at large N .2

We perform several basic consistency checks on our proposal. The first is to map

out the phase diagram of both sides of (1.4), under the assumption that the fermion and

scalar mass operators remain relevant. The theories in (1.4) may be understood as a

multi-critical point in which both of these masses are tuned to vanish. We argue that the

ensuing two-dimensional phase diagram has five distinct phases, all visible semiclassically,

described by four different IR TFTs. These phases are separated by critical lines described

by the theories in (1.2) and (1.3), and a critical line described by NfNs free fermions and

a decoupled TFT.

We also discuss the quantum numbers of baryons and monopoles in these theories,

finding that, as in the basic bosonization dualities (1.2) and (1.3), the baryons of one side

may be consistently matched to monopoles in the other. Finally we deduce the exact global

symmetries of both sides of (1.4) and find that they match.

2We would like to thank O. Aharony and Z. Komargodski for discussions on these points.

– 3 –



J
H
E
P
0
1
(
2
0
1
8
)
0
3
1

In the title of this note we call the proposal (1.4) a “master” duality. In giving this

presumptuous name we have two things in mind. The first is that this proposal reduces to

Aharony’s when Ns = 0 or Nf = 0. The second concerns recent works which use the basic

dualities as “seed dualities” to generate new ones by gauging global symmetries on both

sides of the seed [14–17, 22]. In the context of quiver gauge theories, one of the results

of [22] is that one can dualize node-by-node: given a quiver with a SU or U gauge group

factor coupled to only bosons or fermions, one can generate a dual quiver by replacing a

node and the matter attached to it with its dual according to (1.2) and (1.3). Assuming

our conjecture (1.4), one can use the same logic to dualize any node of a quiver with

fundamental matter.

The remainder of this note is organized as follows. In section 2 we map out the phase di-

agram of both sides of (1.4), and show that not only can we match the TFTs describing the

massive phases, but we can also match the Chern-Simons terms for the global symmetries.

We match baryons, monopoles, and global symmetries in section 3. Gauging an appropriate

U(1) subgroup of the global symmetry on both sides of our proposal (1.4), we find that (1.4)

also implies a U/U duality which we describe in section 4. In section 5 we comment briefly

on an extension of our proposal (1.4) to dualities between Chern-Simons theories with SO

and USp gauge groups, and we conclude with some open questions in section 6.

Note: while this work was nearing completion F. Benini posted a paper [37] which also

conjectures the duality (1.4) as well as extensions for other classical gauge groups.

2 Mapping out the phase diagram

We begin with the Lagrangians for the theories on both sides of our proposed duality (1.4).

We work in Euclidean signature. The SU(N)
−k+

Nf
2

theory is described by a Lagrangian3

LSU = −i
−k +Nf

4π
tr

(
ada− 2i

3
a3

)
+ ψ̄ii /Dψi + (Dµφ†m)(Dµφm) + Lint , (2.3)

where a is the SU(N) gauge field, Lint describes scalar and fermion interactions, i =

1, . . . , Nf is a fermion flavor index, and m = 1, . . . , Ns is a scalar flavor index. This theory

3In this work we follow [8] and use the convention that the functional determinant of the Dirac operator

of a single Dirac fermion coupled to an external gauge field A and metric g is given by

det( /D(A, g)) = |det( /D(A, g))| exp

(
− iπη(A, g)

2

)
, (2.1)

where η is the η-invariant. On a closed manifold with trivial topology, this phase evaluates to a Chern-

Simons term with level 1
2

for A along with a gravitational Chern-Simons term,

iπη(A, g)

2
→ i

∫ {
1

8π
AdA+

1

196π
tr

(
ΓdΓ +

2

3
Γ3

)}
. (2.2)

Giving the fermion a mass and integrating it out, one finds the usual one-loop exact shifts to the Chern-

Simons level in the infrared. With this convention, a positive Dirac mass does not shift the bare level, while

a negative mass shifts the level by −1. When A is dynamical with a bare Chern-Simons level k, we refer to

the massless theory as U(1)k− 1
2
.
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has a manifest U(Nf )×U(Ns) global symmetry which we impose. To get a handle on the

scalar and fermion interactions we consider two limits. The first is to realize the SU theory

as an infrared fixed point of a renormalization group flow, starting with a free theory in

the UV. For general Nf , Ns, the classically relevant and marginal operators are

|φ|2 , ψ̄ψ , |φ|4 , |φ6| , (ψ̄ψ)|φ|2 , (ψ̄i · φm)(φ†m · ψi) . (2.4)

These operators must be tuned to reach a non-trivial IR CFT. In the IR the scalar φ

becomes a “Wilson-Fisher” scalar, and one expects |φ|4 and |φ6| to both be irrelevant with

respect to the IR scalings.

What of the quartic fermion/scalar operators? Now consider a large N limit. At large

N , the fermion and Wilson-Fisher scalar both have dimension 1. The operators |φ|4, (ψ̄ ·
ψ)|φ|2, and |φ|6 are then “multi-trace” operators whose dimensions by large-N factorization

are 4+O(N−1) and 6+O(N−1). However it is easy to check that the last quartic operator,

O4 = (ψ̄i · φm)(φ†m · ψi) , (2.5)

remains approximately marginal with ∆ = 3 + O(N−1). This operator will play a crucial

role in what follows.

Now consider the U(k)N−Ns
2

theory. Its Lagrangian is

LU = −i N
4π

tr

(
a′da′ − 2i

3
a′3
)

+ (DµΦ†i)(DµΦi) + Ψ̄mi /DΨm + L′int , (2.6)

where a′ is the U(k) gauge field, and again i = 1, . . . , Nf , m = 1, . . . , Ns and L′int describes

the scalar and fermion interactions. We denote the scalars of the U theory as Φi and the

fermions as Ψm to distinguish them from the bosons and fermions of the SU theory. This

theory has a manifest SU(Ns) × SU(Nf ) × U(1)m × U(1) global symmetry. The U(1)m is

a monopole number, while U(1) is carried by the fundamental fermions (with charge +1)

and bosons (with charge −1). As in the SU theory, we expect that the operators in L′int are

|Φ|2 , Ψ̄Ψ , |Φ|4 , |Φ|6 , (Ψ̄Ψ)|Φ|2 , (Ψ̄m · Φi)(Φ
†i ·Ψm) , (2.7)

whose coefficients are all tuned to realize a non-trivial IR CFT. As above, the operator

O′4 = (Ψ̄m · Φi)(Φ
†i ·Ψm) , (2.8)

will soon reveal its importance.

2.1 Massive phases and critical lines

At large N the only relevant SU(Nf ) × SU(Ns) × U(1) × U(1)-invariant operators in the

SU and U theories are the scalar and fermion mass operators. To simplify our analysis

we subsequently assume that this remains true for finite N , although this assumption may

be wrong. The quartic operator O4 has dimension 3 + O(1/N) at large N and so may be

relevant, depending on the sign of the 1/N correction. We also assume that all phases are

the ones accessible semiclassically at large |mψ|, |m2
φ| when realizing these theories as the

– 5 –
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endpoint of flows starting from a UV free-field fixed point. Finally, for the purposes of a

simple presentation, we assume that there are no first order transitions, with the caveat

that there could very well be first order transitions separating the semiclassical phases we

find at large |mψ|, |mφ|2 from the region at small mass. Subject to these assumptions we

map out the schematic two-dimensional phase diagram of both theories.

Let us begin with the SU theory. We can give the fermions a positive or negative

mass, as well as give the scalars a positive or negative mass-squared. Integrating out

the massive fermions leads to a one-loop exact shift of the Chern-Simons level. Giving a

positive mass-squared simply decouples the scalars, while a negative mass-squared partially

Higgses the gauge symmetry. Following previous work, we assume that the interactions

prefer to maximally Higgs the gauge theory from SU(N) down to SU(N − Ns), and find

that this is necessary in order for our conjecture to work.

In the Higgsed phase, the quartic operators

(ψ̄ψ)|φ|2 , O4 = (ψ̄i · φm)(φ†m · ψi) , (2.9)

effectively generate fermion masses. The first gives a mass to all fermions, which can be

compensated for by a suitable shift of the coupling of the fermion mass operator ψ̄ψ. The

second is more interesting. The original NNf fermions break up into Nf fundamental

representations of the unbroken SU(N −Ns) gauge symmetry, while the remaining NsNf

fermions are gauge-singlets. We refer to these as singlet fermions. Crucially, the operator

O4 generates a mass |φ|2 for the singlet fermions in the Higgs phase.

Denote the coefficient multiplying O4 in the Higgs phase as c4. If c4 is positive, then

this operator contributes a positive mass to the singlet fermions, while if c4 is negative it

contributes a negative mass. In either case, since the fermion mass operator ψ̄ψ gives a

mass to all fermions, it is clear that there are three distinct massive Higgs phases. In one

all fermions have a positive mass, in another all fermions have a negative mass, and in the

last the singlet fermions have a mass whose sign is opposite those of the remaining charged

fermions. We will soon see that our duality requires c4 < 0, so that this new phase exists

for mψ > 0 and that in this phase the singlet fermions have a negative mass.

In what follows we must also distinguish between the cases Ns < N and Ns = N . For

Ns < N and away from critical lines the Higgsed phase of the SU theory is completely

gapped. However for Ns = N the Higgsed phase is gapless with a massless scalar. Corre-

spondingly, in the U theory, for Ns < N both signs of the Dirac mass lead to a non-trivial

TFT in the infrared. For Ns = N a negative Dirac mass leaves a U(k)0 or U(k − Nf )0

theory (depending on whether or not one is in the Higgsed phase), whose non-abelian part

confines at low energies leaving behind compact electromagnetism in the IR, not a TFT.

Ultimately, we will find that our proposal is still consistent for Ns = N , however only when

k < N rather than k ≤ N . That is we must also have the flavor bound (Nf , Ns) 6= (k,N)

as advertised in the Introduction.

2.1.1 Ns < N

We begin with the case Ns < N . There are five distinct massive phases separated by

various critical lines, with the critical SU theory living at the original of the phase diagram.

– 6 –
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(a) (b)

Figure 1. For Ns < N , the schematic phase diagrams of (a) SU(N)
−k+

Nf
2

Chern-Simons theory

coupled to Nf fermions and Ns scalars and (b) U(k)N−Ns
2

Chern-Simons theory coupled to Ns

fermions and Nf scalars. The various phases are described by IR TFTs given in (2.10) and (2.13).

and the critical lines are described by the CFTs given in (2.12) and (2.15).

However there are only four different IR TFTs. See figure 1. The distinct TFTs governing

the massive phases are

(I) mψ > 0 , m2
φ > 0 : SU(N)−k+Nf

,

(II) mψ < 0 , m2
φ > 0 : SU(N)−k ,

(III) mψ < 0 , m2
φ < 0 : SU(N −Ns)−k ,

(IV) mψ > 0 , m2
φ < 0 : SU(N −Ns)−k+Nf

.

(2.10)

Observe that Ns < N is required to have a massive Higgs phase. For k = Nf Phases I and

IV are described by SU(N)0 and SU(N − Ns)0, which give confining Yang-Mills theories

rather than TFTs. The fourth phase splits into two, one at large positive mψ where all

fermions have a positive mass, and one at intermediate positive mψ, where the singlet

fermions have a negative mass,

(IVa) mψ > 0 , ms < 0 , m2
φ < 0 : SU(N −Ns)−k+Nf

,

(IVb) mψ > 0 , ms > 0 , m2
φ < 0 : SU(N −Ns)−k+Nf

.
(2.11)

Now for the critical lines. There are five critical lines separating the various phases. Four

of the lines are described by SU Chern-Simons theory coupled to either fermions or bosons,

and one is the theory of massless singlet fermions. We summarize the theories on the

– 7 –
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critical lines as

(I-II) SU(N)
−k+

Nf
2

with Nf ψ ,

(II-III) SU(N)−k with Ns φ ,

(III-IVa) SU(N −Ns)−k+
Nf
2

with Nf ψ ,

(IVa-IVb) NsNf singlet ψ’s + SU(N −Ns)−k+Nf
TFT ,

(IVb-I) SU(N)−k+Nf
with Ns φ .

(2.12)

For the case k = Nf , we see that Phases I and IV are trivial; the line between Phases IVa

and IVb only contains the singlet fermions; and the line between phase IVb and I is SU(N)

Yang-Mills coupled to Ns scalars, which we expect to confine and lead to a gapped theory.

By the by, the operator O4 must be present in order that the singlet fermions are

gapped on then critical line separating Phases III and IVa. However, this requirement does

not constrain the sign of its coupling c4. We do note that if c4 were positive, then the critical

line with the massless singlet fermions would run through Phase III rather than Phase IV.

Having mapped out the SU phase diagram we move on to consider the U theory. Much

of the discussion of the U phase diagram carries over here without modification, and so let

us simply summarize the salient features. See figure 1. As before, there are five distinct

massive phases described by four different IR TFTs, which are given by

(I’) mΨ > 0 , m2
Φ < 0 : U(k −Nf )N ,

(II’) mΨ > 0 , m2
Φ > 0 : U(k)N ,

(III’) mΨ < 0 , m2
Φ > 0 : U(k)N−Ns ,

(IV’) mΨ < 0 , m2
Φ < 0 : U(k −Nf )N−Ns .

(2.13)

To have a massive Higgs phase we must respect Nf ≤ k. In a moment we will see that the

coefficient of O′4, c′4, must be positive, so that Phase IV splits into two, with

(IVa’) mΨ < 0 , ms < 0 , m2
Φ < 0 : U(k −Nf )N−Ns ,

(IVb’) mΨ < 0 , ms > 0 , m2
Φ < 0 : U(k −Nf )N−Ns .

(2.14)

The critical U theory sits at the origin of the phase diagram, and the critical lines separating

the massive phases are described by

(I’-II’) U(k)N with Nf Φ ,

(II’-III’) U(k)N−Ns
2

with Ns Ψ ,

(III’-IVa’) U(k)N−Ns with Nf Φ ,

(IVa’-IVb’) NsNf singlet Ψ’s + U(k −Nf )N−Ns TFT ,

(IVb’-I’) U(k −Nf )N−Ns
2

with Ns Ψ .

(2.15)

If c′4 were negative, the critical line with the massless singlet fermions would run through

Phase I’ rather than Phase IV’. For the special case k = Nf , we see that Phases I’ and

– 8 –
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IV’ are trivial, that the line separating Phases IVa’ and IVb’ is just given by the massless

singlet fermions, and the line between Phase IVb’ and I’ is trivial.

Having assembled all of this information, we may match the phases, lines, and operators

of the two theories. Using the basic level/rank duality (1.1) equating

SU(N)−k ↔ U(k)N ,

we see that the TFTs governing the massive phases of the SU theory (2.10) are precisely

those describing the massive phases of the U theory (2.13). Phase I maps to Phase I’, and

similarly for the others. Comparing the axes on the two phase diagrams in figure 1 then

tells us how the mass operators map under the duality, with

ψ̄ψ ↔ −|Φ|2 , |φ|2 ↔ Ψ̄Ψ . (2.16)

Furthermore, we see that the critical lines in both theories (2.12) and (2.15) match upon

using Aharony’s dualities (1.2) and (1.3). To match the lines running through Phases IV

and IV’ we also require level/rank duality to equate the TFTs arising on each line.

For the special case k = Nf , the massive phases still match on account of the fact that

Phases I, I’, IV, and IV’ are all trivial. The critical lines also match, upon recalling that

the IVb-I and IVb’-I’ lines are trivial.

We also see that the assumption that our duality holds determines the sign of the

quartic couplings c4 and c′4. As we mentioned above, if c4 were positive, the “singlet critical

line” of the SU theory would run through Phase III, and if c′4 were negative, the singlet

critical line of the U theory would run through Phase I’. The only consistent possibility

is c4 < 0, c′4 > 0. An even simpler argument is that Phase IV is the only quadrant of

the phase diagram in which both the SU(N) theory and its U(k) dual are both in a Higgs

phase, and so the singlet line must run through it. As we mentioned in the Introduction,

we see that the quartic coupling has the same sign as the Chern-Simons level.

2.1.2 Ns = N

Now we tackle the case Ns = N . We will be brief and summarize the main features. See

figures 2 for the schematic phase diagrams when k < Nf .

In the SU theories there are four phases (not all of which are massive). In the Higgs

phase we have SU(N) → 0, and the only remnant of the scalars is a single compact

Goldstone boson. Dualizing it into pure electromagnetism, we write the various phases as

(I) mψ > 0 , m2
φ > 0 : SU(N)−k+Nf

,

(II) mψ < 0 , m2
φ > 0 : SU(N)−k ,

(III) m2
φ < 0 : U(1)0 ,

(2.17)

and Phase III splits into Phases IIIa and IIIb depending on whether the fermions (note

that since the gauge group is trivial in the Higgs phase all fermions are “singlets.”) get a

negative or positive mass. For k = Nf , the theory in Phase I is SU(N)0 which we expect

– 9 –
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(a) (b)

Figure 2. For Ns = N and k < Nf , the schematic phase diagrams of (a) SU(N)
−k+

Nf
2

Chern-

Simons theory coupled to Nf fermions and Ns scalars and (b) U(k)N−Ns
2

Chern-Simons theory

coupled to Ns fermions and Nf scalars. The various phases are described by (2.17) and (2.19). and

the critical lines are described by the CFTs given in (2.18) and (2.20). The shaded region is gapless.

to be massive. The critical lines separating the phases are

(I-II) SU(N)
−k+

Nf
2

with Nf ψ ,

(II-III) SU(N)−k with N φ ,

(IIIa-IIIb) NNf free ψ’s + decoupled U(1)0 ,

(IIIb-I) SU(N)−k+Nf
with N φ .

(2.18)

For k = Nf Phase I and the line separating Phases IIIb and I are trivial.

For Nf < k the U theories also have four phases, while for Nf = k they have five. We

have

(I’) mΨ > 0 , m2
Φ < 0 : U(k −Nf )N ,

(II’) mΨ > 0 , m2
Φ > 0 : U(k)N ,

(III’) mΨ < 0 , m2
Φ > 0 : U(k)0 → U(1)0 ,

(IV’) mΨ < 0 , m2
Φ < 0 : U(k −Nf )0 →

{
U(1)0 , k < Nf

0 , k = Nf ,

(2.19)

and Phase IV’ only exists when Nf = k. For Nf < k, Phase III’ splits into Phases IIIa’ and

IIIb’ depending on whether the fermions have a negative or positive mass. For Nf = k,

Phase IV’ splits into Phases IVa’ and IVb’ with the same. For Phases III’ and, when it

exists, IV’, we are using the expectation that the non-abelian part of U(k)0 confines at low

energies so that its low energy limit is described by pure electromagnetism. The critical
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lines when Nf < k are

(I’-II’) U(k)N with Nf Φ ,

(II’-IIIa’) U(k)N−N
2

with N Ψ ,

(IIIa’-IIIb’) NNf free Ψ’s + decoupled U(1)0 ,

(IIIb’-I’) U(k −Nf )N−N
2

with N Ψ .

(2.20)

Comparing the phases of the SU theory (2.17) and the phases of the U theory (2.19),

we see that the two perfectly match provided that k < Nf . The same is true for the critical

lines. However, clearly there is no match when k = Nf , and thus we demand the last of

our flavor bounds, (Nf , Ns) 6= (k,N).

2.2 Matching flavor Chern-Simons terms

In the last subsection we matched the various massive phases and critical lines of the SU and

U theories appearing in our proposed duality (1.4). In fact we can perform an even stronger

test. We first couple both sides to slowly varying background gauge fields. (We could also

put the theories on a spin manifold with a slowly varying metric, but we do not do so in this

work.) The massive phases are then described not only by non-trivial TFTs, but there are

also flavor Chern-Simons terms whose levels are one-loop exact and which we may match.

It is straightforward to deduce the levels for the non-abelian part of the flavor symmetry,

but as we will see, we must be careful when computing the levels for the abelian part. It

is particularly tricky to compute the abelian levels in the SU theories, and we will find it

convenient to represent the SU(N) theories as U(N) theories subject to a U(1) quotient.

2.2.1 The U(k) theories

We begin with the U(k) theories. The manifest Abelian global symmetry of these theories

is U(1)m×U(1)F , where U(1)m refers to a monopole number and the U(1)F is an ordinary

charge under which the bosons carry charge 0 and the fermions charge −1. With this

convention, the manifest global symmetry is in fact U(Nf ) × SU(Ns) × U(1)m. Turning

on background gauge fields which couple the manifest symmetry and including carefully

chosen Chern-Simons terms for the external fields, the Lagrangian is

LU = −i
[
N

4π
tr

(
a′da′ − 2i

3
a′3
)

+
1

2π
tr(a′)dÃ′1

]
+ |DΦ|2 + Ψ̄i /DΨ + L′int . (2.21)

together with

DµΦ =
(
∂µ − i(a′µ1f +A′µ1c)

)
Φ ,

DµΨ =
(
∂µ − i(a′µ1f +B′µ1c − Ã′2µ1)

)
Ψ .

(2.22)

Here a′µ is a U(k) gauge field, A′µ is a background SU(Nf ) gauge field, and B′µ a background

SU(Ns) gauge field. There are also background abelian gauge fields: the U(1)m gauge field

is Ã′1µ and the U(1)F gauge field is Ã′2µ. (We can group B′ and Ã′2 into a U(Ns) gauge
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field if we wish.) Observe that Ã′1 only appears through a BF coupling to the monopole

current ?jm = 1
2πdtr(a′).

The various abelian Chern-Simons levels are subject to quantization conditions, which

when violated characterize ’t Hooft anomalies for the flavor symemtries. For now, we will

simply proceed to compute the levels in the various phases without worrying about the

precise quantization conditions. Furthermore, we are being a bit sloppy in writing (2.21).

For generic parameters we are not allowed to set the various abelian levels to vanish. What

we are really doing in this subsection is to compute the jumps in flavor Chern-Simons levels

from one phase to another, and these jumps of course do not depend on these details.

The five massive phases (2.13) are obtained after turning on fermion and scalar masses.

The various Chern-Simons levels receive one-loop shifts after integrating out fermions, as

well as additional shifts in the Higgsed phases. Including the flavor groups, the massive

phases are characterized by

(I’) : U(k −Nf )N × SU(Nf )N × SU(Ns)0 × JI’ ,

(II’) : U(k)N × SU(Nf )0 × SU(Ns)0 × JII’ ,

(III’) : U(k)N−Ns × SU(Nf )0 × SU(Ns)−k × JIII’ ,

(IVa’) : U(k −Nf )N−Ns × SU(Nf )N−Ns × SU(Ns)−k × JIVa’ ,

(IVb’) : U(k −Nf )N−Ns × SU(Nf )N × SU(Ns)−k+Nf
× JIVb’ ,

(2.23)

where only the first group is dynamical, and there are 2×2 matrices describing the abelian

Chern-Simons levels in each phase,

J ′ab

4π
Ã′adÃ

′
b . (2.24)

We need to integrate out the dynamical U(1) gauge field tr(a′) to get these abelian

Chern-Simons levels. For example, in Phase I’, tr(a′) appears through two terms in the

low-energy effective Lagrangian,

Ltr(a′) = −i
[

N

4π(k −Nf )
tr(a′)dtr(a′) +

1

2π
tr(a′)dÃ′1

]
. (2.25)

(The first term is the abelian part of the U(k−Nf ) Chern-Simons term.) There is effectively

an equation of motion for tr(a′) which sets

tr(a′) =
−k +Nf

N
Ã′1 , (2.26)

so that (2.25) becomes

Ltr(a′) → −i
−k +Nf

4πN
Ã′1dÃ

′
1 , (2.27)

i.e. an effective Chern-Simons term for Ã′1 at level
−k+Nf

N . Accounting for the one-loop

shifts to the bare levels (which happen to vanish in this phase), the 2× 2 matrix of abelian

CS levels is

JabI’ =

(−k+Nf

N 0

0 0

)
. (2.28a)
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Similar computations in the other phases of the U theory give

JabII’ =

(
− k
N 0

0 0

)
,

JabIII’ = − k

N −Ns

(
1 Ns

Ns NNs

)
,

JabIVa’ = −
k −Nf

N −Ns

(
1 Ns

Ns NNs

)
−NfNs

(
0 0

0 1

)
,

JabIVb’ = −
k −Nf

N −Ns

(
1 Ns

Ns NNs

)
.

(2.28b)

2.2.2 The SU(N) theories

We continue with the SU(N) theories. Turning on a background for the manifest U(Nf )×
U(Ns) =

(
SU(Nf )×U(1)f

)
/ZNf

×
(
SU(Ns)×U(1)s

)
/ZNs global symmetry, and including

Chern-Simons terms for the background fields, the Lagrangian is

LSU = −i
−k +Nf

4π
tr

(
ada− 2i

3
a3

)
+ ψ̄i /Dψ + |Dφ|2 + Lint

− i
[
N

4π
tr

(
AdA− 2i

3
A3

)
+
Jab

4π
ÃadÃb

]
,

(2.29)

along with

Dµψ =

(
∂µ − i

(
aµ1f +Aµ1c +

1

N
Ã1µ1

))
ψ ,

Dµφ =

(
∂µ − i

(
aµ1f +Bµ1c +

(
1

N
Ã1µ + Ã2µ

)
1

))
φ ,

(2.30)

where 1f acts as the identity on flavor indices, 1c as the identity on color indices, and 1 as

the identity on all indices. Here we have separated the U(1)f ×U(1)s global symmetry into

its diagonal part, which couples to Ã1, and a scalar part which couples to Ã2. Note that

diagonal U(1) global symmetry is “baryonic.” Our choice of normalization for the conjugate

external field Ã1 is such that the baryon charges of gauge-invariant operators are integers.

Now consider the five massive phases (2.10) obtained by turning on the fermion and

scalar masses. The flavor Chern-Simons levels receive one-loop shifts after integrating out

the fermions, and now including the flavor groups, the massive phases are described by

(I) : SU(N)−k+Nf
× SU(Nf )N × SU(Ns)0 × JI ,

(II) : SU(N)−k × SU(Nf )0 × SU(Ns)0 × JII ,

(III) : SU(N −Ns)−k × SU(Nf )0 × SU(Ns)−k × JIII ,

(IVa) : SU(N −Ns)−k+Nf
× SU(Nf )N−Ns × SU(Ns)−k × JIVa ,

(IVb) : SU(N −Ns)−k+Nf
× SU(Nf )N × SU(Ns)−k+Nf

× JIVb ,

(2.31)
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where again only the first factor is dynamical and the J ’s refer to 2× 2 matrices of abelian

Chern-Simons levels. Before computing them, observe that the non-abelian Chern-Simons

levels in the phases of the SU(N) theories exactly match the non-abelian levels in the

phases of the U(k) theories (2.23), upon identifying the non-abelian flavor background of

the SU theory with that of the U theory,

Aµ = A′µ , Bµ = B′µ . (2.32)

We have to work a bit harder to compute the abelian levels. We find it useful to

realize the SU(N) theories as U(N)×U(1) theories.4 First, begin with U(N)
−k+

Nf
2

Chern-

Simons theory coupled to Nf fermions and Ns scalars. This theory has a manifest SU(Nf )×
SU(Ns) × U(1)m × U(1)F global symmetry, where the U(1)m is a monopole number. Its

Lagrangian is

LU = −i
[
−k +Nf

4π
tr

(
ada− 2i

3
a3

)
+

1

2π
tr(a)dAm +

N

4π
tr

(
AdA− 2i

3
A3

)]
+ ψ̄i /Dψ + |Dφ|2 + Lint ,

(2.33)

along with

Dµψ =
(
∂µ − i(aµ1f +Aµ1c − Ã2µ1)

)
ψ ,

Dµφ = (∂µ − i(aµ1f +Bµ1c))φ .
(2.34)

Here aµ is a U(N) gauge field, the other background fields are as before, and Am is a

background field which couples to monopole number. We have also neglected a matrix

of abelian background Chern-Simons terms. Now we gauge the monopole number by

promoting Am to a dynamical field,

Am → ã , (2.35)

and integrating over it in the functional integral. Now there is a new U(1) global sym-

metry, the monopole number associated with ã, and we couple said monopole number to

a background U(1) field which we take to be −(Ã1 + NÃ2). The end result is that, with

some foresight for the abelian Chern-Simons terms, we redefine the Lagrangian as

LU→−i
[
−k+Nf

4π
tr

(
ada− 2i

3
a3

)
+

1

2π
ãd
(

tr(a)−(Ã1 +NÃ2)
)]

+ ψ̄i /Dψ+ |Dφ|2 +Lint

− i
[
N

4π
tr

(
AdA− 2i

3
A3

)
+(k−Nf )

(
1

2π
Ã1dÃ2 +

N

4π
Ã2dÃ2

)]
. (2.36)

Now ã only appears in the Lagrangian through a BF couplings to tr(a) and so we may

integrate it out. This sets the constraint

tr(a) = Ã1 +NÃ2 , (2.37)

4Relatedly, it seems that the simplest way to derive the level/rank duality SU(N)−k ↔ U(k)N is to

realize the SU(N)−k theory as a suitable U(N)×U(1) Chern-Simons theory [8].
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which, when inserted back into the Lagrangian, leads to the original SU(N) theory (2.29).

In particular, the covariant derivatives of the matter fields now read

Dµψ =

(
∂µ − i

(
aµ1f +Aµ1c +

1

N
Ã1µ1

))
ψ ,

Dµφ =

(
∂µ − i

(
aµ1f +Bµ1c +

(
1

N
Ã1µ + Ã2µ

)
1

))
φ ,

(2.38)

with aµ a SU(N) gauge field.

Now let us compute the abelian levels. We illustrate the idea in Phase I. In this phase

there is no one-loop shift to the levels from integrating out the fermions, and so plugging

the constraint (2.37) into the U(1) ⊂ U(N) Chern-Simons term in (2.36) leads to the

combined abelian Chern-Simons terms

− i
[
−k +Nf

4πN
(Ã1 +NÃ2)d(Ã1 +NÃ2)

+
k −Nf

2π
Ã1dÃ2 +

N(k −Nf )

4π
Ã2dÃ2

]
= −i

−k +Nf

4πN
Ã1dÃ1 ,

(2.39)

i.e. to a matrix of abelian levels

JabI =

(−k+Nf

N 0

0 0

)
, (2.40a)

which happily matches the matrix we obtained in Phase I’ of the U(k) theory (2.28a). As

for the other phases, a straightforward computation yields

JabII =

(
− k
N 0

0 0

)
,

JabIII = − k

N −Ns

(
1 Ns

Ns NNs

)
,

JabIVa = −
k −Nf

N −Ns

(
1 Ns

Ns NNs

)
−NfNs

(
0 0

0 1

)
,

JabIVb = −
k −Nf

N −Ns

(
1 Ns

Ns NNs

)
.

(2.40b)

These matrices precisely match those computed in the corresponding Phases (2.28b) of the

U(k) theory, provided that we identify the external U(1) fields as

Ã1 = Ã′1 , Ã2 = Ã′2 . (2.41)

Observe that the baryonic symmetry of the SU(N) theory, which coupled to Ã1, is mapped

to the monopole symmetry of the U(k) theory, which coupled to Ã′1. Taken together, we

see that all flavor Chern-Simons terms can be matched across the duality.
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3 Global symmetries

The point of this section is two-fold. We have already seen that the SU/U duality exchanges

the baryon number of the SU theory with the monopole number of the U theory. In the next

subsection we see how this works in more detail, matching the quantum numbers of baryons

with those of the monopoles. In subsection 3.2 we deduce the faithful subgroup of the man-

ifest SU(Nf )×U(Ns)×U(1) global symmetry that acts on both sides of the duality, finding

that this faithful global symmetry matches. Our discussion closely imitates that of [7, 32].

3.1 Baryons and monopoles

In the last section we parameterized the U(1)f × U(1)s global symmetry of the SU(N)

theories with some foresight. We rewrote it in terms of a U(1)b ×U(1)F global symmetry,

where the first factor is “baryonic” and the second is an ordinary global symmetry. Under

them the fundamental fermions ψ and scalars φ have charges

U(1)b U(1)F

ψ 1
N 0

φ 1
N 1

(3.1)

For simplicity, we take the large N and large k limit with N/k fixed. We further take

Nf = Ns = 1, although it is straightforward to allow for a more flavors.

The various gauge-invariant operators of the SU(N) theory fall into two types. The

first are the mesons

ψ̄Dnψ , Dmψ̄ ·Dnφ , φ†Dnφ . (3.2)

These operators remain “light” at large N with a dimension that scales as O(N0). They all

have zero baryon charge and only the second type is charged under U(1)F . There are also

“multi-trace” operators built out of products of the mesons and derivatives. The second

class of operators are baryons. The simplest baryons are a product of N fundamental

fermions and bosons with the color indices antisymmetrized. Our convention is that they

carry charge +1 under U(1)b. There must be derivatives acting on the scalars in order to

antisymmetrize them, so, schematically the baryons are

εψ . . . ψ︸ ︷︷ ︸
N−M

φDφ . . .Dnφ︸ ︷︷ ︸
M

, (3.3)

Besides carrying charge +1 under baryon number, they also carry charge +M under U(1)F .

There are many such baryons, depending on how we take derivatives. A simple counting

exercise at large M with M/N fixed [38] reveals that the dimension of the lowest-dimension

baryons at large N is approximately given by N −M + 2
3M

3
2 . Observe that this is the

dimension of a baryon in SU(M) theory with a fermion plus that of a baryon in SU(N−M)

theory with a scalar. There are also multi-trace operators built out of products of the

simplest baryons, mesons, and derivatives.
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Now for the U(k) theories. In these theories there is a U(1) × U(1) global symmetry

under which the various fields are charged as

U(1)m U(1)F

Φ 0 0

Ψ 0 -1

(3.4)

All fundamental fields are neutral under the monopole number U(1)m, and instead the

monopole current is given by the U(1) ⊂ U(k) gauge field, jµm = 1
2πε

µνρ∂νtr(a′ρ). As in the

SU(N) theories there are mesons

Φ†DnΦ , DmΦ ·DnΨ̄ , Ψ̄DnΨ , (3.5)

which remain light at large N with a dimension that scales as O(N0). All of these operators

carry zero monopole number and only the second is charged under U(1)F . The second set

of operators are monopoles. For a U(k) gauge theory these are characterized by a set of

k integers qi (up to permutations by the Weyl group) which give the U(1)k ⊂ U(k) fluxes.

These integers are called GNO charges, and by our convention the total monopole charge is∑
i qi. Monopole operators are not gauge-invariant in U(k)N Chern-Simons theories: in the

presence of a monopole with n GNO charges the gauge symmetry is effectively broken to

U(1)n×U(k−n), and due to the Chern-Simons term the monopole carries charge Nqi under

the ith U(1). These must be canceled by inserting additional fields in the (anti-)fundamental

representation of U(k) so as to obtain a gauge-invariant operator. For example, the simplest

monopoles carry GNO charges {qi} = {1, 0, . . . , 0}, and these are expected to have the low-

est dimension of any monopoles. To make the monopole gauge-invariant we must multiply

it by N anti-fundamental fields with the same gauge index. We can make up such an oper-

ator out of M scalars and N −M fermions, but to do so we must symmetrize the fermions

by including appropriate derivatives. So, schematically, these monopoles take the form

(GNO flux)× Φ† . . .Φ†︸ ︷︷ ︸
N−M

Ψ̄DΨ̄ . . . DnΨ̄︸ ︷︷ ︸
M

. (3.6)

Clearly these operators carry monopole number +1 as well as charge +M under U(1)F ,

which coincides with the U(1)b × U(1)F charges of the baryons in (3.3). At large M with

M/N fixed, the dimension of the lowest-dimension monopoles are given by the same count-

ing argument as for the baryons of the SU(N) theory, with ∆ = N −M + 2
3M

3
2 . There

are many such operators with various spins. In the monopole background the scalars carry

spin−1/2 [39] while the fermions are spin-0, so that the possible spin quantum numbers of

the monopoles precisely equals the set of possible spin quantum numbers for the baryons of

the SU(N) theory. In sum, at large N , the quantum numbers of the simplest baryons (3.3)

in the SU theory match those of the simplest monopoles (3.6) in the U(k) theory.

3.2 Exact flavor symmetries

Let us work out the faithfully acting global symmetries that act on the local operators on

both sides of our proposed duality (1.4) for generic values of the parameters.
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The SU(N) theories have a naive U(Nf )× U(Ns) global symmetry, where the U(Nf )

acts on the Nf fundamental fermions and the U(Ns) on the fundamental scalars. However

only a (U(Nf )×U(Ns)) /ZN subgroup of this symmetry acts faithfully on the operator

spectrum, where the generator of ZN acts as multiplication by e2πi/N . In physical terms,

the gauge-invariant operators charged under the diagonal U(1) symmetry are baryons built

from N fundamental fermions and bosons. There is also a charge conjugation symmetry ZC2
which exchanges the fundamental representation with the anti-fundamental representation,

so that the total global symmetry is(
U(Nf )×U(Ns)

)
�ZN o Z

C
2 . (3.7)

What is the faithful global symmetry that acts on the U(k) theories? Here there is a

manifest SU(Nf )×U(Ns)×U(1)m global symmetry where U(1)m is monopole number. As

we discussed above, monopoles are characterized by a set of GNO fluxes {qi} and the total

monopole charge is their sum qm =
∑

i qi. Monopoles carry electric charge by virtue of the

bare U(k)N Chern-Simons term, so to render a monopole gauge-invariant it must be dressed

with a number of fundamental and anti-fundamental fields. The total number of anti-

fundamental fields minus the number of fundamentals must equal Nqm. Given monopoles

with U(1)F charge M , the monopoles fill out representations of SU(Nf ) × SU(Ns) with

Nf -ality (Nqm −M) mod Nf and Ns-ality M mod Ns. We may then understand U(1)m
to act as a diagonal U(1), reducing SU(Nf )×U(Ns)×U(1)m to U(Nf )×U(Ns), subject to

an additional ZN quotient. As in the SU(N) theories there is also a ZC2 charge conjugation

symmetry, so that the total faithfully acting global symmetry is(
U(Nf )×U(Ns)

)
�ZN o Z

C
2 , (3.8)

which precisely matches (3.7).

In this work we do not undertake an analysis of the quantization conditions for flavor

Chern-Simons terms consistent with the faithfully acting global symmetry (3.7). For typical

values of the parameters it will be the case that those flavor Chern-Simons terms will

necessarily have levels with a fractional part. When it exists this fractional part is an ’t

Hooft anomaly, and it implies that these theories do not have an intrinsically 3d definition

in a general flavor background, and must instead be defined as living on the boundary of

a 4d SPT phase. While we do not deduce the anomalies of the theories in our proposed

duality (1.4), we do observe that since the global symmetries match, as do the flavor Chern-

Simons terms in the various phases, then whatever the ’t Hooft anomalies are in the SU/U

theories, they should match.

4 SU/U duality implies a U/U duality

The basic sequences of 3d bosonization dualities equate

SU(N)
−k+

Nf
2

with Nf fermions ↔ U(k)N with Nf scalars ,

U(N)
−k+

Nf
2

with Nf fermions ↔ SU(k)N with Nf scalars ,
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for Nf ≤ k. There are also time-reversed versions of these conjectures. These dualities are

in fact equivalent to each other and yet another duality,

U(N)
−k+

Nf
2
,−k+

Nf
2
±N

with Nf fermions ↔ U(k)N,N∓k with Nf scalars . (4.1)

The two subscripts denote independent levels for the non-abelian and Abelian parts of

U(N),

U(N)k,k+mN = (SU(N)k ×U(1)kN+mN2)/ZN . (4.2)

To see that these dualities are equivalent to each other, start with the first duality, defining

both sides with a suitable and matched choice of background Chern-Simons term for the

U(1) global symmetry. Then gauge the U(1) global symmetry on both sides. The same

procedure with a slightly different choice of background U(1) Chern-Simons level on both

sides gives the U/U duality. A completely general choice of U(1) Chern-Simons level leads

to yet more dualities between U(N) theories and U(k) × U(1) theories where the U(1)

factor is topological [40].

As a side comment, the massive phases of the U/U duality (4.1) match by virtue of a

level/rank duality for U gauge groups (see [8]),

U(N)−k,−k±N ↔ U(k)N,N∓k , (4.3)

which also follows from simply setting Nf = 0 in (4.1).

Using the same sort of logic, our proposed duality (1.4) implies a U/U duality between

U(N)
−k+

Nf
2
,−k+

Nf
2
±N

with Nf ψ , Ns φ ↔ U(k)N−Ns
2
,N−Ns

2
∓k with Ns Ψ , Nf Φ .

(4.4)

Both sides have a phase diagram that looks identical to those of the SU(N) and U(k)

theories discussed in section 2, and it is easy to see that the massive phases and critical lines

all match on account of the level/rank duality (4.3) and U/U bosonization duality (4.1).

We also require that the quartic operator (ψ̄ · φ)(φ† · ψ) be present on both sides of the

duality with the same sign as the non-abelian Chern-Simons level.

We start with the Lagrangians for both sides of our proposed SU(N)/U(k) duality,

matched so that all flavor Chern-Simons levels agree in massive phases. For simplicity, we

only turn on a background Ã1 for the baryon/monopole U(1) global symmetry. With a

useful convention for the bare U(1) Chern-Simons level, we have

LSU(N) = −i
[
−k +Nf

4π
tr

(
ada− 2i

3
a3

)
+
−k +Nf

4πN
Ã1dÃ1

]
+ ψ̄i /Dψ + |Dφ|2 + Lint ,

LU(k) = −i
[
N

4π
tr

(
a′da′ − 2i

3
a′3
)

+
1

2π
tr(a′)dÃ1

]
+ |DΦ|2 + Ψ̄i /DΨ + L′int . (4.5)
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Here

Dµψ =

(
∂µ − i

(
aµ1f +

1

N
Ã1µ1

))
ψ ,

Dµφ =

(
∂µ − i

(
aµ1f +

1

N
Ã1µ

))
φ ,

DµΦ =
(
∂µ − ia′µ1f

)
Φ ,

DµΨ =
(
∂µ − ia′µ1f

)
Ψ .

Before going on, observe that if we promote Ã1 to be a dynamical gauge field,

Ã1 → ã , (4.6)

then in the SU(N) theory it combines with a into a U(N) gauge field ā = a+ ã
N 1 so that

the SU(N) theory becomes U(N)
−k+

Nf
2

Chern-Simons theory coupled to Nf scalars and

Ns scalars,

LSU(N) → LU(N) = −i
−k +Nf

4π
tr

(
ādā− 2i

3
ā3

)
+ ψ̄i /Dψ + |Dφ|2 + Lint . (4.7)

Meanwhile in the U(k) theory, integrating over ã enforces tr(a′) = 0 turning it into

SU(k)N−Ns
2

Chern-Simons theory coupled to Nf scalars and Ns fermions,

LU(k) → LSU(k) = −i N
4π

tr

(
ā′dā′ − 2i

3
ā′3
)

+ |DΦ|2 + Ψ̄i /DΨ + L′int . (4.8)

So we see that the original SU(N)/U(k) duality implies a U(N)/SU(k) duality

U(N)
−k+

Nf
2

with Nf ψ , Ns φ ↔ SU(k)N−Ns
2

with Ns Ψ , Nf Φ . (4.9)

This is merely the time-reversed version of the original SU(N)/U(k) duality combined with

exchanging N ↔ k, Nf ↔ Ns. This is yet another consistency check on our proposal (1.4).

We can now obtain the U/U dualities (4.4). To the SU(N) and U(k) Lagrangians

in (4.5) we now add a background Chern-Simons term with level ±1 for the U(1)

baryon/monopole global symmetry,

LSU(N) → LSU(N) ±−i
1

4π
Ã1dÃ1 ,

LU(k) → LU(k) ±−i
1

4π
Ã1dÃ1 .

(4.10)

Now, we promote Ã1 to a dynamical gauge field Ã1 → ã. On the SU(N) side it combines

with a into a U(N) gauge field ā = a + ã
N 1 and the extra U(1) Chern-Simons term shifts

the U(1) level by ±N , giving

SU(N)
−k+

Nf
2

with Nf ψ , Ns φ → U(N)
−k+

Nf
2
,−k+

Nf
2
±N

with Nf ψ , Ns φ , (4.11)
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which is the left side of the U/U duality (4.4). In the U(k) theory, the new field ã appears

in two terms:

Lã = −i
[

1

2π
tr(a)dã± 1

4π
ãdã

]
. (4.12)

It can be integrated out, giving

ã = ∓tr(a) , (4.13)

so that

Lã → −i
∓1

4π
tr(a)dtr(a) , (4.14)

which effectively shifts the U(1) level of the U(k) Chern-Simons term by ∓k. In this way

the U(k)N−Ns
2

theory becomes

U(k)N−Ns
2

with Ns Ψ , Nf Φ → U(k)N−Ns
2
,N−Ns

2
∓k with Ns Ψ , Nf Φ , (4.15)

which is the right side of the U/U duality (4.4). So the SU/U duality (1.4) implies the

U/U duality (4.4) as promised.

5 SO and USp dualities

Another infinite sequence of level/rank dualities equates [26]

SO(N)−k ↔ SO(k)N ,

USp(2N)−k ↔ USp(2k)N .
(5.1)

One might expect that there are “flavored” versions of these dualities, and indeed there is

a natural conjecture for them [26, 27]:

SO(N)
−k+

Nf
2

with Nf real fermions ↔ SO(k)N with Nf real scalars ,

USp(2N)
−k+

Nf
2

with Nf fermions ↔ USp(2k)N with Nf scalars .
(5.2)

As before, on the scalar side there is a non-trivial scalar potential tuned to criticality so that

the scalars are (real) WF scalars, while the fermions are Majorana. There are also flavor

bounds Nf ≤ k USp for the dualities, while for the SO dualities one requires Nf ≤ k − 2

for N = 1, Nf ≤ k − 1 for N = 2, and Nf ≤ k for N > 2. Equivalently, the SO dualities

simultaneously require Nf ≤ k and 3 +Nf ≤ k +N .

The evidence for these dualities is at the same level as for the basic sequence of SU/U

bosonization dualities (1.2). To leading order in large N the orthogonal and symplectic

theories are just orbifolds of the SU/U theories [26]. The massive phases of both sides of

the dualities match, as do the exact global symmetries and ’t Hooft anomalies [32].

It is then natural to conjecture a sequence of SO/SO and USp/USp bosonization

dualities with both fundamental fermions and bosons. We propose

SO(N)
−k+

Nf
2

with Nf ψ , Ns φ ↔ SO(k)N−Ns
2

with Ns Ψ , Nf Φ , (5.3)

USp(2N)
−k+

Nf
2

with Nf ψ , Ns φ ↔ USp(2k)N−Ns
2

with Ns Ψ , Nf Φ . (5.4)
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For the USp dualities we require Nf ≤ k and Ns ≤ N , and for the SO dualities we further

require 3 + Ns + Nf ≤ k + N . At large N these dualities follow from our original SU/U

conjecture (1.4) by suitable orbifold projections.

Under the assumption that the only relevant operators in these theories are scalar and

fermion mass operators, we may proceed just as in section 2 and map out the phase dia-

grams of the dual pairs. For general parameters, the phase diagrams look identical to those

of the SU/U theories in figure 1, the massive phases match on account of the level/rank du-

alities (5.1), and the critical lines match on account of (5.2). For the orthogonal sequence,

the matching of the critical lines requires the flavor bound 3 + Ns +Nf ≤ k +N .

Let us obtain this last flavor bound, starting with the SO(N) theories. As in our

discussion of the SU/U dualities, we require the operator (ψ̄i · φm)(φmψi) to be present

with a coefficient with the same sign as the Chern-Simons level. For general parameters,

there are then five distinct phases and four different TFTs, given by

(I) mψ > 0 , m2
φ > 0 : SO(N)−k+Nf

,

(II) mψ < 0 , m2
φ > 0 : SO(N)−k ,

(III) mψ < 0 , m2
φ < 0 : SO(N −Ns)−k ,

(IV) mψ > 0 , m2
φ < 0 : SO(N −Ns)−k+Nf

.

(5.5)

Phase IV splits into two,

(IVa) mψ > 0 , ms < 0 , m2
φ < 0 : SO(N −Ns)−k+Nf

,

(IVb) mψ > 0 , ms > 0 , m2
φ < 0 : SO(N −Ns)−k+Nf

.
(5.6)

The critical lines are described by

(I-II) SO(N)
−k+

Nf
2

with Nf ψ ,

(II-III) SO(N)−k with Ns φ ,

(III-IVa) SO(N −Ns)−k+
Nf
2

with Nf ψ ,

(IVa-IVb) NsNf singlet ψ’s + SO(N −Ns)−k+Nf
TFT ,

(IVb-I) SO(N)−k+Nf
with Ns φ .

(5.7)

The corresponding phase diagram is identical to that on the left side of figure 1.

Meanwhile, there are generally five phases of the SO(k) theories described by four

different TFTs,

(I’) mΨ > 0 , m2
Φ < 0 : SO(k −Ns)N ,

(II’) mΨ > 0 , m2
Φ > 0 : SO(k)N ,

(III’) mΨ < 0 , m2
Φ > 0 : SO(k)N−Ns ,

(IV’) mΨ < 0 , m2
Φ < 0 : SO(k −Nf )N−Ns .

(5.8)

We require the coefficient of the (Ψ̄m · Φi)(Φ
i · Ψm) operator to be nonzero and positive,

so that Phase IV’ splits into two,

(IVa’) mΨ < 0 , ms < 0 , m2
φ < 0 : SO(k −Nf )N−Ns ,

(IVb’) mψ < 0 , ms > 0 , m2
φ < 0 : SO(k −Nf )N−Ns .

(5.9)
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The critical lines are

(I’-II’) SO(k)N with Nf Φ ,

(II’-III’) SO(k)N−Ns
2

with Ns Ψ ,

(III’-IVa’) SO(k)N−Ns with Nf Φ ,

(IVa’-IVb’) NsNf singlet Ψ’s + SO(k −Nf )N−Ns TFT ,

(IVb’-I’) SO(k −Nf )N−Ns
2

with Ns Ψ ,

(5.10)

and the phase diagram coincides with the right side of figure 1.

The massive phases of the SO(N) theory (5.5) clearly match those of the SO(k) the-

ory (5.8) upon using the SO level/rank duality (5.1). Similarly the theories arising on the

critical lines match by virtue of the SO bosonization duality (5.2), and for the case of the

IVa-IVb and IVa’-IVb’ lines one must also use the SO level/rank duality. However, the

flavor bounds on the SO dualities (5.2) Nf ≤ k and 3 + Nf ≤ k + N only hold for lines

III-IVa and III’-IVa’ if

3 +Ns +Nf ≤ k +N , (5.11)

is satisfied, which originates that bound.

We leave a careful computation of the exact global symmetries and their ’t Hooft

anomalies for future work.

6 Conclusion

In this work we have conjectured new infinite sequences of dualities between non-

supersymmetric Chern-Simons-matter theories with fundamental bosons and fermions.

The three inequivalent dualities are the “basic” SU/U sequence (1.4), a real SO/SO se-

quence (5.3), and a USp/USp sequence (5.4). We performed some basic consistency checks

on our proposal, including the matching of phase diagrams and, for the SU/U dualities,

the matching of global symmetries.

We conclude with a short list of open questions.

1. Komargodski and Seiberg have recently suggested [9] that the basic bosonization

duality (1.2) and its cousins may be extended beyond the flavor bound Nf ≤ k. Their

proposal is that new “quantum” phases open up in the range k < Nf < N∗(N, k)

where N∗(N, k) is some presently unknown function of N and k. Their logic has also

been useful in a proposal to map out the phase diagram of Chern-Simons theory with

a single adjoint fermion [29]. It would be interesting to understand to what extent our

conjecture (1.4) can also be extended beyond the flavor bounds Nf ≤ k and Ns ≤ N .

2. There are a host of supersymmetric dualities between 3d field theories with at

least N = 2 supersymmetry (SUSY), including Seiberg duality (sometimes called

Giveon/Kutasov duality [41] in three dimensions) and mirror symmetry [42]. At

large N there is significant evidence that the basic 3d bosonization dualities are in-

herited from a Seiberg duality between certain N = 2 supersymmetric Chern-Simons
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theories with unitary gauge group coupled to chiral multiplets [33, 34] (although

it seems [43] that the particular flow studied in [33] does not work as advertised).

After turning on a deformation which completely breaks SUSY, the low-energy

theory on both sides of the duality flows to a product of bosonic and fermionic

Chern-Simons-matter theories. The underlying Seiberg duality then exchanges the

bosonic half of the electric theory with the fermionic part of the magnetic one, and

the fermionic half of the electric theory with the bosonic part of the magnetic one.

However there are more general Giveon/Kutasov dualities with a single gauge group

as studied in [44]. These equate a N = 2 SUSY-Chern-Simons theory with Nf chiral

and N ′f anti-chiral multiplets (meaning matter in both the fundamental and anti-

fundamental representations) and a SU(Nf )×SU(N ′f ) global symmetry with another

N = 2 theory with chiral and anti-chiral multiplets and, reminiscent of 4d Seiberg

duality, gauge-neutral mesons which are bifundamental under the flavor symmetry. It

would be nice to understand if our proposed duality (1.4) is inherited from these more

general dualities along the lines of [33, 34], and, if so, to understand what happens to

the mesons. (Indeed one of the original motivations behind the present work was to

identify a non-SUSY bosonization duality with mesons, although, as we found, a dual-

ity with fermions and bosons does not seem to be allow for such gauge-neutral fields.)

3. Chern-Simons theory with fundamental matter is analytically tractable in the large N

and k limit with N/k fixed, and indeed, the best evidence for the non-supersymmetric

bosonization dualities comes from explicit computations of correlation functions, the

thermal partition function, and scattering amplitudes in that limit. It would be nice

to extend those computations to allow for multiple bosons and fermions. In particular,

one ought to be able to address the perplexing questions related to the to the quartic

operator (ψ̄ ·φ)(φ† ·ψ) which played an important role in our proposed duality. In sec-

tion 2 we saw that if this operator was tuned away, or if its coefficient had the wrong

sign, then the duality (1.4) was inconsistent. But this sign (or vanishing) is likely de-

termined by the underlying dynamics, which are yet unsolved. Relatedly, it is not yet

known if this operator is irrelevant (in which case it is in fact dangerously irrelevant)

or relevant at large but finite N . We intend to return to these questions soon.

4. Finally, recall the conjectured duality between the Chern-Simons theories with one

boson or one fermion at large N, k with N/k finite. A natural question is then if

there is a Vasiliev-like theory dual to Chern-Simons theory with both Nf fermions

and Ns scalars, and if so, if our proposed duality is consistent with it.

Acknowledgments

We are especially grateful to A. Karch for many enlightening conversations as well as for ini-

tial collaboration on this project. We would also like to thank O. Aharony, K. Aitken, Z. Ko-

margodski, and R. Yacoby for useful comments, as well as the Simons Center for Geometry

and Physics for hospitality while a portion of this project was completed. This work was

supported in part by the US Department of Energy under grant number DE-SC0013682.

– 24 –



J
H
E
P
0
1
(
2
0
1
8
)
0
3
1

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] S.G. Naculich, H.A. Riggs and H.J. Schnitzer, Group level duality in WZW models and

Chern-Simons theory, Phys. Lett. B 246 (1990) 417 [INSPIRE].

[2] E.J. Mlawer, S.G. Naculich, H.A. Riggs and H.J. Schnitzer, Group level duality of WZW

fusion coefficients and Chern-Simons link observables, Nucl. Phys. B 352 (1991) 863

[INSPIRE].

[3] T. Nakanishi and A. Tsuchiya, Level rank duality of WZW models in conformal field theory,

Commun. Math. Phys. 144 (1992) 351 [INSPIRE].

[4] O. Aharony, G. Gur-Ari and R. Yacoby, D = 3 bosonic vector models coupled to

Chern-Simons gauge theories, JHEP 03 (2012) 037 [arXiv:1110.4382] [INSPIRE].

[5] S. Giombi, S. Minwalla, S. Prakash, S.P. Trivedi, S.R. Wadia and X. Yin, Chern-Simons

theory with vector fermion matter, Eur. Phys. J. C 72 (2012) 2112 [arXiv:1110.4386]

[INSPIRE].

[6] O. Aharony, G. Gur-Ari and R. Yacoby, Correlation functions of large-N

Chern-Simons-matter theories and bosonization in three dimensions, JHEP 12 (2012) 028

[arXiv:1207.4593] [INSPIRE].

[7] O. Aharony, Baryons, monopoles and dualities in Chern-Simons-matter theories, JHEP 02

(2016) 093 [arXiv:1512.00161] [INSPIRE].

[8] P.-S. Hsin and N. Seiberg, Level/rank duality and Chern-Simons-matter theories, JHEP 09

(2016) 095 [arXiv:1607.07457] [INSPIRE].

[9] Z. Komargodski and N. Seiberg, A symmetry breaking scenario for QCD3,

arXiv:1706.08755 [INSPIRE].

[10] D.T. Son, Is the composite fermion a Dirac particle?, Phys. Rev. X 5 (2015) 031027

[arXiv:1502.03446] [INSPIRE].

[11] C. Wang and T. Senthil, Dual Dirac liquid on the surface of the electron topological insulator,

Phys. Rev. X 5 (2015) 041031 [arXiv:1505.05141] [INSPIRE].

[12] M.A. Metlitski and A. Vishwanath, Particle-vortex duality of two-dimensional Dirac fermion

from electric-magnetic duality of three-dimensional topological insulators, Phys. Rev. B 93

(2016) 245151 [arXiv:1505.05142] [INSPIRE].

[13] D.F. Mross, J. Alicea and O.I. Motrunich, Explicit derivation of duality between a free Dirac

cone and quantum electrodynamics in (2 + 1) dimensions, Phys. Rev. Lett. 117 (2016)

016802 [arXiv:1510.08455] [INSPIRE].

[14] A. Karch and D. Tong, Particle-vortex duality from 3d bosonization, Phys. Rev. X 6 (2016)

031043 [arXiv:1606.01893] [INSPIRE].

[15] N. Seiberg, T. Senthil, C. Wang and E. Witten, A duality web in 2 + 1 dimensions and

condensed matter physics, Annals Phys. 374 (2016) 395 [arXiv:1606.01989] [INSPIRE].

[16] J. Murugan and H. Nastase, Particle-vortex duality in topological insulators and

superconductors, JHEP 05 (2017) 159 [arXiv:1606.01912] [INSPIRE].

– 25 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0370-2693(90)90623-E
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B246,417%22
https://doi.org/10.1016/0550-3213(91)90110-J
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B352,863%22
https://doi.org/10.1007/BF02101097
https://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,144,351%22
https://doi.org/10.1007/JHEP03(2012)037
https://arxiv.org/abs/1110.4382
https://inspirehep.net/search?p=find+EPRINT+arXiv:1110.4382
https://doi.org/10.1140/epjc/s10052-012-2112-0
https://arxiv.org/abs/1110.4386
https://inspirehep.net/search?p=find+EPRINT+arXiv:1110.4386
https://doi.org/10.1007/JHEP12(2012)028
https://arxiv.org/abs/1207.4593
https://inspirehep.net/search?p=find+EPRINT+arXiv:1207.4593
https://doi.org/10.1007/JHEP02(2016)093
https://doi.org/10.1007/JHEP02(2016)093
https://arxiv.org/abs/1512.00161
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.00161
https://doi.org/10.1007/JHEP09(2016)095
https://doi.org/10.1007/JHEP09(2016)095
https://arxiv.org/abs/1607.07457
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.07457
https://arxiv.org/abs/1706.08755
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.08755
https://doi.org/10.1103/PhysRevX.5.031027
https://arxiv.org/abs/1502.03446
https://inspirehep.net/search?p=find+EPRINT+arXiv:1502.03446
https://doi.org/10.1103/PhysRevX.5.041031
https://arxiv.org/abs/1505.05141
https://inspirehep.net/search?p=find+EPRINT+arXiv:1505.05141
https://doi.org/10.1103/PhysRevB.93.245151
https://doi.org/10.1103/PhysRevB.93.245151
https://arxiv.org/abs/1505.05142
https://inspirehep.net/search?p=find+EPRINT+arXiv:1505.05142
https://doi.org/10.1103/PhysRevLett.117.016802
https://doi.org/10.1103/PhysRevLett.117.016802
https://arxiv.org/abs/1510.08455
https://inspirehep.net/search?p=find+EPRINT+arXiv:1510.08455
https://doi.org/10.1103/PhysRevX.6.031043
https://doi.org/10.1103/PhysRevX.6.031043
https://arxiv.org/abs/1606.01893
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.01893
https://doi.org/10.1016/j.aop.2016.08.007
https://arxiv.org/abs/1606.01989
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.01989
https://doi.org/10.1007/JHEP05(2017)159
https://arxiv.org/abs/1606.01912
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.01912


J
H
E
P
0
1
(
2
0
1
8
)
0
3
1

[17] A. Karch, B. Robinson and D. Tong, More Abelian dualities in 2 + 1 dimensions, JHEP 01

(2017) 017 [arXiv:1609.04012] [INSPIRE].

[18] J.-Y. Chen, J.H. Son, C. Wang and S. Raghu, Exact boson-fermion duality on a 3D

Euclidean lattice, Phys. Rev. Lett. 120 (2018) 016602 [arXiv:1705.05841] [INSPIRE].

[19] O. Aharony, S. Giombi, G. Gur-Ari, J. Maldacena and R. Yacoby, The thermal free energy in

large-N Chern-Simons-matter theories, JHEP 03 (2013) 121 [arXiv:1211.4843] [INSPIRE].

[20] S. Jain, M. Mandlik, S. Minwalla, T. Takimi, S.R. Wadia and S. Yokoyama, Unitarity,

crossing symmetry and duality of the S-matrix in large-N Chern-Simons theories with

fundamental matter, JHEP 04 (2015) 129 [arXiv:1404.6373] [INSPIRE].

[21] K. Inbasekar, S. Jain, P. Nayak and V. Umesh, All tree level scattering amplitudes in

Chern-Simons theories with fundamental matter, arXiv:1710.04227 [INSPIRE].

[22] K. Jensen and A. Karch, Bosonizing three-dimensional quiver gauge theories, JHEP 11

(2017) 018 [arXiv:1709.01083] [INSPIRE].

[23] K. Jensen and A. Karch, Embedding three-dimensional bosonization dualities into string

theory, JHEP 12 (2017) 031 [arXiv:1709.07872] [INSPIRE].

[24] A. Armoni and V. Niarchos, Phases of QCD3 from non-SUSY Seiberg duality and brane

dynamics, arXiv:1711.04832 [INSPIRE].
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