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1 Introduction

In the paper [1] we obtained the curvature tensor (previously discovered in [2, 3]) in a

manifestly T-dual way. In the paper [4] we extended the techniques for the case of three

dimensional N = 2 T-dual extended superspace. There we correctly obtained the pre-

potential (as a part of vielbein), structure of linearised dilaton and field equations. The aim

of this paper was to look at the full ten dimensionalN = 2 T-dually extended superspace in

the flat and also in AdS5 × S5 background, i.e. IIB string theory expanded around AdS5 ×

S5 background. The AdS was earlier analysed in superspace in papers [5–7] and [8]. In

this paper we discovered the projective (and also the chiral) pre-potential to sit in a certain

combination of H
S S̃

and H
D D̃

. This was first obtained in the flat case and later generalised

for the AdS5 × S5. We also performed the near horizon limit and derived the equation

of motion for the pre-potential in that limit. This limit also picks out the projective pre-

potential instead of the chiral pre-potential, even though both pre-potentials are valid bulk

solutions. The projective and harmonic superspaces were earlier analysed in [10] and [11].

2 Motivation

The massive development of the AdS/CFT correspondence (and its generalisations) started

with foundational papers [14] and [15]. It is considered to be one of the best achievements

in string theory. The correspondence promises the way of computing quantum effects

in strongly coupled field theory using the classical (super) gravity theory. The AdS/CFT

correspondence (and its generalisations) is currently used in many different areas, like study

of confinement, condensed matter systems or investigation of non-equilibrium phenomenas

in strongly coupled plasma.

In the AdS/CFT correspondence the strongly coupled quantum field theory (four di-

mensional N = 4 super Yang-Mills theory) is related to the supergravity theory living on

AdS5 × S5 space. The strongly coupled conformal field theory is hard to work with. The

correspondence provides feasible way to calculate effects in such theory by translating it

to weakly coupled supergravity.

It is therefore of high interest to develop suitable framework to handle supergravity

living on AdS5 × S5 background. This framework could be later used as a base for

perturbative calculations. In this paper our aim was to look at type IIB supergravity

living on AdS5 × S5 background. We are looking for solutions generated via field called

pre-potential. The pre-potential is a basic field from which all physical fields (in the

massless spectrum) arise. Thus we get the classical solution of supergravity living on the

background AdS5 × S5. This solution is interesting because of our later aim to use it in

perturbative calculations. Our novel approach unites the way how this solution is found.

The first interesting observation is universal usage of string based framework of T-dually

extended superspaces, that started with foundational paper [2, 3] and later examined in [1]

and [4]. Another interesting feature is the way how the AdS5 × S5 pre-potential solution

was obtained in this paper. The approach is actually an analogy of how we derived the flat

ten dimensional pre-potential in this paper. We started with flat supergravity where it was
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much easier to identify the pre-potential. Inspired by this solution we turned on the AdS5 ×

S5 background, modified the equations and looked for the AdS5 × S5 deformed solution.

This gave us both technical and also geometrical advantages to look at the pre-potential as

coming from the same field solution. The sanity checked worked here, if we flatten back the

AdS5 × S5 (i.e. the R → ∞ limit) we would get back the flat space pre-potential solution.

Moreover by looking at the near horizon limit (R → 0) it was easy to naturally identify

the equations of motion and find the correspondence between gravity fields and CFT fields.

We believe that the use of the string based T-dually extended superspaces in various

contexts is fruitful and natural way to cast supergravity, as was observed in [1] and [2, 3].

In this particular work we showed how it can be effectively used to naturally find the pre-

potential solution in the fully fledged type IIB supergravity on the AdS5 × S5 background.

That is a novel result that to our best knowledge has never been derived. In the future we

would like to look how similar approach might shed some light on the supergravity solutions

on different backgrounds, relevant for generalizations of the AdS5 × S5. Moreover in this

framework the calculations beyond linearized level are also feasible and are left for future

work.

3 Type II superspace, notation and motivation

3.1 10 dimensional type II superspace

The T-duality is important duality we know to exist in (super)string theory. The low

energy limit of superstring theory is version of ten dimensional supergravity. The T-duality

then forms T-duality symmetry which is the symmetry of such low energy theory. That

symmetry can be manifestly realized by doubled spacetime coordinates. This realization

was first made in the paper [2, 3].

In the next introduction we are closely following paper [28]. To T-dualize ordinary

space we start with space that can be built by the coset construction. In the procedure

of T-dualizing the coset construction one starts with ordinary Lie algebra generated by

GI , where by I we mean some particular set of indices. We require this Lie algebra to

have non-degenerate metric. As for the usual coset construction, one can exponentialize

the Lie algebra and get the Lie group (more precisely the vicinity of the unit element),

i.e. one constructs the Lie group element g(ZI ), where ZI are group coordinates. The

covariant derivatives and symmetry generators (Lie derivatives) on that space are obtained

by considering left and right actions of the group. Since left and right action on a group

element commute so do the covariant derivatives and symmetry generators. More explicitly

for ordinary (particle) construction we get:

Symmetry generators: ∇̃I = LI
M 1

i
∂M || Covariant derivatives:∇

◦
I = RI

M 1

i
∂M (3.1)

where LI
M and RM

I are matrices defining right and left invariant one forms: (d g ) g−1 =

i d ZM LM
I GI and g−1 (d g ) = i d ZM RM

I GI . The L matrix is used in left action genera-

tor and R matrix is used in right action generator in (3.1). It follows from construction that

– 3 –
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the covariant derivatives ∇
◦
I and symmetry generators ∇̃J satisfy the following Lie algebra:

[ ∇̃I , ∇̃J} = i fI J
K ∇̃K || [∇

◦
I , ∇

◦
J} = − i fI J

K ∇
◦
K || [∇

◦
I , ∇̃J} = 0 (3.2)

where we included graded commutators as an immediate superalgebra generalization. The

graded bracket in (3.2) is anticommuting for two fermions and commuting for others. Hav-

ing the covariant derivatives in hands we can curve given space arbitrarily via vielbeins

∇A = EA
I ∇
◦
I .

The next step is to generalize the algebra (3.2) to the (super)string case. It is obtained

by string extension of particle one parameter ZI ( τ ) to stringy ZI ( τ, σ ). By that we get

string generalization of (3.2), the string affine Lie algebra:

[ ⊲̃I , ⊲̃J} = i fI J
K
⊲̃K + i η

◦
I J ∂σ δ ( 2 − 1 ) (3.3)

[⊲
◦
I , ⊲

◦
J} = − i fI J

K
⊲
◦
K − i η

◦
I J ∂σ δ ( 2 − 1 )

[ ⊲̃I , ⊲
◦
J} = 0

where the metric η
◦
I J is the (graded), constant, non-degenerate (super) Lie group metric

and ∂σ δ ( 2 − 1 ) ≡ ∂σ2
δ ( 2 − 1 ) ≡ δ′ ( 2 − 1 ). In analogy with (3.1) the left and right

action generators could be solved explicitly in the string case:

Symmetry generators: ⊲̃I := LI
M

(
1

i
∂M + ∂σ Z

N BN M

)
− ∂σ Z

M LM
J η
◦
J I (3.4)

Covariant derivatives: ⊲
◦
I := RI

M

(
1

i
∂M + ∂σ Z

N BN M

)
+ ∂σ Z

M RM
J η
◦
J I

where BM N is the B-field. We can get the curved version of the string covariant derivatives

(in paper [28] also called curved current) via vielbeins:

⊲A := EA
I (Z ( τ, σ ) )⊲

◦
I ≡ EA

I
⊲
◦
I (3.5)

Using (3.5) we can introduce geometric objects like torsions. Looking at stringy affine

algebra in the curved background we get:

[ ⊲A, ⊲B } := −i TAB
C

⊲C δ ( 2 − 1 ) − i ηAB ∂σ δ ( 2 − 1 ) (3.6)

where TAB
C is the string generalisation of torsion and ηAB is the curved group metric. In

general are both functions of vielbeins. We will impose constraint on ηAB and require ηAB

to be a constant metric η
◦
AB. Such constraint does not impose any restrictions on physical

content and makes calculations simpler.

In the next step we will describe particular realization of above construction. For

the usual particle we can start with algebra of translations generated by pm, where m ∈

{1, . . . , dim}. Next we can include the supersymmetry generator Dµ, where µ is fermionic

index and range depends on dimensionality of space. By including Dµ we get the super-

translations. Finally we can add the Lorentz generator Smn and thus get a particle algebra

of super-Poincaré transformations. All previous can be described by nice diagram in ta-

ble 1, see also [28]. To build the T-dual analog of 1 for type II string we first need to double
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translations → supertranslations → super-Poincaré

pm Dµ, pm Smn, Dµ, pm

Table 1. Particle algebra generators.

translations → supertranslations → super-Poincaré

Pm Dµ, Pm, Ωµ Smn, Dµ, Pm, Ωµ, Σmn

Pm̃ Dµ̃, Pm̃, Ωµ̃ Sm̃n, Dµ̃, Pm̃, Ωµ̃, Σm̃n

Table 2. String affine algebra generators.

Explicit: M := (mn, µ, m, µ, mn) carried by Smn, Dµ, Pm, Ωµ, Σmn

M̃
:= (

m̃n
, µ̃, m̃

, µ̃, m̃n) carried by S
m̃n

, Dµ̃, Pm̃
, Ωµ̃, Σm̃n

Symbolic: M := (S, D, P, Ω, Σ )

M̃
:= ( S̃, D̃, P̃ , Ω̃, Σ̃ )

Multiindices: M := (S, S̃, D, D̃, P, P̃ , Ω, Ω̃, Σ, Σ̃ ) ≡ (M ,
M̃

)

Table 3. String affine algebra indices.

Covariant derivatives: ⊲
◦
M := (Smn, Dµ, Pm, Ωµ, Σmn )

⊲
◦
M̃

:= (Sm̃n, Dµ̃, Pm̃, Ωµ̃, Σm̃n )

Coordinates: ZM := (umn, θµ, xm, ϕµ, vmn )

ZM̃ := (um̃n, θµ̃, xm̃, ϕµ̃, vm̃n )

Table 4. String covariant derivatives and coordinates.

the translation generators and also have in mind that those generators are forming an affine

Lie algebra as seen in (3.3). We get the set of string translation generators Pm, Pm̃, they

generate left and right translations. Next we will include the supersymmetry generators

that are for obvious reasons also doubled to Dµ, Dµ̃. Including those generates a small

issue. Because we consider the non-degenerate group metric ηI J and the affine Lie algebra

of supertranslations has to satisfy super-Jacobi identities we need to include another inde-

pendent fermionic generators (dual currents) Ωµ, Ωµ̃. The necessity for the dual currents

was discussed in great detail in [9]. Finally, if we include the Lorentz generators Smn, Sm̃n

we also discover yet another set of dual currents Σmn, Σm̃n. We summarise the type II

generators in next diagram: We can see that the whole set of generators is doubled for

type II string affine algebra. That introduces space with high dimensionality. In the end

the dimensional reduction, coset constraints and section condition are imposed on fields

(living on such high dimensional space) to remove unphysical degrees of freedom.

To deal with indices and generators in table 2 we introduce notation for various forms

of graded indices, see table 3. Using definition from table 3 we can define stringy super-

Poincaré covariant derivatives (and string coordinates) in the sense of generic string affine

(super) Lie algebra from (3.3). The table 4 covariant derivatives satisfy the following ex-
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plicit string type II affine super-Poincaré algebra, for which the non-zero structure constants

and the central charges are:

[Smn (1), Skl (2) ] = −i η[m [k Sl ]n ] δ ( 2 − 1 ) (3.7)

[Smn (1), Dρ (2) ] = − i
1

2
( γmn )

σ
ρDσ δ ( 2 − 1 )

[Smn (1), Pk (2) ] = i ηk [m Pn ] δ ( 2 − 1 )

[Smn (1), Ωρ
(2) ] = i

1

2
( γmn )

ρ
σ Ω

σ δ ( 2 − 1 )

[Smn (1), Σkl
(2) ] = i δmn

kl δ′ ( 2 − 1 ) − iδ[m
[k ηn ] sΣ

l]s δ ( 2 − 1 )

{Dρ (1), Dσ(2) } = 2 ( γm )ρσ Pm δ ( 2 − 1 )

[Dρ (1), Pm (2) ] = 2 ( γm)ρσ Ω
σ δ ( 2 − 1 )

{Dρ (1), Ωσ
(2) } = i δσρ δ′ ( 2 − 1 ) − i

1

4
( γmn )σρΣ

mn δ ( 2 − 1 )

[Pm (1), Pn (2) ] = i ηmn δ
′ ( 2 − 1 ) + i ηmh ηn sΣ

hs δ ( 2 − 1 )

99 left algebra → − right algebra

[ left, right } = 0.

As indicated above, the algebra for the right generators is the same up to the overall

sign. We can assign the canonical dimensions to the generators: dim (S, D, P, Ω,Σ) =

(0, 1
2 , 1,

3
2 , 2). The S generators generate the SO( 9, 1 ) ⊗ SO( 9, 1 ) algebra, i.e. left (and

right) local Lorentz transformations. The D generate left (and right) supersymmetry trans-

formation and P left (and right) translations. The Ω and Σ are the left (and right) dual

currents (corresponding to D and S), see also [2, 3]. We can see once again that the only

non-vanishing terms (for left handed algebra, similarly for right handed algebra) in the

metric and structure constants in (3.7) are (as can be guessed by dimensional analysis):

ηPP , ηSΣ , ηDΩ; fSPP , fSSΣ , fDDP , fSDΩ (3.8)

where we have lowered the upper index on f with η to take advantage of its total (graded)

antisymmetry. In that notation we explicitly have, for the left-handed algebra:

(η)mn = ηmn , (η)mn
pq = δmn

pq , (η)σ
ρ = δρσ (3.9)

fmn
pq = − δmn

pq , fmnpq
rs = η[m[pδq]n]

rs , fσρ
m = 2 ( γm )σρ , (3.10)

fmnσ
ρ = −

1

2
( γmn )

ρ
σ

The type IIA and IIB theories are distinguished by the choice of ten dimensional

fermionic coordinates. For IIA theory we pick fermionic coordinates with both ten dimen-

sional chiralities (Zµ, Z µ̃ ) ≡ ( θµ, θµ ). Note that now the θ coordinate uses concrete ten

dimensional fermionic index (in chiral representation), in contrast with generic fermionic

index used in description of θ coordinate in table 4. Moreover those indices are ten dimen-

sional chiral indices with respect to the common (diagonal) local Lorentz group (defined

after the dimensional reduction). The IIB theory uses the indices of the same ten dimen-

sional chirality (Zµ, Z µ̃ ) ≡ ( θ1
µ, θ2

µ ), therefore we denoted them by substript 1 and 2.

– 6 –
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The above construction is very natural from the point of view of the superstring theory,

where we know the T-duality is a symmetry of low energy theory. Moreover as we have

seen in papers [1] and [4] this description has advantages to naturally introduce objects of

interest. For example in the paper [1] we derived the T-dual version of Riemann curvature

tensor using T-dually extended space (even though there without supersymmetry). That

tensor has been previously discovered in [2, 3] but by indirect methods. In paper [4] we

discovered that the pre-potential for N = 2 three dimensional supergravity is naturally

part of vielbeins living on the T-dually extended superspace (i.e. the three dimensional

version of above construction). It was known how to find the pre-potential for N = 2

three dimensional supergravity before, however some further differential constraints were

needed (like the bisection condition) see [21]. In paper [4] all constraints are coming

naturally from the torsion constraints (we will discuss them later in this paper as well).

We will see that ten dimensional generalization of [1] and [4] is a fruitful way how to treat

the pre-potential in ten dimensional flat and even AdS5 × S5 space.

In next sections we will use the Wick rotation. We feel free to Wick rotate from

Minkowski to Euclidean metric and back because in this paper we do not discuss the

reality conditions, so the rotation is the matter of convenience.

Our first and most significant use of Wick rotation is in the description of space-cone

gauge in the case of AdS5 × S5. The procedure is described more precisely in [17, 18] and so

we are giving just short overview. In order to introduce the space-cone basis in AdS5 × S5

one can first Wick rotate the sphere S5 to AdS5. This is done by extension of one S5 coor-

dinate to complex numbers and then taking it to be purely imaginary. After that we have

space AdS5 × AdS5. At two corresponding Poincaré patches (at the AdS5 × AdS5) we take

two bulk coordinates (two space-like coordinates one from the original AdS5 and another

one from the Wick rotated sphere) and introduce the space-cone coordinates x+ and x− as

their combinations. The near horizon limit is attained by x+ → 0. This limit turns the su-

perspace into the projective superspace. In the text we will use those x+ and x− coordinates

and related space-cone gauge (for vielbeins living on the extended space). The space-cone

gauge destroys the explicit local Lorentz covariance but still preserves the boundary (near

horizon limit) Lorentz covariance SO( 3, 1 ) ⊗ SO( 4 ) the symmetries of boundary CFT.

We will also use the Wick rotation whenever we find it easier to explain or define some

notion. For example, we define ten dimensional Γ matrices as matrices for SO( 10 ) Lorentz

group. To get the gamma matrices for SO( 9, 1 ) one can Wick rotate back.

3.2 Gamma matrices

The gamma matrices (γm)µ ν used in the algebra (3.7) are the 16⊗16 block gamma matrices

from 10 dimensional 32⊗ 32 chiral representation:

Γm =

(
0 (γm)µ ν

(γm)µ ν 0

)
where {Γm, Γn } = 2 ηmn δ. (3.11)

Moreover the block gamma matrices satisfy:

(γm)µ ν = (γm)ν µ || (γ(m)µ ν (γn))ν σ = 2 ηmn δ
µ
σ || (γm)(µ ν(γ

m)σ)λ = 0 (3.12)

– 7 –
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The IIB fermion generators (in algebra (3.7)) are described by 16 ⊕ 16 chiral fermion

generators (for left and right generators) with the same 10 dimensional chirality. For the fu-

ture use we need to look closer at the structure of the matrices (γm)µν from equation (3.11).

The gamma matrices from equation (3.11) could be constructed from SO( 9 ) gamma ma-

trices or equivalently from SO( 8 ) gamma matrices and the chirality matrix. We can go one

step down and construct the SO( 8 ) gamma matrices from SO( 6 ) gamma matrices. For

the SO( 6 ) gamma matrices we use the Majorana representation of those matrices (they

are purely imaginary). Thus we can get the Majorana-Weyl representation of the SO( 8 )

gamma matrices.

For the future reference we will define the following 16 ⊗ 16 matrix Γ̃5:

Γ̃5 := γ10

4∏

m=1

γm (3.13)

where γm are block gamma matrices from (3.11).

3.3 Space-cone basis and indices

In the following sections we will use the space-cone basis we introduce it for the gamma

matrices we constructed in previous subsection. We first notice that the block gamma

matrices γm in equation (3.11) could have either upper indices (γm)µ ν or lower indices

(γm)µ ν . From the construction it follows that those matrices are equal up to the sign.

In the equation (3.11) let us further divide the (either upper or lower) 16 dimensional

index µ to 8 ⊕ 8 pieces (they are the SO( 8 ) chiral indices), thus we introduce µ :=

(µ, µ′ ). In another words we want to look how the block γm matrices look in the SO( 8 )

(Majorana-Weyl) basis. Furthermore we introduce the following space-cone combinations

of the equation (3.11) block gamma matrices:

(γ+)µ ν=
1

2
( γ10+γ9 )µ ν=

(
0 0

0 δµ′ ν′

)
|| (γ−)µ ν=

1

2
( γ10−γ9 )µ ν=

(
δµ ν 0

0 0

)
(3.14)

(γ+)
µ ν=

1

2
( γ10+γ9 )

µ ν=

(
δµ ν 0

0 0

)
|| (γ−)

µ ν=
1

2
( γ10−γ9 )

µ ν=

(
0 0

0 δµ
′ ν′

)

For the convenience we also write the remaining gamma matrices using the SO( 8 ) indices:

(γ i)µ ν =

(
0 ( γ̃ i )µ ν′

( γ̃ i )µ′ ν 0

)
|| (γ i)

µ ν =

(
0 ( γ̃ i )

µ ν′

( γ̃ i )
µ′ ν 0

)
(3.15)

where the γ̃ i are the SO( 8 ) gamma matrices.

In the above introduced 8 ⊕ 8 basis the (3.13) looks like σ3 ⊗ 1 where 1 is the 8 ⊗ 8

unit matrix and σ3 is the Pauli matrix.

– 8 –
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4 The AdS background in the T-dually extended superspace

4.1 Short review of the theory in curved background

In the treatment of the theory (of T-dually extended superspaces) the curved background is

introduced via vielbeins EA
M(ZN ), see papers [1–4]. Note that the index M was introduced

in table 3:

⊲A= EA
M(ZN )⊲

◦
M (4.1)

where ⊲
◦
M are generators of the flat algebra (3.7). The affine Lie algebra for the curved

covariant derivatives ⊲A can be written as:

[ ⊲A,⊲C } ≡ −iηAC δ
′ ( 2 − 1 )− iTAC

E
⊲E δ ( 2 − 1 ) (4.2)

where TAC
E is the superstring generalisation of the torsion, see [1]:

TAC
E = E[A

M(DMEC)
N )E−1

N
E+

1

2
ηEDED

M(DME[A|
N )E−1

N
FηF|C)+EA

MEC
NE−1

P
EfMN

P

(4.3)

where [A | | C ) indicates graded anti-symmetrization in only those indices. By DM in (4.3)

and in the whole next text we mean the group covariant derivatives of the (non-affine) part

of algebra (3.7): [DM, DN } = i fMN
E DE .

Note that the super-Jacobi identities imply the total graded antisymmetry of the tor-

sion, just as for the structure constants. We can set the coefficient of the Schwinger term

(the central charge in algebra (4.2)) to be the flat metric η
◦
(now we rename it to η, to

simplify notation). After that the vielbein is forced to obey the orthogonality constraints:

EA
MηMN E C

N ≡ ηAC (4.4)

This choice does not affect the physics, and simplifies many of the expressions. For example,

it implies the total graded antisymmetry of the torsion, when the upper index is implicitly

lowered with η:

TAB C =
1

2
E[A |

M(DME| B
N )EC )N + EA

MEB
NEC

PfMN P (4.5)

where we have used E−1
M

A = ηA BηM NEB
N . Also note that in the first term the graded

anti-symmetrization can be written as a cyclic sum without the 1/2, since it is already

graded antisymmetric in the last two indices. Because of orthogonality, the vielbein is like

(the exponential of) a super 2-form, while the torsion is a super 3-form. Similarly the

Bianchi identities are a super 4-form.

To solve the theory (in terms of pre-potential, to get physical fields and equation of

motion) orthogonality condition (4.4) has to be solved explicitly (or at least at linearised

level). Moreover there is a huge gauge group invariance that should be fixed:

δΛ ⊲A= [− i Λ, ⊲A } where Λ :=

∫
d σ λM (Z )DM (4.6)

At the top of the orthogonality condition and the gauge invariance, we should include the

torsion constraints. The torsion constraints are additional constraints on vielbein. They
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are imposed by putting some of the torsions in (4.5) to zero. Of course, not all torsions

in (4.5) are zero. The relevant torsion constraints have been carefully analysed in [28].

All possible constraints on torsions are coming from curved space version of the ABCD

(first class) constraints: A Virasoro, (string world-sheet) diffeomorphism constraints, B

and C and D are the first class fermionic κ symmetry constraints, for further details

see [19, 20, 22–25] and [28]. The rule of thumb is that at least the torsions of negative (10

dimensional) engineering dimension should be zero.

We will not try to solve the full nonlinear version of the theory. We linearise the

theory around some background. In previous papers [1, 4] we linearised around the flat

background. In this paper however we linearise the theory around the AdS5 × S5 solution

of the classical supergravity (reformulated in the language of the doubled algebra).

After the linearisation we rewrite the orthogonality constraints (4.4) and torsions (4.5)

using the vielbein expansion EC
D = δC

D + E(1)
C
D + O (E(2) ). Let us for simplicity

rename the first fluctuation E(1)
C
D ≡ HC

D. Then the equation (4.4) is just statement

that: H( C
D ηD |E ] ≡ H(C E ] = 0 and the structure of linearised torsion (4.5):

TAB C = fAB C + T (1)
AB C + O (T (2) ) (4.7)

where T (1)
AB C ≡

1

2
D[AHB C ) +

1

2
H[A

M fB C )M

4.2 AdS5 × S5 background

In the expansion (4.7) we need to have the concrete structure constants fAB C (i.e. vacuum

values of torsions). We are interested in solving the theory (at least identifying the pre-

potential) around this AdS5 × S5 background. The relevant structure constants for the

T-dually extended superspace in the context of the AdS5 × S5 background were analysed

in the last section of the paper [28]. We are repeating them here for the convenience. In the

next section we will embed this AdS5 × S5 version of T-dual algebra (see [28]) to a certain

larger algebra that will be actually used in computations. The relevant non-vanishing

AdS5 × S5 torsions from [28] are:

dim 0 : TS S Σ = fS S Σ || TS DΩ = fS DΩ || TS P P = fS P P || TDDP = fDDP

dim 1 : T
D D̃Σ

= R
D D̃Σ

|| T
P D̃ Ω

= R
P D̃ Ω

dim 2 : TΩΩ P = RΩΩ P || TΩΩ P = R
ΩΩ P̃

|| T
P P̃ Σ

= R
P P̃ Σ

dim 3 : T
Ω Ω̃ Σ

= R
Ω Ω̃ Σ

(4.8)

note that the left and right index notation was introduced in table 3.

The fAB C in (4.8) are usual flat superspace structure constants for the (flat) T-dually

extended superspace with the (common) local Lorentz group SO( 4, 1 ) ⊗ SO( 5 ). The

nontrivial curvatures from table (4.8): R
D D̃Σ

,R
P D̃ Ω

. . . are defined using the dimension

1 torsion T
P D̃ Ω

. The T
P D̃ Ω

≡ Ta α̃
β = γa ασ F

β σ̃, where the R-R field strength F
Ω Ω̃

≡

Fα β̃ = 1
rAdS

(Γ̃5)
αβ . Note that the Γ̃5 was defined in (3.13) and the new parameter rAdS

is the AdS5 space radius (note, rAdS = rS , i.e. the radius of S5 is the same of AdS5, so
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that Ricci scalar R = 0). More specifically some of the table (4.8) curvatures:

dim 1 : R
D D̃Σ

≡ R
α β̃

ab = T
β̃
σ [a γb ]

ασ (4.9)

dim 1 : R
P D̃ Ω

≡ Ra α̃
β = Ta α̃

β = γa ασ F
β σ̃

dim 2 : R
P P̃ Σ

≡ R
a b̃

cd ∝ T
b̃α

β̃ R
β̃ γ

cd γa
αγ

dim 3 : R
Ω Ω̃ Σ

≡ Rα β̃ ab ∝ (T d̃ β̃
σ Rd̃ e

ab + Te
β̃ ν Rσ̃ ν

ab) γe σ α

where the dim 2 curvature is proportional with the constant 2−
D

2
+1 and the dim 3 curva-

ture is proportional with a constant D (where D is 10 in our case).

All the other curvatures in (4.9) are obtained using the appropriate Bianchi identities

(one can obtain all curvatures from T
P D̃ Ω

using Bianchi identities). We note that the tor-

sions (4.8) and curvatures (4.9) are consistent with torsions and curvatures given in the [16].

4.3 Extended AdS5 × S5 T-dual algebra

To identify the pre-potential in the generalised vielbeins, i.e. solving the spectrum of the

theory (on linearised level) we want to proceed as described in earlier papers [1, 4, 28].

There the vielbeins were introduced as in (4.1) and linearised as above the equation (4.7).

This procedure means the expansion of generally curved superspace around some (in those

papers just a flat) background. Moreover the gauge invariance was completely fixed (in

referenced papers the covariant gauge was considered) and after that the pre-potential was

identified as a part of vielbein (acting on by derivatives, the physical spectrum is produced).

Here we want to proceed in similar way. We want to introduce the vielbeins and lin-

earise the theory around the AdS5 × S5 background. We have tried to use solely the algebra

described in the previous sub-section, i.e. to take the algebra (4.8) and introduce the viel-

beins, gauge fix and linearise. Even though we still believe that the pre-potential is sitting

in that theory in some combination of vielbeins, it was not easy to identify it. The reason

was that to identify the pre-potential we need to find a scalar contraction of some linear

combination of vielbeins that is anihilated by the Dv and Dv̄ operators. The Dv and Dv̄

are certain combinations of Dα
′ and Dα̃

′ (see the index notation above the (3.14), i.e. they

are a particular chiral part of the SO( 8 ) chiral decomposition of the 16 supersymmetry

translations Dα defined at the beginning, see (3.7) and section above (3.14)).

Because the metric is in H
P P̃

vielbein, we expected the pre-potential to be (at least

a part of it) in TrH
P P̃

. The problem with TrH
P P̃

is that it already has dimension 0. To

show that it is annihilated by Dv and Dv̄ operators we would need to use torsion constraints

of dimension 1
2 . Moreover we also know that the pre-potential has to be annihilated by

the suitably defined P+ operator (P+ ∝ (P+ + P+̃ ) where P+ ≡ DP+
and P+̃ ≡

DP
+̃
), in a light cone basis introduced in (3.14) and in the near horizon limit (defined

later)). The high dimensionality of TrH
P P̃

then requires to use at least dimension 1

torsion constraints to prove that P+ vanishes (in the near horizon limit). That seemed to be

problematic to analyse in the theory based just on the algebra (4.8) and (4.9) because of the

degauging procedure. The degauging appears since the theory coming from algebras (4.8)

and (4.9) is really coming from the full SO( 10 ) ⊗ SO( 10 ) so there are some missing
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Lorentz connections. By simple dimensional analysis it is evident that the missing Lorentz

connections are first appearing at dimension 1 (for example the appearance of the full HP S

in the dim 1 torsion TP P P ∝ . . . + H[P |S fP P ]Σ + . . . ).

For that reason we extended the algebra (4.8) to include the original (Wick rotated)

local Lorentz group SO( 10 ) ⊗ SO( 10 ). All the other structure constants and curvatures

in (4.9) and (4.8) stay the same. Except now we have separate left local Lorentz Sab

generator together with the right local Lorentz generator S
ãb
, where a ∈ { 1, . . . 10}.

The common (Wick rotated) SO( 5 ) ⊗ SO( 5 ) Lorentz group of original AdS5 × S5 alge-

bra (4.8) is then the subgroup in the diagonal SO( 10 ) subgroup of SO( 10 ) ⊗ SO( 10 ).

The extension procedure can be viewed from the different picture. We could start with

the full 10 dimensional string superspace as introduced in [2, 3] and [26, 27]. Then intro-

duce the curved version of that space via vielbeins and then linearise around some back-

ground as described earlier. The extension of (4.8) and (4.9) to full SO( 10 ) ⊗ SO( 10 )

is then just a choice of some particular background that is consistent with the original

AdS5 × S5. This has an advantage that now we have a natural place where to put the

troubling (part) of the pre-potential TrH
P P̃

. Because of the additional Sab and S
ãb

we

can have TrH
+a +̃b

≡ TrH
S S̃

instead of the TrH
P P̃

. The TrH
P P̃

≡ H
a b̃

is related to

TrH
S S̃

≡ TrH
+a +̃b

by an action of DP−
≡ P− and DP

−̃

≡ P−̃ (they are both invertible

operators). The vielbein H
S S̃

is of the dimension − 2 and so there is no need to use the

higher dimensional torsion constraints. Moreover in the full SO( 10 ) ⊗ SO( 10 ) theory we

do not have to do the degauging procedure.

This extension comes with the cost. The mixed pieces of the AdS algebra (4.9) are

breaking the explicit SO( 10 ) ⊗ SO( 10 ) invariance (they are not the SO( 10 ) ⊗ SO( 10 )

invariant tensors). We still have present the full DS ≡ S generators. Those derivatives

could hit the (non-invariant) curvatures. The solution of this is to keep the explicit mixed

curvature dependence (as generic mixed curvatures) till the S derivatives are not being

explicitly evaluated. We will describe this procedure in detail later.

5 Gauge fixing

We want to fix the space-cone gauge (T-dual super space-cone gauge) for the first fluctua-

tion HAB, i.e. like in the usual light-cone we have DP−
≡ P− operator invertible, now we

have P− and P−̃ invertible (where DP
−̃

≡ P−̃).

First we look at the gauge variation (4.6) more closely and at the linearised level:

δΛHAB = D[A λB ) + fAB
C λC (5.1)

In the light-cone gauge we in general pick a vielbein with an P− or P−̃ index, put that

vielbein to zero. In order to maintain that gauge we need to fix the particular gauge

parameter. For simplicity we call P− ≡ − and P−̃ ≡ −̃ then:

H−A = 0 ⇒ δΛH−A = 0 ⇒ P− λA − DA λ− + f−A
C λC = 0 (5.2)

then λA =
1

P−
(DA λ− + f−A

C λC )
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Note that there are more possibilities to fix the particular gauge parameters λA. To fix

λA we could also put H−̃A = 0 and use the invertibility of P−̃. Of course we can not fix

some gauge parameter twice. We have to decide which vielbeins we are going to fix in this

“double” light-cone gauge.

We picked the approach where we used the mixed vielbeins to vanish by the dou-

ble light-cone gauge fixing, i.e. we put H−̃A = 0 for A ∈ {S, D, P, Ω, Σ } ≡

left part of algebra. Together with H−Ã = 0 for Ã ∈ { S̃, D̃, P̃ , Ω̃, Σ̃ } ≡

right part of algebra. By that choice we fully fix the gauge parameters λA and λÃ in

terms of λ−. That parameter can be fixed by the gauge invariance of the gauge invariance.

The motivation for the previously described mixed left right light-cone gauge fixing

came from the flat space (just the extended AdS5 × S5 space with rAdS → ∞, i.e. the flat

SO( 10 ) ⊗ SO( 10 ) T-dual superspace). After picking this type of the light-cone gauge the

mixed torsion constraints of the type T−̃AB = 0 are as algebraic as possible:

T−̃AB = P−̃HAB+DB H−̃A+DAHB −̃+H−̃M ηMN fABN+H[A |MηMN fB ) −̃N (5.3)

T−̃AB = P−̃HAB = 0 ⇒ HAB = 0 forA, B : T−̃AB = 0 (5.4)

where we used our mixed light-cone gauge and rAdS → ∞ of extended algebra in (5.4).

The same as in (5.3) and (5.4) holds if one fully swaps left and right indices. For finite

rAdS we can have the mixed structure constants nonzero (i.e. fAB −̃ 6= 0) and so we would

have a right hand side in (5.4). Note also that there could be the contribution from S

derivatives hitting the mixed structure constants. Even though the right hand side in (5.4)

is not generally vanishing for finite rAdS we found that the mixed left-right light-cone gauge

is still useful in the AdS5 × S5 case.

6 Torsion constraints

6.1 AdS5 × S5 curvatures and DS derivatives

As we noted in the introduction section. Because we have enhanced our superspace, we

have to take special care when the local Lorentz derivatives DS ≡ S are hitting the

mixed curvatures (4.9). This problem arises because the curvatures in (4.9) are not full

SO( 10 ) ⊗ SO( 10 ) invariant. The solution is to keep the non-invariant torsions (4.9)

generic and explicitly act by the DS ≡ S derivatives on those torsions. Only after this

explicit S action we can evaluate those torsions (or curvatures) and be fixed as in (4.9).

Let’s take an example, from the equation (5.3) we can see that in the AdS5 × S5 case

in the mixed light-cone gauge the HAB is determined as:

HAB =
1

P−̃

H[A|M ηMN fB) −̃N (6.1)

In many instances in this paper we use similar relation as in (6.1) to fix some particular

vielbein in terms of another vielbeins. If all structure constants f would be SO( 10 ) ⊗

SO( 10 ) invariant tensors then there is not a problem and we can treat the f structure

constants as genuine constants also with respect to the S derivatives. In our case however
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the mixed f structure constants (that we call also the curvatures) in (4.9) explicitly break

the SO( 10 ) ⊗ SO( 10 ) local Lorentz invariance down to the SO( 5 ) ⊗ SO( 5 ) local Lorentz

(as it should be in the AdS5 × S5 case). One possibility is to restrict our superspace local

Lorentz invariance (the S derivatives) to SO( 5 ) ⊗ SO( 5 ). Then we would return back to

the PSU ( 2, 2 | 4 ) that we wanted to avoid in the first place (in order to have H
+a +̃b

instead

of H
a b̃

). The alternative, that we picked, is to work with the full SO( 10 ) ⊗ SO( 10 ) local

Lorentz group. But then the structure constants that are breaking that invariance are not

invariant tensors and so the action of those S derivatives on the mixed structure constants

has to be accounted for. So we should keep the mixed f structure constants and when

needed explicitly act by the S derivatives on them. We will evaluate them as the very last

step in our calculations. Let’s look at the example in (6.1) and look at the action of S+̃a
,

where a ∈ { 1 . . . 8}:

S+̃a
HAB = S+̃a

(
1

P−̃

H[A|M ηMN

)
fB) −̃N+

1

P−̃

H[A|M ηMN
(
S+̃a

fB) −̃N

)
(6.2)

= S+̃a

(
1

P−̃

H[A|M ηMN

)
fB) −̃N + η+−

1

P−̃

H[A|M ηMN fB) ãN

We will evaluate the fB ãN in the second equation just after all the (possibly future) S

derivatives have already acted. We also should bear in mind that whenever we are acting

by the S derivative on some vielbein (that is determined by another vielbeins) there might

be the above described issue. The second term can (and it will) nontrivially contribute to

our calculations.

6.2 Torsion constraints and HS S vielbein

The torsion constraints are (mainly) given by the curved version of the ABCD (first

class) constraints, see [19] and [28]. There are further constraints called T̃A = 0 coming

from requirement of partial integration in the presence of the dilaton measure, see [2, 3],

and [4]. There is also a strong constraint: on every field in the double field theory one has

to require DADA = 0. There are also a dimensional reduction constraints, as we see later.

Our aim is to analyse the necessary constraints consistent with the above constraints

by which we can identify the pre-potential. Following the analysis given in [17, 18], we

identify the pre-potential as a scalar super-field (given by some super-trace of possibly a

combination of vielbeins), that is annihilated by certain combination of the Dν′ and Dν̃′ .

The precise combination of Dν′ and Dν̃′ is also going to be determined from the constraints.

As usual, we start to eliminate the lowest dimensional vielbeins. The vielbeins of the

lowest dimension are HS S , H
S S̃

, H
S̃ S̃

. They are of the dimension − 2 (we mean the ten

dimensional dimension). Using equations (5.3) and (5.4) for indices A = S and B = S (also

after change left ↔ right) we immediately get that HS S = 0 = H
S̃ S̃

. Note, that even in

the extended AdS5 × S5 superspace the structure constant f
S Ã B = 0 → fS −̃ B = 0.

We mention an important observation that will help us simplify future calculations. As

we saw in previous sub-section, we should keep the mixed structure constants generic and

evaluate them at the end. Note however, that the mixed structure constants with the S

indices are always zero (like the one we considered here: fSÃB). The action of S derivatives
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on them results in the mixed structure constants again with the S index and such are zero

after the evaluation. So specifically, we can evaluate the mixed structure constants with

the S indices to zero even before acting by S derivatives on them.

The mixed vielbein H
S S̃

is not all zero and the claim is that the part of the pre-

potential is in this particular vielbein. To see which parts are possibly nonzero we rewrite

the H
S S̃

in the double light-cone components:

H
S S̃

≡
{
H+a +̃c

, H
+a −̃b

, H
−a−̃b

, H
+a b̃c

, H
−a b̃c

, H
ab c̃d

, H+− +̃−, H+− +̃a
(6.3)

H+−−̃a
, H

+− ãb

}
⊕ swap

where we might swap left index with the right index in (6.3). Also note that in all previous

we have a ∈ { 1, . . . , 8 }. We remind that P+ ≡ + ∝ 10 + 9 and P− ≡ − ∝ 10 − 9.

We want to use analog of equations (5.3) and (5.4) for the mixed H
S S̃

and rAdS 6= ∞:

T−̃S S̃
= 0 = P−̃H

S S̃
+ D

S̃
H−̃S + DS H

S̃ −̃ + H[ −̃|M ηMN f
S S̃ ]N (6.4)

In equation (6.4) we have termH−̃S zero by gauge choice. The vielbeinH
S̃ −̃ is proportional

to fS −̃N . We see that this term is zero after evaluating fS −̃N = 0 by (4.9). Using

the (5.3) and (5.4) for A = S and B = − and keeping f−−̃S nonzero, we get HS − =
1
P
−̃

f−−̃M ηMN HSN and similarly for HS̃ −̃ and so the third term in (6.4) is also fixed.

The (6.4) is then:

T−̃S S̃
= 0 = P−̃H

S S̃
+DS

(
1

P−
f−−̃M ηMN H

S̃N

)
+ HSM ηMN f

S̃ −̃N (6.5)

Using equations (5.3), (5.4), (6.5) and the mixed light-cone gauge together with keeping

the mixed structure constants and evaluating the explicit actions of the S and S̃ derivatives

we get the first important result for the structure of the HSS̃ vielbein (in the AdS case), see

table 5 in appendices. From the table 5 we can see that the possibly nonzero H
S S̃

in (6.5)

are those for which f
S̃ −̃N are nonzero (after evaluation of mixed structure constants). By

simple left ↔ right swap we get that for H
S S̃

to be nonzero also fS−N has to be nonzero.

From the [S, P ] part of SO( 10 ) ⊗ SO( 10 ) extended algebra of (3.7) we can see the only

possibility: H+a +̃c
6= 0. All the other components of H

S S̃
= 0 by (6.5) and table 5 after

evaluation. This is a first hint that we are on the right track. The H+a +̃c
6= 0 is the

only nonzero part (after evaluation of mixed structure constants) of H
S S̃

piece, it has a

scalar trace and we can easily relate it to H
a b̃

≡ H
P P̃

, where we expect the part of the

pre-potential to be (the symmetric part corresponds to the metric).

To see how H
P P̃

is related to H
S S̃

consider the third relation from table 5 and after

evaluation of mixed structure constants:
(
1 +

1

2 (rAdS)2
1

P− P−̃

)
H

+a+̃b
=

1

P−
H

a +̃b
(6.6)

We want to reduce H
a +̃b

further to get H
a b̃

. One can näıvely expect to just hit H
a +̃b

with P−̃ to get rid of the S̃ index (or alternatively hit by P− the H
+a b̃

). It works but
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one has to be more careful since in the AdS5 × S5 space one has the mixed structure

constant f− b̃N 6= 0. To see what is this structure constant (after the mixed structure

constants evaluation) we remind that in (4.9) we saw that dimension 2 structure constant

is given as R
P P̃ Σ

≡ R
a b̃

cd ∝ T
b̃α

β̃ R
β̃ γ

cd γa
αγ . We have to be careful with the indices

in the R
a b̃

cd. The Σ indices cd in (4.9) were indices for SO( 5 ) ⊗ SO( 4, 1 ) local Lorentz

group (or its Wick rotated version SO( 5 ) ⊗ SO( 5 )). But the index N in f
− b̃N

6= 0

includes the indices for the full SO( 10 ) ⊗ SO( 10 ). We have already made the claim

that the original local Lorentz group SO( 5 ) ⊗ SO( 5 ) is in the diagonal subgroup of the

SO( 10 ) ⊗ SO( 10 ), i.e. we have the following (at the level of algebras) so ( 10 ) ⊕ so ( 10 ) ≡
1
2 (so ( 10 ) + so ( 10 )) ⊕ 1

2 (so ( 10 ) − so ( 10 )) := so( 10 )D ⊕ so( 10 )Off . (The meaning

of previous is to do the operations on basis. The so ( 10 ) − so ( 10 ) means for example to

combine e.g. Lorentz generators like: S − S̃ = SOff and similarly for another generators).

Now the so( 5 ) ⊕ so( 5 ) →֒ so( 10 )D. Let us write the last sequence of algebras more pre-

cisely. Using indices, the diagonal subgroup (subalgebra) is so( 10 )D ≡ SD
ab := 1

2 (Sab +

S
ãb

) = (SD
ij, S

D
kl, S

D
ik ), where i ∈ { 10, 1, 2, 3, 4 } and k ∈ { 5, 6, 7, 8, 9 } and the

a = ( i, k ) ≡ { 1, . . . , 10 }. The SD
ij and SD

kl are the generators of the SO( 5 ) ⊗ SO( 5 ).

Moreover, the previous definitions give precise embedding of those operators.

Defining SD
ij and SD

kl we can see that the structure constant f
a b̃N

is either 0 or

given by the appropriate R
P P̃ ΣD

. We included a small subindex to the Σ coordinate just

to remind us that the Σ coordinate is now for the SO( 5 ) ⊗ SO( 5 ) diagonal subgroup of

SO( 10 )D only.

Finally, taking definitions of R
a b̃

cd and table 4.9 and our definitions we can see that

f
a b̃N is coming from the mixed commutator

[Pa, Pb̃
] ∝





( 1
rAdS

)2 SD
ab if a & b ∈ { 10, 1, 2, 3, 4 }

− ( 1
rAdS

)2 SD
ab if a & b ∈ { 5, 6, 7, 8, 9 }

0 otherwise

The proportionality constant is c1 = − 2. With the previous definition and with P− ≡

− = 1
2 ( 10 − 9 ) and b̃ ∈ { 5, 6, 7, 8, 9 } we will get the [P−, Pb̃

] ∝ SD
9b = 1

2 (S9b +

S
9̃ b

) we can also use P9 = (P+ − P− ) and so [P−, Pb̃
] ∝ (S+b + S

+̃b
− S−b − S

−̃b
).

Knowing the last relation we can proceed and hit the result of (6.6) by P−̃ and relate

H
+a +̃b

with H
a b̃

for the evaluated version. For non-evaluated version we need to do the

same for the non-evaluated version of (6.6), that is the third top equation in table 5. For

vielbein H
+̃ba

needed in this procedure we get:

0 = T
P P̃ S̃

≡ T
a −̃ +̃b

= P[aH−̃ +̃b ]
+ H[a |M ηMN f

−̃ +̃b ]N
(6.7)

= −P−̃H
+̃ba

− PaH−̃ +̃b
− H

+̃bM
ηMN fa −̃N − HaM ηMN f

−̃ +̃bN

The term H−̃a vanishes because of mixed light-cone gauge, the term H
−̃ +̃b

is fixed by the

torsion T
−−̃ +̃b

= 0 and use of mixed light-cone gauge similarly as in equation (A.1). By

that we get:

H
−̃ +̃b

= − f−−̃M ηMN 1

P−
H

+̃bN
 0 (6.8)

– 16 –



J
H
E
P
0
1
(
2
0
1
7
)
0
5
9

The last term in (6.7) is just η−+ ηaN , the analog term as in (6.6). The extra mixed

term (after evaluation) in (6.7) is H+aM ηMN f
b̃−N ∝ ( 1

rAdS
)2H

+a +̃b
. Plugging (6.8)

into (6.7) and then the result (that is the fixed vielbein H
+̃ba

) into the third top equation

in table 5 we obtain the non-evaluated relation between H
+a +̃b

:

P−H
+a +̃b

= − f−−̃M ηMN S
+̃b

(
1

P−̃

H+aN

)
− f− b̃M ηMN 1

P−̃

H+aN (6.9)

− f−−̃M ηMN 1

P−̃

Pa

1

P−
H

+̃bN
+ f−̃aM ηMN 1

P−̃

H
+̃bN

+
1

P−̃

H
a b̃

after evaluation of the mixed structure constants in (6.9) we get:

H
a b̃

=

(
P− P−̃ +

1

(rAdS)2

)
H

+a +̃b
(6.10)

6.3 Torsion constraints and HDS vielbein

To identify what combination of vielbeins gives the pre-potential, we first repeat the proper-

ties we are looking for. We are looking for combination of vielbeins (of the low dimension),

that has a scalar contraction and is annihilated by certain combination of Dα′ and Dα̃′

(see indices defined above (3.14)). Moreover the combination has to be annihilated by the

properly defined P+ operator in the R → 0 limit (still to be defined).

To start, we have one nontrivial hint. We showed that the vielbein H
+a +̃b

is nonzero

and is related to the H
a b̃

. So we can examine what is the action of the Dα′ on H
+a +̃b

,

i.e. we look at the torsion constraint:

T
DS S̃

≡T
α′ +a +̃b

=0 = D[α′ H
+a +̃b)

+ H[α′ |M ηMN f
+a +̃b)N

(6.11)

= Dα′ H
+a +̃b

+ S
+̃b

Hα′ +a + S+aH+̃bα′
+ H

+̃bM
ηMN fα′ +aN

= Dα′ H
+a +̃b

+S
+̃b

Hα′ +a+S+aH+̃bα′
+
1

2
(γ+a)α′

β H
+̃bβ

(6.12)

In the (6.12) we can see various terms with the S derivatives. If we could evaluate mixed

structure constants before an action of S derivatives, those S terms in (6.12) would vanish

(because the relevant vielbeins are proportional to vanishing mixed constants as we will

see). Now they will nontrivially contribute. We note again that we still have the f
S̃ DN ≡

f
+̃bα′ N

= 0 = f
S S̃N ≡ f

+a +̃bN
. The vielbeins Hα′ +a and H

α′ +̃b
are fixed by torsion

constraints T
P̃ D S

= T−̃α′ +a = 0 = T
P D S̃

= T
−α′ +̃b

and some few other torsion

constraints, as will be shown. We note that as in (5.3) and (5.4) we almost always have

the strategy to use invertibility of P− andP−̃ together with our mixed left-right light cone

gauge to eliminate/fix vielbeins. Sometimes its not enough and we need to explore some

further torsion constraints. Let’s look at the already mentioned set of torsion constraints:

T
P̃ D S

= T−̃α′ +a = 0 = P[−̃Hα′ +a] + H[−̃ |M ηMN fα′ +a]N (6.13)

= P−̃Hα′ +a + H+aM ηMN f−̃α′ N (6.14)

⇒ Hα′ +a = f−̃α′ M ηMN 1

P−̃

H+aN  0 (6.15)
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in (6.13) we used just the mixed light cone gauge and f
S P̃ N = 0 (in flat case and also in

AdS). To evaluate the last term in (6.14) that is present only in AdS case we have to take

the AdS curvature T
P̃ D Ω̃

≡ Tãα
β̃ ≡ fãα

β̃ = 1
rAdS

(γa)αν Γ̃5
ν β as discussed above (4.9).

For our specific indices we have 1
rAdS

(γ−)α′ ν′ Γ̃5
ν′ β but the (γ−)α′ ν′ = 0 as we can see in

the construction of the light cone basis for the gamma matrices in (3.14). The vielbein

Hα′ −a can be fixed in almost the same set of equations as Hα′ +b. Fixing the vielbein

H
α′ +̃b

(and similarly H
α′ −̃b

) is also similar but a bit more profound. For that we first

examine torsion analogous to (6.11) but for H
α′ +̃b

vielbein:

T
P D S̃

≡ T
−α′ +̃b

= 0 = P[−H
α′ +̃b]

+ H[− |M ηMN f
α′ +̃b]N

(6.16)

= P−H
α′ +̃b

+ S
+̃b

H−α′ + H
+̃bM

ηMN f−α′ N

⇒ H
α′ +̃b

= −
1

P−
S
+̃b

H−α′ (6.17)

The (6.16) structure constant f−α′ N ∝ (γ−)α′ ν′ but as before that particular piece of

gamma matrix is zero (remember the non-mixed structure constants are not breaking the

SO( 10 )⊗ SO( 10 ) so we can evaluate them without any concern). The other term in (6.16)

is H−α′ . That is fixed by the dim 1
2 torsion constraint T−−̃α′ = 0:

T
P P̃ D

= T−−̃α′ = 0 = P[−H−̃α′ ) + H[−M ηMN f−̃α′ )N (6.18)

= P−̃Hα′ − + Hα′ M ηMN f−−̃N (6.19)

⇒ Hα′ − = −
1

P−̃

f−−̃M ηMN Hα′ N  0 (6.20)

We used in (6.18) the mixed light cone gauge, also the fact that f−α′ M ∝ (γ−)α′ β′ = 0.

We note that the (6.18) evaluates to zero because the mixed structure constant f−−̃N = 0.

Moreover by the light-cone gauge the (6.18) term H−M ηMN f−̃α′ N = 0 even in the non-

evaluated regime. The reason is that the structure constant f−̃α′ N is zero after evaluation

and the action of whatever S on this structure constant produces either zero or the right

D index ≡ D̃ (after the summation with the vielbein) i.e. the vielbein H− D̃
that is again

zero by the light-cone gauge. Combining (6.17) and (6.20) we can get a fixed version of

the H
α′ +̃b

. By the similar equations as above we can fix H
α′ −̃b

. That result and more

detailed analysis is shown in the appendix, see table 6.

In the appendix, we also derived the equations (A.13) and (A.35). Those are the

actions of the S and S̃ derivatives that we need in the equation (6.12). Putting the results

from (A.13) and (A.35) into (6.12) we get fixing of the Dα′ H
+a +̃b

, we note that this is an

important result:

Dα′ H
+a +̃b

= −
1

g

1

(rAdS)P−̃

(γb)α′ σ (Γ̃5)
σ β H

β̃+a

+
1

2 g

(
1 −

1

f

1

(rAdS)2 P−̃ P−

)
(γ+a)α′

β H
β +̃b

+
1

f g

1

2 (rAdS)3 P− (P−̃)
2
(γa)α′ ν (Γ̃5)

ν β H
β̃+b

(6.21)
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where f and g are defined as follows:

f :=

(
1 −

1

2 (rAdS)2 P−̃ P−

)
(6.22)

g :=

(
1 −

1

f

1

2 (rAdS)2 P−̃ P−

)

Changing left ↔ right in (6.21) we get the equation for Dα̃′ H
+a +̃b

. There is one

simplification we can make in equations (6.21). Because only half of the block diag-

onal γ+ matrix is nonzero and is proportional to the δ for the nonzero part. The

(γ+a)α′
β = δα′ ν′ (γa)

ν′ β ≡ (γa)α′
β .

The observation from (6.21) and its left ↔ right swap is that the action of the Dα′ and

Dα̃′ on H
+a +̃b

is producing two new vielbeins Hβ +̃a
and H

β̃+a
. This hints that we need

some another vielbein, such that the action of Dα′ and Dα̃′ on it will effectively subtract

the fields Hβ +̃a
and H

β̃+a
. We found such a vielbein, but before giving it we will look at

the flat case superspace first to give a motivation. After that we will generalise it to the

AdS5 × S5 background.

7 Flat space solution

7.1 Flat space diagram

To see what could be possibly a missing vielbein that will subtract vielbeins in (6.21) (and

its left ↔ right change) we first solve the same problem in flat space background. That

is the extended superspace with rAdS → ∞. Note that in flat superspace (rAdS → ∞)

the relation (6.21) simplifies significantly, because there are no rAdS dependent parts. The

surviving part after rAdS → ∞ is just the second term on the right hand side of (6.21)

with g = 1, i.e. 1
2 (γ+a)α′

β H
β +̃b

.

Let us therefore further examine an action of Dα′ and Dα̃′ on Hβ +̃a
and H

β̃+a
respec-

tively:

T
DD S̃

≡ Tα′ β +̃a
= 0 = D[α′ Hβ +̃a) + H[α′ M ηMN fβ +̃a )N (7.1)

= Dα′ Hβ +̃a
+ S+̃a

Hα′ β − Dβ H+̃aα′ + Hα′ M ηMN fβ +̃aN

+H+̃aM ηMN fα′ βN − HβM ηMN f+̃aα′ N

The mixed terms in the f part of (7.1) are zero (note they are zero also in the AdS

background). The structure constant fα′ βN = 2 (γa)α′ β δ
a
N (the same is in the AdS

background). The vielbein H+̃aα′  0 by the table 6. Then the equation (7.1) can be

rewritten as:

0 = Dα′ Hβ +̃a
+ S+̃a

Hα′ β + 2 (γc)α′ β H+̃a c
(7.2)

To evaluate the only S derivative term in (7.2) i.e. S+̃a
Hα′ β we would need to work

a bit, in the AdS superspace. The whole AdS analysis of the actions of Dα′ and Dα̃′ on

Hβ +̃a
and H

β̃+a
is done in the appendix, see equations (A.39) till (A.63). In this section

we would need only rAdS → ∞ limit of that analysis.
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In the appendix we derived the equations (A.57) and (A.63). Those equations are

telling us that in the AdS case (and so also in the flat case) the actions of Dα̃′ and Dα′

result in a combination of H
+a +̃b

and H
α β̃

. This is actually a hint that we should add the

trace of H
α β̃

to the trace of H
+a +̃b

in order to subtract an action of a linear combination

of Dα′ and Dα̃′ (future Dv derivative) on trace H
+a +̃b

. In the rest of this paragraph and

next section we will look at how the pre-potential is built up in a flat space limit, i.e. we

consider equations (A.57) and (A.58) and (A.63) and (A.64) in the limit rAdS → ∞. We

find equations that are fixing pre-potential and vanishing Dw derivative.

Thus we repeat the flat space limits of the Dα̃′ and Dα′ actions on Hβ +̃a
and H

β̃+a

respectively, i.e. the equations (A.63) and (A.64) in rAdS → ∞ limit:

0 = Dα̃′Hβ +̃a
+

1

2
(γa)α′

νHβ ν̃ (7.3)

0 = Dα′H
β̃+a

+
1

2
(γa)α′

νH
ν β̃

(7.4)

Similarly, we can also look at the equations (6.21) and (A.57) and (A.58) (in the flat space

limit) and together with (7.3) and (7.4) we can observe the following interesting flat space

diagram:

H
+a +̃b

D
α̃′

��

D
α′

// H
β +̃b

D
α̃′

��

D
α′

// H
c +̃b

H
+a β̃

D
α′

//

D
α̃′

��

H
β β̃

H+a c̃

(7.5)

The scheme (7.5) is nice and actually tells us what we should do next. Recall that the

nodes H
+a +̃b

and H
c +̃b

and H+a c̃ could be identified by the use of invertible operators

P− and P−̃ see (6.6). Our original aim was find a field that has a scalar trace and could

possibly subtract actions of Dα′ and Dα̃′ on H
+a +̃b

. We will see that the missing field is

exactly H
ββ̃

(in the flat space, the only nonzero part of H
D D̃

). The diagram (7.5) suggests

what to do. We calculate the remaining arrows and fill the square.

To fill the remaining arrows we need to calculate the action of Dα′ and Dα̃′ on H
α β̃

together with some another arrows that will be discussed later. We consider the dimension
1
2 torsion constraint T

DD D̃
≡ Tα′ β σ̃ = 0. We note again that for now on we are working

in the flat space. Later we will generalise the procedure for the AdS space:

T
DD D̃

≡ Tα′ β σ̃ = 0 = D(α′Hβ σ̃) + H(α′ |M ηMN fβ σ̃ )N (7.6)

= Dα′Hβ σ̃ + 2 (γa)α′ β Hσ̃ a (7.7)

where we used that Hα′ β = Hα′ σ̃ = 0 in flat space (see (A.40) and (A.45) and do flat

space limit). We also have a left ↔ right swap of (7.7). The vielbein Hσ̃ c in (7.7) is

related to H+c σ̃. For that consider torsion constraint T
P S D̃

≡ T−+c σ̃ = 0:

T
P S D̃

≡ T−+c σ̃ = 0 = P[−H+c σ̃) + H[− |M ηMN f+c σ̃ )N (7.8)

= P−H+c σ̃ + η+−Hσ̃ c (7.9)
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where we used left-right light-cone gauge, together with H−+c = 0 that is shown in the

appendix and holds even in AdS, see (A.20).

To fill the diagram (7.5) we need to calculate two more torsion constraints that are

providing the actions of Dα′ on H+a c̃ and on Hσ c̃. We first consider T
DS P̃

≡ Tα′ +a c̃ = 0:

T
DS P̃

≡ Tα′ +a c̃ = 0 = D[α′H+a c̃) + H[α′ |MηMN f+a c̃)N (7.10)

= Dα′H+a c̃ +
1

2
(γ+a)α′

σ Hc̃σ (7.11)

= Dα′H+a c̃ +
1

2
(γa)α′

σ Hc̃σ (7.12)

where we used that Hα′ +a = 0 (holds even in the AdS, see table 6). We also used that

Hα′ c̃ = 0 (that is enough in a flat space to have S+aHα′ c̃ = 0). To see that Hα′ c̃ = 0

we use the torsion T
P̃ S̃ D

≡ T−̃ +̃cα′ = 0:

T
P̃ S̃ D

≡ T−̃ +̃cα′ = 0 = P[−̃H+̃cα′) + H[−̃ |M ηMN f+̃cα′ )N (7.13)

= P−̃H+̃cα′ + η+−Hα′ c̃ (7.14)

and previously we saw that H+̃cα′ = 0 (even in the AdS case, see table 6). From (7.14) in

the flat case follows that Hα′ c̃ = 0. Examining the (7.14) in the AdS case one also finds

that Hα′ c̃ = 0 (after evaluation). The (7.12) however could have some additional term in

the AdS case. The structure constant fα′ c̃N 6= 0 and so the term proportional to that

structure constant in the AdS case is 1
rAdS

(γc)α′ σ (Γ̃5)
σ ν H+a ν̃ . That term is nonzero in

the AdS case. Moreover, in the (7.10) one finds one more AdS term, coming from evaluated

action S+aHα′ c̃. Those terms are not of a big concern right now (doing the flat space first),

we will see them later in the section where we generalise to AdS case.

Last torsion constraint to examine in order to fill the (7.5) is the one that determines

the action ofDα′ onHβ c̃. Consider therefore the dimension 1
2 torsion T

DD P̃
≡ Tα′ β c̃ = 0:

T
DD P̃

≡ Tα′ β c̃ = 0 = D[α′Hβ c̃) + H[α′ |M ηMN fβ c̃ )N (7.15)

= Dα′ Hβ c̃ + 2 (γa)α′ β Hc̃ a (7.16)

where we used the Hα′ β = 0 (holds also in AdS after the evaluation) and Hc̃α′ = 0 (also

holds in AdS after the evaluation). In the AdS case in the equation (7.16) we have two addi-

tional terms. They come from fβ c̃N 6= 0 and also fα′ c̃N 6= 0. Those terms will be further

analysed in future sections, let just write their structure as 1
rAdS

(γc)β ν′ (Γ̃5)
ν′ σ′

Hσ̃′ α′ and
1

rAdS
(γc)α′ ν (Γ̃5)

ν σ Hσ̃ β . The vielbein Hσ̃′ α′ = 0 (in flat case and also in AdS after the

evaluation) as can be calculated from torsion constraints T− σ̃′ α′ = 0 and T−̃− σ̃′ = 0 and

the use of the double light-cone gauge. The term Hσ̃ β is nonzero (Hσ̃ β vielbein is a part

of a pre-potential).
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We can add results of (flat space) equations (7.12) and (7.16) together with (7.7) and

their left ↔ right swaps to the diagram (7.5) and find the following square diagram:

H
+a +̃b

D
α̃′

��

D
α′

// H
β +̃b

D
α̃′

��

D
α′

// H
c +̃b

D
α̃′

��

H
+a β̃

D
α′

//

D
α̃′

��

H
β β̃

D
α′

//

D
α̃′

��

H
c β̃

D
α̃′

��

H+a c̃

D
α′

// Hβ c̃

D
α′

// Hc c̃

(7.17)

As we saw before the (7.17) nodes {H
+a +̃b

, H
c +̃b

, H+a c̃, Hc c̃ } should be identified

(as one node). We proved that using various torsion constraints, mixed light-cone gauge

and invertibility of P− and P−̃. The same way the nodes {H
+a β̃

, H
c β̃

} and independently

nodes {H
β +̃b

, Hβ c̃ } should be identified (as two independent nodes). The vielbein H
β β̃

is then just a single node. After the described identifications the diagram (7.17) could be

rewritten in the simpler and more informative form.

H
+a +̃b D

α′

��D
α̃′ww

⑦
③

✈
r

♦
H

+a β̃

D
α̃′

44

✌
✞
⑦
✈
♦
✐

D
α′

��

H
β +̃b

D
α′

^^

D
α̃′rr

✞
⑦

✈
♦✐

H
β β̃

D
α̃′

77

⑦
③
✈
r
♦

D
α′

XX

(7.18)

Note, the dashed arrows stand for action of Dα̃′ and solid arrows stand for action of Dα′ .

From the nice flat space diagram (7.18) it is obvious that in order to have a vanishing

derivative we have to combine Dα′ with Dα̃′ and that combination should act on the

combination of traces of H
+a +̃b

with H
β β̃

.

7.2 The H matrix

The diagram (7.18) could be rewritten in the matrix form. The observation is that each

action of the derivatives in the (7.18) is given by some matrix. The derivatives are mixing

fields just as in (7.18). Let us introduce the 2 ⊗ 2 block matrix H:

H :=


H

+a +̃b
H

+a β̃

H
β +̃b

H
β β̃


 (7.19)

The action of Dα′ is then given as the left action of some constant (up to P− operator)

block off diagonal matrix Γα′ :

Dα′


H

+a +̃b
H

+a β̃

H
β +̃b

H
β β̃


 ≡

(
0 1

2(γa)α′
σ

2P− (γc)α′ β 0

) 
H

+c +̃b
H

+c β̃

H
σ +̃b

H
σ β̃


 (7.20)

Dα′ H = Γα′ H (7.21)
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The action of Dα̃′ on H is given as a right action of similar matrix Γα̃′ :

Dα̃′


H

+a +̃b
H

+a β̃

H
β +̃b

H
β β̃


 ≡

(
H+a +̃c

H+a σ̃

Hβ +̃c
Hβ σ̃

) (
0 2P−̃ (γc)α′ β

1
2 (γb)α′

σ 0

)
(7.22)

Dα̃′ H = HΓα̃′ (7.23)

Now we will proceed to the main step. We arbitrarily linearly combine Dα′ and Dα̃′ , i.e.

we multiply the Dα̃′ with some unknown nonsingular matrix Mα′
β′

:

Dv ≡ Dv
α′ := (Dα′ − Mα′

β′

D
β̃′
) (7.24)

Moreover we impose that in the matrix version of Dα̃′ action the matrix M acts as follows:

Mα′
β′

Γ
β̃′

:= AΓα̃′ B (7.25)

for some nonsingular matrices A and B. Combining (7.20) and (7.22) together with (7.24)

and (7.25) we get:

Dv
α′ H = Γα′ H − HAΓα̃′ B /B−1 (7.26)

Dv
α′ HB

−1 = Γα′ HB
−1 − HAΓα̃′ / Str (7.27)

Dv
α′ Str (HB

−1 ) = Str
(
(B−1 Γα′ − AΓα̃′ )H

)
(7.28)

by the Str we mean the super-trace. We put to zero the Str
(
(B−1 Γα′ − AΓα̃′ )H

)
= 0

by finding the suitable matrices B and A and the matrix M. By that we get the equation:

Dv
α′ Str (HB

−1 ) = 0 (7.29)

thus the equation (7.29) defines the Str (HB
−1 ) as the scalar field on which particular

combination of Dα′ and Dα̃′ now called Dv
α′ vanishes. So, we found a pre-potential V :=

Str (HB
−1 ). We note that even though the equation (7.28) might seem easy to solve just

by putting B
−1 = A. It is not that simple since Γα′ 6= Γα̃′ . Therefore some more involved

solution has to be found.

7.3 Solution via the gamma matrix identity

We solve the equation (7.28) using the following identity:

Aα′
σ′

Ba
c Cβ

ν (γc)σ′ ν = (γa)α′ β (7.30)

has two SO( 4 ) invariant solutions:

I. : Aα′
β′

= δα′
β′

|| Cα
β = δα

β || Ba
b = δa

b (7.31)

II. : Aα′
β′

= (Γ̃5)α′
β′

|| Cα
β = (Γ̃5)α

β || Ba
b = (Γ̃5)a

b (7.32)

The solution (7.31) is trivial, the solution (7.32) is based on property of the Γ̃5 matrix:

[ Γ̃5, γa ] = 0 for a ∈ { 10, 1, 2, 3, 4 } and { Γ̃5, γa } = 0 for a ∈ { 5, 6, 7, 8, 9 }. The
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previous follows directly from the definition of Γ̃5, see (3.13). The new matrix (Γ̃5)a
b

in (7.32) is defined by the (7.30) to fix the signs. Note that the indices a in (7.30) have a

range: a ∈ { 1, . . . , 8}.

Next, we look explicitly at the equation:

Str
(
(B−1 Γα′ − AΓα̃′ )H

)
≡ StrXα′ = 0 (7.33)

let’s rename the members of the matrix H:

H ≡


H

+a +̃b
H

+a β̃

H
β +̃b

H
β β̃


 ≡

(
H

S S̃
H

S D̃

H
D S̃

H
D D̃

)
(7.34)

Let us define the matrices A and B
−1 to be block diagonal matrices. This is a consistent

choice with the fact that we want to have a pre-potential build out of H
S S̃

and H
D D̃

. The

pre-potential is in (7.29) given as Str (HB
−1 ). We do not want to mix in some off diagonal

H fields by the action of B−1. Thus A and B
−1 are:

A ≡

(
A

S S̃
0

0 A
D D̃

)
|| B

−1 ≡

(
B−1

S S̃
0

0 B−1
D D̃

)
(7.35)

With definitions (7.35) we get the equation (7.33) into the following matrix equation:

Str

((
1
2 B

−1
S S̃

γ H
D S̃

. . .

. . . 2P−B−1
D D̃

γ H
S D̃

)
−

(
2P−̃A

S S̃
γ H

D S̃
. . .

. . . 1
2 AD D̃

γ H
S D̃

))
=0

(7.36)

Then from (7.36) we get two equations (since fields H
D S̃

and H
S D̃

are independent):

1

2
B−1

S S̃
− 2P−̃A

S S̃
= 0 ⇒ A

S S̃
=

1

4P−̃

B−1
S S̃

(7.37)

P−B−1
D D̃

− A
D D̃

= 0 ⇒ A
D D̃

= 4P−B−1
D D̃

(7.38)

Now we are prepared to examine the equation (7.25) using the A and B constructed above.

Then the matrix equation (7.25) can be (schematically) written:

M

(
0 2P−̃ γ
1
2 γ 0

)
=




1
4P

−̃

B−1
S S̃

0

0 4P−B−1
D D̃



(

0 2P−̃ γ
1
2 γ 0

)(
B

S S̃
0

0 B
D D̃

)
(7.39)

M

(
0 2P−̃ γ
1
2 γ 0

)
=

(
0 1

2 B
−1

S S̃
γ B

D D̃

2P−B−1
D D̃

γ B
S S̃

0

)
(7.40)

We now do the following re-scalings M → 1
λ
M and B

S S̃
→ ∆B

S S̃
and B

D D̃
→ ρB

D D̃
.

Rescaled M and B
S S̃

and B
D D̃

belong to one of the two solutions of identity (7.30). Then

we get the version of (7.40):

M

(
0 2P−̃ γ
1
2 γ 0

)
=

(
0 1

2
λ ρ
∆

B−1
S S̃

γ B
D D̃

2 λ∆
ρ

P−B−1
D D̃

γ B
S S̃

0

)
(7.41)
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Now we want the λ and ρ and ∆ to satisfy:

λ ρ

∆
= 4P−̃ and

λ∆

ρ
=

1

4P−
⇒ λ = ±

√
P−̃

P−
and

ρ

∆
= ± 4

√
P−̃ P−

(7.42)

The (7.41) is just a matrix equation:

M

(
0 P−̃ γ

γ 0

)
=

(
0 A−1

S S̃
P−̃ γ A

D D̃

A−1
D D̃

γ A
S S̃

0

)
(7.43)

that can be solved by (7.30). Even though we saw the appearance of the nasty square roots

in the (7.42) and so in the definition of Dv
α′ and in the pre-potential via super-trace of

HB
−1. We will see in the AdS case solution that there is a way how to get rid of it.

8 AdS5 × S5 solution

8.1 AdS5 × S5 diagram

In the previous sub-sections we saw how to find the pre-potential in the flat case. We are

really interested in the AdS case. Along the way we analysed the flat case in the previous

sub-sections we mentioned also changes one has to make in the AdS case. We repeat them

here again since they are scattered over the previous flat case sub-sections and in the ap-

pendix. First change has already been worked out in the relation between H
+a +̃b

and H
a b̃

in (6.10). We also note that there are AdS contributions in equations (6.21) also in (A.57)

and (A.58). The nontrivial contributions also appeared in equations (A.63) and (A.64).

We could visualise the relations (6.21) and (A.57) and (A.58) and (A.63) and (A.64)

by the similar diagram as used in flat case, see (7.5). The structure is very similar just

with more arrows between nodes. Since the AdS diagram is messier we will not provide

it. The idea is however the same as in the flat case. In order to determine the vanishing

Dv
α′ derivative and the pre-potential we need to combine Dα′ and Dα̃′ for Dv derivative

and H
+a +̃b

together with H
α β̃

for pre-potential.

The only missing derivative in the set of AdS equations: (6.21) and (A.57) and (A.58)

and (A.63) and (A.64), is an action of Dα′ on Hβ σ̃. This action can be calculated from

T
DD D̃

≡ Tα′ β σ̃ = 0 torsion constraint. The AdS contribution in that constraint comes

from fα′ σ̃N structure constant. We have already analysed this structure constant, see

equations (A.46) and (A.47) till (A.50). We can thus directly write the constraint with an

extra AdS term:

T
DD D̃

≡ Tα′ β σ̃ = 0 = D[α′Hβ σ̃) + H[α′ |M ηMN fβ σ̃ )N (8.1)

= Dα′ Hβ σ̃ + 2 (γa)α′ β Hσ̃ a +
1

rAdS
(γ[c)σ ρ (Γ̃5)

ρ ν (γd])ν α′ Hβ cd

where we again note that the Σ indices in the last expression of the (8.1) second line are

from the SO( 5 ) ⊗ SO( 5 ) diagonal subgroup. The Hβ cd vielbein has nonzero both Hβ+b

and also H
β +̃b

. The second vielbein is the term already in the matrix H from the flat
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section (ultimate goal is to rewrite the AdS case in the terms of matrix H and use the

super-trace trick to get the pre-potential). The field Hβ+b is related to the Hρ̃+c as we

saw in table 7.

There is one last piece in the equation (8.1) that we did not relate to the fields in the

H matrix. The field Hσ̃ a. As we saw in the flat case, that field should be related to Hσ̃+a

via P−. We have seen however (for example in (6.10)) that such relations are a bit changed

in the AdS case. Consider the following torsion constraint (and use mixed light-cone and

H−+a  0):

T
P D̃ S

≡ T
− β̃+a

= 0 = D[−H
β̃+a)

+ H[− |M ηMN f
β̃+a)N

(8.2)

= P−H
β̃+a

+ H
β̃M ηMN f−+aN + H+aM ηMN f− β̃N

= P−H
β̃+a

+ η−+H
β̃ a

+
1

rAdS
(γ−)β ν (Γ̃5)

ν σ H+a ν (8.3)

In the table 7 we derived the relation between H+a ν and H+a ν̃ . That result together

with (8.3) we get: (
P− −

1

P−̃

1

(rAdS)2

)
H+a α̃ = Ha α̃ (8.4)

With the equation (8.4) we succeeded to calculate the last missing derivative Dα′ Hβ σ̃

in terms of H vielbeins:

Dα′ Hβ σ̃ − 2

(
P− −

1

P−̃

1

(rAdS)2

)
(γa)α′ β H+a σ̃ (8.5)

−
1

2 (rAdS)2 P−̃

(Γ̃5)σ
ν (γd)ν α′ (Γ̃5)β

ρHρ̃+d −
1

2 (rAdS)
(Γ̃5)σ

ν (γd)ν α′ H
β +̃d

= 0

Dα̃′ H
β̃ σ

− 2

(
P−̃ −

1

P−

1

(rAdS)2

)
(γa)α′ β H+̃aσ (8.6)

−
1

2 (rAdS)2 P−
(Γ̃5)σ

ν (γd)ν α′ (Γ̃5)β
ρH

ρ +̃d
−

1

2 (rAdS)
(Γ̃5)σ

ν (γd)ν α′ H
β̃+d

= 0

Where the (Γ̃5)σ
ν := (γ+)σ λ (Γ̃5)

λ ν . The AdS equations (6.21) and (A.57) and (A.58)

and (A.63) and (A.64) and (8.5) and (8.6) could be summarised in the following diagram:

(H
+a +̃b

, H
α β̃

)

D
α̃′

##✉
q
♥

❢ ❴ ❳
P
▼
■

pp
D

α̃′

❵ ❴ ❫
(H

β +̃b
, H

+a β̃
)

::

D
α′

D
α′

oo (8.7)

From the above diagram is obvious that we again have to combine H
+a +̃b

and H
α β̃

and

derivatives Dα̃′ and Dα′ to get a vanishing derivative on some scalar.

8.2 The H matrix in AdS5 × S5

We want to repeat the section on the flat solution via the H matrix. The H matrix was

defined in (7.34). We want to write the action Dα′ and Dα̃′ on the H. This was given in
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components in equations: (6.21) and (A.57) and (A.58) and (A.63) and (A.64) and (8.5)

and (8.6) and also graphically in (8.7). We expect that the resulting matrix equations have

pieces given by the flat equations (7.20) and (7.22) plus purely AdS pieces (dependent as

powers of 1
rAdS

). We could write those equations in such explicit matrix form, but resulting

equations are complicated and unnecessary for our purpose. We instead summarise the

right hand side of Dα′ H and Dα̃′ H using two new matrices Xα′ and Yα̃′ respectively. We

propose matrix from of the AdS equations:

Dα′ H = Xα′ (8.8)

Dα̃′ H = Yα̃′ (8.9)

The matrices Xα′ and Yα̃′ are fully fixed by (6.21) and (A.57) and (A.58) and (A.63)

and (A.64) and (8.5) and (8.6). In the rAdS → ∞ the Xα′ → Γα′ H and Yα̃′ → HΓα̃′ ,

where the matrices Γα′ and Γα̃′ are given in (7.20) and (7.22).

8.3 Chiral and projective solutions for AdS5 × S5

In the next step we repeat the argument we gave in the flat case section but for the AdS

equations (8.8) and (8.9). We define:

Dv ≡ Dv
α′ := (Dα′ + Mα′

β′

D
β̃′
) (8.10)

now we act by (8.10) on H:

Dv
α′ H = (Xα′ + Mα′

β′

Y
β̃′
) (8.11)

we multiply by B and apply Str:

Dv
α′ Str (HB ) = Str

(
(Xα′ + Mα′

β′

Y
β̃′
)B

)
(8.12)

We will further analyse the structure of (8.12) in next discussion but before we note one

change with respect to (7.24). In (7.24) we used B
−1 here we are using (yet to be deter-

mined) matrix B, the difference is purely conventional. As in the flat case, we want to

put the right hand side of (8.12) to zero and by that obtain vanishing Dv
α′ on some scalar

field Str (HB ), that will be called pre-potential. In the flat space it was crucial that we

had the identity (7.30). It was used in the relation (7.25). Similarly in the AdS case the

identity (7.30) will also be crucial.

In the solution of the vanishing (8.12) right hand side we still want to maintain the

SO( 4 ) ⊗ SO( 4 ) invariance. Therefore the B matrix has a block-diagonal form:

B :=

(
b+a+b 0

0 bαβ

)
(8.13)

Let us also simplify the notation for the constants appearing in the equations (6.21)

and (8.5) and similarly for their left-right conjugates. In (6.21) we redefine:

X1 := −
1

g

1

(rAdS)P−̃

|| X2 :=
1

2 g

(
1 −

1

f

1

(rAdS)2 P− P−̃

)
(8.14)

X3 := +
1

f g

1

2 (rAdS)3 P− (P−̃)
2

||
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where the f and g were defined in (6.22). In (8.5) we define:

Y1 := − 2

(
P−̃ −

1

P−

1

(rAdS)2

)
|| Y2 := −

1

2 (rAdS)2 P−
|| Y3 := −

1

2 (rAdS)
(8.15)

With the definitions (8.13), (8.14) and (8.15) let us rewrite the right hand side of (8.12)

explicitly:

0 = (X1 − X3 ) (Γ̃5)
β σ b+a+b (γ

b)σ α′ − Mα′
σ′

X2 b+a+b (γ
b)βσ′ (8.16)

+Y1 b
β σ (γa)σ α′ + Y2 b

ν σ (Γ̃5)σ
λ (γa)λα′ (Γ̃5)ν

β + Mα′
σ′

Y3 b
β σ (Γ̃5)σ

λ (γa)λσ′

0 = Mα′
ν′ ( X̃1 − X̃3 ) (Γ̃5)

β σ b+a+b (γ
b)σ ν′ − X2 b+a+b (γ

b)βα′ (8.17)

+Mα′
ν′ Ỹ1 b

β σ (γa)σ ν′ + Mα′
ν′ Ỹ2 b

ν σ (Γ̃5)σ
λ (γa)λ ν′ (Γ̃5)ν

β + Y3 b
β σ (Γ̃5)σ

λ (γa)λα′

where X̃1, X̃3 and Ỹ1, Ỹ2 are left-right conjugates of the constants defined in (8.14)

and (8.15) and X2 and Y3 are the same after left-right swap.

The equations (8.16) and (8.17) are the AdS analogies of the flat space equations (7.43).

To solve them we first multiply the equation (8.17) by matrix Mα′
β′

. Thus we get the

equation (8.17) into the form:

0 = M2
α′

ν′ ( X̃1 − X̃3 ) (Γ̃5)
β σ b+a+b (γ

b)σ ν′ − Mα′
ν′ X2 b+a+b (γ

b)βν′ (8.18)

+M2
α′

ν′ Ỹ1 b
β σ (γa)σ ν′ + M2

α′
ν′ Ỹ2 b

ν σ (Γ̃5)σ
λ (γa)λ ν′ (Γ̃5)ν

β

+Mα′
ν′ Y3 b

β σ (Γ̃5)σ
λ (γa)λ ν′

The equation (8.18) is almost identical to the (8.16) except of the left-right swapped

constants and M2 matrix. By suitable choice of the M matrix we can turn (8.18)

into (8.16) and thus reduce number of equations by half. By that we get the condition on

the matrix M:

M2
α′

β′

= q2 δα′
β′

(8.19)

where the constant q2 = P−

P
−̃

. By that choice of the matrix M2 and constant q2 we turn

equation (8.18) into (8.16). Furthermore we should solve relation (8.19) for the matrix

M. As in the whole AdS section we ask for the SO( 4 ) ⊗ SO( 4 ) invariance. With that

requirement we get two branches for the M matrix (actually we get four, as we will see,

but the ± is not very important to us):

(M2)α′
β′

=
P−

P−̃

δα′
β′

⇒ Mα′
β′

= ±

√
P−

P−̃

{
δα′

β′

(Γ̃5)α′
β′

(8.20)

We first notice few nice properties of (8.20). The solution is actually the same as in the

flat case, see (7.42). We are in the AdS space but the matrix M that combines Dα′ and

Dα̃′ does not depend on the rAdS. Unfortunately we got the same not very nice square

root factor in (8.20). We would need to find some way to deal with it.

Having solved one half of equations (8.16) and (8.17). We solve the second half, that

is just relation (8.16):

0 = (X1 − X3 ) (Γ̃5)
β σ b+a+b (γ

b)σ α′ − Mα′
σ′

X2 b+a+b (γ
b)βσ′ (8.21)

+Y1 b
β σ (γa)σ α′ + Y2 b

ν σ (Γ̃5)σ
λ (γa)λα′ (Γ̃5)ν

β + Mα′
σ′

Y3 b
β σ (Γ̃5)σ

λ (γa)λσ′
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The claim is that given solution M the block matrices b+a+b and bαβ are fixed (up to the

overall constant). We will again use the same identity (7.30) as in the flat case. We expect

the solutions (we have two branches) will be certain rAdS dependent deformation of the

original flat space solutions. We also require to maintain the SO( 4 ) ⊗ SO( 4 ) invariance

of the solution so the most general ansatz for the equation (8.21) is:

b+a+b := Aδab + B (Γ̃5)ab || bαβ := C δαβ + D (Γ̃5)αβ (8.22)

Because of later importance we will first solve the (Γ̃5) branch of the M solution (8.20).

Later we will also provide solution for the δ branch of the (8.20). We plug M and (8.22)

into (8.21) and solve for A, B, C and D using the identity (7.30), we remind that q :=

±
√

P−

P
−̃

. We get the following solutions:

the (Γ̃5)α′
β′

branch: (8.23)

det :=
(
(X1 − X3 )

2 − ( q X2 )
2
)
||

A =
D

det

(
(X1 −X3)(Y1 + Y2) + q2X2Y3

)
|| B = q

D

det

(
X2(Y1 + Y2) + (X1 −X3)Y3

)

C = 0 ||

the δα′
β′

branch: (8.24)

det :=
(
(Y1 + Y2 )

2 − ( q Y3 )
2
)
||

|| B = 0

C = q
A

det

(
(Y1 + Y2)X2 + (X1 −X3)Y3

)
|| D := −

A

det

(
(Y1 + Y2)(X1 −X3) + q2X2Y3

)

We can again see that as we do rAdS → ∞ limit in (8.23) we will get the flat solution (7.42),

keeping the D ( or A in δ branch ) rAdS independent in that limit.

8.4 Near horizon limit

In the previous section we found the structure of the linearised pre-potential (8.23)

and (8.24) and also the construction of Dv
α′ that vanishes on the pre-potential (8.10)

and (8.20). We will now introduce the complementary derivative Dw
α′ that is constructed

after picking the Dv
α′ derivative (i.e. picking the matrix M in (8.20)) and changing the

sign in front of the M (the second linearly independent combination). Thus we have:

Dw
α′ := Dα′ − Mα′

β′

D
β̃′

(8.25)

The notation for the upper indices v and w in ((8.10) and (8.25)) comes from equivalent

notation for dv and dw derivatives used in [17, 18], (and also for du and dū, whose analogies

are to be defined later). In analogy with the paper [17, 18] we want to define the P+

operator that has Dv
α′ and Dw

α′ as eigenvectors with nonzero eigenvalues. We can solve

for P+ in full generality, i.e. keeping the non-local square root factors in derivatives Dv
α′

and Dw
α′ . This would introduce the non-local square root factors also into the definition

of P+ and would cause further problems. What we will do instead is to restrict the

coordinate dependence of the pre-potential V to be just the PSU (2, 2 | 4). This is the
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same algebra we wanted to use at the beginning of this project, but we were forced to

extend it to the full SO(10) ⊗ SO(10) T-dually extended super-algebra. Now, we want to

restrict just the coordinate dependence of the pre-potential. Doing so the P− = P−̃ on

pre-potential, not everywhere. That is enough to get rid of the non-local factors in Dv
α′

and Dw
α′ as they act on pre-potential. Then we can redefine (8.10) and (8.25) by saying

that the new square root free Dv and Dw to be our new definitions. With this it is easy

to see that the good definition of P+ is:

P+ :=
1

2
(P+ + P+̃ ) = P+ (8.26)

where the last equality holds on pre-potential.

Following the definitions in [17, 18] of the AdS boundary limit we propose that any

operator K which is an eigenvector of P+ operator, i.e. [P+, K ] = cK, scales as Rc as we

approach the boundary, i.e. R → 0 limit, where R is a radial coordinate on the Poincaré

patch. Another way how to state the limit is that by putting the R → 0 we contract the

isometry groups SO( 4, 1 ) and SO( 4, 1 ) to ISO( 3, 1 ) and ISO( 3, 1 ) (we Wick rotated

the S5 isometry group for the purpose of this limit). For more details on this limit (that

can be stated also through the explicit coordinates on AdS5 and S5) see notes [17, 18].

Using the previous definitions of the AdS boundary limit we can analyse the different

branches of the Dv solutions (8.20). Let’s first pick the δα′
β′

branch (let’s work with

both ± sub-branches at once). Note that even on pre-potential the Dα′ 6= Dα̃′ as can be

seen from the explicit construction of those derivatives in [28] in the section 5. Then the

commutator is:

[P+, Dα′ + Dα̃′ ] = ±
1

rAdS
(γ+)α′ β′ (Γ̃5)

β′ σ′

(Dσ′ ± Dσ̃′) + . . . (8.27)

The . . . part correspond to the current that vanishes in the supergravity limit (i.e. we

do not see string parameter σ) and on pre-potential. We also used the commutators

from (3.7) and the mixed AdS commutators from (4.9). We also used the explicit solution

for the PSU ( 2, 2 | 4 ) (we are on pre-potential) derivatives in terms of τ and σ currents, see

section 5 in [28]. More specifically we used that DΩ ≡ Dα′

= ωα′

+ 1
2

1
rAdS

(Γ̃5)
α′ β′

D
β̃′
,

where the ωα′

is the current proportional to σ derivative and it has to vanish in the

supergravity limit. The equation (8.27) is very interesting. It tells us how the Dv scales for

the ± δα′
β′

branch of (8.20). We also notice that the scaling constant is rAdS dependent

and vanishes for rAdS → ∞. More importantly because of the (Γ̃5) for fixed rAdS and for

fixed sub-branch of ± δα′
β′

the scaling constant c is either + ( 1
rAdS

) for one half of SO(8)

chiral index α′ or − ( 1
rAdS

) for second half. And this is not good because by [17, 18] the Dv

derivative should scale like 1
R

and Dw should scale like R (put rAdS = 1 for simplicity).

In (8.27) we can see that just 1
2 of derivatives scale properly. This boundary limit then

distinguishes between two branches of (8.20). In the following we will see that the (Γ̃5)

branch has exactly right scaling properties so it corresponds to the right solution. Without

this boundary limit we did not have a way how to pick a branch in (8.20). In the case of

(Γ̃5) branch we have one more (Γ̃5) matrix in (8.27) thus we get:

[P+, Dα′ ± (Γ̃5)α′
ρ′ Dρ̃′ ] = ±

1

rAdS
(Dα′ ± (Γ̃5)α′

ρ′ Dρ̃′) + . . . (8.28)
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The equation (8.28) will give us the correct solution. From (8.28) we can see that for

fixed rAdS and for fixed (Γ̃5) sub-branch we will have proper scaling for full SO( 8 )

chiral index α′. Because we require Dv to scale like 1
R

and Dw scale like R we have

Dv
α′ = (Dα′ − (Γ̃5)α′

ρ′ Dρ̃′) and Dw
α′ = (Dα′ + (Γ̃5)α′

ρ′ Dρ̃′). The positive news is that

the blowing-up derivative Dv is zero on the pre-potential by our construction, so there is

no possible singularity arising as we approach the boundary.

Its easy to see how the derivatives Dα and Dα̃ scale. Because the (γ+)αβ = 0 the

[P+, Dα ] = [P+, Dα̃ ] = 0. So they scale like 1. Those derivatives are building up the

Du and Dū, analogous derivatives to paper [17, 18] derivatives du and dū. The explicit

forms of Du and Dū won’t be needed in this paper so we do not provide them.

8.5 Near horizon limit and field equations

Comparing result with [17, 18] we want to see that the field equations for the pre-potential

in the near horizon limit (i.e. in the R → 0) is just of the form P+ V = 0 + O(R ). This

will be our final confirmation that we discovered the right pre-potential. We first notice that

the Lorentz generator scales like O( 1 ), this can be seen from commutator [S+a, P+ ] =

[S+̃a
, P+ ] = 0. To see what is P+ on pre-potential we could directly use some appropriate

torsions (remember pre-potential is a linear combination of fields). We found it easier

however to use a different approach. Let’s look at the torsion constraint (6.11) but for the

α index instead of α′ (the α index is one of the SO(8) chiral indices):

T
DS S̃

≡ T
α+a +̃b

= 0 = D[αH+a +̃b)
+ H[α |M ηMN f

+a +̃b)N
(8.29)

= DαH+a +̃b
+ S

+̃b
Hα+a + S+aH+̃bα

(8.30)

First notice that the structure of (8.30) is very different than the structure of (6.11). There

is no f term in (8.30) and there is the full derivative term present. Even in the AdS case

the f term is missing. This can be seen as follows. The f
+a +̃bN

= 0 in AdS and also in

flat case and also f
α +̃bN

= 0. The only possibly nonzero f term is coming from fα+aN .

The H
+̃bM

ηMN fα+aN ∝ (γ+a)α
ν′ H

ν′ +̃b
. The vielbein H

ν′ +̃b
is zero (also in the AdS)

as was shown in the analysis under (6.11). Next, we can recognise the term Hα +̃a
as a

part of H matrix (7.19). The vielbein Hα+a has also been analysed in table 7. It is related

to H+a α̃ , see table 7. We need to be more careful with that relation because in (8.30) we

again discover the S derivative peculiarity, we saw earlier.

In general all fields in H (now better viewed as their irreducible pieces) could be

obtained from the pre-potential V by an action of appropriate (irreducible) combination of

Dw on the pre-potential. One could analyse in full detail what is the exact structure of those

pieces and reproduce famous field content of AdS5 × S5 supergravity first discovered in [12]

and later used in [13]. This would lead us away from this paper real aim, so we postpone

this analysis to next paper. The aim of this section is to show that on pre-potential V the

operator P+ vanishes in the near horizon limit.
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For this reason we notice following expansions:

H
+a +̃b

= c0 V + c2 (D
w)2 V + c4 (D

w)4 V + c6 (D
w)6 V + c8 (D

w)8 V (8.31)

H+a α̃ = d1D
w V + d3 (D

w)3 V + d5 (D
w)5 V + d7 (D

w)7 V (8.32)

H+̃aα = e1D
w V + e3 (D

w)3 V + e5 (D
w)5 V + e7 (D

w)7 V (8.33)

where factors c0, c2 . . . , d1, d3 . . . and e1, e3 . . . are constant factors with appropriate

index structure. Note that the c0 is non-zero. The important observation is that for each

term in (8.31), (8.32) and (8.33) we know how it scales in the R → 0 limit, because we

know that Dw scales like R.

Next, we want to combine (8.30) with known scalings of all (8.30) objects to get an

information how Dα V scales. On one hand it should scale like O (1) on the other hand

the relation (8.30) relates it to different fields. What we obtain is a nontrivial relation

that Dα V = O (R ) as we go to the boundary. It just means that Dα V = 0 (and so

also Dα̃ V = 0) in the near horizon limit. Because of the anti-commutator {Dα, Dβ} =

2 (γ−)αβ P+. This is enough to see that P+ V ≡ P+ V = 0 in the near horizon limit.

There are two crucial steps. One is to relate the (8.30) term S
+̃b

Hα+a to H+a α̃. This is

relatively straightforward using table 7 and explicit S
+̃b

derivative. Second step is to plug

expansions (8.31), (8.32) and (8.33) and the scalings of particular pieces into (8.30). Doing

that we get the following:

0 = DαH+a +̃b
+ S

+̃b
Hα+a + S+aH+̃bα

(8.34)

= DαH+a +̃b
+ S

+̃b

(
− f−̃αM ηMN 1

P−̃

H+aN

)
+ S+aH+̃bα

= DαH+a +̃b
−

c

rAdS
(γ−)αν ( Γ̃5 )

ν σ S
+̃b

1

P−̃

H+a σ̃ + S+aH+̃bα
(8.35)

= Dα

(
c0 V + c2 (D

w)2 V + . . .
)

(8.36)

−
1

rAdS
(γ−)αν ( Γ̃5 )

ν σ S
+̃b

1

P−̃

(
d1D

w V + d3 (D
w)3 V + . . .

)

+S+a

(
e1D

w V + e3 (D
w)3 V + . . .

)

The equation (8.35) contains all the right expressions to establish the near horizon

limit. By the discussion below (8.28) the Dw
α′ derivative scales like O (R ) (for the projec-

tive branch), we also have the scaling of S+a and S
+̃b

that goes like a constant. Applying

that knowledge we get the equation (8.35) in the near horizon limit:

0 = c0Dα V + O (R) (8.37)

The c0 is nonzero constant (tensor) so it follows that Dα V = 0 at the AdS boundary.

From {Dα, Dβ } = (γ−)αβ P+ we get the field equation for the pre-potential in the near

horizon limit:

0 = P+V + O (R) (8.38)

≡ P+V + O (R) (8.39)
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9 Conclusion

We outline results we have obtained: starting from the 10 dimensional IIB string theory. We

embedded the AdS5 × S5 background and expanded the theory around this background

(we also considered a flat background, i.e. AdS5 × S5 with rAdS → ∞ ). Our aim

was to obtain (linearised) pre-potential with desired properties in the case of AdS5 × S5

(also in the flat case). We succeeded and obtained pre-potential construction for flat and

AdS5 × S5 background. We derived only the linearised form, but the vielbein construction

makes non-linearisation straightforward perturbation. The pre-potential (in flat and also in

AdS5 × S5, the projective and chiral) sits in the combination (without further derivatives)

of vielbeins H
S S̃

and H
D D̃

. By construction the Dv derivative vanishes in bulk on the pre-

potential and the (projective) pre-potential satisfies the near horizon limit field equation

P+ V = 0 + O (R) together with vanishing of Du and Dū on pre-potential in the near

horizon limit. This near horizon limit picks out the projective pre-potential instead of

chiral pre-potential (both were obtained as valid bulk solutions).

The vanishing of P+ at the boundary fixes the difference between the conformal weights

(≡ ∆) and U(1) charges (≡ ∆Y ) of all boundary BPS operators, since P+ ∝ ∆ − ∆Y .

The P− ∝ ∆ +∆Y and known expansion of H in powers of Dw from V , fixes the conformal

weights and the U(1) charges for the boundary BPS operators, the relations important in

the AdS/CFT correspondence, see [14, 15].
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A AdS5 × S5 structure of some vielbeins and their derivatives

A.1 The H
S S̃

Using equations (5.3), (5.4), (6.5) and the mixed light-cone gauge together with keeping the

mixed structure constants and evaluating the explicit actions of the S and S̃ derivatives

we derived the first important result for the structure of the HSS̃ vielbein (in the AdS

case). Note that by the symbol  in the in the whole text we denoted the evaluation of

the mixed structure constants in the sense described in section 6.2. In the table 5 (and

after the evaluation of mixed structure constants) we have heavily used the structure of

the mixed structure constant f
a b̃M

that is analysed in the main text, see analysis before

equation (6.7). Moreover we used one more torsion constrain to fix HP S and H
P̃ S̃

in the

table 5. Let’s take an example HP S = Habc. To fix that vielbein we consider T−̃abc = 0:

T
P̃ P S

≡ T−̃abc = 0 (A.1)

= P−̃Habc + SbcH−̃a + PaHbc −̃ + HbcM ηMN f−̃aN

= P−̃Habc + f−̃aM ηMN HbcN

⇒ Habc = − f−̃aM ηMN 1

P−̃

HbcN
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H
−a −̃b

= − f−−̃M ηMN 1
P
−̃

S−a (
1
P−

H
−̃bN

)  0

H
−a +̃b

= − f−−̃M ηMN 1
P−

S
+̃b

( 1
P
−̃

H−aN ) − f
− b̃M

ηMN 1
P− P

−̃

H−aN

 − 1
2 (rAdS)2

1
P− P

−̃

H
−a+̃b

⇒ H
−a +̃b

= 0

H
+a +̃b

= − f−−̃M ηMN 1
P−

S
+̃b

( 1
P
−̃

H+aN ) − f− b̃M ηMN 1
P− P

−̃

H+aN + 1
P−

H
+̃ba

 − 1
2 (rAdS)2

1
P− P

−̃

H
+a+̃b

+ 1
P−

H
+̃ba

⇒ ( 1 + 1
2 (rAdS)2

1
P− P

−̃

)H
+a+̃b

= 1
P−

H
a +̃b

H
−a b̃c

= − f−−̃M ηMN 1
P−

S
b̃c

( 1
P
−̃

H−aN )  0

H
+a b̃c

= fa −̃M ηMN 1
P
−̃
P−

H
b̃cN

− f−−̃M ηMN 1
P
−̃

S+a (
1
P−

H
b̃dN

)

 − 1
2 (rAdS)2

1
P
−̃
P−

H
b̃c+a

⇒ H
+a b̃c

= 0

H
ab c̃d

= − f−−̃M ηMN 1
P−

S
c̃d

( 1
P
−̃

HabN )  0

H+− +̃− = f−−̃M ηMN 1
P
−̃
P−

H+̃−N − f−−̃M ηMN 1
P
−̃

S+− ( 1
P−

H+̃−N )  0

H+−−̃a
= f−−̃M ηMN 1

P
−̃
P−

H−̃aN − f−−̃M ηMN 1
P
−̃

S+− ( 1
P−

H−̃aN )  0

H+− +̃a
= f− ãM ηMN 1

P− P
−̃

H+−N − f−−̃M ηMN 1
P−

S+̃a
( 1
P
−̃

H+−N )

 
1

2 (rAdS)2
1

P− P
−̃

H+− +̃a
⇒ H+− +̃a

= 0

H
+− ãb

= f−−̃M ηMN 1
P
−̃
P−

H
ãbN

− f−−̃M ηMN 1
P
−̃

S+− ( 1
P−

H
ãbN

)  0

Table 5. H
S S̃

vielbein.

Hα′ −a = f−̃α′ M ηMN 1
P
−̃

H−aN  0

Hα′ +a = f−̃α′ M ηMN 1
P
−̃

H+aN  0

Hα′ −̃a
= − f−−̃MηMN 1

P−

S−̃a
1
P
−̃

Hα′ N  0

Hα′ +̃a
= −S+̃a

( f−−̃M ηMN 1
P− P

−̃

Hα′ N )  0

Table 6. H
D S̃

vielbein.

A.2 The H
S D̃

and H
S̃ D

In the section 6.3 we analysed vielbein Hα′ +b. By the similar set of equations as in the

section 6.3 we can fix H
α′ −̃b

. We summarise the structure of the fixed vielbeins from

the section 6.3 discussion in the following table: Similarly we can calculate what is the

table 6 with α′ swapped with α. We will use the analogous analysis as in section 6.3 except

sometimes instead of the equation (6.16) we use T
P̃ D S̃

and also we fix the H
P̃ S̃

using

T
P P̃ S̃

(or some left− right swap of those). Let’s look at two such examples and calculate

what is Hα−a and Hα̃−a respectively (we also use the mixed light-cone gauge):

T
P̃ D S

≡ T−̃α−a = 0 = P[−̃Hα−a ) + H[ −̃ |M ηMN fα−a )N (A.2)

= P−̃Hα−a + H−aM ηMN fα −̃N (A.3)

⇒ Hα−a = − fα −̃M ηMN 1

P−̃

H−aN  (γ−)αν (Γ̃5)
ν σ 1

(rAdS)P−̃

H−a σ̃

– 34 –



J
H
E
P
0
1
(
2
0
1
7
)
0
5
9

Hα−a = − fα −̃M ηMN 1
P
−̃

H−aN

⇒ Hα−a  0

Hα+a = f−̃αM ηMN 1
P
−̃

H+aN  (γ−)αν (Γ̃5)
ν σ 1

(rAdS)P−̃

H+a σ̃

Hα̃−a = f−−̃M ηMN 1
P−

Dα̃
1
P
−̃

H−aN + f− α̃M ηMN 1
P−

H−aN

⇒ Hα̃−a  0

Hα +̃a
= − f−−̃M ηMN 1

P
−̃

Dα
1
P−

H+̃aN + f−̃αM ηMN 1
P
−̃

H+̃aN − η−̃ +̃
1
P
−̃

Hα ã

⇒ Hα +̃a
 (γ−)αν (Γ̃5)

ν σ 1
(rAdS)P−̃

H+̃a σ̃ + 1
P
−̃

Hα ã

Table 7. H
D S̃

vielbein.

Next, examine:

T
P S D̃

≡ T−−a α̃ = 0 = P[−H−a α̃ ) + H[− |M ηMN f−a α̃ )N (A.4)

= P−H−a α̃ + Dα̃H−−a + H−aM ηMN fα̃−N (A.5)

the H−−a is fixed by T
P̃ P S

≡ T−̃−−a = 0:

T
P̃ P S

≡ T−̃−−a = 0 = P[−̃H−−a) + H[−̃ |M ηMN f−−a)N (A.6)

= P−̃H−−a + H−aM ηMN f−̃−N (A.7)

⇒ H−−a = f−−̃M ηMN 1

P−̃

H−aN  0 (A.8)

plugging (A.8) into the (A.5) we get:

H−a α̃ = − f−−̃M ηMN 1

P−
Dα̃

1

P−̃

H−aN − f− α̃M ηMN 1

P−
H−aN (A.9)

⇒ H−a α̃  − (γ−)αν (Γ̃5)
ν σ 1

(rAdS)P−
H−aσ (A.10)

We notice that combining the result (A.10) with (A.3) we get after the evaluation of the

mixed structure constants that H−aα  0 and so also H−a α̃  0. Similar analysis can

be made for the rest of the vielbeins (we mean those from table 6, except α′ switched with

α). Thus we get the table 7. Let us repeat our goal. We wanted to determine the actions

of S
+̃b

and S+a on Hα′ +a and H
+̃bα′

respectively. We wanted to do that because then

the (6.12) gives the action of Dα′ on H
+a +̃b

(where at least the part of the pre-potential

sits). The action of S
+̃b

on Hα′ +a is easily computed using our table 6. Taking the second

top relation from the table 6 and by explicitly applying the S
+̃b

derivative we get:

S
+̃b

Hα′ +a = S
+̃b

(
f−̃α′ M ηMN 1

P−̃

H+aN

)
(A.11)

= η−̃ +̃ f
b̃α′ M

ηMN 1

P−̃

H+aN + f−̃α′ M ηMN S
+̃b

(
1

P−̃

H+aN

)
(A.12)

⇒ S
+̃b

Hα′ +a  − (γb)α′ ν (Γ̃5)
ν σ 1

(rAdS)P−̃

H+a σ̃ (A.13)
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To evaluate S+aH+̃bα′
we need to work a bit more. One can directly use the last relation

in the table 6. We found an easier way however. For that we need an alternative fixing

of the vielbein H
+̃bα′

. This alternative fixing seems to be more suited for an explicit

evaluation of the S+a action (and S−a action). An alternative way how to fix Hα′ +̃a
is

to use T
P̃ D S̃

≡ T−̃α′ +̃a
instead of one that we used in (6.16) and (6.17). Similarly it will

be useful to find an alternative fixing for Hα′ −̃a
. Again that could be done by considering

torsion T
P̃ D S̃

≡ T−̃α′ −̃a
. Let’s look at this alternative fixing more closely:

T
P̃ D S̃

≡ T−̃α′ −̃a
= 0 = P[−̃Hα′ −̃a ) + H[−̃ |M ηMN fα′ −̃a )N (A.14)

= P−̃Hα′ −̃a
+ Dα′ H−̃a −̃ + H−̃aM ηMN f−̃α′ N (A.15)

The H−̃a −̃ type of vielbein has been fixed in (A.8). Plugging the fixing into (A.15) we get

an alternative Hα′ −̃a
fixing:

Hα′ −̃a
= − f−−̃M ηMN 1

P−̃

Dα′

1

P−
H−̃aN − f−̃α′ M ηMN 1

P−̃

H−̃aN (A.16)

Hα′ −̃a
 0 (A.17)

again we can see the behaviour of the Hα′ −̃a
in (A.17) as we evaluate the theory, as it

should be comparing with its behaviour from the fixing in the table 6. The alternative

fixing for the vielbein H
+̃bα′

is calculated similarly:

T
P̃ D S̃

≡ T−̃α′ +̃a
= 0 = P[−̃Hα′ +̃a ) + H[−̃ |M ηMN fα′ +̃a )N (A.18)

= P−̃Hα′ +̃a
+ Dα′ H+̃a −̃ + H+̃aM ηMN f−̃α′ N + Hα′ ã (A.19)

The H+̃a −̃ is fixed similarly to (A.8) resulting in:

H+̃a −̃ = f−−̃M ηMN 1

P−
H+̃aN  0 (A.20)

The Hα′ ã is fixed by the dim 1
2 torsion constraint T

P D P̃
≡ T−α′ ã = 0:

T
P D P̃

≡ T−α′ ã = 0 = P[−Hα′ ã ) + H[− |M ηMN fα′ ã )N (A.21)

= P−Hα′ ã + PãH−α′ + Hα′ M ηMN fã−N (A.22)

The last vielbein we need to fix is the H−α′ , that is again fixed by the dim 1
2 torsion

constraint T
P̃ P D

≡ T−̃−α′ = 0:

T
P̃ P D

≡ T−̃−α′ = 0 = P[−̃H−α′ ) + H[−̃ |M ηMN f−α′ )N (A.23)

= P−̃H−α′ + Hα′ M ηMN f−̃−N (A.24)

⇒ H−α′ = f−−̃M ηMN 1

P−̃

Hα′ N  0 (A.25)

Plugging (A.25) into (A.22) and that into (A.19) we finally get an alternative fixing for

the Hα′ +̃a:

Hα′+̃a
= −f−−̃MηMN

(
1

P−̃P−
Pã

1

P−̃

Hα′N +
1

P−̃

Dα′

1

P−
H+̃aN

)
− fα′−̃MηMN 1

P−̃

H+̃aN

− f− ãM ηMN 1

P−̃ P−
Hα′ N (A.26)
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S−bHα′ −a = − (γ−b)α′
ν f−̃ νM ηMN 1

P
−̃

H−aN − f−̃α′ M ηMN S−b
1
P
−̃

H−aN

⇒ S−bHα′ −a  0

S
−̃b

Hα′ −a = − f−̃α′ M ηMN S
−̃b

1
P
−̃

H−aN

⇒ S
−̃b

Hα′ −a  0

S−bHα′ +a = − (γ−b)α′
ν f−̃ νM ηMN 1

P
−̃

H+aN − f−̃α′ M ηMN S−b
1
P
−̃

H+aN

⇒ S−bHα′ +a  0

S
−̃b

Hα′ +a = − f−̃α′ M ηMN S
−̃b

1
P
−̃

H+aN

⇒ S
−̃b

Hα′ +a  0

S−bHα′ −̃a
= − f−−̃M ηMN S−b

1
P
−̃

Dα′
1
P−

H−̃aN − (γ−b)α′
ν f−̃ νM ηMN 1

P
−̃

H−̃aN

− f−̃α′ M ηMN S−b
1
P
−̃

H−̃aN

⇒ S−bHα′ −̃a
 0

S
−̃b

Hα′ −̃a
= − f−−̃M ηMN S

−̃b
1
P
−̃

Dα′
1
P−

H−̃aN − f−̃α′ M ηMN S
−̃b

1
P
−̃

H−̃aN

⇒ S
−̃b

Hα′ −̃a
 0

Table 8. The S action on H
D S̃

vielbein.

Now we are ready to calculate an action of S−̃a
and S−a and S+̃a

and S+a on table 6

vielbeins (with the exception of S+aH+̃bα′
that we want to calculate in the end of this

paragraph). We summarise those S (and S̃) actions in the next tables: Now we calculate

S−bHα′ +̃a
. The reasoning will be similar later for the final calculation of the S+bHα′ +̃a

so

we first do the former in order to see how it works. Calculation of the S−b action on Hα′ +̃a

is straightforward. It’s done using the relation (A.26) and applying S−b, thus we get:

S−bHα′+̃a
= −f−−̃MηMNS−b

(
1

P−̃P−
Pã

1

P−̃

Hα′N +
1

P−̃

Dα′

1

P−
H+̃aN

)
(A.27)

−
1

2
(γ−b)α′

ν fν −̃M ηMN 1

P−̃

H+̃aN + fα′ −̃M ηMN S−b

1

P−̃

H+̃aN

− f− ãM ηMN S−b

1

P−̃ P−
Hα′ N

Now, we want to evaluate equation (A.27). The terms proportional to f−−̃M and fα′ −̃M

are vanishing by the AdS algebra. We write what’s left over after evaluation:

S−bHα′ +̃a
=

1

2
(γ−b)α′

ν (γ−)ν σ (Γ̃5)
σ ǫ 1

(rAdS)

1

P−̃

H+̃a ǫ̃ (A.28)

+
1

2 (rAdS)2
1

P−̃ P−
S−b (Hα′ +a + Hα′ +̃a

± Hα′ −a ± Hα′ −̃a
)

Note, the ± in last line in (A.28) is explained in the section above (6.7). According to the

table 8 all actions of S−b in the second line of (A.28) are evaluated to zero except of the

S−bHα′ +a that we want to determine. Then the (A.28) could be rewritten in a way that
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S+bHα′ −a = − 1
2 (γ+b)α′

ν f−̃ νM ηMN 1
P
−̃

H−aN + f−̃α′ M ηMN S+b
1
P
−̃

H−aN

⇒ S+bHα′ −a  0

S
+̃b

Hα′ −a = η−̃ +̃ f
b̃α′ M

ηMN 1
P
−̃

H−aN + f−̃α′ M ηMN S
+̃b

1
P
−̃

H−aN

⇒ S
+̃b

Hα′ −a  0

S+bHα′ +a = − 1
2 (γ+b)α′

ν f−̃ νM ηMN 1
P
−̃

H+aN + f−̃α′ M ηMN S+b
1
P
−̃

H+aN

⇒ S+bHα′ +a  − (γ+b)α′
ν (γ−)ν σ (Γ̃5)

σ λ 1
(rAdS)

1
P
−̃

H
+a λ̃

S
+̃b

Hα′ +a = η−̃ +̃ f
b̃α′ M ηMN 1

P
−̃

H+aN + f−̃α′ M ηMN S
+̃b

1
P
−̃

H+aN

⇒ S
+̃b

Hα′ +a  (γb)α′ ν (Γ̃5)
ν σ 1

(rAdS)
1
P
−̃

H+a σ̃

Table 9. The S action on H
D S̃

vielbein.

determines S−bHα′ +̃a
(after evaluation):

(
1 −

1

2 (rAdS)2
1

P−̃ P−

)
S−bHα′ +̃a

=
1

2
(γ−b)α′

ν (γ−)ν σ (Γ̃5)
σ ǫ 1

(rAdS)

1

P−̃

H+̃a ǫ̃ (A.29)

We remind that the H+̃a ǫ̃ vielbein is related to the H+̃a ǫ vielbein by the second top line

in the table 7. Similarly to the (A.27) and its evaluated version (A.29) we can calculate

an action of S
−̃b

Hα′ +̃a
. The result is:

S
−̃b

Hα′+̃a
= −f−−̃MηMNS

−̃b

(
1

P−̃P−
Pã

1

P−̃

Hα′N +
1

P−̃

Dα′

1

P−
H+̃aN

)
(A.30)

− fα′ −̃M ηMN S
−̃b

1

P−̃

H+̃aN − η
ã b̃

f−−̃M ηMN 1

P−̃ P−
Hα′ N

− f− ãM ηMN S
−̃b

1

P−̃ P−
Hα′ N (A.31)

and after evaluation, where we again use the results from table 8:

S
−̃b

Hα′ +̃a
 0 (A.32)

Finally the action of S+bHα′ +̃a
is calculated as in (A.27). Now we know that by an

analogy with the (A.27) and its evaluation we would need to know analogy of the table 8

except now for the S+b. Since calculations are very analogous to those that led to the

table 8 we list just the resulting table(s): 9 and 10.

Now, we calculate the the missing piece in the equation (6.12), i.e. S+bHα′ +̃a
. In

analogy with (A.27) we get:

S+bHα′+̃a
= −f−−̃MηMNS+b

(
1

P−̃P−
Pã

1

P−̃

Hα′N +
1

P−̃

Dα′

1

P−
H+̃aN

)
(A.33)

− η−+ fb −̃M ηMN

(
1

P−̃ P−
Pã

1

P−̃

Hα′ N +
1

P−̃

Dα′

1

P−
H+̃aN

)
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S+bHα′ −̃a
= − 1

2 (γ+b)α′
ν f−̃ νM ηMN 1

P
−̃

H−̃aN + f−̃α′ M ηMN S+b
1
P
−̃

H−̃aN

+ η−+ fb −̃M ηMN 1
P
−̃

Dα′
1
P−

H−̃aN + f−−̃M ηMN S+b
1
P
−̃

Dα′
1
P−

H−̃aN

⇒ S+bHα′ −̃a
 0

S
+̃b

Hα′ −̃a
= η−̃ +̃ f

− b̃M
ηMN 1

P
−̃

Dα′
1
P−

H−̃aN + f−−̃M ηMN S
+̃b

1
P
−̃

Dα′
1
P−

H−̃aN

+ η−̃ +̃ f
b̃α′ M ηMN 1

P
−̃

H−̃aN + f−̃α′ M ηMN S
+̃b

1
P
−̃

H−̃aN

⇒ S
+̃b

Hα′ −̃a
 0

Table 10. The S action on H
D S̃

vielbein.

+
1

2
(γ+b)α′

ν fν −̃M ηMN 1

P−̃

H+̃aN − fα′ −̃M ηMN S+b

1

P−̃

H+̃aN

− f− ãM ηMN S+b

1

P−̃ P−
Hα′ N + η−+ fã bM ηMN 1

P−̃ P−
Hα′ M

and the (partially) evaluate version of (A.33):

S+bHα′ +̃a
 −

1

2 (rAdS)2
1

P−̃

Dα′

1

P−
H+̃a+b

− (γ+b)α′
ν (γ−)ν σ (Γ̃5)

σ λ 1

(rAdS)

1

P−̃

H
+̃a λ̃

+
1

2 (rAdS)2
S+b

1

P−̃ P−

(
Hα′ +a + Hα′ +̃a

± Hα′ −a ± Hα′ −̃a

)
(A.34)

We can see why we just partially evaluated the equation (A.33). The reason is that last

term leads to an action of S+b. Fortunately for us we already computed all those actions

in tables 9 and 10 except S+bHα′ +̃a
that we want to calculate. Therefore the (A.34) leads

to the evaluated version of the S+bHα′ +̃a
:

(
1−

1

2(rAdS)2
1

P−̃P−

)
S+bHα′ +̃a

 −
1

2 (rAdS)2
1

P−̃

Dα′

1

P−
H+̃a+b

(A.35)

−
1

2
(γ+b)α′

ν (γ−)ν σ (Γ̃5)
σ λ 1

(rAdS)

1

P−̃

H
+̃a λ̃

−(γ+b)α′
ν(γ−)νσ(Γ̃5)

σλ 1

2(rAdS)3
1

P−̃P−P−̃

H
+aλ̃

where we used results of tables 9 and 10. For completeness we provide (just the evaluated

version) the last remaining part of tables 9 and 10, i.e. S
+̃b

Hα′ +̃a
:

(
1 −

1

2 (rAdS)2
1

P−̃ P−

)
S
+̃b

Hα′ +̃a
 −

1

2 (rAdS)2
1

P−̃

Dα′

1

P−
H+̃a+b

(A.36)

−
1

2
(γb)α′ ν (Γ̃5)

ν λ 1

(rAdS)

1

P−̃

H
+̃a λ̃

− (γb)α′ ν (Γ̃5)
ν λ 1

2 (rAdS)3
1

P−̃ P− P−̃

H
+a λ̃
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We repeat the first important relation we derived by the above analysis from (6.11)

where we add results from (A.13) and (A.35):

Dα′H
+a+̃b

= −
1

g

1

(rAdS)P−̃

(γb)α′σ(Γ̃5)
σβH

β̃+a
+

1

2g

(
1−

1

f

1

(rAdS)2P−̃P−

)
(γ+a)α′

βH
β+̃b

+
1

f g

1

2 (rAdS)3 P− (P−̃)
2
(γa)α′ ν (Γ̃5)

ν β H
β̃+b

(A.37)

where f and g are defined as follows:

f :=

(
1 −

1

2 (rAdS)2 P−̃ P−

)
(A.38)

g :=

(
1 −

1

f

1

2 (rAdS)2 P−̃ P−

)

A.3 The H
D D̃

To obtain the AdS equation (7.2), we need to fix Hα′ β. This term is fixed by the zero

dimensional torsion T
P̃ DD

≡ T−̃α′ β = 0:

T−̃α′ β = 0 = P[−̃Hα′ β) + H[−̃ |M ηMN fα′ β )N (A.39)

= P−̃Hα′ β + H(β |M ηMN fα′) −̃N

⇒ Hα′ β = − f−̃ (α′ |M ηMN 1

P−̃

Hβ )N  0 (A.40)

In (A.39) we again used the mixed light-cone gauge. In the flat case the mixed f terms

are zero so is Hα′ β . In the AdS case (after evaluation), term proportional to fα′ −̃N is

zero because of (γ−)α′ β′ = 0. But the term proportional to fβ −̃N is nonzero. Luckily

for us the fβ −̃N ∝ 1
rAdS

(γ−)β σ (Γ̃5)
σ ν ην̃N . That structure constant just eats up the β

index and returns ν̃ index with some fixed constant dependence. The torsion constraint

T
P D̃D

≡ T− σ̃ α′ = 0 relates Hσ̃ α′ back to Hσ α′ (after the evaluation). From that and

assuming some wider invertibility (P− and P−̃ are bigger than some constant lower bound

in AdS) we get also in the AdS space Hα′ β  0 (after the evaluation).

We apply S+̃a
on the result of non-evaluated (A.40), thus get:

S+̃a
Hα′β = −η−̃+̃fã(α′|MηMN 1

P−̃

Hβ)N − f−̃(α′|MηMNS+̃a

1

P−̃

Hβ)N (A.41)

S+̃a
Hα′β  −(γ−)βν(Γ̃5)

νσ 1

rAdS
S+̃a

1

P−̃

Hα′σ̃ + (γa)α′ν(Γ̃5)
νσ 1

rAdS

1

P−̃

Hβσ̃ (A.42)

The last term in (A.42) does not bother us too much (it will be a part of the pre-potential),

the first term in (A.42) is actually something we need to evaluate. For that we need to fix

Hα′ σ̃. That could be done by the torsion constraint T
P D̃D

≡ T−α′ σ̃ = 0:

T−α′ σ̃ = 0 = P[−Hα′ σ̃ ) + H[− |M ηMN fα′ σ̃ )N (A.43)

= P−Hα′σ̃ −Dσ̃H−α′ +H−MηMN fα′σ̃N +Hα′MηMN fσ̃−N (A.44)
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moreover theH−α′ has been fixed in (A.25), plugging that into (A.44) we get fixing ofHα′ σ̃:

Hα′ σ̃ = f−−̃M ηMN 1

P−
Dσ̃

1

P−̃

Hα′ N − fα′ σ̃M ηMN 1

P−
H−N + fσ̃−M ηMN 1

P−
Hα′ N

(A.45)

We are ready to calculate S+̃a
Hα′ σ̃ i.e. the term needed in (A.42):

S+̃a
Hα′σ̃ = η−̃+̃f−ãMηMN 1

P−
Dσ̃

1

P−̃

Hα′N + f−−̃MηMNS+̃a

1

P−
Dσ̃

1

P−̃

Hα′N (A.46)

+
1

2
(γ+a)σ

ν′ fα′ ν̃′ M ηMN 1

P−
H−N − fα′ σ̃M ηMN S+̃a

1

P−
H−N

−
1

2
(γ+a)σ

ν′ fν̃′ −M ηMN 1

P−
Hα′ N + fσ̃−M ηMN S+̃a

1

P−
Hα′ N

Now, we can evaluate (A.46), for clearness we include terms that we already know are

evaluated to zero or are zero by the mixed light-cone gauge:

S+̃a
Hα′ σ̃  

1

2 (rAdS)2
1

P−
Dσ̃

1

P−̃

(Hα̃′ +a + Hα̃′ +̃a
± Hα̃′ −a ± Hα̃′ −̃a

) (A.47)

(± )
1

2

1

rAdS
(γ+a)σ

ν′ (γcd)ν′
ρ′ (Γ̃5)ρ′ α′

1

2P−
(H− cd + H

− c̃d
) (A.48)

− (± )
1

rAdS
(γcd)σ

ρ′ (Γ̃5)ρ′ α′ S+̃a

1

2P−
(H− cd + H

− c̃d
) (A.49)

−
1

rAdS
(γ−)σ ν (Γ̃5)

ν ρ S+̃a

1

P−
Hα′ ρ (A.50)

Note that in the lines (A.48) and (A.49) we have the ± symbol. It comes from the

mixed structure constant f
D D̃Σd ≡ f

α β̃
cd, where underline indices are now (and

just now) the SO( 10 ) chiral indices (for the left and right algebra), and Σd is the Σ

index for the SO( 5 ) ⊗ SO( 5 ) diagonal subgroup of the original SO( 10 ) ⊗ SO( 10 )

group. The (± ) symbol determines to which SO( 5 ) of the diagonal subgroup given

Σd belongs. This mixed structure constant could be written without the ± symbols as

f
α β̃

cd = 1
rAdS

(γ[c)σ ρ (Γ̃5)
ρ ν (γd])ν α′ . The ± then comes from the fact that by the con-

struction Γ̃5 commutes with a ∈ { 10, 1 . . . 4 } and anti-commutes with a ∈ { 5, . . . 9 }.

We used the prior definition in this section for some convenience. In the final expressions

we will always use the definition without the ± symbol.

Let’s evaluate expressions (A.47), (A.48), (A.49) and (A.50). The line (A.47) is evalu-

ated to 0 by the table 6. We note very important property in the lines (A.48) and (A.49).

The summation over the cd indices is really just a summation over the SO( 5 ) ⊗ SO( 5 )

diagonal subgroup of the full SO( 10 ) ⊗ SO( 10 ). The line (A.48) is evaluated to 0 by

the mixed light-cone gauge (second term) and by the following fixing of the H− cd (coming

from torsion constraint T
P̃ P S

≡ T−̃−ab = 0):

H−ab = f−−̃M ηMN 1

P−̃

HabN ⇒ H−ab  0 (A.51)
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The line (A.50) has an action S+̃a
Hα′ ρ that is exactly what we want to determine. The

line (A.49) is fixed as follows. The vielbein H
− c̃d

= 0 by the mixed light-cone gauge. The

action S+̃a
H− cd is however nontrivial. We should take fixing (A.51) and apply S+̃a

:

S+̃a
H− cd = − f− ãM ηMN 1

P−̃

HcdN + f−−̃M ηMN S+a

1

P−̃

HcdN (A.52)

S+̃a
H− cd  

1

2 (rAdS)2
1

P−̃

(Hcd+a + H
cd +̃a

± Hcd−a ± H
cd −̃a

) (A.53)

By the table 5 the only nonzero term in (A.53) is H+d +̃a
thus we get:

S+̃a
H−+d  

1

2 (rAdS)2
1

P−̃

H+d +̃a
(A.54)

Then finally the equation (A.47) till (A.50) is evaluated to:

S+̃a
Hα′ σ̃  ±

(− 1 )

4 (rAdS)3 P− P−̃

(γ+d)σ
ρ′ (Γ̃5)ρ′ α′ H+d +̃a

(A.55)

−
1

(rAdS)P−
(γ−)σ ν (Γ̃5)

ν ρ S+̃a
Hα′ ρ

Combining (A.55) and (A.42) we will get the following relation for the evaluated action of

S+̃a
Hα′ β:

(
1−

1

P−P−̃(rAdS)2

)
S+̃a

Hα′β = −
1

4(rAdS)4P−P−̃
2
(Γ̃5)βν(γ

d)νρ
′

(Γ̃5)ρ′α′(Γ̃5)d
gH+g+̃a

+
1

(rAdS)P−̃

(γa)α′ ν (Γ̃5)
ν σ Hβ σ̃ (A.56)

where we simplified (A.55) by using the explicit property of γ− and γ+ being the unit

or zero matrix (depending on specific indices), see (3.14). We used this simplification in

another equations as well (for example in equation (6.21)). In the equation (A.56) we also

used new matrix (Γ̃5)d
g, that was be introduced in (7.32). We also used the identity (7.30)

to simplify (A.56). Plugging the evaluated expression (A.56) into (7.2) we will get the

action of Dα′ Hβ +̃a
:

0 = Dα′ Hβ +̃a
−

1

h 4 (rAdS)4 P− P−̃
2
(γc)α′ β H+c +̃a

(A.57)

+ 2 (γc)α′ β H+̃a c
+

1

h (rAdS)P−̃

(γa)α′ ν (Γ̃5)
ν σ Hβ σ̃

left ↔ right (A.58)

where h is defined as:

h :=

(
1 −

1

P− P−̃ (rAdS)2

)
(A.59)

The equations (A.57) and (A.58) are very interesting since after applying the Dα′ (or Dα̃′)

derivatives we are getting terms like H+̃a c
that is basically our original H+̃a+c

, see (6.6).
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Moreover we got also term Hβ σ̃ that is a new term and was important in sections where

we constructed the pre-potential.

Another important derivatives are Dα̃′ on Hβ +̃a
and Dα′ on H

β̃+a
. We will look at

those closer:

T
D̃ D S̃

≡ Tα̃′ β +̃a
= 0 = D[α̃′ Hβ +̃a) + H[α̃′ |M ηMN fβ +̃a )N (A.60)

= Dα̃′ Hβ +̃a
+ S+̃a

Hα̃′ β − Dβ H+̃a α̃′ + Hα̃′ M ηMN fβ +̃aN

+H+̃aM ηMN fα̃′ βN − HβM ηMN f+̃a α̃′ N (A.61)

The mixed f terms are zero in the flat superspace. In the AdS case the fα̃′ βN 6= 0 and

there is also AdS contribution coming from S+̃a
Hα̃′ β . This contribution can be calculated

by analogy with the equations (A.47), (A.48), (A.49), (A.50) and (A.56). Thus getting

evaluated action S+̃a
Hα̃′ β :

S+̃a
Hα̃′ σ = ±

(− 1 )

h 4 (rAdS)3 P−̃ P−
(γ+d)α′

ν (Γ̃5)ν σ H+̃d+a
(A.62)

+
1

h (rAdS)2 P−̃ P−
(γ−)σ ν (Γ̃5)

ν ρHρ̃ β (Γ̃5)
β ǫ (γa)ǫ α′

where h was defined in (A.59). The (A.61) mixed structure constant fβ +̃aN = 0 and the

fα̃′ βN has been discussed before (see equations (A.46) and (A.47) till (A.50)). Moreover,

the vielbein H+̃a α̃′ is evaluated to 0, see table 6. Evaluating everything in (A.62) we get:

0 = Dα̃′ Hβ +̃a
−

1

h 4 (rAdS)3 P−̃ P−
(γd)α′ ǫ (Γ̃5)

ǫ σ γ+σ β H+̃d+a
(A.63)

+
1

rAdS
(γd)α′ ǫ (Γ̃5)

ǫ σ (γ+)σ β H+d +̃a

+
1

h (rAdS)2 P−̃ P−
(γ−)β ν (Γ̃5)

ν ρHρ̃ λ (Γ̃5)
λ ǫ (γa)ǫ α′ −

1

2
(γ+a)α′

ν Hβ ν̃

left ↔ right (A.64)
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[4] M. Poláček and W. Siegel, T-duality off shell in 3D type II superspace, JHEP 06 (2014) 107

[arXiv:1403.6904] [INSPIRE].

[5] L. Andrianopoli and S. Ferrara, K-K excitations on AdS5 × S5 as N = 4 ‘primary’

superfields, Phys. Lett. B 430 (1998) 248 [hep-th/9803171] [INSPIRE].

[6] H. Ooguri, J. Rahmfeld, H. Robins and J. Tannenhauser, Holography in superspace,

JHEP 07 (2000) 045 [hep-th/0007104] [INSPIRE].

[7] M. Hatsuda and W. Siegel, A new holographic limit of AdS5 × S5,

Phys. Rev. D 67 (2003) 066005 [hep-th/0211184] [INSPIRE].

[8] M. Hatsuda and W. Siegel, Superconformal spaces and implications for superstrings,

Phys. Rev. D 77 (2008) 065017 [arXiv:0709.4605] [INSPIRE].

[9] W. Siegel, New superspaces/algebras for superparticles/strings, arXiv:1106.1585 [INSPIRE].

[10] P. Heslop and P.S. Howe, On harmonic superspaces and superconformal fields in

four-dimensions, Class. Quant. Grav. 17 (2000) 3743 [hep-th/0005135] [INSPIRE].

[11] G.G. Hartwell and P.S. Howe, (N, p, q) harmonic superspace,

Int. J. Mod. Phys. A 10 (1995) 3901 [hep-th/9412147] [INSPIRE].

[12] H.J. Kim, L.J. Romans and P. van Nieuwenhuizen, The mass spectrum of chiral N = 2

D = 10 supergravity on S5, Phys. Rev. D 32 (1985) 389 [INSPIRE].

[13] E. D’Hoker, S.D. Mathur, A. Matusis and L. Rastelli, The operator product expansion of

N = 4 SYM and the 4 point functions of supergravity, Nucl. Phys. B 589 (2000) 38

[hep-th/9911222] [INSPIRE].

[14] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity,

Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

[15] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253

[hep-th/9802150] [INSPIRE].

[16] P.S. Howe and P.C. West, The complete N = 2, D = 10 supergravity,

Nucl. Phys. B 238 (1984) 181 [INSPIRE].

[17] W. Siegel, AdS/CFT in superspace, arXiv:1005.2317 [INSPIRE].

[18] W. Siegel, Introduction to AdS/CFT, http://insti.physics.sunysb.edu/∼siegel/sconf.pdf.

[19] W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826

[hep-th/9305073] [INSPIRE].

[20] E. Witten, Twistor-like transform in ten-dimensions, Nucl. Phys. B 266 (1986) 245

[INSPIRE].
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