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1 Introduction and summary

Recently, the formulation of superstring field theory has progressed gradually: actions for

superstring field theories were constructed and their properties have been clarified [1–4].

In addition to these, 1PI effective field theory approach has provided a good insight into

self-dual gauge theory and supergravity [5]. One trigger of these developments was given

by the establishment of the A∞/L∞ formulation: the gauge invariant actions for open

NS string [6], heterotic NS string, and closed NS-NS string [7] were constructed by giving
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the prescription to get the string products satisfying A∞/L∞ relations. This prescription

was extended to the cases including the Ramond sector and the equations of motion were

provided in the work of [8]. At least at the tree level, these theories reproduce S-matrices of

perturbative superstring theory with insertions of picture-changing operators at external

lines [9]. One of our aims in this paper is to develop the understanding of the relation

between these A∞/L∞ theories and other theories such as WZW-like theories.1

While these A∞/L∞ theories work well, we know that WZW-like theories [16–21]

would also give the same results from [22, 23].2 Actually, we have clear understandings

for open superstrings: for the NS sector, the relation between the A∞ action given in [6]

and the Berkovits WZW-like action [16] is clarified by the works of [29–31], and for the

NS and R sectors, the equivalence of the complete action from which the equations of

motion given in [8] are derived and the complete action proposed in [2] is provided by the

work of [4].3 It would be important to extend these understandings of open strings to the

case of closed strings and to construct complete actions for heterotic and type II theories.

However, it seems to be difficult to discuss them on the basis of the same procedure4 as [29]

and known WZW-like actions [18–21]: it necessitates other insights because of the skew

between A∞/L∞ actions and these conventional WZW-like actions, which we explain. It

would be helpful to consider their dual versions.

Recall that the Berkovits theory is formulated on the large Hilbert space, which is

the state space whose superconformal ghost sector is spanned by ξ(z), η(z), and φ(z) [33].

In this paper, we write η for the zero mode of η(z) for brevity. An NS string field Φ of

the Berkovits theory is a Grassmann even, ghost number 0, and picture number 0 state

in the large Hilbert space: ηΦ 6= 0, and all string products are defined by Witten’s star

product [34]. Using a real parameter t ∈ [0, 1] and a path Φ(t) connecting Φ(0) = 0 and

Φ(1) = Φ, the action of the Berkovits theory is given by the Wess-Zumino-Witten-type form

SBerkovits[Φ] = 〈e−ΦηeΦ, e−ΦQeΦ〉+

∫ 1

0
dt 〈e−Φ(t)∂te

Φ(t),
[[
e−Φ(t)ηeΦ(t), e−Φ(t)QeΦ(t)

]]∗
〉,

where Q is the BRST operator, 〈A,B〉 is the BPZ inner product of A and B, and [[A,B]]∗

is the graded commutator for the star products of A and B. One can find that this action

has nonlinear gauge invariances given by

δeΦ = eΦ(ηΩB) + (QΛB)e
Φ,

where ΛB and ΩB are gauge parameters. Like wise [[A,B]]∗, in this paper, we write [[d1, d2]]

for the graded commutator of operators d1 and d2,
[[
d1, d2

]]
= d1 d2 − (−)d1d2d2 d1.

The upper index of (−)d denotes the grading of the operator d, namely, its ghost number.

1For other approaches, see also [10–15].
2For the R sector, see [24–28].
3See also a new result given by T. Erler, Y. Okawa and T. Takezaki, JHEP 08 (2016) 012

[arXiv:1602.02582].
4By taking another approach, namely by constructing an L∞-morphism connecting their equations of

motion, one can discuss the on-shell equivalence of L∞ actions [7] and conventional WZW-like actions [19,

21]. The existence of the L∞-morphism provides the equivalence of the solution spaces of two equations of

motion up to Q-exact terms, which implies the on-shell states match each other. See [32] for more details.
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Conventional WZW-like form. It was shown in [19] that Berkovits action can be

written as a WZW-like form

SBerkovits[Φ] =

∫ 1

0
〈Ãt[Φ(t)], η ÃQ[Φ(t)]

)
〉

with WZW-like functionals ÃQ = ÃQ[Φ] of the dynamical string field Φ defined by

ÃQ[Φ(t)] ≡ e−Φ(t)
(
QeΦ(t)

)
, Ãt[Φ(t)] ≡ e−Φ(t)

(
∂te

Φ(t)
)
.

The equation of motion is given by the t-independent form

η ÃQ[Φ] = 0,

and we can represent gauge transformations using nilpotent operators Q
ÃQ[Φ]

and η ,

Ãδ[Φ] = Q
ÃQ[Φ]

Λ̃ + η Ω̃,

where Λ̃ ≡ eΦΛBe
−Φ and Ω̃ ≡ ΩB are redefined gauge parameters, and

Ãδ[Φ] ≡ e−Φ
(
δeΦ
)
, Q

ÃQ[Φ]
Λ̃ ≡ Q Λ̃ +m2

(
ÃQ, Λ̃

)
+m2

(
Λ̃, ÃQ

)
.

We write m2(A,B) for the star product of A and B. A significant feature of this WZW-like

form of the action is that one can obtain all properties of the action by using not explicit

forms of functionals ÃQ[Φ], Ãt[Φ] but only specific algebraical relations of these functionals,

which we call WZW-like relations:

QÃQ[Φ] +m2

(
ÃQ[Φ], ÃQ[Φ]

)
= 0,

(−)dd ÃQ[Φ] = Q
ÃQ[Φ]

Ãd[Φ],

where d = ∂t, δ, η and the upper index of (−)A denotes the Grassmann parity of A. While

the first relation provides the constraint for ÃQ[Φ], the second relation specifies its deriva-

tives and the properties of the equation of motion. We call Ãd[Φ] an associated field.

The first relation implies that the WZW-like functional ÃQ[Φ], which we call a pure-

gauge-like field,5 gives a solution of the Maurer-Cartan equation for the bosonic open string

products

MB = Q+m2,

which consists of the BRST operator Q and the star product m2. Recall that MB sat-

isfies A∞-relations: Q2 = 0 , Qm2(A,B) − m2(QA,B) − (−)Am2(A,QB) = 0 , and

m2

(
m2(A,B), C

)
− m2

(
A,m2(B,C)

)
= 0 . The derivation properties for d = ∂t, δ, η

5The Maurer-Cartan equation for MB and the explicit form of ÃQ[Φ] have the same forms as the

equation of motion and pure gauge field in bosonic open string field theory respectively. Actually,

one can construct ÃQ[Φ] ≡ ÃQ[1; Φ] as the τ = 1 value solution ÃQ[τ ; Φ] of the differential equation

∂τ ÃQ[τ ; Φ] = QÃQ[τ ;Φ]Φ with the initial condition ÃQ[0; Φ] = 0, which is just the defining equation of the

pure gauge in bosonic theory.
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also hold: [[d,Q]] = 0 and dm2(A,B) −m2(dA,B) − (−)dAm2(A, dB) = 0. In this paper,

we symbolically6 write [[
MB, MB

]]
= 0, [[d,MB]] = 0

for the A∞-relations of MB and the d-derivation properties of MB. These properties yield

the WZW-like relations, and then, the constraint equation and the equation of motion are

given by

Constraint (C-WZW) : QÃQ[Φ] +m2

(
ÃQ[Φ], ÃQ[Φ]

)
= 0,

E.O.M. (C-WZW) : η ÃQ[Φ] = 0.

This construction is extended to more generic case: open NS superstrings with stubs,

heterotic NS strings [19], and closed NS-NS strings [21]. As an example, we consider the

Berkovits theory with stubs. The starting point is a set of generic bosonic open string

products [35]

MB

stub = Q+mst

2 +mst

3 +mst

4 + . . .

which are nonassociateive but satisfy A∞-relations and derivation properties for d =

∂t, δ, η: [[
MB

stub, M
B

stub

]]
= 0, [[d,MB

stub]] = 0.

Using these MB

stub
, d, and the NS open string field ϕ, one can construct a pure-gauge-like

field Ãst

Q[ϕ] and an associated field Ãst

d [ϕ] via the same type of the defining differential

equations as those of the theory without stubs. The resultant theory is given by the

following action

Sstub[ϕ] =

∫ 1

0
dt 〈Ãst

t [ϕ], η Ã
st

Q[ϕ]〉,

and characterized by the pair of equations:

Constraint (C-WZW) : QÃst

Q[ϕ] +mst

2

(
Ãst

Q[ϕ], Ã
st

Q[ϕ]
)
+

∞∑

n=3

mst

n

(
n︷ ︸︸ ︷

Ãst

Q[ϕ], . . . , Ã
st

Q[ϕ]
)
= 0,

E.O.M. (C-WZW) : η Ãst

Q[ϕ] = 0.

However, when we compare this conventional WZW-like action and the A∞ action

given in [7], we notice that there exists a skew: A∞ theory is characterised by the pair of

equations

Constraint (A∞) : ηΨ = 0,

E.O.M. (A∞) : QΨ+M2(Ψ,Ψ) +
∞∑

n=3

Mn

( n︷ ︸︸ ︷
Ψ, . . . ,Ψ

)
= 0,

(1.1)

where Ψ is the NS open string field of A∞ theory and {Mn}
∞
n=2 are NS superstring products.

While the BRST operator Q and the string products {mst
n }

∞
n=2 determine the constraint

6We use bold fonts for coalgebraic operations or notions. See appendix A.
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equation for the ingredients of the conventional WZW-like theory, that of A∞ theory is

supplied by η. This skew is just the obstacle to obtain the off-shell equivalence of two

theory by the naive way.

Alternative WZW-like form. It is known that Berkovits action can be also written

as alternative WZW-like form

SBerkovits[Φ] = −

∫ 1

0
dt 〈At[Φ(t)], QAη[Φ(t)]〉 (1.2)

with alternative WZW-like functionals Aη = Aη[Φ] of the dynamical string field Φ defined

by

Aη[Φ] ≡ (ηeΦ(t))e−Φ(t), At[Φ] ≡ (∂te
Φ(t))e−Φ(t). (1.3)

Then, the equation of motion is given by the t-independent form

QAη[Φ] = 0,

and we can represent gauge transformations using nilpotent operators D∗
η and Q ,

Aδ[Φ] = D∗
η Ω+QΛ,

where Λ ≡ ΛB and Ω ≡ e−ΦΩBe
Φ are redefined gauge parameters, and

Aδ[Φ] ≡
(
δeΦ
)
e−Φ, D∗

η Ω ≡ ηΩ−m2

(
Aη[Φ],Ω

)
− (−)Ωm2

(
Ω, Aη[Φ]

)
.

A significant feature of this alternative WZW-like form is that, as the conventional case,

one can obtain all properties of the action by using only specific algebraical relations of

alternative WZW-like functionals, which we also call WZW-like relations :

η Aη[Φ]−m2

(
Aη[Φ], Aη[Φ]

)
= 0,

(−)ddAη[Φ] = D∗
η Ad[Φ],

(1.4)

where d = ∂t, δ, Q. Therefore, we can say that this type of WZW-like theory also belongs to

the category of so-called the WZW-like formulation. While the first relation provides the

constraint for Aη[Φ], the second relation specifies the properties of the equation of motion.

Note that this type of WZW-like theory, a dual version of the conventional WZW-like

theory, is characterized by the pair of equations

Constraint (A-WZW) : η Aη[Φ]−m2

(
Aη[Φ], Aη[Φ]

)
= 0,

E.O.M. (A-WZW) : QAη[Φ] = 0.

One can find that there is no skew between this type of WZW-like theory and A∞ theory.

Actually, as demonstrated in [29], by decomposing the NS superstring product M = Q+

M2 + M3 + . . . given in [6] as M = Ĝ−1Q Ĝ and by using a redefined string field

– 5 –
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Aη[Ψ] ≡ π1Ĝ(1 − Ψ)−1, we can transform the pair of equations (1.1) characterizing the

A∞ action into

Constraint (A∞) : η Aη[Ψ]−m2

(
Aη[Ψ], Aη[Ψ]

)
= 0,

E.O.M. (A∞) : QAη[Ψ] = 0.

Therefore, we expect that one can construct WZW-like actions which are off-shell equivalent

to A∞ and L∞ actions proposed in [7] as this type of WZW-like theories.

Main results of this paper. What is the starting point of this type of WZW-like

theory? We can read it from the constraint for Aη[Φ] or Aη[Ψ]. For the Berkovits theory,

it is given by the following A∞-product:

Dη
∗ ≡ η −m2,

which we call the dual products of M of [6]. We writeDη
2 for−m2. Then, one can check that

η+Dη
2 satisfies the A∞-relations of η: η2 = 0, η Dη

2(A,B)−Dη
2(ηA,B)−(−)ADη

2(A, ηB) =

0, and Dη
2

(
Dη

2(A,B), C
)
−Dη

2

(
A,Dη

2(B,C)
)
= 0. The derivation properties for d = ∂t, δ, Q

also hold: [[d, η]] = 0 and dDη
2(A,B) −Dη

2(dA,B) − (−)ADη
2(A, dB) = 0. We write them

as follows:

[[Dη
∗ , D

η
∗]] = 0, [[d,Dη

∗ ]] = 0,

which give the starting point of our alternative WZW-like theory. Actually, one can con-

struct the pure-gauge-like field Aη[Φ] = (ηeΦ)e−Φ of (1.3) and the action (1.2) using

this Dη
∗ = η − m2: the pure-gauge-like field Aη[Φ] in (1.3) is given by the τ = 1 value

Aη[Φ] ≡ Aη[τ = 1;Φ] of the solution Aη[τ ; Φ] of the differential equation

∂

∂τ
Aη[τ ; Φ] = ηΦ−m2

(
Aη[τ ; Φ],Φ

)
+m2

(
Φ, Aη[τ ; Φ]

)

with the initial condition Aη[τ = 0;Φ] = 0, where τ ∈ [0, 1] is a real parameter.

In this paper, we show that a nonassociative extended version of this construction

gives our new WZW-like theory, which provides the equivalence of A∞/L∞ formulation

and WZW-like formulation. The starting point is the following A∞ products

Dη = η +Dη
2 +Dη

3 +Dη
4 + . . .

satisfying the A∞-relations of η and derivation properties for d = ∂t, δ, Q :

[[
Dη, Dη

]]
= 0,

[[
d,Dη

]]
= 0.

One can construct these products by the dual products of M = Ĝ−1Q Ĝ given in [7],

namely Dη ≡ Ĝη Ĝ−1. Then, using these dual products Dη, we propose alternative

WZW-like actions which are equivalent to A∞ actions proposed in [7] as this type of

WZW-like theories

Sη[ϕ] = −

∫ 1

0
dt 〈At[ϕ(t)], QAη[ϕ(t)]〉, (1.5)

– 6 –
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where ϕ is a dynamical NS string field, t ∈ [0, 1] is a real parameter. The WZW-like

functionals Aη[ϕ] and At[ϕ] satisfy the nonassociative extended versions of (1.4):

ηAη[ϕ]−m2(Aη[ϕ], Aη[ϕ]) +
∞∑

n=3

Dη
n

(
n︷ ︸︸ ︷

Aη[ϕ], . . . , Aη[ϕ]
)
= 0,

(−)ddAη[ϕ] = DηAd[ϕ],

(1.6)

where now the Aη-shifted dual product Dη is given by

DηΩ ≡ ηΩ−m2

(
Aη[ϕ],Ω

)
−(−)Ωm2(Ω, Aη[ϕ])+

∑

cyclic

∞∑

n=2

(−)signDη
n+1

(
n︷ ︸︸ ︷

Aη[ϕ], . . . , Aη[ϕ],Ω
)
.

Note that this WZW-like action for generic open NS strings just reduces to the alternative

WZW-like form (1.2) of the Berkovits theory when we take the star product. We would like

to emphasize that we do not need a specific form of Aη[ϕ] or At[ϕ] as a functional of given

dynamical string field ϕ but only their properties (1.6) to show the properties of the action:

its variation, equations of motion, gauge invariance, and so on. In appendix D, we will give

explicit forms of two realizations of these functionals Aη and Ad using two different dynam-

ical string fields: Ψ in the small Hilbert space and Φ in the large Hilbert space. Namely,

the equivalence of A∞ and WZW-like actions for open superstring field theory with stubs.

In the above, we take open NS theory as an example to grab a feature of our alternative

WZW-like approach and its necessity. The details of the above open NS theory are discussed

in appendix D. In the following sections, our main topic is “heterotic NS theory”: we

consider the L∞ action and explain how its WZW-like properties arise. On the basis of the

WZW-like structure naturally arising from L∞ actions, we propose new gauge invariant

actions for heterotic NS (and NS-NS strings in appendix E), as well as that for open NS

strings with stubs which we introduced in (1.5). These actions are Z2-reversed versions

of the conventional ones [19, 21], and we show that they are completely equivalent to the

A∞/L∞ actions proposed in [7].

We expect that our new WZW-like actions would provide a first step to construct

complete actions for heterotic and type II string field theories.7 Actually, an action for

open superstring field theory including the R sector was constructed [2] by starting with

this type of WZW-like action: the R string field couples to the Berkovits theory for the NS

sector gauge-invariantly on the basis of (not the conventional but) this type of WZW-like

gauge structure. We would like to mention that although we expect that our newWZW-like

actions are also equivalent to the conventional WZW-like actions, the all order equivalence

of these has not been proven: we will show lower-order equivalence to the conventional

WZW-like actions only.

This paper is organized as follows. In section 2, after a brief review of the L∞ formu-

lation, we clarify a WZW-like structure naturally arising from it. We show that the L∞

action can be written in our (alternative) WZW-like form: the functionals appearing in the

7See a new result given by K. Goto and H. Kunitomo, arXiv:1606.07194.
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action satisfy alternative WZW-like relations, the Z2-reversed versions of the conventional

WZW-like relations given in [19], which guarantees the gauge invariance of the action. The

on-shell condition and the gauge transformation of the (alternative) WZW-like action are

derived by using only the (alternative) WZW-like relations. We also see how the gauge

parameters appearing in the WZW-like form are parameterised by that in the L∞ form.

Then, we conclude the L∞ action gives one realization of the alternative WZW-like action

Sη[Φ] parametrized by the dynamical string field Φ in the small Hilbert space. In sec-

tion 3, we provide another realisation of the alternative WZW-like action using the string

field V in the large Hilbert space. The functionals satisfying our WZW-like relations can

be defined by the differential equations which are the Z2-reversed versions of those given

in [19]. Utilizing them, we construct a new gauge invariant action Sη[V ] for heterotic NS

string field theory. We derive the condition for the equivalence of the new action Sη[V ]

and the L∞ action on the basis of the procedure demonstrated in [29]: these are different

parameterizations of the same WZW-like structure and action. Then we also derive the

relation between two dynamical string fields Φ and V from the equivalence condition. We

end with some conclusions and discussions.

Basic facts and definitions of the coalgebraic notation of A∞/L∞ algebras are sum-

marized in appendix A. In appendix B, we derive a formula which is used in section 2.

In appendix C, we consider the trivially embedding of the string field of the L∞ action

belonging to the small Hilbert space into the string field in the large Hilbert space, and

show the embedded action can also be written in the WZW-like form. Appendices D and

E are devoted to the open NS and the closed NS-NS theories, respectively.

2 WZW-like structure from the L∞ formulation

In this section, we clarify a WZW-like structure naturally arising from the L∞ formulation

for NS heterotic string field theory. After a brief review of the L∞ formulation [7], we

show that the L∞ action can be written in our (alternative) WZW-like form. We see

that the functionals appearing in the action satisfy alternative WZW-like relations, the

Z2-reversed version of the conventional WZW-like relations in [19], which guarantees the

gauge invariance of the action.

Preliminaries. The product of n closed strings is described by a multilinear map

bn : H∧n → H, where ∧ is the symmetrized tensor product satisfying Φ1 ∧ Φ2 =

(−)deg(Φ1)deg(Φ2)Φ2 ∧ Φ1. A map bn : H∧n → H with degree 1 naturally induces a map

from the symmetrized tensor algebra S(H) = H∧0 ⊕H∧1 ⊕H∧2 ⊕ · · · to S(H) itself, called

a coderivation. A map bn : H∧n → H′ with degree 0 also naturally induces a map from

S(H) to S(H′), called a cohomomorphism. Since it is convenient to write the functionals

of the string field and the action in terms of them, we briefly introduce the rules of their

actions here.

– 8 –
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The coderivation dn : S(H) → S(H) is naturally derived from a map dn : H∧n → H

with degree one. It act on Φ1 ∧ · · · ∧ ΦN ∈ H∧N≥n ⊂ S(H) as

dn(Φ1 ∧ · · · ∧ ΦN ) = (dn ∧ IN−n)(Φ1 ∧ · · · ∧ ΦN )

=
∑

σ

(−)σ

n!(N − n)!
dn(Φσ(1), · · · ,Φσ(n)) ∧ Φσ(n+1) ∧ · · · ∧ Φσ(N), (2.1)

and vanishes when acting on H∧N≤n. The graded commutator of two coderivations bn and

cm, [[bn, cm]], is a coderivation derived from the map [[bn, cm]] : H∧n+m−1 → H which is

defined by

[[bn, cm]] = bn(cm ∧ In−1)− (−)deg(bn)deg(cm)cm(bn ∧ Im−1). (2.2)

A set of degree zero multilinear maps {fn : H∧n → H′}∞n=0 naturally induces a coho-

morphism f̂ : S(H) → S(H′), which acts on Φ1 ∧ · · · ∧ Φn ∈ H∧n ⊂ S(H) as

f̂(Φ1 ∧ · · · ∧ Φn) =
∑

i≤n

∑

k1<···<ki

e∧f0 ∧ fk1(Φ1, . . . ,Φk1) ∧ fk2−k1(Φk1+1, . . . ,Φk2)∧

· · · ∧ fki−ki−1(Φki−1+1, . . . ,Φn). (2.3)

For definitions and their more details, see appendix A.

2.1 Construction of L∞-product and L∞ action

In this subsection, we briefly review the construction of the NS superstring product L and

the action SEKS[Φ] for heterotic string field theory in the L∞ formulation originally given

in [7].

NS superstring product L. Let us review the construction of the NS string products

L[τ ] =
∑∞

p=0 τ
pLp+1 satisfying L∞-relation [[L[τ ],L[τ ]]] = 0, the cyclicity L† = −L, and the

η-derivation [[η,L[τ ]]] = 0. The (p + 1)-product Lp+1 carries the ghost number 1 − 2p and

the picture number p. The products L[τ ] consist of η, ξ, and Zwiebach’s bosonic string

products LB = Q + LB
2 + LB

3 + · · · satisfying [[LB,LB]] = 0 [36]. First, we focus on the

condition for L[τ ] to satisfy the L∞ relations,

[[L[τ ],L[τ ]]] = 0. (2.4)

The L∞ relations holds if we define L[τ ] as a solution of the differential equations

∂τL[τ ] = [[L[τ ], λ[0][τ ]]], (2.5)

with the initial condition L[τ=0] = Q. Here λ[0][τ ] =
∑∞

p=0 τ
p
λ
[0]
p+2 are called gauge products.

We can take any λ[0] as long as they carry correct quantum numbers: the (p+ 2)-product

λ
[0]
p+2 carryies ghost number −2(p + 1) and picture number p + 1. The solution for the

differential equations is given by the similarity transformation of Q,

L[τ ] = Ĝ−1
[τ ]QĜ[τ ], (2.6)
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where Ĝ is an invertible cohomomorphism defined by the path-ordered exponential of the

gauge products λ[0]
[τ ] as follows

Ĝ[τ ] =
←
P exp

(∫ τ

0
dτ ′λ[0]

[τ ′]

)
, Ĝ−1

[τ ] =
→
P exp

(
−

∫ τ

0
dτ ′λ[0]

[τ ′]

)
. (2.7)

Here ←(→) on P denotes that the operator at later time acts from the right (left). The

differential equations hold since the path-ordered exponentials satisfy

∂τĜ[τ ] = Ĝ[τ ]λ
[0]

[τ ], ∂τĜ
−1

[τ ] = −λ
[0]

[τ ]Ĝ−1
[τ ]. (2.8)

We may check directly the L∞ relations:

L2 = Ĝ−1QĜĜ−1QĜ = Ĝ−1Q̂QĜ = 0. (2.9)

The cyclicity and the η-derivation properties follow from the suitable choice of λ[0].

Second, let us consider the cyclicity. For L to be cyclic, it is sufficient to choose λ
[0]

to be BPZ-odd, so that Ĝ−1 = Ĝ†:

L† = (Ĝ−1QĜ)† = −Ĝ−1QĜ = −L. (2.10)

Third, we check η acts as a derivation on L, namely the η-derivation properties

[[η,L[τ ]]] = 0. (2.11)

A construction of the suitable gauge product λ[0] is given in [7]. It is helpful to consider a

series of generating functions

L(s, τ) =
∞∑

d=0

sdL[d]
[τ ] =

∞∑

d=0

∞∑

p=0

sdτpL
[d]
p+d+1, (2.12)

including L[τ ] = L[0][τ ] and LB

N = L
[N−1]
N , where the superscript [d] denotes the picture

deficit relative to what is needed for the NS products. They satisfy the L∞-relations and

η-derivation properties,

[[L(s, τ),L(s, τ)]] = 0, (2.13)

[[η,L(s, τ)]] = 0, (2.14)

if we define L(s, τ) as a solution for the following differential equations,

∂τL(s, τ) = [[L(s, τ), λ(s, τ)]], (2.15)

∂sL(s, τ) = [[η, λ(s, τ)]]. (2.16)

Here λ(s, τ) is a series of generating functions for the gauge products

λ(s, τ) =
∞∑

d=0

sdλ[d]
[τ ] =

∞∑

d=0

∞∑

p=0

sdτpλ
[d]
d+p+2, (2.17)
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including λ[τ ] = λ
[0]

[τ ]. The expansion of the differential equations (2.15) and (2.16) in

powers of s and τ provides the recursive definition of L
[d]
N and λ

[d]
N . Note that the explicit

forms of λ
[d]
N is not determined uniquely even if we require all the desired properties, which

follows from the arbitrariness of the inverse of η in (2.16). Then we obtain the suitable λ[0]
[τ ]

which provides η-derivation properties of L[τ ] = L[0][τ ], the s0 part of (2.14). Hereafter we

take τ = 1 and omit the argument:

L := L[τ=1]. (2.18)

Action for heterotic string field theory in the L∞ formulation. A gauge-invariant

action in the L∞ formulation is constructed by [7], using the above products L = {Lk}k≥1.

The dynamical string field Φ in the L∞ formulation carries ghost number 2 and picture

number −1 and belongs to the small Hilbert space Hsmall: ηΦ = 0. The action is written

as follows:

SEKS[Φ] =
∞∑

n=0

1

(n+ 2)!
〈ξΦ, Ln+1(

n+1︷ ︸︸ ︷
Φ,Φ, . . . ,Φ)〉, (2.19)

where L1 = Q and 〈A,B〉 is the BPZ inner product with the c−0 = 1
2(c0 − c̃0)-insertion.

Let us introduce the t-parametrized string field Φ(t) with t ∈ [0, 1] satisfying Φ(0) = 0

and Φ(1) = Φ, which is a path connecting 0 and the string field Φ in the space of string

fields. Utilizing this Φ(t), the action can be represented in the following form:

SEKS[Φ] =

∫ 1

0
dt

∂

∂t

(
∞∑

n=0

1

(n+ 2)!
〈ξΦ(t), Ln+1(

n+1︷ ︸︸ ︷
Φ(t), . . . ,Φ(t))〉

)

=

∫ 1

0
dt

∞∑

n=0

1

(n+ 1)!
〈∂tξΦ(t), Ln+1(

n+1︷ ︸︸ ︷
Φ(t), . . . ,Φ(t))〉. (2.20)

Here we use Φ(t) = ηξΦ(t), η-derivation property, and the cyclicity of L in order to obtain

the form in which both ∂t and ξ act on the first slot of the inner product. Note that this

t-dependence is topological and it does not appear in the variation of the action, as we will

see later. We can represent the action in the coalgebraic notation as follows:

SEKS[Φ] =

∫ 1

0
dt 〈π1(ξt e

∧Φ(t)), π1
(
L(e∧Φ(t))

)
〉, (2.21)

where e∧Φ is the group-like element defined by

e∧Φ = 1+Φ+
1

2
Φ ∧ Φ+

1

3!
Φ ∧ Φ ∧ Φ+ · · · , (2.22)

π1 is a projector from the symmetrized tensor algebra to the single-state space

π1
(
Φ0 +Φ1 ∧ Φ2 +Φ3 ∧ Φ4 ∧ Φ5 + . . .

)
= Φ0, (2.23)

and ξt is a coderivation8 derived from the linear map ξ∂t : Φ 7→ ξ∂tΦ. (See appendix A.)

8We will define ξd for the more general class of d later. For ∂t, definitions are equivalent.
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The variation of the action can be taken as

δSEKS[Φ] = 〈ξδΦ, π1
(
L(e∧Φ)

)
〉, (2.24)

and then the equation of motion is given by

π1L(e
∧Φ) = 0. (2.25)

Since L2 = 0, the action is invariant under the gauge transformation

δΦ = π1L(λ ∧ e∧Φ), (2.26)

where the gauge parameter λ is in the small Hilbert space and carries ghost number 1 and

picture number −1.

2.2 Alternative WZW-like form of L∞ action

The action in the L∞ formulation can be transformed as

SEKS[Φ] =

∫ 1

0
dt 〈π1(ξt e

∧Φ(t)), π1
(
Ĝ−1QĜ(e∧Φ(t))

)
〉

=

∫ 1

0
dt 〈π1

(
Ĝ(ξte

∧Φ(t))
)
, π1Q

(
Ĝ(e∧Φ(t))

)
〉. (2.27)

See [32] for heterotic strings, and see also [29] for open strings. We find that the functionals

Ψη = Ψη[Φ] of the dynamical string field Φ defined by

Ψη[Φ(t)] ≡ π1Ĝ
(
e∧Φ(t)

)
, (2.28)

Ψd[Φ(t)] ≡ π1Ĝ
(
ξde

∧Φ(t)
)
, (2.29)

appear in the action, and we will find that these functionals play important roles. One can

show that, by introducing a certain set of products satisfying L∞-relations,

η, [ · , · ]η, [ · , · , · ]η, · · · , (2.30)

the functionals Ψη[Φ(t)] and Ψd[Φ(t)] satisfy the (alternative) WZW-like relations:

0 = ηΨη +
∞∑

n=1

1

(n+ 1)!
[

n+1︷ ︸︸ ︷
Ψη, . . . ,Ψη]

η, (2.31)

(−)ddΨη = ηΨd +
∞∑

k=1

1

k!

[ k︷ ︸︸ ︷
Ψη, . . . ,Ψη,Ψd

]η
, (2.32)

which are Z2-reversed versions of conventional WZW-like relations in [19]. In this sub-

section, after defining these L∞ products (2.30), which we call the dual L∞ products for

EKS’s L∞ products, we confirm a pair of fields (2.28) and (2.29) satisfy the WZW-like

relations (2.31) and (2.32). We write Lη for this set of dual L∞ products of (2.30).
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Construction of the dual L∞ product Lη. The dual L∞ products Lη can be con-

structed using the cohomomorphism Ĝ which provides the NS heterotic string products

L = Ĝ−1QĜ.9 The product Lη is defined as the similarity transformation of η:

Lη = Ĝη Ĝ−1 =
∞∑

n=1

Lη
n. (2.33)

These Lη carry odd degree, and the n-product Lη
n carries ghost number 3− 2n and picture

number n− 2. Lη satisfiy the L∞-relations, which follow from its definition:

(Lη)2 = Ĝη Ĝ−1Ĝη Ĝ−1 = Ĝηη Ĝ−1 = 0. (2.34)

The Q-derivation properties of Lη follow from η-derivatioies property of L:

QLη = Ĝ (Ĝ−1QĜ)η Ĝ−1 = −Ĝη (Ĝ−1QĜ) Ĝ−1 = −Lη Q. (2.35)

The cyclicity of Lη follows from that the gauge products are BPZ-odd:

(Lη)† = (Ĝη Ĝ−1)† = (Ĝ−1)† η† Ĝ† = −Ĝη Ĝ−1. (2.36)

The dual L∞ products Lη is the generating function for (2.30). Namely, we define

[B1, . . . , Bn]
η := π1L

η
n(B1 ∧ · · · ∧Bn) (2.37)

for any states B1, . . . , Bn ∈ H. In terms of [B1, . . . , Bn]
η, the dual products satisfy the

following L∞ relations, Q-derivation properties, and cyclicity:

∑

σ

n∑

k=1

1

k!(n− k)!
(−)|σ|

[
[Biσ(1)

, . . . , Biσ(k)
]η, Biσ(k+1)

, . . . , Biσ(n)

]η
= 0, (2.38)

Q
[
B1, . . . , Bn

]η
+

n∑

i=1

(−)B1+···+Bk−1
[
B1, . . . , QBk, . . . , Bn

]η
= 0, (2.39)

〈B1, [B2, · · · , Bn+1]
η〉 = (−)B1+B2+···+Bn〈[B1, · · · , Bn]

η, Bn+1〉, (2.40)

where (−)σ is the sign factor of the permutation {Bσ(1), . . . , Bσ(n)}.

For any state A ∈ H, the A-shifted products of Lη are defined by

[B1, B2, · · · , Bn ]ηA =

∞∑

m=0

1

m!
[

m︷ ︸︸ ︷
A,A, · · · , A,B1, B2, · · · , Bn ]η. (2.41)

They also satisfy L∞ relations if A is a solution for the Maurer-Cartan equation of Lη:

0 = π1L
η(e∧A) = η A+

∞∑

n=1

1

(n+ 1)!
[

n+1︷ ︸︸ ︷
A, . . . , A]η. (2.42)

9See also appendix D or section 3.2 of [4] for generic properties of these types of products.
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Let Ψη be a solution for this Maurer-Cartan equation of Lη. In particular we write Dη for

the Ψη-shifted 1-product as

DηB := [B]ηΨη
=

∞∑

m=0

1

m!
[

m︷ ︸︸ ︷
Ψη,Ψη, · · · ,Ψη, B ]η. (2.43)

From the L∞-relation of the Ψη-shifted Lη, we find that Dη is nilpotent,

(Dη)
2B = −[π1L

η(e∧Ψη), B]ηΨη
= 0, (2.44)

and that Dη acts on the Ψη-shifted 2-product [B1, B2]
η
Ψη

as a derivation,

Dη[B1, B2]
η
Ψη

+[DηB1, B2]
η
Ψη

+(−)B1 [B1, DηB2]
η
Ψη

= −[π1L
η(e∧Ψη), B1, B2]

η
Ψη

= 0. (2.45)

Note that the shifted products are BPS odd, which follows from that of Lη,

〈B1, [B2, · · · , Bn+1]
η
Ψη

〉 = (−)B1+B2+···+Bn〈[B1, · · · , Bn]
η
Ψη

, Bn+1〉. (2.46)

WZW-like relations. Let us confirm a pair of fields (2.28) and (2.29) satisfy the WZW-

like relations, which can be represented as follows:

π1L
η
(
e∧Ψη

)
= 0, (2.47)

(−)ddΨη = Dη Ψd. (2.48)

The first relation (2.47) directly follows from the fact that Φ belongs to small space:

Lη
(
e∧Ψη [Φ(t)]

)
= Lη

(
e∧π1Ĝ(e∧Φ(t))

)
= (Ĝη Ĝ−1) Ĝ

(
e∧Φ(t)

)
= Ĝη

(
e∧Φ(t)

)
= 0. (2.49)

We call Ψη[Φ(t)] satisfying (2.47) the pure-gauge-like field.

The second relation (2.48) can be confirmed similarly. The operator d which we focus

on is the derivation on Lη. For example, we can take d = Q, ∂t, or δ. Their derivation

property on Lη leads to [[Ĝ−1dĜ,η]] = 0, and we can define the coderivation ξd such that

Ĝ−1dĜ = (−)d[[η, ξd]]. (2.50)

Note that for the operator d which commutes with Ĝ, such as ∂t and δ, ξd is a coderivation

derived form dξ. Then, utilizing this ξd, the following relation holds:

(−)ddĜ
(
e∧Φ(t)

)
= (−)dĜ (Ĝ−1dĜ)

(
e∧Φ(t)

)

= Ĝη ξd
(
e∧Φ(t)

)

= Lη Ĝ ξd

(
e∧Φ(t)

)

= Lη
(
π1Ĝ ξd

(
e∧Φ(t)

)
∧ e∧π1Ĝ(e∧Φ(t))

)
. (2.51)

Since Dη = π1L
η
(
I ∧ e∧Ψη

)
, we can see Ψη[Φ(t)] and Ψd[Φ(t)] satisfy the WZW-like rela-

tion (2.48) using (2.28), (2.29), (2.50), and (2.51). We call Ψd[Φ(t)] satisfying (2.48) the

associated field.
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Then the action in the L∞ formulation can be written in the alternative WZW-like

form:

SEKS[Φ] =

∫ 1

0
dt 〈Ψt[Φ(t)], QΨη[Φ(t)]〉. (2.52)

The variation of the action can be taken easily using the WZW-like relations (2.47)

and (2.48), and the gauge invariances also follows from them, which can be seen in a

similar (but Z2-reversed) manner to those in [19]. We will see them in the next subsection.

2.3 Variation of the action Sη

Let us take the variation of the action. Note that in the computation here we use only the

WZW-like relations (2.47) and (2.48), and we do not necessitate the explicit forms of the

functionals Ψη and Ψd. Therefore, even if the functionals Ψη and Ψd have different forms,

the variation of the action can be taken in the same manner as long as they satisfy the

WZW-like relations. In this subsection, we write Ψη(t) for Ψη[Φ(t)] and so on for brevity.

First, consider the variation of the integrand of (2.52),

δ
〈
Ψt(t), QΨη(t)

〉
=
〈
δΨt(t), QΨη(t)

〉
+
〈
Ψt(t), QδΨη(t)

〉
. (2.53)

Utilizing the following relation following from (2.48),

0 = [[d1, d2]]Ψη = (−)d1+d2Dη

(
d1Ψd2 − (−)d1d2d2Ψd1 + (−)d2d1+d2 [Ψd2 ,Ψd1 ]

η
Ψη

)
, (2.54)

the first term can be transformed into
〈
δΨt(t), QΨη(t)

〉
=
〈
∂tΨδ(t) + [Ψδ(t),Ψt(t)]

η
Ψη(t)

, QΨη(t)
〉
. (2.55)

Utilizing [[Dη, d ]]B = −[dΨη, B]ηΨη
, the second term can be transformed into

〈
Ψt(t), QδΨη(t)

〉
=
〈
Ψt(t), QDηΨδ(t)

〉

=
〈
DηQΨt(t),Ψδ(t)

〉

=
〈
−QDηΨt(t)− [QΨη(t),Ψt(t)]

η
Ψη(t)

,Ψδ(t)
〉
. (2.56)

The second terms of (2.55) and (2.56) are canceled because of the cyclicity of the Ψη-shifted

Lη. Then we find that the variation of the integrand of (2.52) becomes a total derivative of t:

δ
〈
Ψt(t), QΨη(t)

〉
=
〈
∂tΨδ(t), QΨη(t)

〉
−
〈
QDηΨt(t),Ψδ(t)

〉

=
〈
∂tΨδ(t), QΨη(t)

〉
+
〈
Ψδ(t), Q∂tΨη(t)

〉

= ∂t
〈
Ψδ(t), QΨη(t)

〉
. (2.57)

Integrating over t, the variation of the action is given by
∫ 1

0
dt δ〈Ψt(t), QΨη(t)〉 =

∫ 1

0
dt ∂t〈Ψδ(t), QΨη(t)〉 = 〈Ψδ(1), QΨη(1)〉, (2.58)

where the pure-gauge-like field Ψη(t) and the associated field Ψd(t) vanish at t = 0. Then

the variation of the action becomes

δSEKS = 〈Ψδ[Φ], QΨη[Φ]〉. (2.59)

We find that the variation of the action does not depend on t, and therefore t-dependence

is topological.
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Equations of motion. One can derive the on-shell condition from the variation of the

action in the WZW-like form (2.59),

QΨη[Φ] = 0. (2.60)

For completion, let us discuss the equivalence of (2.60) and (2.25).

The latter (2.25) can be transformed into the following form:

π1L(e
∧Φ) = π1Ĝ

−1QĜ
(
e∧Φ

)
= π1Ĝ

−1Q
(
e∧Ψη [Φ]

)
= π1Ĝ

−1
(
(QΨη[Φ]) ∧ e∧Ψη [Φ]

)
. (2.61)

Since π1Ĝ
−1( · ∧ e∧Ψη) is invertible, (2.60) and (2.25) are equivalent:

π1L(e
∧Φ) = 0 ⇐⇒ QΨη[Φ] = 0. (2.62)

Note that the overall factor π1Ĝ
−1
(
· ∧e∧Ψη

)
comes from the difference of the ξδΦ and Ψδ.

2.4 Gauge transformations

It follows from the nilpotency of Q and Dη that the WZW-like action is invariant under

the following form of the gauge transformations,

Ψδ = DηΩ+QΛ, (2.63)

where Ω and Λ are gauge parameters belonging to the large Hilbert space, which carry

ghost numbers 0 and 0, and picture numbers 1 and 0, respectively. In this subsection, we

see how the gauge transformation (2.26) can be represented in the WZW-like form (2.63).

Let us consider the associated field Ψδ[Φ] = π1Ĝ
(
ξδe

∧Φ
)
= π1Ĝ

(
(ξδΦ) ∧ e∧Φ

)
, with

δΦ being the gauge transformation (2.26) in the L∞-fomulation:

δΦ = π1L(λ ∧ e∧Φ) = π1Lη(ξλ ∧ e∧Φ) = −ηπ1L(ξλ ∧ e∧Φ). (2.64)

We find Ψδ[Φ] can be transformed as follows:

Ψδ[Φ] = π1Ĝ
((

− ξηπ1L(ξλ ∧ e∧Φ)
)
∧ e∧Φ

)

= π1Ĝ
((

ηξπ1L(ξλ ∧ e∧Φ)
)
∧ e∧Φ

)
− π1Ĝ

((
π1L(ξλ ∧ e∧Φ)

)
∧ e∧Φ

)

= π1Ĝη
((

ξπ1L(ξλ ∧ e∧Φ)
)
∧ e∧Φ

)
− π1Ĝ

(
L(ξλ ∧ e∧Φ) + ξλ ∧ π1L(e

∧Φ) ∧ e∧Φ
)

= π1L
ηĜ
((

ξπ1L(ξλ∧e
∧Φ)
)
∧e∧Φ

)
−π1QĜ(ξλ∧e∧Φ)−π1Ĝ

(
ξλ∧π1L(e

∧Φ)∧e∧Φ
)

= π1L
η
(
π1Ĝ

(
(ξπ1L(ξλ ∧ e∧Φ)) ∧ e∧Φ

)
∧ e∧π1Ĝ(e∧Φ)

)
−Qπ1Ĝ(ξλ ∧ e∧Φ)−∆T [λ,Φ]

= DηΩ[λ,Φ] +QΛ[λ,Φ]−∆T [λ,Φ]. (2.65)

While the first two terms of (2.65) correspond to (2.63) with the gauge parameters Ω =

Ω[λ,Φ] and Λ = Λ[λ,Φ] parameterized by λ,

Ω[λ,Φ] = π1Ĝ
(
(ξπ1L(ξλ ∧ e∧Φ)) ∧ e∧Φ

)
, (2.66)

Λ[λ,Φ] = −π1Ĝ(ξλ ∧ e∧Φ), (2.67)

– 16 –



J
H
E
P
0
1
(
2
0
1
7
)
0
2
2

the third term of (2.65),

∆T [λ,Φ] = π1Ĝ
(
ξλ ∧ π1L(e

∧Φ) ∧ e∧Φ
)
, (2.68)

corresponds to the trivial gauge transformation of the WZW-like action. Thus, the gauge

transformation in the L∞-formulation (2.26) can be written in the WZW-like form (2.63).

Trivial gauge transformation. Trivial gauge transformation is a transformation pro-

portional to the equations of motion. Schematically, it is of the following form,

δµϕ
i = (EOM)jµ

ji, µji = −(−)ijµij , (2.69)

and its gauge invariance follows from the symmetric property of µji,

δµS = (EOM)iδµϕ
i = (EOM)i (EOM)jµ

ji = 0. (2.70)

They are no physical significance, but in general they may appear in the algebra of the

nontrivial gauge transformations, and in the context of the Batalin-Vilkovisky quantiza-

tion [37, 38] it is convenient to consider them.10

In our case, by the almost same computation with [31], when A + B + C = even,

cyclicity of the cohomomorphism Ĥ is written as follows:

〈π1Ĥ(A ∧B ∧ e∧Φ), π1Ĥ(C ∧ e∧Φ)〉 = −(−)B〈π1Ĥ(A ∧ e∧Φ), π1Ĥ(B ∧ C ∧ e∧Φ)〉. (2.71)

The derivation is in appendix B. We take Ĥ = Ĝ, A = ξλ, which is even, and B = C =

π1Le
∧Φ, which are odd. The invariance under the trivial gauge transformation (2.68),11

〈−∆T [λ,Φ], QΨη[Φ]〉 =
〈
− π1Ĝ

(
ξλ ∧ π1L(e

∧Φ) ∧ e∧Φ
)
, π1Ĝ

(
π1L(e

∧Φ) ∧ e∧Φ
)〉

= −
〈
π1Ĝ

(
ξλ ∧ e∧Φ

)
, π1Ĝ

(
π1L(e

∧Φ) ∧ π1L(e
∧Φ) ∧ e∧Φ

)〉

= 0, (2.72)

follows from the symmetric property:

π1Le
∧Φ ∧ π1Le

∧Φ = 0. (2.73)

3 Alternative parameterisation for closed NS string field theory

Let ϕ be a some dynamical string field and t ∈ [0, 1] be a real parameter. We write ϕ(t) for a

path satisfying ϕ(t = 0) = 0 and ϕ(1) = ϕ. In section 2.3, we saw that the gauge invariance

of the action is provided by only the algebraic relations (2.47) and (2.48). In other words,

once the functionals Ψη = Ψη[ϕ] and Ψd = Ψd[ϕ] satisfying the WZW-like relations,

0 = π1L
η
(
e∧Ψη [ϕ]

)
, (−)ddΨη[ϕ] = Dη Ψd[ϕ], (3.1)

10For more detail, see [39].
11Note that, although the expression does not contain explicit WZW-like on-shell condition QΨη, the

on-shell equivalence (2.62) guarantees it is trivial gauge transformation.
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are obtained, the gauge invariant action can be constructed as

Sη[ϕ] =

∫ 1

0
dt〈Ψt[ϕ(t)], QΨη[ϕ(t)]〉. (3.2)

This form of the action is the Z2-reversed version of that in [19], which we call the

alternative WZW-like form. We found that by taking ϕ = Φ, (2.28), and (2.29), the L∞

action SEKS[Φ] gives one realisation of this WZW-like action,

Sη[Φ] = SEKS[Φ]. (3.3)

In this section we provides another realisation of these functionals, which is parame-

terized by the string field V in the large Hilbert space. We first see the pure-gauge-like and

the associated functional fields can be defined by the differential equations, which are the

Z2-reversed versions of the construction in [19]. Then, the WZW-like action parameterized

by the string field V ,

Sη = Sη[V ], (3.4)

is given in terms of them. The equivalence of these actions in the different parameterizations

is shown by the almost same procedure performed in [29].

3.1 Large space parameterisation

Let V be a dynamical string field which belongs to the large Hilbert space and carries

ghost number 1 and picture number 0. In this subsection, we provides the another para-

materization of the pure-gauge-like field Ψη = Ψη[V ] and the associated fields Ψd = Ψd[V ].

A set of differential equations which are the Z2-reversed version of those in [19] give

these parameterizations so that WZW-like relations (2.47) and (2.48) hold. Utilizing

these functionals, a new gauge invariant action for the string field V is constructed in the

(alternative) WZW-like form.

Pure-gauge-like field Ψη = Ψη[V ]. A pure-gauge-like (functional) field Ψη[V ] satisfy-

ing π1L
η
(
e∧Ψη [V ]

)
= 0 is the solution of the the Maurer-Cartan equation for Lη. Therefore,

Ψη[V ] is obtained by mimicking the pure gauge construction of [19]. First, we introduce a

real parameter τ ∈ [0, 1]. Second, we solve the differential equation

∂

∂τ
Ψη[τ ;V ] = Dη(τ)V

= η V +

∞∑

k=1

1

k!

[
k︷ ︸︸ ︷

Ψη[τ ;V ], . . . ,Ψη[τ ;V ], V
]η
, (3.5)

with the initial condition

Ψη[τ = 0;V ] = 0. (3.6)

Finally, we set τ = 1 and obtain Ψη[V ] as the τ = 1 value solution,

Ψη[V ] := Ψη[τ = 1;V ]. (3.7)
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One can check that the differential equation actually provides a solution for the Maurer-

Cartan equation

F(Ψη[τ ;V ]) = Lηe∧Ψη [τ ;V ] = 0, (3.8)

by differentiating it by τ :

∂τF(Ψη) = π1L
η
(
∂τΨη ∧ e∧Ψη [τ ]

)
= Dη(∂τΨη) = DηDηV = −[F(Ψη), V ]ηΨη

. (3.9)

With the initial condition F(Ψη[τ = 0;V ]) = 0, this differential equation ensures

F(Ψη[τ ;V ]) = 0 for arbitrary τ , and then (3.8) holds.

Associated fields Ψd = Ψd[V ]. The associated fields Ψd[V ] are the functionals satis-

fying

dΨη[V ] = (−)dDηΨd[V ]. (3.10)

To derive the differential equation which defines Ψd[V ], let us introduce

I(τ) ≡ Dη(τ)Ψd[τ ;V ]− (−)ddΨη[τ ;V ] (3.11)

and consider its differentiation by τ :

∂τI(τ) = [V, I(τ)]ηΨη
+Dη

(
∂τΨd − dV − [V,Ψd]

η
Ψη

)
. (3.12)

We define the functional field Ψd[τ ;V ] by the differential equation

∂τΨd[τ ;V ] = dV +
[
V,Ψd[τ ;V ]

]η
Ψη [τ ;V ]

(3.13)

with the initial condition Ψd[τ = 0;V ] = 0. Then, the equation (3.12) becomes ∂τI(τ) =

[V, I(τ)]ηΨη
, and leads to the vanishing of I(τ) at arbitrary τ since I(τ = 0) = 0, which

means that Ψd[τ ;V ] defined by (3.13) actually satisfies the WZW-like relation (3.10). We

set τ = 1 and obtain the associated (functional) field Ψd[V ] as the τ = 1 value solution

Ψd[V ] := Ψd[τ = 1;V ]. (3.14)

Action Sη = Sη[V ]. We write V (t) for a path satisfying V (0) = 0 and V (1) = V

with a real parameter t ∈ [0, 1]. Utilizing the pure gauge string field Ψη[V ] and associated

fields Ψd[V ] which are defined by (3.5) and (3.13) to satisfy the WZW-like relations (3.8)

and (3.10), one can construct a new gauge invariant action as follows:

Sη[V ] =

∫ 1

0
dt 〈Ψt[V (t)], QΨη[V (t)]〉. (3.15)

The variation of the action can be taken in the same manner as that in section 2.3,

δSη[V ] = 〈Ψδ[V ], QΨη[V ]〉, (3.16)

and the equation of motion can be read off from it,

QΨη[V ] = 0. (3.17)

Since Dη and Q are nilpotent, the action is invariant under the gauge transformations,

Ψδ[V ] = DηΩ+QΛ, (3.18)

where Ω and Λ are gauge parameters belonging to the large Hilbert space, which carry

ghost numbers 0 and 0 and picture numbers 1 and 0, respectively.
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3.2 Equivalence of the actions in the different parameterizations

In this subsection, we show the equivalence of our new action Sη[V ] and L∞ action SEKS[Φ],

by identifying the pure-gauge-like functional fields Ψη[V ] and Ψη[Φ]. We also derive the

relation of two dynamical string fields V and Φ from this identification. Let us consider

the identification of the pure-gauge-like fields in the both parametarisations:

π1Ĝ
(
e∧Φ(t)

)
= Ψη[Φ(t)] ≡ Ψη[V (t)] =

∫ 1

0
dτDη(τ)V (t). (3.19)

Apparently it provides the equivalence of the equations of motions QΨη[V ] = QΨη[Φ].

In addition, one can see that it also provides the equivalence of the two actions Sη[V ]

and Sη[Φ] = SEKS[Φ], which are two different parametrisations of the same (alternative)

WZW-like theory.

Approach 1. Under the identification Ψη[Φ] ≡ Ψη[V ], the associated fields Ψd in two

parameterizations are equivalent up to Dη-exact terms Ψd[Φ] = Ψd[V ]+ (Dη-exact terms),

which is guaranteed by the WZW-like relation (−)ddΨη = DηΨd. We thus find

Dη

(
Ψd[Φ(t)]−Ψd[V (t)]

)
= (−)dd

(
Ψη[Φ(t)]−Ψη[V (t)]

)
= 0. (3.20)

The Dη-exact terms in the associated fields do not affect to the WZW-like relation

(−)ddΨη = DηΨd. Recall that there exists the arbitrariness to add Dη-exact terms in

the associated fields. Besides, since QΨη is Dη-exact, the difference between Ψt[Φ] and

Ψt[V ] does not contribute to the action. Then, two actions are shown to be equivalent:

SEKS[Φ] =

∫ 1

0
dt 〈Ψt[Φ(t)], QΨη[Φ(t)]〉 =

∫ 1

0
dt 〈Ψt[V (t)], QΨη[V (t)]〉 = Sη[V ]. (3.21)

The correspondence of the gauge parameters is given by (2.66) and (2.67), with the mixing

of the trivial transformation (2.68). Note that we only use the WZW-like relations here,

and therefore this identification provides the equivalence of the WZW-like actions in the

arbitrary parameterizations as long as the WZW-like relations hold.

Approach 2. We write ξ for an operator satisfying [[η, ξ]] = 1. Let us consider a linear

operator f defined by

f ≡
∞∑

n=0

(
ξ(Dη − η)

)n
. (3.22)

One can quickly check this f satisfies
[[
fξ,Dη

]]
= 0. Since QΨη = −DηΨQ, (Dη)

2 = 0, and

Ψt = (fξDη +Dηfξ)Ψt = fξ∂tΨη +DηfξΨt

=
∞∑

n=0

(
ξ(Dη − η)

)n
ξ∂tΨη +DηfξΨt, (3.23)

we can rewrite the action as the following single functional form:

Sη =

∫ 1

0
dt 〈Ψt(t), QΨη(t)〉 =

∞∑

n=0

∫ 1

0
〈
(
ξ(Dη(t)− η)

)n
ξ∂tΨη(t), QΨη(t)〉. (3.24)

This form of the WZW-like action consists of the functional field Ψη and operatorsQ, ξ, and

∂t. Hence the identification (3.19) automatically provides the equivalence of two actions.
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Relation of the fields Φ and V , and partial-gauge-fixing. The identification

Ψη[Φ] ≡ Ψη[V ] can be solved by Φ. Exponentiating both hand side, e∧Ψη [Φ] = e∧Ψη [V ],

and using the property of the cohomomorphism and group-like element, the identification

becomes

e∧Ψη [Φ] = e∧π1Ĝ(e∧Φ) = Ĝe∧Φ = e∧Ψη [V ]. (3.25)

Since Ĝ is invertible, by acting Ĝ−1 and by projecting by π1, the condition of the field

corresponding relation which provides Sη[V ] from the L∞-action SEKS[Φ] is obtained:

Φ[V ] = π1Ĝ
−1(e∧Ψη [V ]). (3.26)

Expanding it in powers of V , it reads

Φ[V ] = ηV −
1

2
ηλ

[0]
2 (V, ηV ) +

1

12
η
(
− λ

[0]
3 (V, ηV, ηV ) + 2λ

[0]
2 (λ

[0]
2 (V, ηV ), ηV )

− λ
[0]
2 (V, λ

[0]
2 (ηV, ηV )) + 2λ

[0]
2 (V, ηλ

[0]
2 (V, ηV ))

)
+O(V 4), (3.27)

where λ
[0]
2 and λ

[0]
3 are gauge products. (See section 2 or [7] for their explicit forms of λ[0].)

The identification Ψη[Φ] ≡ Ψη[V ] can be solved also by V when the η-symmetry is

fixed. By expanding V = V [Φ] = V1(Φ) + V2(Φ,Φ) + V3(Φ,Φ,Φ) + · · · in powers of

Φ, and by acting ξ on the both hand sides of Ψη[Φ] ≡ Ψη[V ], one can determine Vn

perturbatively. The simplest choice of the partial-gauge-fixing condition is ξV = 0, which

provides ξηV = V . Then the explicit form of the partially-gauge-fixed string field V (Φ)

which provides the L∞-action SEKS[Φ] from Sη[V ] is obtained as follows:

V [Φ] = ξΦ+
1

2
ξηλ

[0]
2 (ξΦ,Φ)+

1

12
ξη
(
λ
[0]
3 (ξΦ,Φ,Φ)−2λ

[0]
2 (λ

[0]
2 (ξΦ,Φ),Φ)+λ

[0]
2 (ξΦ, λ

[0]
2 (Φ,Φ))

+λ
[0]
2 (ξΦ, ηλ

[0]
2 (ξΦ,Φ))+3λ

[0]
2 (ξηλ

[0]
2 (ξΦ,Φ),Φ)

)
+O(V 4). (3.28)

If we choose the form of G as given in [7], it reads

V [Φ] = ξΦ+
1

3!
ξ[ξΦ,Φ] +

1

4!

(
1

4
ξ[XξΦ,Φ,Φ] +

1

4
ξX[ξΦ,Φ,Φ] +

1

2
ξ[XΦ, ξΦ,Φ]

+
1

3
ξ[ξΦ, ξ[Φ,Φ]]−

2

3
ξ[ξΦ, [ξΦ,Φ]] +

4

3
ξ[Φ, ξ[ξΦ,Φ]]

)
+O(V 4). (3.29)

4 Conclusions and discussions

In this paper, we clarified a WZW-like structure naturally arising from the L∞ formulation:

the pure-gauge-like field Ψη[Φ] ≡ π1Ĝ(e∧Φ) and the associated fields Ψd[Φ] ≡ π1Ĝ(ξde
∧Φ)

satisfy the alternative WZW-like relations, which are Z2-reversed versions of the conven-

tional WZW-like relations given in [19]. We found that once WZW-like functionals Ψη[ϕ]

and Ψd[ϕ] of some dynamical string field ϕ satisfying these (alternative) WZW-like rela-

tions are given, one can construct a gauge invariant WZW-like action Sη[ϕ] in terms of

them. The L∞ action SEKS just gives one realisation of this (alternative) WZW-like action

Sη[Φ] parameterised by Φ. On the basis of this procedure, we constructed a new WZW-like
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action(s) as another parameterisation of the WZW-like action Sη[V ] by using the string

field V living in the large Hilbert space. (For open NS or NS-NS theory, see appendix D

or E, respectively.) The pure-gauge-like field Ψη[V ] and the associated fields Ψd[V ] can

be defined by the differential equations which are the Z2-reversed versions of those in [19].

We showed the equivalence of our new action Sη[V ] and the L∞ action Sη[Φ] ≡ SEKS[Φ] on

the basis of the procedure demonstrated in [29]. The direct relation between two dynam-

ical string fields Φ and V , a field redefinition, can be derived from this equivalence with

partially gauge-fixing of V or trivial uplift of Φ.

Towards the equivalence to the conventional WZW-like action. Although we

expect the equivalence between our (alternative) WZW-like action Sη[V ] and Berkovits-

Okawa-Zwiebach’s (conventional) WZW-like action SBOZ[Vc], their relation remains to be

understood. We write V for the dynamical NS heterotic string field of the alternative

WZW-like theory, and write Vc for that of the conventional WZW-like theory as follows:

Sη[V ]=
1

2
〈V,QηV 〉+

κ

3!
〈V,Q[V, ηV ]η〉+

κ2

4!
〈V,Q

(
[V, ηV, ηV ]η+

[
V, [V, ηV ]η

]η)
〉+· · · ,

SBOZ[Vc]=
1

2
〈ηVc, QVc〉+

κ

3!
〈ηVc, [Vc, QVc]〉+

κ2

4!
〈ηVc,

(
[Vc, QVc, QVc]+

[
Vc, [Vc, QVc]

])
〉+· · · .

Both string fields V and Vc belong to the large Hilbert space. At least, perturbatively, one

can check their equivalence: we set Vc = V +O(κ2) because of Lη
2 = −LBOS

2 , which implies

that the first nontrivial order is κ2, namely the quartic interaction. Let us check how the

equivalence can be shown in this order. It would be crucial that the 3-products Lη
3 and LB

3

are made from the same gauge product λ
[1]
3 :

Lη
3 = −

1

2
[[Q, λ

[1]
3 ]], LB

3 =
1

2
[[η, λ

[1]
3 ]].

Utilizing them, the quartic interactions in both actions can be written in term of λ
[1]
3 as

〈V,Q[V, ηV, ηV ]η〉 = −
1

2
〈QV, λ

[1]
3 (QV, ηV, ηV )〉+ 〈QV, λ

[1]
3 (V,QηV, ηV )〉, (4.1)

〈ηVc, [Vc, QVc, QVc]〉 = −
1

2
〈ηVc, λ

[1]
3 (ηVc, QVc, QVc)〉 − 〈ηVc, λ

[1]
3 (Vc, QηVc, QVc)〉. (4.2)

The difference between the quartic interactions comes from the second terms of (4.1)

and (4.2):

Sη,4[V ]− SWZW,4[Vc] =
κ2

4!
〈QηV, 2λ

[1]
3 (V, ηV,QV )〉+O(κ3), (4.3)

which can be compensated by the following off-shell field redefinition,

Vc = V +
2κ2

4!
λ
[1]
3 (V, ηV,QV ) +O(κ3). (4.4)

Thus, under the identification of the string fields Vc and V by (4.4), two actions Sη[V ] and

SWZW[Vc] are equivalent at κ2.

To prove their all-order equivalence, it would be helpful to characterize the conventional

WZW-like action in terms of the gauge products λ
[d]
N . In fact, QG , the pure-gauge shifted
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BRST operator which plays a key role in conventional WZW-like formulation, can be

written as QG = E−1
V QEV using a linear map EV [32]. It may provide a solution of this

problem to understand the relation between two cohomomorphisms EV and Ĝ.

Ramond sector of closed superstring fields. The concept of the WZW-like structure

based on the dual product Lη will play crucial roles in construction of the complete action

of heterotic string field theory including both NS and R sectors. As [2], our WZW-like

action Sη[V ] will provide a good starting point of the construction of complete actions.12

It is expected that as demonstrated in [4] for open superstrings, the WZW-like structure

including the Ramond sector would be written by the L∞ products Lη = Ĝη Ĝ−1 which

are dual to the L∞ products of [8]: L̃ = Ĝ−1(Q+ . . . ) Ĝ satisfying
[[
η, L̃]] = 0.

It is also expected that the action for closed NS-R and R-NS strings can be constructed

in the same manner as that for heterotic string. For closed R-R strings, it is not clear

whether or how the kinetic term can be constructed with no constraint yet. If the kinetic

term can be constructed, it may be possible to construct the complete action of type II

string on the basis of the concept of the WZW-like structure arising from the dual product

Lη.
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A Basic facts of A∞ and L∞

In this section, we give a short review of coalgebraic description for A∞/L∞ algebras. For

more details, see [40–42] or some mathematical manuscripts.

Coalgebras: tensor algebra T (H) and its symmetrization S(H). Let C be a set.

Suppose that a coproduct ∆ : C → C ⊗′ C is defined on C and it is coassociative

(∆⊗′ 1l)∆ = (1l⊗′ ∆)∆. (A.1)

Then, the pair (C,∆) is called a coalgebra. We write T (H) for a tensor algebra of a graded

vector space H:

T (H) = H⊗0 ⊕H⊗1 ⊕H⊗2 ⊕ · · · . (A.2)

One can define a coassociative coprduct ∆ : T (H) → T (H)⊗′ T (H) by

∆(Φ1 ⊗ . . .⊗ Φn) ≡
n∑

k=0

(Φ1 ⊗ . . .⊗ Φk)⊗
′ (Φk+1 ⊗ . . .⊗ Φn) (A.3)

12See a new result given by K. Goto and H. Kunitomo, arXiv:1606.07194.
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with ⊗′ ≡ ⊗, where Φ1 ⊗ . . . ⊗ Φn ∈ H⊗n ⊂ T (H). Then, the pair (T (H),∆) gives a

coalgebra. As well as T (H), its symmetrization S(H) also gives a coalgebra. Recall that

the symmetrized tensor product ∧ for Φ1,Φ2 ∈ H is defined by

Φ1 ∧ Φ2 ≡ Φ1 ⊗ Φ2 + (−)deg(Φ1)deg(Φ2)Φ2 ⊗ Φ1, (A.4)

and it satisfies the following properties for Φ1, . . . ,Φn ∈ H:

Φ1 ∧ Φ2 = (−)deg(Φ1)deg(Φ2)Φ2 ∧ Φ1, (A.5)

(Φ1 ∧ Φ2) ∧ Φ3 = Φ1 ∧ (Φ2 ∧ Φ3), (A.6)

Φ1 ∧ Φ2 ∧ . . . ∧ Φn =
∑

σ

(−)σΦσ(1) ⊗ Φσ(2) ⊗ . . .⊗ Φσ(n). (A.7)

We write H∧n for the vector space spanned by n-fold symmetrized tensor Φ1∧· · ·∧Φn, and

S(H) for the symmetrization of T (H), which is called the symmetrized tensor algebra S(H):

S(H) = H∧0 ⊕H∧1 ⊕H∧2 ⊕ · · · . (A.8)

A coassociative coprduct ∆ : S(H) → S(H)⊗′ S(H) can be defined by

∆(Φ1 ∧ . . . ∧ Φn) ≡
n∑

k=0

∑

σ

′
(−)σ(Φσ(1) ∧ . . . ∧ Φσ(k))⊗

′ (Φσ(k+1) ∧ . . . ∧ Φσ(n)) (A.9)

with ⊗′ ≡ ⊗, where Φ1 ∧ . . . ∧ Φn ∈ H∧n and σ runs over (k, n − k)-unshuffle. Then, the

pair (S(H),∆) gives coalgebra.

In the case of open superstring field theory, H is the state space of open superstrings,

which is a Z2-graded vector space, and its grading which we call degree is given by the

Grassmann parity minus one mod 2. Them, the pair (T (H),∆) is the Fock space of open

superstrings. On the other hand, in the case of closed superstring field theory, H is the

state space of closed superstrings, which is a Z2-graded vector space, and its grading which

we call degree is given by the Grassmann parity mod 2. Then, the pair (S(H),∆) is the

Fock space of closed superstrings.

Multi-linear maps as a coderivation. A linear operator m : C → C which raise the

degree one is called coderivation if it satisfies

∆m = (m⊗ 1l)∆ + (1l⊗m)∆. (A.10)

Multilinear maps with degree 1 and 0 naturally induce the maps from T (H) to T (H) or

from S(H) to S(H). They are called a coderivation and a cohomomorphism respectively.

Recall that from a n-fold multilinear product bn of Φ1, . . . ,Φn ∈ H, one can define a

linear map on H⊗n, which we write bn : H⊗n → H, by

bn(Φ1 ⊗ Φ2 ⊗ . . .⊗ Φn) ≡ bn(Φ1,Φ2, . . . ,Φn), (A.11)

where Φ1 ⊗ · · · ⊗ Φn ∈ H⊗n. Let A : H⊗k → H⊗l and B : H⊗m → H⊗n be multilinear

maps. One can naturally define a product of these maps A⊗B : H⊗k+m → H⊗l+n by

A⊗B(Φ1⊗. . .⊗Φk+m) =
∑

k

(−)B(Φ1+···+Φk)A(Φ1⊗. . .⊗Φk)⊗B(Φk+1⊗. . .⊗Φk+m). (A.12)
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Then, the identity operator on H⊗n and H∧n is defined by

In =

n︷ ︸︸ ︷
I⊗ I⊗ . . .⊗ I =

1

n!

n︷ ︸︸ ︷
I ∧ I ∧ . . . ∧ I . (A.13)

Using a degree one map bn : H⊗n → H, one can naturally construct a coderivation bn :

T (H) → T (H) by

bnΦ =

N−n∑

k=0

(
Ik ⊗ bn ⊗ IN−n−k

)
Φ, Φ ∈ H⊗N≥n ⊂ T (H), (A.14)

and bn vanishes when acting on H⊗N≤n.

Similarly, a symmetric multilinear product bn of Φ1, . . .Φn ∈ H naturally defines a

map bn : H∧n → H by

bn(Φ1 ∧ Φ2 ∧ . . . ∧ Φn) = bn(Φ1,Φ2, . . . ,Φn). (A.15)

The symmetric tensor product of two multilinear maps A : H∧k → H∧l and B : H∧m →

H∧n, A ∧B : H∧k+m → H∧l+n, can also be defined naturally by

A∧B(Φ1∧. . .∧Φk+m) =
∑

σ

′
(−)σA(Φσ(1)∧. . .∧Φσ(k))∧B(Φσ(k+1)∧. . .∧Φσ(k+m)). (A.16)

A degree map bn : H∧n → H naturally gives a coderivation bn : S(H) → S(H) defined by

bnΦ = (bn ∧ IN−n)Φ , Φ ∈ H∧N≥n ⊂ S(H), (A.17)

and bn vanishes when acting on H∧N≤n. For example, we find that b1 acts as follows:

b1 : 1 → 0

Φ1 → b1(Φ1)

Φ1 ∧ Φ2 → b1(Φ1) ∧ Φ2 + (−)deg(Φ1)deg(b1)Φ1 ∧ b1(Φ2).

(A.18)

In particular, the coderivation b0 : S(H) → S(H) derived from a map b0 : H0 → H is

given by

b0Φ = (b0 ∧ IN )Φ = b0 ∧ Φ , Φ ∈ H∧N ⊂ S(H) (A.19)

and acts as
b0 : 1 → b0

Φ1 → b0 ∧ Φ1

Φ1 ∧ Φ2 → b0 ∧ Φ1 ∧ Φ2.

(A.20)

Given two coderivations bn and cm which are derived from bn : H∧n → H and cm :

H∧m → H respectively, the graded commutator [[bn, cm]] becomes the coderivation derived

from the map [[bn, cm]] : H∧n+m−1 → H which is defined by

[[bn, cm]] = bn(cm ∧ In−1)− (−)deg(bn)deg(cm)cm(bn ∧ Im−1). (A.21)
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Multilinear maps as a cohomomorphism. Given two coalgebras C,C ′, a cohomo-

morphism f̂ : C → C ′ is a map of degree zero satisfying

∆f̂ = (̂f ⊗′
f̂)∆. (A.22)

A set of degree zero multilinear maps {fn : H∧n → H′}∞n=0 naturally induces a

cohomorphism f̂ : S(H) → S(H′), which we denote as f̂ = {fn}
∞
n=0. Its action on

Φ1 ∧ · · · ∧ Φn ∈ H∧n ⊂ S(H) is defined by

f̂(Φ1 ∧ · · · ∧ Φn) =
∑

i≤n

∑

k1<···<ki

e∧f0 ∧ fk1(Φ1, . . . ,Φk1) ∧ fk2−k1(Φk1+1, . . . ,Φk2)∧

· · · ∧ fki−ki−1(Φki−1+1, . . . ,Φn). (A.23)

Its explicit actions are given as follows:

f̂ : 1 → e∧f0

Φ → e∧f0 ∧ f1(Φ)

Φ1 ∧ Φ2 → e∧f0 ∧ f1(Φ1) ∧ f1(Φ2) + e∧f0 ∧ f2(Φ1 ∧ Φ2).

(A.24)

Cyclic A∞ and cyclic L∞. Let H be a graded vector space and T (H) be its tensor

algebra. A weak A∞-algebra (H,M) is a coalgebra T (H) with a coderivation M = M0 +

M1 +M2 + . . . satisfying

(M)2 = 0. (A.25)

We denote the collection of the multilinear maps {Mk}k≥0 also by M. In particular, if

M0 = 0, (H,M) is called an A∞-algebra. Note that for fixed n, the equation (A.25) gives

Mn ·M1 +Mn−1 ·M2 + · · ·+M2 ·Mn−1 +M1 ·Mn = 0. (A.26)

We can act it on B1 ⊗B2 ⊗ . . .⊗Bn ∈ H⊗n to get the A∞ relations for the maps {Mk}:

n−i∑

k=0

(−)B1+···+BkMn−i+1

(
B1, . . . , Bk,Mi(Bk+1, . . . , Bk+i), Bk+i+1, . . . , Bn

)
= 0. (A.27)

Let 〈·, ·〉 : H⊗2 → C be the BPZ inner product, which gives the graded symplectic

form 〈ω| : H⊗2 → C:

〈A,B〉 = (−)A〈ω|A⊗B. (A.28)

Given the operator On, we can define its BPZ-conjugation O†
n as follows:

〈ω|I⊗On = 〈ω|O†
n ⊗ I. (A.29)

A pair (T (H),M, ω) is called cyclic A∞-algebra if each Mn is BPZ-odd,

M †
n = −Mn. (A.30)

Let H be a graded vector space and S(H) be its symmetrized tensor algebra. A weak

L∞-algebra (H,L) is a coalgebra S(H) with a coderivation L = L0+L1+L2+. . . satisfying

(L)2 = 0. (A.31)
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We denote the collection of the multilinear maps {Lk}k≥0 also by L. In particular, if

L0 = 0, (H,L) is called an L∞-algebra.

In the case of an L∞-algebra, the part of (A.31) that correspond to an n-fold multilinear

map H∧n → H is given by

Ln · L1 + Ln−1 · L2 + · · ·+ L2 · Ln−1 + L1 · Ln = 0. (A.32)

We can act it on B1∧B2∧ . . .∧Bn ∈ H∧n to get the L∞ relations for the multilinear maps

{Lk}:

0 =
∑

i+j=n+1

∑

σ

′
(−)σLj(Li(Bσ(1), . . . , Bσ(i)), Bσ(i+1), . . . , Bσ(n)). (A.33)

A set (S(H),L, ω) is called cyclic L∞-algebra if each Ln is BPZ-odd,

L†
n = −Ln. (A.34)

Projector and group-like element. We can naturally define a projector π1 : S(H) →

H whose action on Φ ∈ S(H) is given by

π1Φ = Φ1,Φ =
∞∑

n=1

Φ1 ∧ · · · ∧ Φn ∈ S(H). (A.35)

Note that π1 acts trivially on H and commutes with one-coderivations.

Let H0 be the degree zero part of H. The following exponential map of Φ ∈ H0,

e∧Φ = 1+Φ+
1

2
Φ ∧ Φ+

1

3!
Φ ∧ Φ ∧ Φ+ · · · , (A.36)

is called a group-like element. It satisfies

∆e∧Φ = e∧Φ ∧ e∧Φ. (A.37)

The action of a coderivation on a group-like element is given by

bn(e
∧Φ) =

1

n!
bn(Φ

∧n) ∧ e∧Φ, (A.38)

where we promise 0! = 1. Note that we can not distinguish a one-coderivation b1 derived

from a linear map b1 : H → H; Φ 7→ b1(Φ) and a zero-coderivation b0 derived from

b0 : H
∧0 → H; 1 7→ b0 = b1(Φ) when acting on group-like element,

b0(e
∧Φ) = b0 ∧ (e∧Φ) = b1(Φ) ∧ (e∧Φ) = b1(e

∧Φ). (A.39)

One of the important property of a cohomomorphism is its action on the group-like

element:

∆f̂(e∧Φ) = (̂f ⊗ f̂)∆e∧Φ = (̂f ⊗ f̂)e∧Φ ∧ e∧Φ = f̂(e∧Φ) ∧ f̂(e∧Φ). (A.40)

We can see that the cohomomorphisms preserves the group-like element: f̂(e∧Φ) = e∧Φ
′

.

Utilizing the projector and the group-like element, the Maurer-Cartan element for an

L∞-algebra (H,L) is given by

FΦ := π1L(e
∧Φ) = L1(Φ) +

1

2
L2(Φ ∧ Φ) +

1

3!
L3(Φ ∧ Φ ∧ Φ) + · · · . (A.41)

The Maurer-Cartan equation for an L∞-algebra (H,L) is given by FΦ = 0, which corre-

spond to the on-shell condition in string field theory based on the L∞-algebra(H,L).
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B Derivation of (2.71)

For cyclic cohomomorphism Ĥ, the following relation holds:

〈ω|π2 = 〈ω|π2Ĥ = 〈ω|∇(π1 ⊗
′ π1)∆Ĥ = 〈ω|∇(π1Ĥ ⊗′ π1Ĥ)∆, (B.1)

where π2 is the projector S(H) → H ∧ H, and ∇ is the product of the tensor algebra

(T (H),∇).

Let us consider its action

1

1− Φ
⊗A⊗

1

1− Φ
⊗B ⊗

1

1− Φ
⊗ C ⊗

1

1− Φ

+ (−)AB 1

1− Φ
⊗B ⊗

1

1− Φ
⊗A⊗

1

1− Φ
⊗ C ⊗

1

1− Φ

+ (−)BC 1

1− Φ
⊗A⊗

1

1− Φ
⊗ C ⊗

1

1− Φ
⊗B ⊗

1

1− Φ
. (B.2)

The left hand side vanishes since π2 is acting on H∧n≥3. For the right hand side, the first

term of (B.2) becomes

〈ω|∇(π1Ĥ ⊗′ π1Ĥ)∆

(
1

1− Φ
⊗A⊗

1

1− Φ
⊗B ⊗

1

1− Φ
⊗ C ⊗

1

1− Φ

)

= 〈ω|∇(π1Ĥ ⊗′ π1Ĥ)

(
1

1− Φ
⊗′ 1

1− Φ
⊗A⊗

1

1− Φ
⊗B ⊗

1

1− Φ
⊗ C ⊗

1

1− Φ

+
1

1− Φ
⊗A⊗

1

1− Φ
⊗′ 1

1− Φ
⊗B ⊗

1

1− Φ
⊗ C ⊗

1

1− Φ

+
1

1− Φ
⊗A⊗

1

1− Φ
⊗B ⊗

1

1− Φ
⊗′ 1

1− Φ
⊗ C ⊗

1

1− Φ

+
1

1−Φ
⊗A⊗

1

1−Φ
⊗B ⊗

1

1−Φ
⊗ C ⊗

1

1−Φ
⊗′ 1

1−Φ

)
. (B.3)

Hereafter we assume A+B + C = even. The inner product in the large Hilbert space is

〈a, b〉 = (−)a〈ω|a⊗ b, (B.4)

and the 1st term and 4th term of (B.3) cancel since 〈a, b〉 = (−)(a+1)(b+1)〈b, a〉. Now,

gathering the contribution from all terms of (B.2), and utilizing the identities

a ∧ e∧Φ =
1

1− Φ
⊗ a⊗

1

1− Φ
, (B.5)

a ∧ b ∧ e∧Φ =
1

1−Φ
⊗ a⊗

1

1−Φ
⊗ b⊗

1

1−Φ
+(−)ab

1

1−Φ
⊗ b⊗

1

1−Φ
⊗ a⊗

1

1−Φ
, (B.6)

one can obtain the BPZ property for Ĥ:

0 = (−)B〈π1Ĥ(A∧B ∧ e∧Φ), π1Ĥ(C ∧ e∧Φ)〉+ 〈π1Ĥ(A∧ e∧Φ), π1Ĥ(B ∧C ∧ e∧Φ)〉. (B.7)

Note that in the computation some terms cancel by the symmetric property of the inner

product.
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C Embedding to the large Hilbert space of NS closed string

In this appendix, we consider the trivial embedding of the NS closed string field Φ in

the L∞-formulation into the string field Ṽ in the large Hilbert space, and see that the

trivially embedded action is also WZW-like form. In other words, we provide a parameter-

ization of the pure-gauge-like field and the associated fields by another large space string

field Ṽ . In particular, we discuss the relation between the gauge transformations in two

representations.

We define the trivial embedding by replacing ξΦ to Ṽ which is a string field belonging

to the large Hilbert space, so that under the partial-gauge-ficing condition ξṼ = 0, the

trivial solution Ṽ = ξΦ reproduce the L∞-formulation parameterized by Ψ, the string field

in the small Hilbert space. The action for Ṽ is given by

SEKS[Ṽ ] =

∫ 1

0
dt 〈∂tṼ (t), π1

(
L(e∧ηṼ (t))

)
〉

=

∫ 1

0
dt 〈π1Ĝ

(
(∂tṼ (t)) ∧ e∧ηṼ (t)

)
, Q π1 Ĝ(e∧ηṼ (t))〉. (C.1)

One can confirm the functionals appearing in the action

Ψη[Ṽ ] = π1Ĝ
(
e∧ηṼ

)
, (C.2)

Ψd[Ṽ ] = π1Ĝ
(
dṼ ∧ e∧ηṼ

)
(for d = ∂t, δ) (C.3)

satisfy the WZW-like relations:

0 = π1L
η
(
e∧Ψη [Ṽ ]

)
, (−)ddΨη[Ṽ ] = Dη Ψd[Ṽ ]. (C.4)

The first relation follows from the projection invariance e∧ηṼ = ηξe∧ηṼ as (2.49). To check

the second relation, consider

Ψd[Ṽ ] = π1Ĝ
(
d(ηξ+ξη)Ṽ ∧e∧ηṼ

)
= π1Ĝ

(
dξηṼ ∧e∧ηṼ

)
+(−)dDηπ1Ĝ

(
dξṼ ∧e∧ηṼ

)
, (C.5)

where we used

(−)dπ1Ĝ
(
dηξṼ ∧e∧ηṼ

)
=π1Ĝη

(
dξṼ ∧ e∧ηṼ

)
= π1L

ηĜ
(
dξṼ ∧ e∧ηṼ

)

= π1L
η
(
π1Ĝ

(
dξṼ ∧e∧ηṼ

)
∧Ĝe∧ηṼ

)
=Dηπ1Ĝ

(
dξṼ ∧e∧ηṼ

)
. (C.6)

Since the second term vanishes when acted by Dη, the same computation as (2.51) can be

applied to show (−)ddΨη[Ṽ ] = Dη Ψd[Ṽ ].

In fact, the embedding procedure ξΦ → Ṽ has an ambiguity: one can consider the

replacing ξΦ = ξηξΦ → ξηṼ . However, the difference of Ψd produced by the difference of

the procedure is only Dη-exact term as seen in (C.6), which does not affect to the WZW-

like relation (−)ddΨη = DηΨd. Besides, since QΨη is Dη-exact, the Dη-exact part of Ψt

does not affect the action, that is, the action does not depend on this ambiguity. Here we

fix this ambiguity by requiring the invertibility of Ψd=δ,∂t as functions of dṼ [31].
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For derivation d which does not commute with Ĝ, such as Q, we define Ψd[Ṽ ] by

Ψd[Ṽ ] = π1Ĝ
(
π1Ĝ

−1dĜ(Ṽ ∧
∫
e∧ηṼ ) ∧ e∧ηṼ

)
, (C.7)

where
∫
e∧ηṼ =

∞∑

n=0

1

(n+ 1)!
(ηṼ )∧n. (C.8)

For d = Q, it reads

ΨQ[Ṽ ] = π1Ĝ
(
π1L(Ṽ ∧

∫
e∧ηṼ ) ∧ e∧ηṼ

)
. (C.9)

To check the WZW-like relations, utilizing Ĝ−1dĜ = (−)d[[η, ξd]], we write Ψd[Ṽ ] as

Ψd[Ṽ ] = π1Ĝ
(
π1Ĝ

−1dĜ(Ṽ ∧
∫
e∧ηṼ ) ∧ e∧ηṼ

)

= π1Ĝ
(
π1(−)d[[η, ξd]](Ṽ ∧

∫
e∧ηṼ ) ∧ e∧ηṼ

)

= π1Ĝ
(
π1ξde

∧ηṼ ∧ e∧ηṼ
)
+ (−)dDηπ1Ĝ

(
π1ξd(Ṽ ∧

∫
e∧ηṼ ) ∧ e∧ηṼ

)
. (C.10)

Since the second term vanishes when Dη acts, the same computation as (2.51) can be

applied to show (−)ddΨη[Ṽ ] = Dη Ψd[Ṽ ].

Thus, the action is written in the WZW-like form,

SEKS[Ṽ ] =

∫ 1

0
dt
〈
Ψt[Ṽ (t)], QΨη[Ṽ (t)]

〉
. (C.11)

Its variation and the on-shell condition can be taken by parallel computations in section 2.3.

Gauge transformations. The variation of the action SEKS[Ṽ ] in the form of (C.1) can

be taken as

δSEKS[Ṽ ] = 〈δṼ , π1
(
L(e∧ηṼ )

)
〉, (C.12)

and one can find the action SEKS[Ṽ ] is invariant under the gauge transformations13

δṼ = −ηξω − π1L(ξλ ∧ e∧ηṼ ), (C.13)

where ω and λ are the gauge parameters belonging to the small Hilbert space, which carry

ghost numbers 1 and 1, and picture numbers 0 and −1, respectively. The minus sign is a

convention in which ηδṼ becomes δΦ of (2.24). In the following, we will discuss how this

gauge symmetry can be written in the WZW-like form:

Ψδ[Ṽ ] = DηΩ[ω, Ṽ ] +QΛ[λ, Ṽ ]. (C.14)

Inserting the gauge transformation δṼ , Ψδ[Ṽ ] becomes

Ψδ[Ṽ ] = π1Ĝ
(
δṼ ∧ e∧ηṼ

)

= −π1Ĝ
(
(ηξω) ∧ e∧ηṼ

)
− π1Ĝ

((
π1L(ξλ ∧ e∧ηṼ )

)
∧ e∧ηṼ

)

= −π1L
η
(
π1Ĝ

(
ξω ∧ e∧ηṼ

)
∧ e∧π1Ĝ(e∧ηṼ )

)
−Qπ1Ĝ(ξλ ∧ e∧ηṼ )−∆T [λ, ηṼ ]

= DηΩ[ω, Ṽ ] +QΛ[λ, Ṽ ]−∆T [λ, ηṼ ]. (C.15)

13More generally, the second term can be written by −π1ξQ(λ∧e∧ηṼ ). The representation above is only a

choice of ξd. However, the difference of the choices becomes η-exact term and it can be absorbed into −ηξω.
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The computation here is parallel to (2.65). Since ∆T is a trivial gauge transformation as

in section 2.4,

∆T [λ, ηṼ ] = π1Ĝ
(
ξλ ∧ π1L(e

∧ηṼ ) ∧ e∧ηṼ
)
, (C.16)

we conclude that the gauge transformations of the trivial embedded theory (C.13) are writ-

ten in the WZW-like form (C.14), where the gauge parameters Ω and Λ are parameterized as

Ω[ω, Ṽ ] = −π1Ĝ(ξω ∧ e∧ηṼ ), (C.17)

Λ[λ, Ṽ ] = −π1Ĝ(ξλ ∧ e∧ηṼ ). (C.18)

In particular, one can find that the gauge transformations generated by η and Q do not

mix: the gauge parameters λ and ω of (C.13) are related to Λ and Ω of (C.14) respectively,

as seen in (C.17) and (C.18).

D Open NS superstrings with stubs

In this section, we construct a new action for generic open NS string field theory, which we

call alternative WZW-like action Sη. After defining the dual A∞ products and explaining

its WZW-like structure, we give two realizations of this type of WZW-like action using two

different dynamical string fields Φ and Ψ in the large and small Hilbert spaces, respectively.

Dual A∞-products and derivation properties. Let η be the coderivation con-

structed from η, which is nilpotent η2 = 0, and let a be a nilpotent coderivation satisfying

aη = −(−)aηηa and a2 = 0. Then, we assume that Ĝ−1 : (H,a) → (HS,Da) is an

A∞-morphism, where H is the large Hilbert space, HS is the small Hilbert space, and

Da ≡ Ĝ−1a Ĝ. Note that Da is nilpotent: D2
a = (Ĝ−1a Ĝ)(Ĝ−1a Ĝ) = Ĝ−1a2 Ĝ = 0.

For example, one can use Q, Q+m2|2, and so on for a, and various Ĝ appearing in [6–8]

for Ĝ. Suppose that the coderivation Da also commutes with η, which means

(Da)
2 = 0,

[[
Da,η

]]
= 0. (D.1)

Then, we can introduce a dual A∞ products Dη defined by

Dη ≡ Ĝη Ĝ−1. (D.2)

Note that the pair of nilpotent maps (Dη,a) have the same properties as (Da,η):

(Dη)2 = 0,
[[
Dη,a

]]
= 0. (D.3)

We can quickly find when the A∞ products Da commutes with the coderivation η as (D.1),

its dual A∞ product Dη and coderivation a also satisfies (D.3) as follows

aDη =
(
Ĝ Ĝ−1

)
a
(
Ĝη Ĝ−1

)
= ĜDa η Ĝ−1

= (−)aηĜηDa Ĝ
−1 = (−)aη Ĝη Ĝ−1 a Ĝ Ĝ−1 = (−)aηDη a.
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In this paper, as these coderication a and A∞-morphism Ĝ, we always use a ≡ Q

and a gauge product Ĝ given by [7]. Therefore, the original A∞ product is equal to the

Neveu-Schwarz products M of open stings with stubs given [7],

Da = DQ = M ≡ Ĝ−1Q Ĝ,

and the dual A∞ products is always given by

Dη ≡ Ĝη Ĝ−1 = η −m2 + . . . . (D.4)

The symbol Dη always denotes (D.4) in the rest. The dual A∞ products Dη consists of

a linear map η and a set of multilinear products {Dη
n}∞n=2. Now the bilinear product Dη

2

just equals to the star product −m2 because we take Ĝ of [7]. We write

[B1, . . . , Bn]
η ≡ Dη

n(B1 ⊗ · · · ⊗Bn) (D.5)

for higher products of Dη. Then, the Maurer-Cartan element of Dη = η − m2 + . . . is

given by

Dη 1

1−A
=

1

1−A
⊗ π1

(
Dη 1

1−A

)
⊗

1

1−A

=
1

1−A
⊗
(
ηA−m2(A,A) + . . .

)
⊗

1

1−A
,

where A is a state of the large Hilbert space H and π1 is an natural 1-state projection onto

H. Hence, the solution of the Maurer-Cartan eqiation Dη(1−A)−1 = 0 is given by a state

Ãη satisfying ηAη −m2(Aη, Aη) + · · · = 0, or equivalently,

ηAη −m2(Aη, Aη) +

∞∑

n=3

[ n︷ ︸︸ ︷
Aη, . . . , Aη

]η
= 0.

Shift of the dual A∞ products Dη. We introduce the Aη-shifted products

[B1, . . . , Bn]
η
Aη

defined by

[
B1, . . . , Bn

]η
Aη

≡ π1D
η

(
1

1−Aη
⊗B1 ⊗

1

1−Aη
⊗ · · · ⊗

1

1−Aη
⊗Bn ⊗

1

1−Aη

)
. (D.6)

Note that higher shifted products all vanish [B1, . . . , Bn>2]
η
Aη

= 0 when higher products of

Dη = η −m2 +Dη
3 +Dη

4 . . . vanish: Dη
n>2 = 0. In particular, we write DηB for [B]η:

DηB ≡ π1D
η

(
1

1−Aη
⊗B ⊗

1

1−Aη

)

= ηB −
[[
Aη, B

]]
+
∑

cyclic

∞∑

n=2

[ n︷ ︸︸ ︷
Aη, . . . , Aη, B

]η
.
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When Ãη gives a solution on the Maurer-Cartan equation of Dη, these Aη-shifted products

also satisfy A∞-relations, which implies that the linear operator Dη becomes nilpotent. We

find

(Dη)
2B = π1D

η

(
1

1−Aη
⊗ π1D

η

(
1

1−Aη
⊗B ⊗

1

1−Aη

)
⊗

1

1−Aη

)

= π1(D
η)2

1

1−Aη
−

[[
π1D

η

(
1

1−Aη

)
, B

]]η

Aη

= 0,

where the Aη-shifted commutator [[A,B]]Aη of A and B is defined by

[[
A,B

]]η
Aη

≡ [A,B]ηAη
− (−)AB[B,A]ηAη

.

D.1 Alternative WZW-like relations and action Sη[ϕ]

We call a state Aη a pure-gauge-like (functional) field when Aη satisfies

η Aη −m2(Aη, Aη) +
∞∑

n=2

[ n︷ ︸︸ ︷
Aη, . . . , Aη

]η
= 0 (D.7)

and has ghost-and-picture number (1| − 1), odd Grassmann parity, and even degree. Let d

is a derivation operator commuting with η and let (dg|dp) be its ghost-and-picture number.

We call a state Ad a associated (functional) field when Ad satisfies

(−)ddAη = DηAd (D.8)

and has ghost-and-picture number (dg − 1|dp + 1).

Let ϕ be a dynamical string field, t ∈ [0, 1] be a real parameter, and ϕ(t) be a path

satisfying ϕ(0) = 0 and ϕ(1) = ϕ. Once a pure-gauge-like (functional) field Aη = Aη[ϕ]

and an associated (functional) field Ad = Ad[ϕ] are constructed as functionals of given

dynamical string field ϕ, one can construct a gauge invariant action

Sη[ϕ] = −

∫ 1

0
dt 〈At[ϕ(t)], QAη[ϕ(t)]〉. (D.9)

We write At[ϕ] for the associated field Ad[ϕ] of the parameter differential d = ∂t. One can

check that the t-dependence is “topological”. Namely, the variation of the action is given by

δSη[ϕ] = 〈Aδ[ϕ], QAη[ϕ]〉,

which is independent of the real parameter t. Since QAη = −DηAQ and (Dη)
2 = Q2 = 0,

we find that δS = 0 with the gauge transformations

Aδ[ϕ] = Dη Ω+QΛ, (D.10)

where gauge parameters Ω and Λ have ghost-and-picture number (−1|1) and (−1|0)

respectively, and belong to the large Hilbert space. Since Aδ[ϕ] is an invertible functional

of δϕ, the explicit form of the gauge transformation of the dynamical string field δφ is

obtained from Aδ[ϕ].
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In the rest, we give two realisations of this action by using two different dynami-

cal string fields ϕ = Ψ and ϕ = Φ: small-space parametrisation Sη[Ψ] and large-space

parametrisation Sη[Φ]. By construction, the A∞ action proposed in [7] is equivalent to the

small-space parametrisation Sη[Ψ]. Since the large-space parametrisation Sη[Φ] has the

same (alternative) WZW-like structure as Sη[Ψ], our new actions Sη[Ψ] and Sη[Φ] both are

equivalent to that of A∞ formulation.

D.2 Small-space parametrization: ϕ = Ψ

Let us consider an NS dynamical string field Ψ which is a Grassmann odd, ghost number

1, and picture number −1 state of the small Hilbert space: ηΨ = 0. We show that one can

construct WZW-like ingredients Aη[Ψ] and Ad[Ψ] as functionals of this dynamical string

field Ψ. Once we obtain these WZW-like ingredients Aη[Ψ], Ad[Ψ] parametrized by Ψ, one

can construct the WZW-like action S[Ψ] parametrized by Ψ,

Sη[Ψ] = −

∫ 1

0
ds 〈As[Ψ(s)], QAη[Ψ(s)]〉, (D.11)

where s is a real parameter s ∈ [0, 1] and Ψ(s) is the path satisfying Ψ(s = 0) = 0 and

Ψ(s = 1) = Ψ. We wrote As[Ψ] for the associated field Ad[Ψ] of d = ∂s.

Pure-gauge-like field Aη[Ψ]. When the η-complex (H,η) is exact, there exist ξ such

that [[η, ξ]] = 1 and H, the large Hilbert space, is decomposed into the direct sum of η-

exacts and ξ-exacts H = PηH ⊕ PξH, where Pη and Pξ are projector onto η-exact and

ξ-exact states respectively.14 Note that since the small Hilbert space HS is defined by

HS ≡ PηH and satisfies HS ⊂ PηHS, all the states Ψ belonging to HS satisfy PηΨ = Ψ and

PξΨ = 0, or simply,

ηΨ = 0.

Using this fact, we can construct a desired pure-gauge-like (functional) fields Aη[Ψ], namely,

a solution of the Maurer-Cartan equation of the dual A∞ products Dη = η −m2 + . . . .

A pure-gauge-like (functional) field Aη[Ψ] is given by

Aη[Ψ] ≡ π1Ĝ
1

1−Ψ

because it becomes a trivial solution of the Maurer-Cartan equation as follows

Dη 1

1−Aη[Ψ]
= Dη 1

1− π1Ĝ
1

1−Ψ

= Dη Ĝ
1

1−Ψ
= Ĝη

1

1−Ψ

= Ĝ

(
1

1−Ψ
⊗ ηΨ⊗

1

1−Ψ

)
= 0.

Recall that π1D
η(1−Aη[Ψ])−1 = 0 is equal to

η Aη[Ψ]−m2

(
Aη[Ψ], Aη[Ψ]

)
+

∞∑

n=2

[
n︷ ︸︸ ︷

Aη[Ψ], . . . , Aη[Ψ]
]η

= 0.

14These satisfy P 2
η = Pη, P

2
ξ = Pξ, PηPξ = PξPη = 0,and Pη + Pξ = 1 on H.
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Associated fields Ad[Ψ]. Let d be a coderivation constructed from a derivation d of

the dual A∞ products Dη, which implies that the d-derivation propery [[d,Dη]] = 0 holds.

Then, we obtain [[Dd,η]] = 0 with Dd ≡ Ĝ−1 d Ĝ, which means that Dd is “η-exact” and

there exists a coderivation ξd such that

Dd = Ĝ−1 d Ĝ = (−)d[[η, ξd]].

Using this coderivation ξd, we can construct an associated (functional) field Ad[Ψ]. Note

that the response of d acting on the group-like element of Aη[Ψ] = Ĝ(1−Ψ)−1 is given by

(−)dd
1

1−Aη[Ψ]
= (−)dĜ Ĝ−1 d Ĝ

1

1−Ψ
= Ĝη ξd

1

1− Φ
= Dη Ĝ

(
ξd

1

1−Ψ

)

= Dη

(
1

1−Aη[Ψ]
⊗ π1 Ĝ

(
ξd

1

1−Ψ

)
⊗

1

1−Aη[Ψ]

)
.

An associated (functional) field of d is given by

Ad[Ψ] ≡ π1Ĝ

(
ξd

1

1−Ψ

)

because one can directly check

(−)dd
1

1−Aη[Ψ]
= Dη

(
1

1−Aη[Ψ]
⊗ π1Ĝ

(
ξd

1

1−Ψ

)
⊗

1

1−Aη[Ψ]

)

= Dη

(
1

1−Aη[Ψ]
⊗Ad[Ψ]⊗

1

1−Aη[Ψ]

)
.

Picking up the relation on H, or equivalently acting π1 on this relation on T (H), we obtain

(−)ddAη[Ψ] = η Ad[Ψ]−
[[
Aη[Ψ], Ad[Ψ]

]]η
Aη [Ψ]

,

which is the simplest case of (−)ddAη[Ψ] = π1D
η-exact term.

D.3 Large-space parametrization: ϕ = Φ

Let us consider an NS dynamical string field Φ which is a Grassmann even, ghost number

0, and picture number 0 state of the large Hilbert space: ηΦ 6= 0. We show that one can

construct WZW-like ingredients Aη[Φ] and Ad[Φ] as functionals of this dynamical string

field Φ. Using these WZW-like ingredients Aη[Φ], Ad[Φ] parametrized by Φ, we obtain the

WZW-like action Sη[Φ] parametrized by Φ,

Sη[Φ] = −

∫ 1

0
dt 〈At[Φ(t)], QAη[Φ(t)]〉, (D.12)

where t is a real parameter t ∈ [0, 1] and Φ(t) is the path satisfying Φ(t = 0) = 0 and

Φ(t = 1) = Φ. We wrote At[Ψ] for the associated field Ad[Ψ] of d = ∂t.
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Pure-gauge-like field Aη[Φ]. Let us consider a functional Aη[τ ; Φ] defined by the dif-

ferential equation

∂

∂τ
Aη[τ ; Φ] = ηΦ+

∞∑

k=1

∑

cyclic

[
k︷ ︸︸ ︷

Aη[τ ; Φ], . . . , Aη[τ ; Φ],Φ
]η

≡ Dη(τ)Φ (D.13)

with the initial condition Aη[τ = 0;Φ] = 0, where τ is a real parameter. A few terms of

Aη[τ ; Φ] is given by

Aη[τ ; Φ] = τηΦ+
τ2

2
[[ηΦ,Φ]] +

τ3

3

( ∑

cyclic

[
ηΦ, ηΦ,Φ

]η
+
[[
[[ηΦ,Φ]]η,Φ

]]η
)
+ . . . .

We write Aη[Φ] for the τ = 1 value of the solution Aη[τ ; Φ]:

Aη[Φ] ≡ Aη[τ = 1;Φ].

We quickly find that this Aη[Φ], a functional on the dynamical string field Φ, satisfies (D.7)

and gives a pure-gauge-like (functional) field. For brevity, we introduce

F (τ) ≡ η Aη[τ ; Φ]−m2

(
Aη[τ ; Φ], Aη[τ ; Φ]

)
+

∞∑

n=2

[
n︷ ︸︸ ︷

Aη[τ ; Φ], . . . , Aη[τ ; Φ]
]η
.

The statement “Aη[Φ] is a pure-gauge-like (functional) field” is equivalent to the equation

F (1) = 0. By definition, F (τ) satisfies F (τ = 0) = 0 and the following relation holds:

∂

∂τ
F (τ) = η

∂

∂τ
Aη[τ ; Φ] +

∞∑

n=1

∑

cyclic

[
n︷ ︸︸ ︷

Aη[τ ; Φ], . . . , Aη[τ ; Φ],
∂

∂τ
Aη[τ ; Φ]

]η

= Dη(τ)Dη(τ) Φ = −
[[
F (τ), Φ ]]η

Aη [τ ;Φ]. (D.14)

The solution of the differential equation (D.14) with the initial condition F (0) = 0 is given

by F (τ) = 0 for any τ . Hence, F (1) = 0 holds and Aη[Φ] indeed gives a pure-gauge-like

(functional) field.

Associated field Ad[Φ]. Then, we consider a functional Ad[τ ; Φ] defined by the differ-

ential equation
∂

∂τ
Ad[τ ; Φ] = dΦ+

[[
Φ, Ad[τ ; Φ]

]]η
Aη [τ ;Φ]

(D.15)

with the initial condition Ad[τ = 0;Φ] = 0. A few terms of Ad[τ ; Φ] is given by

Ad[τ ; Φ] = τdΦ+
τ2

2
[[dΦ,Φ]] +

τ3

3

( ∑

cyclic

[
ηΦ, dΦ,Φ

]η
+

1

2

[[
[[dΦ,Φ]]η,Φ

]]η
)
+ . . . .

The τ = 1 value of the functional Ad[τ ; Φ] of the dynamical string field Φ, which we write

Ad[Φ] ≡ Ad[τ = 1;Φ],
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satisfies (D.8) and gives an associated (functional) field. To prove this fact, we introduce

a function of τ

I(τ) ≡ Dη(τ)Ad[τ ; Φ]− (−)dAη[τ ; Φ],

whose zeros would provide the WZW-like relation that associated (functional) field must

satisfy. By definition, I(τ) satisfies I(τ = 0) = 0 and

∂

∂τ
I(τ) = Dη(τ)

(
∂τAd[τ ; Φ]

)
+
[
∂τAη[τ ; Φ], Ad[τ ; Φ]

]η
Aη [τ ;Φ]

− (−)dd
(
∂τAη[τ ; Φ]

)

=
[
Φ, I(τ)

]η
Aη [τ ;Φ]

+Dη

(
∂

∂τ
Ad[τ ; Φ]− dΦ−

[[
Φ, Ad[τ ; Φ]

]]η
Aη [τ ;Φ]

)
.

Hence, when Ad[τ ; Φ] is defined by (D.15), the function I(τ) gives the solution of the

differential equation
∂

∂τ
I(τ) =

[[
Φ, I(τ)

]]η
Aη [τ ;Φ]

with the initial condition I(0) = 0, namely, I(τ) = 0 for any τ : we obtain I(1) = 0.

E NS-NS sector

In this section, starting from the NS-NS superstring L∞-products, we clarify a WZW-like

structure and give alternative WZW-like form Sηη̃[ϕ] of the action for NS-NS string field

theory.

Dual L∞ products. Using path-ordered exponential map Ĝ, the NS-NS superstring

products L of the small-space L∞ action of [7] is given by L = Ĝ−1QĜ. By construction,

it satisfies [[η,L]] = 0 and [[η̃,L]] = 0. (See [7] or [6] for details.) We start with its dual L∞

products:

Lη ≡ Ĝη Ĝ−1, (E.1a)

Lη̃ ≡ Ĝ η̃ Ĝ−1. (E.1b)

They satisfy L∞-relations (Lα)2 = 0, commutativity [[Lη,Lη̃]] = 0, and Q-derivation prop-

erties

QLα = Ĝ (Ĝ−1QĜ)α Ĝ−1 = −Ĝα (Ĝ−1QĜ) Ĝ−1 = −LαQ

for α = η, η̃, which give extensions of η-constraints. In the rest, we write

[A1, . . . , An]
α := π1Ĝα Ĝ−1(A1 ∧ · · · ∧An), (α = η, η̃).

By definition, these dual L∞ products satisfy (Lα)2 = 0 for α = η, η̃, namely L∞-relations,

∑

σ

n∑

k=1

(−)|σ|
[
[Aiσ(1)

, . . . , Aiσ(k)
]α, Aiσ(k+1)

, . . . , Aiσ(n)

]α
= 0. (E.2a)

Note that the commutation relation [[Lη,Lη̃]] = 0 can be written as

∑

α1,α2=η,η̃

∑

σ

n∑

k=1

(−)|σ|
[
[Aiσ(1)

, . . . , Aiσ(k)
]α1 , Aiσ(k+1)

, . . . , Aiσ(n)

]α2 = 0. (E.2b)
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For d = Q, ∂t, δ, these products satisfy d-derivation properties:

d
[
B1, . . . , Bn

]α
+

n−1∑

i=1

(−)d(B1+···+Bk−1)
[
B1, . . . , dBk, . . . , Bn

]α
= 0. (E.2c)

E.1 Alternative Wess-Zumino-Witten-like relations

Let Ψηη̃ = Ψηη̃[ϕ] be a Grassmann even, ghost number 2, left-moving picture number

−1, and right-moving picture number −1 state in the left-and-right large Hilbert space.

When this Ψηη̃ satisfies the Maurer-Cartan equations for the both dual products (E.1a)

and (E.1b),

αΨηη̃ +
∞∑

n=1

1

(n+ 1)!
[

n+1︷ ︸︸ ︷
Ψηη̃, . . . ,Ψηη̃]

α = 0, (α = η, η̃), (E.3a)

we call Ψηη̃[ϕ] as a pure-gauge-like (functional) field. As we will see, in addition to this

Ψηη̃[ϕ], if one can obtain a state Ψd = Ψd[ϕ] which satisfy the WZW-like relation,

(−)ddΨηη̃ = −Dη Dη̃ Ψd, (E.3b)

then, one can always find a gauge invariant action. We call Ψd[ϕ] as a large associated

(functional) field. Here, the linear operator Dα for α = η, η̃ is given by

DαB ≡ αB +
∞∑

n=1

1

n!

[ n︷ ︸︸ ︷
Ψηη̃, . . . ,Ψηη̃, B

]α
, (α = η, η̃),

and d is a derivation operator satisfying (E.2c). For example, one can take d = Q, ∂t, or δ.

Note that (Dη)
2 = (Dη̃)

2 = 0 and DηDη̃ B = −Dη̃Dη B hold because Ψηη̃ satisfies (E.3a).

Although it is sufficient to consider the above (E.3a) and (E.3b), it would be helpful

to consider their small associated (functional) fields Ψηd = Ψηd[ϕ] and Ψdη̃ = Ψdη̃[ϕ] which

are defined by

Ψηd ≡ Dη Ψd, Ψdη̃ ≡ −Dη̃ Ψd. (E.3c)

While Ψd[ϕ] has the same ghost, left-moving picture, and right-moving picture numbers as

d, this Ψηd[ϕ] or Ψdη̃[ϕ] has the same as “d plus η” or “d plus η̃” respectively.

E.2 Alternative WZW-like action Sηη̃[ϕ]

Let ϕ be a dynamical NS-NS string field and ϕ(t) be a path satisfying ϕ(0) = 0 and

ϕ(1) = ϕ, where t ∈ [0, 1] is a real parameter. Once we construct WZW-like ingredients

Ψηη̃[ϕ] and Ψd[ϕ] as functionals of given dynamical string field ϕ, we can obtain a new

gauge invariant action

Sηη̃[ϕ] =

∫ 1

0
dt
〈
Ψt[ϕ(t)], QΨηη̃[ϕ(t)]

〉
, (E.4)

whose gauge transformations are given by

Ψδ[ϕ] = Dη Ω+Dη̃ Ω̃ +QΛ. (E.5)
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Here, we write Ψt[ϕ(t)] for Ψd[ϕ(t)] with d = ∂t, and Ψd[ϕ] for Ψd[ϕ] with d = δ. The

equation of motion is given by t-independent form

QΨηη̃[ϕ] = −Dη ΨQη̃[ϕ] = −Dη̃ ΨηQ[ϕ] = Dη Dη̃ ΨQ[ϕ] = 0. (E.6)

One can find these facts by using WZW-like relations (E.3a), (E.3b), and (E.3c) only,

which we explain. Note that computations are almost parallel to the conventional WZW-

like case [21].

Variation of the action. To derive (E.5) and (E.6) from (E.4), we compute the variation

of (E.4):

δSηη̃[ϕ] =

∫ 1

0
dt
(〈

δΨt[ϕ(t)], QΨηη̃[ϕ(t)]
〉
+
〈
Ψt[ϕ(t)], δ

(
QΨηη̃[ϕ(t)]

)〉)
.

For this purpose, we define two bilinear maps, so-called shifted L∞-products,

[
A , B

]α
Ψηη

≡

∞∑

n=0

1

n!

[ n︷ ︸︸ ︷
Ψηη̃, . . . ,Ψηη̃ , A , B

]α
, (α = η, η̃). (E.7)

With Dα, it satisfies Dα[A,B]αΨηη̃
+ [DαA,B]αΨηη̃

+(−)A[A,DαB]αΨηη̃
= 0. For d = ∂t, δ, or

Q, because of the derivation properties (E.2c) of Lα, we find

(−)dd
(
DαA

)
−Dα

(
dA

)
−
[
dΨηη̃ , A

]α
Ψηη̃

= 0 . (E.8a)

By considering [[d1, d2]]Ψηη̃ = 0 with this formula (E.8a), for example, we quickly find

Dη̃

(
d1Ψηd2 − (−)d1d2d2Ψηd1 − (−)d1 [Ψηd1 ,Ψηd2 ]

η̃
Ψηη̃

)
= 0. (E.8b)

For brevity, we omit ϕ(t)-dependence of functionals. Note that the inner product

〈A,B〉 includes the c−0 -insertion: we have 〈dA,B〉 = (−)dA〈A, dB〉 for d = Dη, Dη̃, Q,

and we use 〈A, [B,C]αΨηη̃
〉 = (−)AB〈B, [A,C]αΨηη̃

〉 for α = η, η̃. Using (E.8a) with (E.3b)

and (E.3c), we find that the second term can be rewritten as 〈Ψδ, ∂t(QΨηη̃)〉 plus extra

terms:

〈
Ψt, δ(QΨηη̃)

〉
= 〈Ψt, QDη̃Ψηδ〉 (E.9)

= −〈Ψt, Dη̃QΨηδ〉 − 〈Ψt, [QΨηη̃, Ψηδ]
η̃
Ψηη̃

〉

= −〈Ψηδ, QΨtη̃〉+ 〈Ψηδ, [Ψt, QΨηη̃]
η̃
Ψηη̃

〉

= 〈Ψδ, QDηΨtη̃

)
〉+ 〈Ψδ, [QΨηη̃, Ψtη̃]

η
Ψηη̃

〉+ 〈Ψηδ, [Ψt, QΨηη̃]
η̃
Ψηη̃

〉

=
〈
Ψδ, ∂t

(
QΨηη̃

)〉
+ 〈ΨQη̃, Dη

(
[Ψtη̃, Ψδ]

η
Ψηη̃

− [Ψt,Ψηδ]
η̃
Ψηη̃

)
〉.
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Likewise, we find the first term of the variation becomes 〈∂tΨδ, QΨηη̃〉 plus extra terms:

〈
δΨt, QΨηη̃

〉
= −〈DηδΨt,ΨQη̃〉 (E.10)

= −〈δ
(
DηΨt

)
,ΨQη̃〉+ 〈[δΨηη̃,Ψt]

η
Ψηη̃

,ΨQη̃〉

= −〈δΨηt,ΨQη̃〉+ 〈[Dη̃Ψηδ,Ψt]
η
Ψηη̃

,ΨQη̃〉

= 〈∂tΨηδ,ΨQη̃〉+ 〈[Ψηt,Ψηδ]
η
Ψηη̃

, ΨQη̃〉+ 〈[Dη̃Ψηδ,Ψt]
η
Ψηη̃

,ΨQη̃〉

= 〈Dη∂tΨδ + 〈[∂tΨηη̃,Ψδ]
η̃
Ψηη̃

,ΨQη̃〉+ 〈ΨQη̃, [Ψηt,Ψηδ]
η
Ψηη̃

+ [Ψt, Dη̃Ψηδ]
η
Ψηη̃

〉

= 〈∂tΨδ, QΨηη̃〉+ 〈ΨQη̃, [DηΨtη̃,Ψδ]
η̃
Ψηη̃

+ [Ψηt,Ψηδ]
η
Ψηη̃

+ [Ψt, Dη̃Ψηδ]
η
Ψηη̃

〉.

From the third line to the forth line, we used (E.8b) with (E.3c). If and only if the sum

of these extra terms vanishes, the action has a topological t-dependence. However, (E.2b)

provides the cancellation of these extra terms. Therefore, using ϕ(0) = 0 and ϕ(1) = ϕ,

we obtain

δSηη̃[ϕ] =

∫ 1

0
dt
[
(E.9) + (E.10)

]
=
〈
Ψδ[ϕ], QΨηη̃[ϕ]

〉
.

We proved that when we have WZW-like functional fields Ψηη̃[ϕ] and Ψd[ϕ] which

satisfy (E.3b), our NS-NS action Sηη̃[ϕ] has topological t-dependence: δSηη̃[ϕ] =

〈Ψδ[ϕ], QΨηη̃[ϕ]〉. As a result, this form of the variation of (E.4) ensures that it is in-

variant under (E.5) and the equations of motion is given by (E.6) because of (E.3b).

In the rest, we give two realisations of this action: small-space parametrisation Sηη̃[Φ]

and large-space parametrisation Sηη̃[Ψ]. By construction, the L∞ action proposed in [7]

is equivalent to Sηη̃[Φ]. Since Sηη̃[Ψ] has the same (alternative) WZW-like structure as

Sηη̃[Φ], our new actions Sηη̃[Φ] and Sηη̃[Ψ] both are equivalent to that of L∞ formulation.

E.3 Small-space parametrisation: ϕ = Φ

Let Φ be a NS-NS dynamical string field belonging to the small Hilbert space, which is

a Grassmann even, ghost number 2, left-moving picture number −1, and right-moving

picture number −1 state. We show that the pure-gauge-like field Ψηη̃ is given by

Ψηη̃(t) = π1Ĝ
(
e∧Φ(t)

)
, (E.11)

and the linear operator Dα for α = η, η̃ becomes

Dα = π1L
α
(
I ∧ e∧π1Ĝ(e∧Φ)

)
, (α = η, η̃).

Then, the left associated field Ψdη̃ and the right associated field Ψηd are given by

Ψdη̃(t) = π1Ĝ
(
ξde

∧Φ(t)
)
,

Ψηd(t) = π1Ĝ
(
ξ̃de

∧Φ(t)
)
,

respectively. The large associated field Ψd, which we call the large associated field, is

given by

Ψd = π1Ĝ
(
ξξ̃dΦ(t) ∧ e∧Φ(t)

)
(E.12)
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Proofs of properties. Since the group-like element given by (E.11) satisfies

Lη
(
eπ1Ĝ(e∧Φ(t))

)
= (Ĝη Ĝ−1) Ĝ

(
e∧Φ(t)

)
= Ĝη

(
e∧Φ(t)

)
= 0,

we obtain the desired equation π1L
η
(
e∧Ψη(t)

)
= 0, or equivalently,

ηΨηη̃(t) +
∞∑

n=1

1

(n+ 1)!

[
n+1︷ ︸︸ ︷

Ψηη̃(t), . . . ,Ψηη̃(t)
]η

= 0.

Similarly, provided that dĜ = Ĝ d and [[d, η]] = 0, after the following computation

(−)XXĜ
(
e∧Φ(t)

)
= (−)dĜ

(
dΦ(t) ∧ e∧Φ(t)

)
= Ĝη

(
ξdΦ(t) ∧ e∧Φ(t)

)

= Lη Ĝ
(
ξdΦ(t) ∧ e∧Φ(t)

)

= Lη
(
π1Ĝ

(
ξdΦ(t) ∧ e∧Φ(t)

)
∧ e∧π1G̃(e∧Φ(t))

)
,

we find that the second Wess-Zumino-Witten-like relation holds:

(−)ddΨηη̃(t) = Dη(t)Ψdη̃(t).

Note that [[Q, η]] = 0 but QĜ = ĜL. Utilizing the coderivation ξQ such that L =

−[[η, ξQ]], we can check that the field

ΨQη̃(t) = π1Ĝ
(
ξQe

∧Φ(t)
)

satisfies the second Wess-Zumino-Witten-like relation −QΨηη̃ = Dη ΨQη̃ as follows

−QĜ
(
e∧Φ(t)

)
= −ĜL

(
e∧Φ(t)

)
= Ĝη ξQ

(
e∧Φ(t)

)
= Lη Ĝ ξQ

(
e∧Φ(t)

)

= Lη
(
π1Ĝ ξQ

(
e∧Φ(t)

)
∧ e∧π1Ĝ(e∧Φ(t))

)
.

As the almost same way, one can check π1L
η̃e∧Ψηη̃ = 0 and (−)ddΨηη̃ = Dη̃Ψηd. Then, we

find

[[Dη, Dη̃]]B = −π1L
η
(
π1L

η̃(eΨηη̃) ∧B ∧ eΨηη̃
)
− π1L

η̃
(
π1L

η(eΨηη̃) ∧B ∧ eΨηη̃
)

and thus, (E.12) gives an appropriate large associated (functional) field: (E.3c) holds.

E.4 Large-space parametrization: ϕ = Ψ

We write Ψ for a dynamical NS-NS string field which has ghost-and-picture numbers (0|0, 0)

and belongs to the left-large and right-large Hilbert space: ηΨ 6= 0, η̃Ψ 6= 0, and ηη̃Ψ 6= 0.

Let us consider the solution Ψηη̃[τ ; Ψ] of the following differential equation,

∂

∂τ
Ψηη̃[τ ; Ψ] = DηDη̃ Ψ (E.13)

with the initial condition Ψηη̃[τ = 0;Ψ] = 0, where for any state A ∈ H and for α = η, η̃,

DαA ≡ αA+
∞∑

n=0

1

n!

[
n︷ ︸︸ ︷

Ψηη̃[τ ; Ψ], . . . ,Ψηη̃[τ ; Ψ], A
]α
.
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A pure-gauge-like (functional) field Ψηη̃[Ψ] is obtained as the τ = 1 value solution

Ψηη̃[Ψ] ≡ Ψηη̃[τ = 1;Ψ].

One can check that this Ψηη̃[Ψ] satisfies (E.3a) by the same (but double) way as NS theory,

and then [[Dη, Dη̃]]A = −
[
π1L

ηeΨηη̃ , A
]η
Ψηη̃

−
[
π1L

η̃eΨηη̃ , A
]η̃
Ψηη̃

= 0 holds for any state

A ∈ H.

We consider the solutions Ψdη̃[τ ; Ψ] and Ψηd[τ ; Ψ] of the following differential equations

∂

∂τ
Ψdη̃[τ ; Ψ] = dDη̃ Ψ+

[
Dη̃Ψ,Ψdη̃[τ ; Ψ]

]η
Ψηη̃ [τ ;Ψ]

, (E.14a)

−
∂

∂τ
Ψηd[τ ; Ψ] = dDη Ψ+

[
DηΨ,Ψηd[τ ; Ψ]

]η̃
Ψηη̃ [τ ;Ψ]

, (E.14b)

with the initial conditions Ψdη̃[τ = 0;Ψ] = 0 and Ψηd[τ = 0;Ψ] = 0. Here, we used (E.7).

Associated (functional) fields Ψdη̃[Ψ] and Ψηd[Ψ] are τ = 1 values of these solutions,

Ψdη̃[Ψ] ≡ Ψdη̃[τ = 1;Ψ], Ψηd[Ψ] ≡ Ψηd[τ = 1;Ψ].

One can also check these satisfy (E.3b) by the same way as NS theory. The minus sign

of (E.14b) comes from the ordering of Dη and Dη̃ in the definition of (E.13).

Note that we can only specify the large associated (functional) field Ψ∗
d up to Dη- and

Dη̃-exact terms, and these ambiguities do not contribute in the action. The situation is

parallel with that of the conventional WZW-like NS-NS theory [21]. Thus one may consider

a differential equation defining Ψ∗
d up to Dη- and Dη̃-exacts by mimicking that of [21], but

now we can take more economical way: we have operators Fξ and F̃ ξ̃ defined by

Fξ ≡
∞∑

n=0

[
ξ
(
η −Dη

)]n
ξ, F̃ ξ̃ ≡

∞∑

n=0

[
ξ̃
(
η̃ −Dη̃

)]n
ξ̃,

which satisfy [[Fξ,Dη]] = 1 and [[F̃ ξ̃, Dη̃]] = 1, respectively. These Fξ and F̃ ξ̃ consist of

the pure-gauge-like (functional) field Ψηη̃[Ψ], which is already constructed, and operators ξ

and ξ̃. Hence, using these pieces, one can quickly obtain the desired Ψd = Ψd[Ψ] as follows,

Ψd[Ψ] ≡ FξΨdη̃[Ψ] = −F ξ̃Ψηd[Ψ].
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