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1 Intoduction

The discovery of Seiberg-Witten theory [1, 2] and related integrable systems [3] in the

mid-nineties gave rise to many new insights in the theory of integrable systems. In par-

ticular it led to a new understanding [4–10] of the classical p − q duality [11, 12] of the

Calogero-Ruijsenaars family [8] via its relation with the Seiberg-Witten construction of the

low-energy limit of N = 2 SUSY gauge theories with adjoint matter hypermultiplets: the

4d theory is described by the elliptic Calogero-Moser system (the elliptic modulus being

associated in physical theory with the bare coupling constant) [13–15], the 5d theory (with

one compactified Kaluza-Klein dimension) is described by the elliptic Ruijsenaars sys-

tem [16] and the 6d theory (with two compactified Kaluza-Klein dimensions) is described

by the double-elliptic integrable system (the second elliptic modulus being associated with

the compactification torus or an abelian surface) [4, 6, 7, 17]. All these integrable sys-

tems have an elliptic dependence on particle momenta and the most interesting ones are

the double-elliptic integrable systems, where both coordinates and momenta have com-

pact values.

The p − q duality admits various deformations. For instance, with a one parametric

deformation one can lift it to quantum integrable systems [8, 11, 12, 18–20] where the p−q

duality can be studied at the level of wave functions; this provides an additional tool to

work with. This deformation corresponds to the Nekrasov-Shatashvili limit, ǫ2 → 0 [21] of

the Nekrasov functions with ǫ1 playing role of Planck’s constant. One may also consider a

two-parametric deformation, where in this case one adds to the quantum integrable system

its Whitham deformation controlled by the second deformation parameter. The latter is

done within the framework of the AGT correspondence [22–24] and the most effective tools

here are matrix models [25–31]. Note that at the level of AGT with one of the deformation

parameters set to zero (so corresponding to a quantum integrable system [21, 32–35]), the

p − q duality has quite an unexpected avatar: it is the spectral duality that describes a

duality between the SL(N) spin chain and the Gaudin model with N + 2 marked points
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(these two systems describe the two sides of the AGT correspondence) [36, 37]. The spectral

duality is lifted to 5d where it describes a duality of the SL(N) spin chain on M + 2 sites

and the SL(M) spin chain on N +2 sites [38, 39]. Moreover, one can consider the full two-

parametric AGT at this 5d level [40, 41] where the spectral duality has a clear brane-picture

interpretation.

However, an exact correspondence between p− q duality and spectral duality has yet

to be established. Moreover, in contrast to the above cases, the probable generalizations

of spectral duality to 6d systems are not known even at the classical level, while the p− q

duality corresponding to 6d systems is known, as explained above, and is described by the

self-duality of the double-elliptic systems.

In this paper we continue the recent study [10] of the double elliptic systems at the

classical level. Our goal is to derive the theta-constant equations for the period matrix

of the Seiberg-Witten curve of the double-elliptic integrable system. The main tool is the

involutivity condition for the N -particle Hamiltonians constructed in [4, 6, 17] with respect

to the Poisson bracket introduced in [10]. Initially the Hamiltonians for the integrable sys-

tems under consideration were defined in [4, 6] in the form of the ratios of theta-functions

on Abelian varieties associated with the Jacobians of the corresponding Seiberg-Witten

curves (see below). The hypothesis of [6] was that the Hamiltonians are Poisson com-

muting with respect to the Seiberg-Witten symplectic structure. Following this idea a

new approach, which deals with arbitrary Riemann surfaces instead of the Seiberg-Witten

curves was proposed in [10]. Within this approach the concept of the Poisson bracket in

terms of the coordinates on the Jacobian and the elements of the period matrix was in-

troduced. An advantage of this approach is that it could lead to integrable systems not

necessarily associated with the Seiberg-Witten curves. Indeed, it was demonstrated in [10]

that the Poisson commutativity of the three-particle Hamiltonians is related just to some

new theta-function identities of genus two, not making uses of the Seiberg-Witten curve.

In this paper, we extend the approach to the case of N -particle systems with N > 3.

When N = 4 we describe evidence that the four-particle Hamiltonians are still in involu-

tion for an arbitrary Riemann surface of genus g = 3. However, in the general case when

N > 4 the involutivity condition places restrictions on the period matrix and we find these

satisfied for the special period matrices corresponding to the Seiberg-Witten curve of the

double-elliptic integrable system, in accordance with the original expectation in [6]. Thus,

the involutivity condition can be used to determine the dependence of the period matrix

on the Seiberg-Witten flat moduli, providing an independent method for calculating the

Seiberg-Witten prepotentials (including their instanton corrections).

In section 2 we recall the definition of the N -particle Hamiltonians [4, 6, 17] and

introduce the involutivity condition with respect to the Poisson bracket from [10]. In

section 3 the involutivity condition is reformulated as a linear problem in terms of the

vectors in a linear space of weight 3 theta functions. In section 4 we prove the theta-function

identities that lie behind the Poisson commutativity of the three-particle Hamiltonians. In

section 5 the method for calculating the Seiberg-Witten prepotentials of the double-elliptic

integrable systems is presented. To illustrate the method we derive the Seiberg-Witten

perturbative prepotential in the case of N = 5.
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2 The setting

Motivated by considerations of duality and the known rational, trigonometric and elliptic

dependencies of the Calogero-Moser system the work of [4] sought to construct integrable

systems with compact momentum dependence, extending the rational and hyperbolic de-

pendence of momentum of the Calogero-Moser and Ruijsenaars-Schneider systems respec-

tively. A 2-particle system that reproduced the Ruijsenaars-Schneider (and so also the

Calogero-Moser) system as a limit was constructed in which the reduced momentum had

elliptic dependence. That momentum dependence led to this class of models being called

‘double-elliptic’, though actually the momenta posited in the paper more generally took

values in some abelian variety A (possibly a Jacobian) and the Hamiltonians were argued

to be ratios of theta functions, θa(z |Ω)/θb(z |Ω) where z is the momenta and Ω the period

matrix of A . The relevant theta functions were introduced by analogy to those of the N -

particle elliptic Calogero-Moser system. There the genus N spectral curve C is an N -fold

covering of an elliptic curve E and the Jacobian Jac(C) is isogenous to an Abelian variety of

the form Jac(E)⊕A. If T is the period matrix of C the general theory of coverings enables

us to write1

Θ(ẑ|T ) =
∑

~α∈ZN−1/NZN−1

θ

[

− 1
N

∑N
j=1 αj

0

]

(z|Nτ) θ

[

~α
N

0

]

(z|Ω) . (2.1)

where (z, z)T = M ẑT for an appropriate M separating out the centre of mass mode z and

MTMT =
(Nτ 0

0 Ω

)

. Such decompositions are far from unique, for example the identity

(here e(x) := e2iπx)

θ

[

0

b/l

]

(z|l−1Ω) =
∑

0≤ai<l

e

(

a · b
l

)

θ

[

a/l

0

]

(lz|lΩ), 0 ≤ bi < l (2.2)

with inverse

θ

[

a/l

0

]

(lz|lΩ) = 1

lg

∑

0≤bi<l

e

(

−a · b
l

)

θ

[

0

b/l

]

(z|l−1Ω), 0 ≤ ai < l (2.3)

leads to alternative expressions and we write these simply as

Θ(ẑ|T ) =
∑

a

θa (z|Nτ) θa (2.4)

specifying θa := θa(z|Ω) as required. Although [4] suggested the form of the Hamiltonians

of the dual system, the exact nature of the θa was left unspecified (for N > 2) and neither

their Poisson commutativity nor their geometric setting was addressed at that time. The

1Here the Riemann θ-function with characteristics a, b ∈ Q and g × g period matrix T is

θ

[
a

b

]
(ẑ |T ) =

∑

n∈Zg

exp
{
ıπ(n+ a)TT (n+ a) + 2ıπ(n+ a)T (ẑ + b)

}
.
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Seiberg-Witten picture tells us that Ω depends on the conjugate coordinates, but the

dependence is left unspecified.

Before turning to the issue of Poisson commutativity we recall that Braden and Hol-

lowood have given a geometric setting for such Hamiltonians [17]. There the spectral curve

is of genus N +1 and lies in a (1, N)-polarized abelian surface and is given by an equation

of the form

0 =
N−1
∑

a=0

Θ

[

0 a
N

0 0

]

(z1, z2 |Γ) θa, θa =
∑

~α∈ZN−1/NZN−1

a+
∑

j αj∈NZ

θ

[

~α
N

0

]

(z|Ω) . (2.5)

Here Θ is the theta function of the abelian surface and θa are of the form (2.1). Degener-

ations of this give precisely the Ruijsenaars and elliptic Calogero-Moser systems.

Regarding the Poisson commutativity of the ratios of theta functions (Hamiltonians)

associated with the dual models of [4], significant evidence for this was amassed in [6]

using a perturbative (in instanton number) expansion. Here it was observed that resulting

equations for commutativity gave relations between the various terms of the instanton

expansion of the Seiberg-Witten prepotential associated with C. (A proof of the Poisson

commutativity in the case of the elliptic Calogero-Moser system was later provided in [42].)

Following [43] we have that (for all a, b, c, d)

0 =

{

θa
θd

,
θb
θc

}

⇐⇒ θdSabc = θaSbcd, Sabc := θa{θb, θc}+ θb{θc, θa}+ θc{θa, θb},

and so with d = c

0 = Sabc =

N
∑

i=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

θa
∂θa
∂ẑi

∂θa
∂âi

θb
∂θb
∂ẑi

∂θb
∂âi

θc
∂θc
∂ẑi

∂θc
∂âi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

N−1
∑

r=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

θa
∂θa
∂zr

∂θa
∂ar

θb
∂θb
∂zr

∂θb
∂ar

θc
∂θc
∂zr

∂θc
∂ar

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2.6)

where the action âi is conjugate to the variable ẑi and in obtaining the final equality we

express the simplectic form as

ω =
N
∑

i=1

dẑi ∧ dâi = dz ∧ dτ +
N−1
∑

r=1

dzr ∧ dar

noting that θa is independent of the centre of mass. Geometrically the Seiberg-Witten

curve is the fibre over the moduli space of actions: this means the dependence of the theta

functions on the action âi is via the period matrix T of C and hence Ω. Upon using the

heat equation, that (τ,a)T = M−1T âT , and the prepotential F we have that

∂θa
∂ar

=
∂θa
∂Ωst

∂Ωst

∂ar
=

1

4iπ

∂2θa
∂zs∂zt

∂Ωst

∂ar
=

1

4iπ

∂2θa
∂zs∂zt

MsiMtjMrk
∂Tij

∂âk

=
1

4iπ

∂2θa
∂zs∂zt

MsiMtjMrk
∂3F

∂âi∂âj∂âk
; (2.7)
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thus the Poisson-commutativity reduces to showing that

0 =
N−1
∑

r,s,t=1

PrstH
abc
rst , (2.8)

where Prst is totally symmetric (for this example Prst = MriMsjMtk ∂
3F/∂âi∂âj∂âk) and

Habc
rst :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

θa
∂θa
∂zr

∂θa
∂zs∂zt

θb
∂θb
∂zr

∂θb
∂zs∂zt

θc
∂θc
∂zr

∂θc
∂zs∂zt

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (2.9)

As noted above, this Poisson commutativity has been established for systems arising as

degenerations of the elliptic Calogero-Moser system.

In the works just described we have utilised properties of the underlying spectral curve

C to construct examples of double-elliptic systems. The recent paper [10] goes beyond this.

Let us henceforth assume Hamiltonians of the form (a = 1, . . . , N − 1)

Ha (z |Ω) =
θ

[

0 . . . 0
a
N . . . a

N

]

(z |Ω)

θ (z |Ω) :=
θa (z |Ω)
θ0 (z |Ω)

, (2.10)

where Ω is (N − 1) × (N − 1) period matrix. (These are simply related to the Braden-

Hollowood Hamiltonians via (2.2).2) Assuming only the Jacobi identity [10] sought solu-

tions to (2.8) for genus 2 theta functions (N = 3). They discovered that Prst were totally

symmetric and their solutions were expressed in terms of theta-function identities. We

reformulate and extend this as follows. Suppose one has a family of abelian varieties for

which there is a symplectic structure on the total space with respect to which the abelian

varieties are Lagrangian: we have in the above coordinates

{zr,Ωst} = Prst(a), {zr, zs} = 0, {Ωrs,Ωtu} = 0, (2.11)

where the period matrix Ω = Ω(a) are some special functions of the Seiberg-Witten flat

moduli a. We know from the work of Donagi and Markman [44] that (assuming holomor-

phicity) the differential of the period map at each point is the contraction of a cubic, and

2The Hamiltonians H̃j =
A0j

A00

, A0j =
∑

{ik}j
θ
[

i1
N

...
iN−1

N

0 ... 0

] (
Nz |N2Ω

)
, where ik = 0, . . . , N − 1 and the

elements from {ik}j satisfy j +
∑N−1

k=1
ik ∈ N · Z may be expressed as

Hi (z |Ω) =

θ

[
0 . . . 0
i
N

. . . i
N

]
(z |Ω)

θ (z |Ω)
=

N−1∑

j=0

e

(
−
i j

N

)
A0j

N−1∑

j=0

A0j

, i = 1, . . . , N − 1.

– 5 –



J
H
E
P
0
1
(
2
0
1
5
)
0
3
3

so Prst is totally symmetric. (This was a result of [10] that in the light of [44] we assume

from the outset.) What can be said about the solutions to (2.8) for arbitrary g = N − 1?

We will show that for g = 2 (2.8) holds for an arbitrary symmetric g × g period matrix

Ω and are actually theta-function identities. In the case when g > 4 the relations (2.8)

define some special constraints on the elements of the period matrix Ω. We will show that

these constraints describe the dependence of Ω on the flat moduli of the corresponding

Seiberg-Witten curves. Thus, in the general case, the Poisson commutativity of the Hamil-

tonians (2.10) holds only for some special class of period matrices, as suggested in [4, 6].

3 Poisson commutativity as a linear problem

The relations (2.8) are strongly connected with weight 3 theta functions and their cor-

responding linear spaces [45, 46]. Recall that an entire function f (z |Ω) = f (z) on Cg

with fixed symmetric period matrix Ω is called a theta function of weight λ ∈ N and

characteristic
[

δ
ǫ

]

, if

f(z+ pΩ+ q) = e

(

−λ

2
pΩp− λp · z+ δ · q− ǫ · p)

)

f(z) (3.1)

for all p,q ∈ Zg. Such functions form a linear space ΘΩ
λ

[

δ
ǫ

]

of dimension λg with standard

bases [47]:

(1) θ

[

δ+ρ
λ

ǫ

]

(λz |λΩ) , 0 6 ρi < λ, (3.2)

(2) θ

[

δ

ǫ+ρ
λ

]

(

z |λ−1Ω
)

, 0 6 ρi < λ. (3.3)

It is convenient to define the general

Habc
rst (z |Ω) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

θ
[

a
a′

]

(z |Ω) ∂zrθ
[

a
a′

]

(z |Ω) ∂zs∂ztθ
[

a
a′

]

(z |Ω)

θ
[

b
b′

]

(z |Ω) ∂zrθ
[

b
b′

]

(z |Ω) ∂zs∂ztθ
[

b
b′

]

(z |Ω)

θ
[

c
c′

]

(z |Ω) ∂zrθ
[

c
c′

]

(z |Ω) ∂zs∂ztθ
[

c
c′

]

(z |Ω)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (3.4)

where a,a′,b,b′, c, c′ ∈ Qg. With appropriate choices these will give the determi-

nants (2.9). Now the symmetry of the coefficients Prst means that we can work with

the fully symmetric combinations

Habc
{rst} := Habc

rst +Habc
str +Habc

trs , r 6 s 6 t. (3.5)

A simple calculation establishes that

Habc
{rst}(z+ pΩ+ q) = e

(

−3

2
pΩp− 3p · z+[a+b+c] · q−

[

a′ + b′ + c′
]

· p)
)

Habc
{rst}(z)

(3.6)
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and so

Habc
{rst}(z) ∈ ΘΩ

3

[

a+ b+ c

a′ + b′ + c′.

]

(3.7)

We emphasise that although none of the terms Habc
rst individually possess this property

the symmetrised sum is a third order theta function. This result has several important

consequences. First, let {f~α(z)} be any basis for ΘΩ
3

[

a+b+c
a′+b′+c′.

]

; then we have an expansion

Habc
{rst}(z) =

∑

~α

C~α
{rst} f~α(z) (3.8)

and (2.8) becomes for each ~α

0 =

g
∑

r,s,t=1

PrstC
~α
{rst}. (3.9)

This important relation entails several things. First it expresses that the g (g + 1) (g + 2) /6

vectors C~α
{rst} (each one has 3g coordinates) are linearly dependent. Second, that we have

a linear problem to determine the Prst’s; and third, that the Prst’s will be expressible in

terms of the constants C~α
{rst} if there is a nontrivial solution. Because the C~α

{rst}’s are given

in terms of theta-constants, these are the theta-constant identities referred to earlier and

generalise those obtained in [10]. In the next section we shall illustrate this general setting

for the Hamiltonians (2.10). For ease of description in what follows we will describe C~α
{rst}

as a 3g × g (g + 1) (g + 2) /6 matrix.

4 An example

We shall now apply the above considerations to the Hamiltonians (2.10) and prove a con-

jecture raised in [10]. The relevant characteristics are

[

a

a′

]

=

[

0 . . . 0

a/N . . . a/N

]

,

[

b

b′

]

=

[

0 . . . 0

b/N . . . b/N

]

,

[

c

c′

]

=

[

0 . . . 0

0 . . . 0

]

,

and we may obtain the expansion (3.8) as follows. The determinantsHab
rst have the following

Fourier decomposition:

Hab
rst = (2πı)3

∑

n,m,l∈Zg

e

(

1

2
ntΩn+

1

2
mtΩm+

1

2
ltΩ l+ (n+m+ l) · z

)

×

×e
(

a′ ·m+ b′ · l
)

|n,m, l|rst , (4.1)

where

|n,m, l|rst =

∣

∣

∣

∣

∣

∣

∣

1 nr nsnt

1 mr msmt

1 lr lslt

∣

∣

∣

∣

∣

∣

∣

. (4.2)

The symmetrized functions Hab
{rst} then have an analogous expression in terms of

|n,m, l|{rst} = |n,m, l|rst + |n,m, l|str + |n,m, l|trs . (4.3)

– 7 –
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That Hab
{rst} is a theta functions of weight λ = 3 is reflected by the relation:

∀p ∈ Cg : |n+ p, m+ p, l+ p|{rst} = |n,m, l|{rst} . (4.4)

To obtain the decomposition in the basis (3.2) we change the summation variables in (4.1)

as follows










n → 3k+ ~α−m− l,

m → k+ i,

l → k+ j,

i, j,k ∈ Zg, and ~α ∈ Zg/3Zg. (4.5)

Then, using the relation (4.4), we obtain

Hab
{rst} =

∑

~α∈Zg/3Zg

C~α
{rst} θ

[

~α/3

(a+ b)/N . . . (a+ b)/N

]

(3z | 3Ω) , (4.6)

where

C~α
{rst} = (2πı)3e

(

−(a+ b)
∑

k αk

3N

)

×

×
∑

i,j∈Zg

e

((

i+
j− ~α

2

)

Ω

(

i+
j− ~α

2

)

+

(

j

2
− ~α

6

)

3Ω

(

j

2
− ~α

6

))

×

×e

(

a
∑

k ik + b
∑

k jk
N

)

|~α− i− j, i, j|{rst}

(4.7)

or in terms of theta constants (with θ′r (0 |Ω) ≡ ∂zrθ (z |Ω)|z=0)

C~α
{rst} = 2

∑

~β∈Zg/2Zg

r,s,t

(

9θ′r

[

~β−~α
2

a/N . . . a/N

]

(0 | 2Ω) θ′′st

[

~β
2 − ~α

6

(2b− a/N . . . 2b− a/N)

]

(0 | 6Ω)

−θ′′′rst

[

~β−~α
2

a/N . . . a/N

]

(0 | 2Ω) θ
[

~β
2 − ~α

6

(2b− a/N . . . 2b− a/N)

]

(0 | 6Ω)
)

. (4.8)

Now when N = 3 (g = 2) we have just two Hamiltonians (a = 1, b = 2 or vice versa)

and the functions Hab
rst are invariant under the transformation

Hab
rst

(

z+
k

3
(1, 1) |Ω

)

= Hab
rst (z |Ω) . (4.9)

In terms of the basis elements we have

θ

[

~α/3

ǫ

](

3

(

z+
k

3
(1, 1)

)

| 3Ω
)

= e

(

k
∑

l αl

3

)

θ

[

~α/3

ǫ

]

(3z | 3Ω) . (4.10)

Hence the only nonzero coefficients in the decomposition (4.6) are those C~α
{rst} for which

e

(

k
∑

l αl

3

)

= 1 (4.11)
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so leaving 3g−1 possible nonzero coordinates in each column of C~α
{rst}. Moreover, the

symmetry

Hab
rst (−z |Ω) = Hab

rst (z |Ω) (4.12)

reduces the independent terms further to only (3g−1 + 1)/2 different nonzero rows in the

matrix C~α
{rst}. Now in the present setting we have g (g + 1) (g + 2) /6 > (3g−1 + 1)/2

and so more variables P{rst} than equations, from which we deduce that for arbitrary Ω

equation (3.9) holds for nontrivial Prst and the corresponding C~α
{rst} are linearly dependent.

This establishes the theta-constant relations conjectured in [10].

We remark in passing the above argument actually shows that for each pair of nonzero

vectors a,b ∈ Zg/3Zg with property a+b ≡ 0 mod 3 there exists a nontrivial set of quan-

tities Prst for which the corresponding Hamiltonians commute for g ≤ 4. This is because

z → z+a/3 is still a symmetry of Hab
rst, now leading to nonzero C~α

{rst} when e (~α · a/3) = 1.

Together with the restriction coming from parity, we have (g + 1) (g + 2) /6 > (3g−1 + 1)/2

for g ≤ 4 and again there are corresponding theta-constant identities. When e (~α · a/3) 6= 1

we find the identities C~α
{rst} = 0.

5 Theta-constant representation for the Seiberg-Witten curves

In this section we shall use the constraint (2.8) to make various deductions about the

prepotential. This work will focus on the perturbative prepotential to establish the method,

leaving the instanton corrections to a later work.

It is helpful to isolate the assumptions being made. First we are assuming that there

exists an underlying Seiberg-Witten curve C with period matrix T given by a prepotential

F . Second, we shall assume that the curve C is of genus N and covers an elliptic curve,

and so is related to the elliptic Calogero-Moser family. With a choice of M given by

∀i : M1i = Mi1 =
1

N
, ∀i > 1, j > 1 : Mij = −δij

N
. (5.1)

we find

Ωij = δij





g

N
τ −

∑

k 6=i+1

Ti+1,k



+ (1− δij)

(

Ti+1,j+1 −
1

N
τ

)

. (5.2)

In passing we note that at this stage one could have chosen to use a different M (for

example [43]) giving equivalent expansions, or chosen to have the Braden-Hollowood genus

N+1 curve. Together these assumptions provide us with an instanton expansion (for i 6= j)

Tij =
∂2F

∂âi∂âj
= − 1

πı
lnF

(0)
ij +

∑

k∈N

qk
∂2F (k)

∂âi∂âj
, q ≡ e2πıτ . (5.3)

Here F (0) is the perturbative prepotential and the instanton corrections F (k) to the Seiberg-

Witten prepotential F are only known to low order. We may obtain new information about

this expansion as follows. With Prst = MriMsjMtk ∂
3F/∂âi∂âj∂âk the constraints (3.9)
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with (4.8) and the instanton expansions of these constrain the Prst’s. Let us write the

perturbative expansions (corresponding to the trigonometric limit Im τ → +∞) as

Qij ≡ e (Tij) = qij +
∑

k∈N

qk q
(k)
ij , (5.4)

Pijk = pijk +
∑

l∈N

ql p
(l)
ijk. (5.5)

The constraints (3.9) become relations between the coefficients of these expansions. Before

illustrating this we note that although the dependence on the coordinates is not a priori

known, we know that in the case of the GL (N) systems under consideration (for example,

from the Toda limits of [6]) the quantities F
(0)
ij from (5.3) are just functions of (âi − âj),

the difference of the Seiberg-Witten flat moduli. In general, the variables qij ≡
(

F
(0)
ij

)−2

may be represented by the following series:

qij =
∑

l=0

cl (âi − âj)
2l+2 . (5.6)

In the previous section we considered the case when N = 3. When N = 4 we have 10

vectors C~α
{rst} in a 27 dimensional space. Consider the determinants Hab

rst with a = 1 and

b = 3. Then due to the symmetry

Hab
rst (−z |Ω) = Hab

rst (z |Ω) (5.7)

we have only 14 different rows in the matrix consisting of vectors C~α
{rst}. The relations (2.8)

place restrictions on the rank of the resulting 14× 10 matrix. We have a strong numerical

evidence that these restrictions are satisfied for an arbitrary symmetric 3×3 period matrix

Ω and the rank is 9. In more detail: computing up to tenth order in perturbation theory

and for an arbitrary period matrix we find that the minor of the first 9 rows and 9 columns

is nonvanishing, giving the matrix rank at least 9; then taking the final column and any of

the five final rows we find vanishing minors. We do not yet have an analytic proof of this.

We therefore consider the case N = 5. Here we have 20 vectors C~α
{rst} in an 81

dimensional space. Again, if we choose the determinantsHab
rst with a = 1 and b = N−1 = 4,

we obtain 41 different rows in the matrix consisting of vectors C~α
{rst}. Then in order to

satisfy the relations (2.8), the rank of this matrix must be at most equal to 19. The latter

gives at least 22 equations on the elements of the period matrix Ω. The number 22 alone

does not give useful information, as some of these equations may be equivalent. Now taking

the constraints (3.9) in the case of N = 5 and the perturbative expansions above, we obtain

the linear system

Lp = 0 (5.8)

for the first nonzero order of the elements pijk:

i 6= j : pijj = −piij , i 6= j 6= k : pijk = 0. (5.9)

Here

pT =
(

p111 p112 p113 p114 p222 p223 p224 p333 p334 p444

)
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(the remaining p’s appear at higher orders) and

L =





























q13 − q23 0 q13 − q23 q13 − q23 q12 − q23 q12 − q23 q12 − q23 0 0 0

q24 − q14 q24 − q14 0 q24 − q14 0 q12 − q24 0 q24 − q12 q24 − q12 0

q25 − q15 q25 − q15 q25 − q15 0 0 0 q12 − q25 0 q12 − q25 q25 − q12
0 0 0 0 0 q35 − q45 q34 − q45 0 q34 − q35 0

0 q14 − q34 q13 − q34 0 q34 − q14 0 q34 − q14 q34 − q13 q34 − q13 0

0 q15 − q35 0 q13 − q35 q35 − q15 q35 − q15 0 0 q13 − q35 q35 − q13
0 0 q25 − q45 q24 − q45 0 0 0 0 q24 − q25 0

0 q25 − q35 0 q23 − q35 0 0 q23 − q25 0 0 0

0 q24 − q34 q23 − q34 0 0 q23 − q24 0 0 0 0

0 0 q15 − q45 q14 − q45 0 q15 − q45 q14 − q45 q45 − q15 0 q45 − q14





























.

Thus, the first constraint is of the form

detL = 0. (5.10)

Now the constraint (5.10) fixes the coefficients cl in (5.6) for l > 4. In particular, for

c4 and c5 the constraint gives

c4 =
2

3

c41
c30

− 7

3

c21c2
c20

+
2

3

c22
c0

+ 2
c1c3
c0

, (5.11)

c5 =
20

33

c51
c40

− 49

33

c2c
3
1

c30
+

14

11

c3c
2
1

c20
− 37

33

c22c1
c20

+
19

11

c2c3
c0

. (5.12)

Moreover, the constraint fixes the lowest term in the series (5.6) to be 1 or (âi − âj)
2 up

to some constant factor. These recurrences are satisfied by the three sets of functions qij :

• corresponding to the GL(N) elliptic Calogero system

qIij =

(

1− m2

(âi − âj)
2

)−1

, (5.13)

• the GL(N) elliptic Ruijsenaars model

qIIij =

(

1− m2

sinh (âi − âj) 2

)−1

, (5.14)

• the GL(N) double elliptic system (where τ̄ is the modulus of the second torus)

qIIIij =

(

1− m2

sn ( âi − âj | τ̄) 2
)−1

. (5.15)

Let us elaborate on the parameter count for the last of these (the former two being

obtained as scaling limits of this). As we remarked above, there is an overall scal-

ing of the functions qij left undetermined by the constraint (5.10). Further the scale√
µ of the moduli âi, the mass m and the period τ̄ are also parameters. Setting

qIIIij = m2/µ
(

1−m2/sn
(√

µ (âi − âj)
∣

∣ τ̄
)

2
)−1

scales c0 = −1 and the coefficients c1,2,3
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encode these three parameters; the recursions for cl (l > 4) then express the remaining

coefficients implicitly in terms of µ,m, τ .

The results just obtained suggest the following hypothesis. The constraints (3.9) are

actually theta-constant equations of the period matrix T for the Seiberg-Witten curve asso-

ciated with the N -particle double-elliptic integrable system for N ≥ 5. Thus, the equations

can be used to determine the dependence of the period matrix on the Seiberg-Witten flat

moduli, providing an independent method for calculating the Seiberg-Witten prepoten-

tials (including the instanton corrections) of the GL (N) elliptic Calogero, Ruijsenaars and

double-elliptic systems.
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